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ABSTRACT
We consider cloud computing server infrastructures for big data

applications, which consist of multiple server sites connected over

a wide-area network. �e sites house a number of servers, network

elements and local-area connections, and the wide-area network

plays a critical, asymmetric role of providing vital connectivity

between them. We model this infrastructure as a system of systems,

wherein the sites and wide-area network are represented by their

cyber and physical components. �ese components can be disabled

by cyber and physical a�acks, and also can be protected against

them using component reinforcements. �e e�ects of a�acks prop-

agate within the systems, and also beyond them via the wide-area

network. We characterize these e�ects using correlations at two lev-

els using: (a) aggregate failure correlation function that speci�es the

infrastructure failure probability given the failure of an individual

site or network, and (b) �rst-order di�erential conditions on system

survival probabilities that characterize the component-level corre-

lations within individual systems. We formulate a game between

an a�acker and a provider using utility functions composed of sur-

vival probability and cost terms. At Nash Equilibrium, we derive

expressions for the expected capacity of the infrastructure given

by the number of operational servers connected to the network for

sum-form, product-form and composite utility functions.

CCS CONCEPTS
•Computingmethodologies→Modeling; •Networks→Cyber-
physical networks;

Keywords and phrases: cloud server infrastructure, networked

systems, composite utilities, aggregated correlation function, game

theory, Nash Equilibrium

1 INTRODUCTION
Big data applications over cloud computing infrastructures may

span across multiple server sites, which are connected over wide-

area networks. In these infrastructures, the wide-area network

plays a critical, asymmetric role: its failures render the servers

unreachable even if they are operational, and in extreme cases can

render the entire infrastructure unavailable to users. We represent
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such an infrastructure by a system of systems consisting of the

sites, Si , i = 1, 2, . . . ,N and the wide-area network SN+1 [15]. �e

sites are complex systems, each consisting of several discrete cyber

components, including servers and network devices, and physical

components, including site network �ber connections and Heating,

Ventilation and Air Conditioning (HVAC) system.

A key performance metric for this infrastructure is the capacity
given by the number of servers that are operational and accessible

over the wide-area network. A variety of cyber and physical at-

tacks can be launched on its components that degrade the capacity

in di�erent ways. �e servers are accessible to users over the net-

work, which makes them vulnerable to cyber a�acks that can divert

their processing power or simply crash them. In contrast, network

routers are geographically dispersed with a restricted access by

network administrators. �us, cyber a�acks on them require dif-

ferent techniques compared to server a�acks, and have di�erent

e�ects on the capacity. Successful a�acks on routers can disconnect

signi�cant portions of the network, rendering the servers at dis-

connected sites unavailable to users. A�acks on network elements

at the sites such as LAN switches and border routers have similar

but somewhat localized degradation e�ects. �e increasing deploy-

ment of network control apps for site HVAC systems, particularly

on smart phones, makes them vulnerable to cyber a�acks, which

for example can increase the facility temperature to trigger server

shutdowns. Physical a�acks in the form of �ber cuts and cooling

tower degradations represent di�erent a�ack vectors that degrade

this infrastructure; however, they require a proximity access by an

a�acker. For example, �bers connecting server sites to gateway

routers and in between wide-area routers may be physically cut,

thereby making sites and portions of the network inaccessible to

users. Degradations of HVAC cooling towers, which are typically

in open areas outside the sites, can lead to the shutdown of all site

servers and network devices.

Various component reinforcements may be put in place to protect

against the above a�acks, including replicating servers and routers

for fail-over operations, and installing redundant �ber lines to the

sites and between wide-area network router locations. While such

reinforced components can survive direct a�acks, the servers may

still be unavailable to users due to propagative e�ects of a�acks

on other components. For instance, even if all servers at a site are

hardened against cyber a�acks, they can all be made unavailable,

for example, by cu�ing the �ber connections to the site with a

single physical a�ack, or by bringing down the HVAC system by

a single cyber a�ack. Non-reinforced components, on the other

hand, will be disabled by direct a�acks. �e reinforcements and

a�acks incur costs to the provider and a�acker, respectively, and

their corresponding bene�ts depend not only on the components



but also on various correlations between components and systems,

due to the propagation of disruptions within the sites and between

them over the network.

Let ni denote the number of components of Si of whichyi and xi
denote the number of components a�acked and reinforced, respec-

tively. Let Pi be the survival probability of Si , and PI be the survival

probability of entire infrastructure. �e expected capacity of the

infrastructure is the expected number of available components,

given by

NI =

N∑
i=1

niPi ,

which re�ects the part of infrastructure that survives the a�acks.

Also, let S−i denote the infrastructure without Si , and P−i be its

survival probability. �e relative importance of Si is captured by

the aggregate failure correlation functionCi [16] given by the failure

probability of S−i given the failure of Si . �e asymmetric role of

the network is speci�ed by two conditions [15]: (a) CN+1 = 1

indicates that network failure will disrupt the entire infrastructure,

and (b) Ci = 0, for i = 1, 2, . . . ,N , indicates that disruptions of

individual systems are uncorrelated. �e correlations between

components of individual systems are captured by simple �rst-order

di�erential conditions on Pi [16]. �is two-level characterization

helps to conceptualize the basic correlations in this infrastructure,

and provides insights into the needed defense strategies by naturally

“separating” the system-level and component-level aspects.

A game between an a�acker and a provider involves balanc-

ing the costs of a�acks and reinforcements of systems, given by

LA(y1, . . . ,yN+1) and LD (x1, . . . ,xN+1), respectively, with the sur-

vival probability of the infrastructure PI . �e sum-form utility
function is given by

UD+ = − [PI (x1, . . . ,xN+1,y1, . . . ,yN+1)]дD
+ LD (x1, . . . ,xN+1),

which will be minimized by the provider, and the scalar дD ≥ 0

represents the bene�t of keeping the infrastructure operational.

�e Nash Equilibrium (NE) is determined by the optimization of

the utility functions by the defender and a�acker, which in turn

determines the capacity of the infrastructure. At NE, We derive the

expected capacity for sum-form utility function, which indicates

that higher gain дD leads to lower number of operational and acces-

sible servers. It also provides additional insights, for example, faster

than linearCi leads to lower number of available servers. We carry

out similar analysis using a product-form utility function that repre-

sents a di�erent cost-bene�t trade-o� compared to sum-form utility

function (Section 4.2). Additionally, we also consider composite

utility functions that subsume both sum-form and product-form

utilities as special cases (Section 4.2).

�e organization of this paper is as follows. We brie�y describe

the related work in Section 2. In Section 3, we describe the multi-site

cloud computing infrastructure model of [15] expanded to include

HVAC components, along with the aggregate correlation function

and di�erential conditions on system survival probabilities. We

present our game-theoretic formulation in Section 4 using sum-

form and product-form utilities in Section 4.1, and using composite

utility functions in Section 4.2, wherein we derive NE conditions

and estimates for the system survival probabilities. Estimates for ex-

pected capacity are discussed in Section 5. We present conclusions

in Section 6.

2 RELATEDWORK
Critical infrastructures of power grids, cloud computing, and trans-

portation systems rely on communications networks for connecting

their constituent systems. �ese infrastructures are under increas-

ing cyber and physical a�acks, which the providers must counter

by applying defense measures and strategies. Game-theoretic meth-

ods have been extensively applied to develop the needed defense

strategies [1, 2, 10]. A comprehensive review of the defense and

a�ack models in various game-theoretic formulations has been pre-

sented in [9]. Recent interest in cyber and cyber-physical systems

led to the application of game theory to a variety of cyber security

scenarios [10, 20], and, in particular, for securing cyber-physical

networks [3] with applications to power grids [4, 6, 11, 12].

�e system survivability terms are integrated into discrete mod-

els of cyber-physical infrastructures in various forms under Stack-

elberg game formulations [5]. A subclass of these models using the

number of cyber and physical components that are a�acked and

reinforced as the main variables has been studied in [19]. �ese

models characterize infrastructures with a large number of com-

ponents, and are coarser compared to the models that consider

the a�acks and reinforcements of individual cyber and physical

components. Under these formulations, various forms of correla-

tion functions are used to capture the dependencies amongst the

constituent systems and their components [16, 17, 19].

Collections of systems with complex interactions have been stud-

ied using game-theoretic formulations in [8], and their two-level

correlations have been studied using the sum-form utility functions

in [16] and the product-form utility functions in [17]. �ese two

utility functions are uni�ed in [13] and the sum-form utility func-

tion has been studied under the asymmetric role of communications

network in [15]. �ese two works were uni�ed in [14] by using the

composite utility functions and additionally explicitly accounted

for the asymmetric network role. �e multi-site cloud comput-

ing infrastructure was discussed as an example for sum-form and

product-form utility functions in [15] and composite utility function

in [14] under the asymmetric role of the communications network.

In this paper, we develop a comprehensive treatment of this infras-

tructure by including HVAC system and providing complete details

of NE conditions and capacity estimates. In particular, we relate the

abstract de�nitions of correlation functions and system multiplier

functions to components of multi-site server infrastructure.

3 MULTI-SITE SERVER INFRASTRUCTURE
A distributed cloud computing infrastructure consisting of N sites,

each with li servers at site i , i = 1, 2, . . . ,N has been studied in

[13] by using separate cyber and physical models for each site. �e

sites are connected over a communication network SN+1 as shown

in Figure 1. �e network consists of a number of routers each of

which manages lN+1 connections as shown in Figure 2.

�is infrastructure is subject to a variety of cyber and physical

a�acks on its components. Cyber a�acks on the servers may be



Figure 1: Cloud computing infrastructure with N server
sites.

launched remotely over the network since the servers are acces-

sible to users. Meanwhile, routers are located at geographically

separated sites and access to them is limited (to network administra-

tors), and they are not as easily accessible over the network. Cyber

a�acks on routers require di�erent techniques and represent di�er-

ent costs to the a�acker compared to server a�acks. Furthermore,

this infrastructure is subject to physical a�acks in the form of �ber

cuts, which require a proximity access by the a�acker. Cu�ing the

network �bers that connect server sites to routers will disconnect

the entire site, making it inaccessible to the users. And, such a�acks

may also be launched on the network �bers between routers at

di�erent locations on the network.

�e infrastructure provider may employ a number of reinforce-

ments to protect against a�acks, including replicating the servers

and routers to support fail-over operations, and installing physi-

cally separated redundant �ber lines to the sites and between router

locations. �ese measures could require signi�cant costs, and hence

must be strategically chosen.

3.1 System-Level Correlations
�e correlations between systems, including the network, in these

infrastructure are characterized in terms of their survival probabili-

ties as follows.

Condition 3.1. Aggregate Correlation Function [16, 17]:
Let Ci denote the failure probability of rest of the infrastructure S−i
given the failure of Si , and let C−i denote the failure probability
of Si given the failure of S−i . �en, the survival probability of the
infrastructure is given by

PI = Pi + P−i − 1 +Ci (1 − Pi )
= Pi + P−i − 1 +C−i (1 − P−i ).�

�e cyber and physical aspects of a site Si can be represented

by using two �ner models S(i,c) and S(i,p) that correspond to cyber

and physical model, respectively. Similarly, those of the network

Figure 2: Network ofmulti-site cloud servers infrastructure.

SN+1 are represented by S(N+1,c) and S(N+1,p), which are the cyber

and physical models as illustrated in Figure 3. �e relationships

between these system-level models can be captured using re�ned

versions of the aggregate correlation function de�ned above. For

the communications network, we have

C(N+1,c) = lN+1C(N+1,p)

which re�ects that a cyber a�ack on a router will disrupt all its

lN+1 connections, thereby illustrating the ampli�cation e�ect of

the cyber a�acks. For the server sites, we have a similar e�ect due

to physical �ber a�acks denoted by label pf re�ected by

C(i,pf ) = liC(i,c)

which indicates that at site Si the �ber disruption will disconnect all

its li servers. Similarly, the cyber a�ach on site HVAC app denoted

by label ch leads to

C(i,ch ) = liC(i,c)
which indicates that at site Si the HVAC disruption will a�ect all

its li servers.

It is useful to examine interesting special cases of the aggregate

correlation function. Under the statistical independence of system

failures we haveCi = 1− P−i , where P−i is the survival probability

of S−i , since the failure probability of S−i is not dependent on

Pi . Substituting in the above condition, we have PI = PiP−i as

expected. Generalizations of this condition include two interesting

cases: (a) IfCi > 1− P−i , the failures in S−i are positively correlated
to those in Si , indicating that the conditional failure probability S−i
given the failure of Si is higher than the failure probability of S−i .
(b) If Ci < 1 − P−i , failures in S−i are negatively correlated to la�er

failures.

�e important asymmetric role of the communications network

is characterized using the following condition.

Condition 3.2. AsymmetricNetwork andUncorrelated Sys-
tems Conditions [15]: �e aggregated correlation functions of Si ,
i = 1, 2, . . . ,N +1 satisfy the conditions: (i) for the network SN+1, we
have CN+1 = 1, and (ii) for the constituent systems, we have Ci = 0,
i = 1, 2, . . . ,N . �



�e part (i) leads to PI = P−(N+1) which indicates the role of

rest of infrastructure S−(N+1) without the network. �e part (ii)

leads to PI = Pi + P−i − 1, i = 1, 2, . . . ,N , which linearly depends

on each of failure probabilities of the constituent system Si and

rest of infrastructure S−i . It is important to note that although

direct correlations between the failures of the sites are zero in

part (ii) above, these failures are still correlated through the network,

namely, each failure is individually correlated to the network, and

the network failures are correlated to rest of the infrastructure,

namely, the server sites.

At the system-level, the e�ects of reinforcements and a�acks

can be separated using the two following conditions:

(i) �rst condition,
∂P−i
∂xi
≈ 0 for i = 1, 2, . . . ,N , indicates that

reinforcing the server site Si does not directly impact the

survival probability of other sites or network; and

(ii) second condition,
∂Pi
∂x j
≈ 0 for i = 1, 2, . . . ,N + 1, j =

1, 2, . . . ,N and j , i , indicates that reinforcing server

site Sj does not directly impact the survival probability

of server site Si .

While the reinforcements to individual server sites or network are

not directly re�ected in other systems, their failures may still be

correlated due to the underlying system structures as re�ected in

their aggregated correlation functions. �ese system-level consid-

erations for the provider are captured by the following condition

which is obtained by di�erentiating PI in Condition 3.1 with re-

spect to xi and ignoring the terms corresponding to parts (i) and

(ii) above.

Condition 3.3. De-Coupled Reinforcement E�ects: For PI
in Condition 3.1, we have for i = 1, 2, . . . ,N + 1,

∂PI
∂xi
≈ (1 −Ci )

∂Pi
∂xi
+ (1 − Pi )

∂Ci
∂xi

for the provider. �

�e condition indicates that the increment in PI due to change

in the number of reinforced components xi is the sum of the in-

crement in individual system survival probability Pi weighted by

”non-correlation” term (1 − Ci ) and increment in correlation Ci
weighted by failure probability 1 − Pi . In the cases where Ci is a

constant, we note that
∂Ci
∂xi
= 0, which is the case under both parts

of Condition 3.2.

3.2 Component-Level Correlations
�e survival probabilities for server sites and network satisfy the

following di�erential condition that speci�es the correlations at

the component level within each site and network [16, 18].

Condition 3.4. System Multiplier Functions: �e survival
probabilities Pi and P−i of system Si and S−i , respectively, satisfy the
following conditions: there exist system multiplier functions Λi and
Λ−i such that

∂Pi
∂xi
= Λi (x1, . . . ,xN ,y1, . . . ,yN )Pi

∂P−i
∂xi

= Λ−i (x1, . . . ,xN ,y1, . . . ,yN )P−i

for i = 1, 2, . . . ,N + 1. �

Figure 3: Representation of cloud computing infrastructure.

We now consider a special case where the a�acker and provider

choose the components to a�ack and reinforce, respectively, accord-

ing to uniform distribution. Let n(i,c) and n(i,p) represent the num-

ber of cyber and physical components, respectively, of site Si such

that ni = n(i,c) + n(i,p). Similarly, let x(i,c) and x(i,p) represent the

number of cyber and physical components reinforced at site Si such

that xi = x(i,c) + x(i,p), and let y(i,c) and y(i,p) represent the num-

ber of cyber and physical components a�acked at site Si such that

yi = y(i,c) + y(i,p). �en, corresponding to the site physical model

S(i,p), i = 1, 2, . . . ,N , there are [n(i,p) − x(i,p)]+ non-reinforced

�ber connections, where [x]+ = x for x > 0, and [x]+ = 0 other-

wise. Similarly, there are [n(i,c) − x(i,c)]+ non-reinforced servers.

If a cyber component (i.e., a server) is reinforced, it will survive a

cyber a�ack but can be brought down indirectly by a �ber a�ack.

�en, the probability that a cyber-reinforced component survives

y(i,p) �ber a�acks is approximated by

p(i,c) |R =
f(i,c)

1 + li
[
y(i,p) − x(i,p)

]
+

,

where the normalization constant f(i,c) is appropriately chosen.

On the other hand, if a cyber component is not reinforced, it

can be brought down by either a direct cyber a�ack, or indirectly

through a �ber a�ack. �us, we approximate the survival probabil-

ity of a cyber component at site k as

p(i,c) |N =
f(i,c)

1 + y(i,c) + li
[
y(i,p) − x(i,p)

]
+

,

which re�ects the additional lowering of the survival probability

in inverse proportion to the level of cyber a�ack y(i,c). Using

these formulae, for cyber model S(i,c) of site Si , we have, under the

independence of component a�acks [18]

Λ(i,c )(x(i,p), y(i,c ), y(i,p)) = ln

(
1 +

y(i,c )
1 + li

[
y(i,p) − x(i,p)

]
+

)
.

It is interesting to note that the system multiplier function Λ(i,c)
does not depend on the cyber reinforcements term x(i,c) even



though it corresponds to

∂P(i,c )
∂x(i,c )

. �e function, however, depends

on the physical reinforcement term x(i,p).
Under the statistical independence of cyber and physical a�acks,

we have the following generalization of the condition derived in

[17]

Pi = p
x(i,c )
(i,c) |Rp

n(i,c )−x(i,c )
(i,c) |N p

x(i,p)
(i,p) |Rp

n(i,p)−x(i,p)
(i,p) |N

or equivalently

ln Pi = n(i,c) lnp(i,c) |N + x(i,c) ln
(
p(i,c) |R
p(i,c) |N

)
+ n(i,p) lnp(i,p) |N + x(i,p) ln

(
p(i,p) |R
p(i,p) |N

)
By di�erentiating the equation with x(i,c), we obtain

∂Pi
∂x(i,c)

= ln

(
p(i,c) |R
p(i,c) |N

)
Pi = Λ(i,c)Pi .

�en, by noting that
∂xi

∂x(i,c )
= 1, we obtain

∂Pi
∂xi
= Λ(i,c)Pi ,

which enables us to approximate Λi by Λ(i,c).

4 NASH EQUILIBRIUM CONDITIONS
�e provider’s objective is to make the infrastructure resilient by

reinforcing xi components of Si by optimizing the utility function.

Similarly, the a�acker’s objective is to disrupt the infrastructure by

a�ackingyi components of Si by optimizing the corresponding util-

ity function. A game between an a�acker and a provider involves

balancing the costs of a�acks and reinforcements of systems, given

by LA(y1, . . . ,yN+1) and LD (x1, . . . ,xN+1), respectively, with the

survival probability of the infrastructure.

4.1 Sum-Form and Product-Form Utility
Functions

�e sum-form disutility function is given by

UD+ = − [PI (x1, . . . ,xN+1,y1, . . . ,yN+1)]дD
+ LD (x1, . . . ,xN+1),

which will be minimized by the provider, and the scalar дD ≥ 0

represents the bene�t of keeping the infrastructure operational.

�e product-form disutility function is given by

UD× = [1 − PI (x1, . . . ,xN+1,y1, . . . ,yN+1)]
× LD (x1, . . . ,xN+1),

which will be minimized by the provider; it represents the “wasted”

cost to the provider since it is the expected cost under the condition

that the infrastructure fails. �e sum-form and product-form util-

ity functions [15] re�ect two di�erent values a�ached to keeping

the infrastructure operational: the sum-form represents a weaker

coupling of probability and cost terms, whereas the product-form

utility function is their product. In general, they lead to qualita-

tively di�erent defense strategies that are derived separately, and

the corresponding expressions for the survival probabilities appear

to be structurally di�erent. �e composite utility functions lead

to simpler expressions for Pi , i = 1, 2, . . . ,N , and NI at the Nash

Equilibrium (NE). NE conditions are derived by equating the corre-

sponding derivatives of the utility functions to zero, which yields

the following for sum- and product-form utilities, respectively:

∂UD+
∂xi

=
∂PI
∂xi

дD −
∂CD
∂xi

= 0

∂UD×
∂xi

= − ∂PI
∂xi

CD + (1 − PI )
∂CD
∂xi

= 0

for i = 1, 2, . . . ,N + 1 for the provider.

In particular, the dependence of Pi on cost terms and aggregate

correlation functions, and their partial derivatives, can be presented

in a compact form by using composite gain-cost and composite

multiplier terms (to be de�ned in Section 4.2).

Under Conditions 3.1, 3.3, and 3.4, estimates of the survival

probability of system Si , for i = 1, 2, . . . ,N + 1 are derived in [15]

P̂Ai ;D =

∂Ci
∂xi
− ξAi

∂Ci
∂xi
− (1 −Ci )Λi

where A = + and A = × correspond to sum-form and product-form,

respectively, such that

ξAi =

{
1

дD
∂CD
∂xi

if A = +

(1 − PI ) ∂ lnCD
∂xi

, if A = ×

for i = 1, 2, . . . ,N + 1 under the condition: Ci < 1 or
∂Ci
∂xi
, 0.

Under the asymmetric network correlation coe�cient CN+1 = 1,

the survival probability of the network is given by

PA−(N+1);D =
ξAN+1

Λ−(N+1)

for A = +,×.

In P̂Ai ;D , the term Λi appears in the denominator with a neg-

ative sign. �us, in qualitative terms, it depends linearly with a

multiplier a on the logarithm of the number of cyber a�acks y(i,c),

and inversely on the logarithm of

[
y(i,p) − x(i,p)

]
+

which is the

number of a�acks exceeding the reinforcements. �e sign of the

multiplier a could be positive or negative based on the other factors

∂Ci
∂xi

and ξAi , where A = +,×. �is condition may appear somewhat

counter-intuitive at the surface but note that it only characterizes

the states that satisfy NE conditions, and in particular, it illustrates

the richness of infrastructure behavior at NE.

4.2 Composite Utility Functions
�e sum-form and product-form utility functions are generalized

by the composite utility function given by

UD (x1, . . . ,xN+1,y1, . . . ,yN+1)
= FD,G (x1, . . . ,xN+1,y1, . . . ,yN+1)
×GD (x1, . . . ,xN+1,y1, . . . ,yN+1)
+ FD,L(x1, . . . ,xN+1,y1, . . . ,yN+1)LD (x1, . . . ,xN+1),

where the �rst product term corresponds to the reward and the

second product term corresponds to the cost. Within the product

terms, FD,G and FD,L are the reward and cost multiplier functions,
respectively, of the provider, and GD and LD represent the reward



Table 1: Gain and cost terms and their multipliers for sum-form and product-form utilities of provider.

FD,G GD FD,L LD
∂FD,G
∂PI

∂GD
∂xi

∂FD,L
∂PI

LDG,L FD,iG,L
sum-form: UD+ [1 − PI ] дD 1 LD - 1 0 0 −дD ∂LD

∂xi
product-form: UD× 0 0 [1 − PI ] LD 0 0 - 1 −LD [1 − PI ] ∂LD∂xi

and cost, respectively, of keeping the infrastructure operational.

Similarly, we consider that the a�acker minimizes

UA (x1, . . . ,xN+1,y1, . . . ,yN+1)
= FA,G (x1, . . . ,xN+1,y1, . . . ,yN+1)
×GA(x1, . . . ,xN+1,y1, . . . ,yN+1)
+ FA,L(x1, . . . ,xN+1,y1, . . . ,yN+1)LA(y1, . . . ,yN+1),

where FA,G and FA,L are the reward and cost multiplier functions,

respectively, of the a�acker, and GA and LA represent the reward

and cost of disrupting the infrastructure operation, respectively.

�e provider’s objective is to make the infrastructure resilient by

reinforcing xi components of Si by optimizing the utility function.

Similarly, the a�acker’s objective is to disrupt the infrastructure

by a�acking yi components of Si by optimizing the correspond-

ing utility function. NE conditions are derived by equating the

corresponding derivatives of the utility functions to zero, which

yields

∂UD
∂xi

=

(
GD
∂FD,G
∂PI

+ LD
∂FD,L
∂PI

)
∂PI
∂xi

+ FD,G
∂GD
∂xi

+ FD,L
∂LD
∂xi

= 0

for i = 1, 2, . . . ,N + 1 for the provider. We de�ne

LDG,L = GD
∂FD,G
∂PI

+ LD
∂FD,L
∂PI

as the composite gain-cost term, wherein the gain GD and loss LD
are “ampli�ed” by the derivatives of their corresponding multiplier

functions with respect to PI . We then de�ne

FD,iG,L = FD,G
∂GD
∂xi

+ FD,L
∂LD
∂xi

as the composite multiplier term, wherein the gain multiplier FD,G
and cost multiplier FD,L are “ampli�ed” by the derivatives of their

corresponding gain and cost terms with respect toxi , i = 1, 2, . . . ,N+
1, respectively. �ese two terms lead to the compact NE condition

∂PI
∂xi
= −

FD,i
G,L

LDG,L
. Various terms of the composite utility function spe-

cialized to sum-form and product-form utilities are shown in Table

1.

Under Conditions 3.1, 3.3, and 3.4, the following estimates of the

survival probability of system Si , for i = 1, 2, . . . ,N + 1 are derived

in [16]

P̂i ;D =

∂Ci
∂xi
+

FD,i
G,L

LDG,L

∂Ci
∂xi
− (1 −Ci )Λi

for i = 1, 2, . . . ,N + 1 under the condition: Ci < 1 or
∂Ci
∂xi
, 0.

Under the asymmetric network correlation coe�cient CN+1 = 1,

the survival probability of the network is given by

P−(N+1);D = −
1

Λ−(N+1)

FD,N+1

G,L

LDG,L
.

�e system survival probability estimates P̂i ;D provide qualita-

tive information about the e�ects of various parameters including

aggregated correlation coe�cient Ci , system multiplier functions

Λi , composite gain-cost LDG,L and composite multiplier FD,iG,L ; note

that the estimates may not necessarily lie within range [0,1]. In

particular, P̂i ;D (i) increases and decreases with FD,iG,L and LDG,L , re-

spectively, (ii) increases with Λi , and (iii) depends both on Ci and

its derivative for i = 1, 2, . . . ,N . For the network, P−(N+1);D is in a

simpler form since CN+1 = 1.

Consider P̂Ai ;D above, the term Λi appears in the denominator

with a negative sign. �us, in qualitative terms, it depends linearly

with a multiplier a on the logarithm of the number of cyber a�acks

y(i,c), and inversely on the logarithm of

[
y(i,p) − x(i,p)

]
+

which is

the number of a�acks exceeding the reinforcements. �e sign of the

multiplier a could be positive or negative based on the other factors

∂Ci
∂xi

and ξAi , where A = +,×. �is condition may appear somewhat

counter-intuitive at the surface but note that it only characterizes

the states that satisfy NE conditions, and in particular, it illustrates

the richness of infrastructure behavior at NE.

5 EXPECTED CAPACITY ESTIMATES
We now consider that network failure renders the entire infrastruc-

ture unavailable, and those of individual systems are uncorrelated

with others given by Condition 3.2.

5.1 Sum-Form and Product-Form Utility
Functions

�e following results derived in [15] provides a single, simpli�ed

expression for the expected capacity under these conditions. Under

Conditions 3.1-3.4, the expected capacity is given by

NA
I =

N∑
i=1

(
ni
ξAi
Λi

)
where A = + and A = × correspond to sum-form and product-form,

respectively, such that

ξAi =

{
1

дD
∂CD
∂xi

if A = +

(1 − PI ) ∂ lnCD
∂xi

, if A = ×

for i = 1, 2, . . . ,N . For the sum-form,

N+I =
N∑
i=1

©­«
ni

∂CD
∂xi

дDΛi

ª®¬



indicates that higher gain дD leads to lower number of operational

components. For the product form,

N×I = (1 − PI )
N∑
i=1

©­«
ni

∂CD
∂xi

CDΛi

ª®¬
indicates that higher survival probability of the network leads to

lower number of operational components. �e dependence on Λi
is similar in both cases, namely, faster than linear leads to lower

number of available component, and vice versa. �e dependence

onCD is somewhat di�erent due to its presence in the denominator

for product-form, even though
∂CD
∂xi

appears in the numerator in

both forms.

In terms of the expected capacity NA
I , the dependence on y(i,c)

and

[
y(i,p) − x(i,p)

]
+

is more direct, and qualitatively similar for

both sum-form and product-form, since the term Λi appears in the

denominator. We then obtain the following expressions: for the

sum-form,

N+I =
N∑
i=1

©­­­­«
ni

∂CD
∂xi

дD ln

(
1 +

y(i,c )
1+li [y(i,p)−x(i,p)]+

) ª®®®®¬
,

and for the product form,

N×I = (1 − PI )
N∑
i=1

©­­­­«
ni

∂CD
∂xi

CD ln

(
1 +

y(i,c )
1+li [y(i,p)−x(i,p)]+

) ª®®®®¬
.

In both cases, the multipliers ni , дD and CD are positive, and it

is reasonable to assume the condition
∂CD
∂xi

≥ 0, since the rein-

forcement cost does not decrease with xi . �us, the expected ca-

pacity decreases with y(i,c) and the opposite is true with respect

to

[
y(i,p) − x(i,p)

]
+

. In both cases, the dependence on the number

of servers li at site i is qualitatively similar in that the expected

capacity increases proportional to its logarithm. �us, the overall

dependencies considered here are quite simple, namely, under the

statistical independence and uniform distributions of components

chosen by both defender and a�acker. Even under such simple

conditions, the detailed NE conditions are quite complex to charac-

terize.

For composite utility function, under Conditions 3.1-3.4, the

expected capacity is derived in [14]

NI =

N∑
i=1

©­«− niΛi
FD,iG,L

LDG,L

ª®¬
for i = 1, 2, . . . ,N . �is condition indicates that lower composite

gain-cost LDG,L and higher composite multiplier FD,iG,L lead to lower

expected capacity. Typically, the composite gain-cost LDG,L is nega-

tive (e.g. −дD for sum-form) since it is minimized by the provider;

thus, its lower value is more negative and has a higher magnitude.

Also, larger values of Λi also lead to lower expected capacity. In par-

ticular, the condition Λi > 1, called the faster than linear growth of

∂Pi
∂xi

, leads to lower expected capacity. �is seems counter-intuitive

since faster improvement in Pi due to increase in xi leads to lower

expected capacity, but note that it only characterizes the states that

satisfy NE conditions.

For the composite utility functions, we obtain the following

expression for the expected number of servers

NI =

N∑
i=1

©­­­­«
−

niF
D,i
G,L

LDG,L ln

(
1 +

y(i,c )
1+li [y(i,p)−x(i,p)]+

) ª®®®®¬
.

In the equation, ni is positive, and it is reasonable to assume that

−
FD,i
G,L

LDG,L
≥ 0, since

∂PI
∂xi
= −

FD,i
G,L

LDG,L
at NE, and the survival probability

of entire infrastructure PI does not decrease with xi . �us, the

expected capacity decreases with y(i,c) and the opposite is true

with respect to

[
y(i,p) − x(i,p)

]
+

. In both cases, the dependence on

the number of servers li at site i is qualitatively similar in that the

expected capacity increases proportional to its logarithm.

�e dependencies considered here are quite simple as a result of

the statistical independence and uniform distributions of reinforce-

ments and a�acks. Even under such simple conditions, the detailed

NE conditions are quite complex to characterize, but they do provide

qualitative insights into the e�ects of underlying parameters.

6 CONCLUSIONS
We consider a class of infrastructures with multiple server sites con-

nected over a wide-area network, which plays an asymmetric role

by providing the critical connectivity between them. By utilizing

correlations at system- and component-level, we formulated the

problem of ensuring the infrastructure survival as a game between

an a�acker and a provider, by using sum-form and product-form

utility functions and their generalization using composite utility

functions. We derived Nash Equilibrium conditions that provide

compact expressions for the expected capacity given by the number

of operational and accessible servers. �ese results are obtained by

applying the extensions of previous results on interconnected sys-

tems [7, 8] and cyber-physical infrastructures [18] to the multi-site

server infrastructure.

�e formulation studied in this paper can be extended to in-

clude cases where targeted a�acks and reinforcements of speci�c

individual components are explicitly represented. It is of future

interest to compare this formulation to ones whose utility func-

tions explicitly utilize the capacity term in place of infrastructure

survival probability terms. Another future direction is to consider

the simultaneous cyber and physical a�acks on multiple systems

and components, and sequential game formulations of this problem.

Performance studies of our approach using more detailed models

of cloud computing infrastructure would be of future interest.
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