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Abstract—The increased penetration of solar photovoltaic (PV)
energy sources into electric grids has increased the need for
accurate modeling and prediction of solar irradiance and power
production. Existing modeling and prediction techniques focus
on long-term low-resolution prediction over minutes to years.
This paper examines the stochastic modeling and short-term
high-resolution prediction of solar irradiance and PV power
output. We propose a stochastic state-space model to
characterize the behaviors of solar irradiance and PV power
output. This prediction model is suitable for the development of
optimal power controllers for PV sources. A filter-based
expectation-maximization and Kalman filtering mechanism is
employed to estimate the parameters and states in the state-
space model. The mechanism results in a finite dimensional filter
which only uses the first and second order statistics. The
structure of the scheme contributes to a direct prediction of the
solar irradiance and PV power output without any linearization
process or simplifying assumptions of the signal’s model. This
enables the system to accurately predict small as well as large
fluctuations of the solar signals. The mechanism is recursive
allowing the solar irradiance and PV power to be predicted
online from measurements. The mechanism is tested using solar
irradiance and PV power measurement data collected locally in
our lab.

Index Terms— Photovoltaics, solar variability, distributed
energy resources, stochastic prediction, state-space model,
Kalman filter, expectation-maximization algorithm.

. INTRODUCTION

The deployment of distributed energy resources (DERS)
has increased dramatically over the last decade, especially
solar photovoltaics (PV). The use of solar PV has many
benefits that include no emissions and pollution from electric
power production, abundant resource, silent operation, long
lifetime, and little maintenance [1]. However, the application
of solar PV to the electric grid also has drawbacks, in
particular the variability of power output that adds stress and
uncertainty to the system. The variable nature of solar PV
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could hamper further deployment due to the increase in
reserves needed on the electric grid to compensate for
fluctuations in the power output. In addition, the solar energy
conversion systems have a fast and nonlinear response to
incident radiation [2]. Thus, the knowledge of temporal
variability of solar radiation is essential for the study of these
systems and the fluctuating nature of solar radiation should be
taken into consideration [3].

Real-time high-resolution predictions of solar irradiance
and power output are necessary to overcome the temporal
variability challenges of solar radiation. Accurate real-time
high-resolution predictions allow for the development of
optimal controllers that improve the stability, reliability, and
efficiency of the electric grid and microgrids. Previous
attempts to model solar irradiance can be classified into three
general types [4]: physical, frequency distribution, and
stochastic. The physical approach studies the physical
processes occurring in the atmosphere and influencing solar
radiation. It is exclusively based on physical considerations,
allowing that the radiant energy exchanges take place within
the earth-atmosphere system. This approach dictates models
that account for the estimated solar irradiation at the ground in
terms of a certain number of physical parameters, such as,
water vapor content, dust, aerosols, clouds and cloud types,
etc. [5]. The frequency distribution approach provides
descriptive statistical analysis, for each place and period of the
year, of the main quantities of interest such as hourly or daily
global, diffuse or beam solar irradiation and statistical
modeling of the observed empirical frequency distributions.
The stochastic modeling approach is more flexible having the
ability to incorporate any non-deterministic influences such as
cloud movement and pollution levels into the model, and any
non-standard features such as shading specific to a particular
location [4]. Thus, stochastic modeling is capable for
capturing the intrinsically non-deterministic (uncertain) nature
of irradiance fluctuations. For example, understanding the
sub-minute behavior of photovoltaic generation will be



necessary to develop realistic predictive models (controllers)
of small microgrids on the order of single houses to single
buildings.

Several stochastic modeling and prediction methods of
solar irradiance and power have been reported in the literature.
The works in [6], [7], [8] represent solar irradiance using
hidden Markov models (HMMs). The works in [4], [9], [10]
represent solar irradiance using autoregressive integrated
moving average (ARIMA) model. While, the works in [11],
[12] provide a framework to predict solar irradiance using
artificial neural networks (ANNS). Lastly, the work in [13]
presents a stochastic solar irradiance forecasting framework
based on conditional random fields (CRFs). These works
provide accurate models and predictions that capture the
hourly, daily, and seasonal solar PV trends. However, they
lack accurate high-resolution modeling and prediction of fast
and large fluctuations of solar irradiance/PV power that often
occur as illustrated in Fig. 1 for a typical summer day.

This paper presents and evaluates a state-space method for
the short-term high-resolution solar irradiance and power
prediction. We employ a filter-based expectation
maximization (EM) algorithm [14], [15] and Kalman filtering
[16] to estimate the parameters and states, respectively, in the
state-space model. The proposed mechanism results in a finite
dimensional filter which only uses the first and second order
statistics. The structure of the method contributes to a direct
prediction of the solar irradiance and PV power output without
any linearization process or simplifying assumptions of the
signal’s model. This enables the system to accurately predict
small as well as large fluctuations of the PV signal. This
mechanism has been initially employed in [17] for wireless
communication channel prediction, however, this paper
introduces its first employment for solar PV prediction. The
mechanism is recursive allowing the irradiance and power to
be predicted online from measurements. The mechanism is
tested using solar irradiance and PV power measurement data
collected locally in our laboratory. This method of short-term
high-resolution predictions of the PV variability enables the
design of optimal controllers for PV power output
management that can better respond to the fast variations in
solar irradiance.
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Fig. 1. The solar PV power profile for a typical summer day collected

from 13kW PV panel and showing the fast and large fluctuations of PV power
output.

The rest of this paper is organized as follows. Section Il
describes the PV signal (irradiance/power) model and the
formulation of the filter equations where the state-space
model, as well as the parameter estimation, is introduced.
Section Il discusses the simulation results of the proposed
approach for prediction of solar irradiance (or power output)
from real measurements. Finally, Section IV highlights the
main conclusions and contributions of this paper.

Il.  PREDICTION OF PV IRRADIANCE/POWER VIA THE EM
ALGORITHM AND KALMAN FILTERING

In this section, we will first briefly discuss the state-space
model and apply it to modeling solar irradiance and PV power
output signals. After that, the EM algorithm [14], [15] and
Kalman filter [16] will be introduced to estimate the model
parameters and states, respectively, from received PV
irradiance/power measurements.

A. Stochastic State-Space Model

The state-space model has been widely employed in
control systems and signal processing since its parameters and
states can be updated online after receiving new observations.
It consists of a state (or system) equation and a measurement
(or output) equation as described in (1). The solar irradiance
(or PV power) can be described by the following discrete-time
stochastic linear time-variant state-space model

X1 = Ay + Bow
Yo = Ck X + DV
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where subscript K is the discrete-time index and it belongs to
the set {0,1,2,..}, x,, € R™ (R"™ denotes the space of

real vectors of dimension nx1) is the state vector at time k
that characterizes the solar signal; it is described by the

previous state x, and the state noise process w, e R™*
introduced at each k; while A, e R™" and B, e R™™ are the
corresponding coefficients. y, € R* is the discrete-time solar

irradiance (or power) measurement vector; it is described by
the previous state x, and the measurement noise process

v, eR™; while C, eR™ and D, eR""
corresponding coefficients.

are the

The time-varying property of the parameters renders the
state-space model to be able to adapt dynamically to a variety
of irradiance/ PV power values. The noise processes w, and

v, are able to capture small perturbations or uncertainties

introduced at each time k that improves the flexibility of the
model. In this paper, the noise processes are assumed to be
independent zero-mean and unit-variance Gaussian processes,
and their covariances are described by the coefficients B,

and D, . Due to these properties, we propose to use the state-

space model to track and predict the behaviors of solar
irradiance and PV power. The unknown system parameters
6. ={A..B..C,,D,} and the system states x, can be
estimated through a finite set of received signal measurement
data Yy ={V¥,,¥,,.., Yy }- Future irradiance/ PV power values



can be predicted recursively based on these estimated
parameters. The parameters are identified using a filter-based
EM algorithm [14], [15] and the system states are estimated
using the Kalman filter [16]. It has been previously proven
that the Kalman filter could optimally estimate the system
state in the mean square sense and that the filter-based EM
algorithm vyields a maximum likelihood (ML) parameter
estimate [18]. The Kalman filter is introduced next.

B. State Estimation: The Kalman Filter
The Kalman filter estimates the system states x, for

given system parameter 6, and measurements Y, . It is
described by the following equations [16]
)A(k|k Ak Xk k-1 + Pk\kaT 1 72 (yk _Ck-1A<-1>zk-1\k-1) (2)
Xk|k—1 Ak—lxk —lk-1
where k=0,12,...,N, any variable denoted with «™ refers to

estimated value, and R, is given by
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where B?, =B _,B/,, and D?,=D_ ,D],. The model
parameters 6, ={A ,B,,C,,D,} are estimated using the EM
algorithm which is introduced next.

C. Parameter Estimation: The EM Algorithm

The filter-based EM algorithm uses a bank of filters to
yield a ML parameter estimate of the Gaussian state space
model. The EM algorithm is an iterative numerical algorithm
for computing the ML estimate. Each iteration consists of two
steps: the expectation and the maximization steps. The
filtered expectation step only uses filters for the first and
second order statistics. The memory costs are modest and the
filters are decoupled and hence easy to implement in parallel
on a multi-processor system [15].

Let 6, ={A.,B,,C,,D,} denotes the system parameters
in (1) and {ng; 0, e@} denotes a family of probability

measures induced by the system parameters 6, . The EM

algorithm computes the ML estimate of the system
parameters 6, given the data Y, . The expectation step

evaluates the conditional expectation of the log-likelihood
function given the complete data as

. dP,
A(gk ' ek) = Eg'k IOng | Y 4
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where ék denotes the estimated system parameters at time
step k. The maximization step finds

6,., € argmax A(Hk, ék) (5)
/A=)
The expectation and maximization steps are repeated until the
sequence of model parameters converge to the real
parameters. The EM algorithm is described by [15]
. k k -1
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where E(-) denotes the expectation operator and E(-|Y,) is
the conditional expectation given the measurable set Y, .

Thus, the filter-based EM algorithm that computes the ML
estimate of @ can be summarized as follows: Choose an

initial parameter estimate 6,, then compute 6, at each
iteration according to system (6) for the model. Furthermore,
since A(6,,6,) is continuous in both 6, and 4, , the EM
algorithm converges to a stationary point in the likelihood
surface [15], [19]. The system parameters 6, can be
computed from the following conditional expectations [14]

|_(2)
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where Q, R and S are given by
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in which e, is the unit vector in the Euclidean space; that is

e =1 in the ith position, and O elsewhere. For instance,
consider the case 2n = 2, then
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where R; ={ee] /2;i,j=1,2}. The other terms in (6) can be
computed similarly from (7). For more details on how to
estimate the conditional expectations {L{’, L, L, 1"} from
measurements Y, , we refer the reader to [17].

After estimating all the parameters in the state-space
model, we can achieve a one-step prediction of the solar
irradiance and PV power by [18]

Yo = ék (A<)A(k\k + Kk (Yk _ék Rk )) (10)

where Y, ., denotes the predicted solar irradiance (or PV
power) at time k + 1 and K, is the Kalman gain described by

Kk = (A(—lplqkél;r—l)(ék—lpk\ké:—l + [313-1) (11)

The algorithm vyields parameter estimates with non-
decreasing values of the likelihood function, and converges
under mild assumptions [19].

I1l.  NUMERICAL RESULTS

In this section, we present numerical results that highlight
the performance of the proposed EM algorithm and the
Kalman filter in predicting the solar irradiance and PV power
from measurements. We have tested the proposed prediction
mechanism on 12-month measurement of solar irradiance and
PV power output data collected from 13kW PV panel located
on the roof of our lab at Oak Ridge National Laboratory
(ORNL) in Oak Ridge, Tennessee. It is shown in [20] that
there is minimal energy delivered by PV systems in variations
faster than one hertz. So, the collected irradiance (in W/m?)
and power (in kW) data is recorded at one sample per second
(sampling rate is 1 Hz).

Figure 2 demonstrates the performance of the proposed
one-step prediction algorithm acting on real solar irradiance
data for one sample day selected at random using a 4™ order
state-space model. Observe that the irradiance has been
predicted with very high accuracy. It takes only a few
iterations (about 5 iterations) for the prediction algorithm to
converge. The absolute prediction error is illustrated in Figure
2 (b). Figure 3 demonstrates the performance of the proposed

one-step prediction algorithm acting on real solar PV power
output data for the same day using a 4™ order state-space
model. The same observations for the solar irradiance
prediction case hold here for the PV power prediction. In
addition, it can be concluded that a 4" order stochastic model
is sufficient to capture the dynamical fluctuations of PV
measurements.
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Fig. 2. (a) Numerical results illustrating the performance of the

developed EM algorithm together with the Kalman filter in one-step
prediction of solar irradiance and (b) its corresponding absolute prediction
error.

Table 1 illustrates the normalized root mean square error
(RMSE) performance for one, ten, and one hundred steps
prediction of the proposed EM algorithm combined with the
Kalman filter approach and compared with the traditional
autoregressive (AR) prediction method [21]. It is observed
that the performance of the proposed prediction approach
outperforms the baseline AR prediction method by an order of
magnitude, in particular at one-step (high-resolution)
prediction period. Based on these observations, it can be
concluded that the EM algorithm combined with the Kalman
filter can dynamically track the short-term high-resolution
stochastic behavior of future solar irradiance and PV power
measurements.
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Fig. 3. (a) Numerical results illustrating the performance of the

developed EM algorithm together with the Kalman filter in one-step
prediction of PV power output and (b) its corresponding absolute prediction
error.

Table 1. Normalized RMSE of the proposed EM-KM prediction
approach with different prediction steps and compared with the traditional
autoregressive prediction method.

) Irradiance | Power
Algorithm| Steps (%) (%)
1 1.3 1.0
EM-KF 10 6.1 4.6
100 11.9 8.8
1 5.6 4.7
AR 10 10.4 7.8
100 15.2 13.2

VI. CONCLUSION

In this paper, we have considered the modeling and
prediction of short-term high-resolution solar irradiance and
PV power output using stochastic state-space model. The EM
algorithm and Kalman filtering were proposed for
dynamically predicting the behavior of solar irradiance and
PV power output signals. We validated the stochastic models
using real measurement data. The proposed mechanism was
able to achieve good prediction performance of solar
irradiance and PV power output using a 4" order stochastic
model. Notice that, for simplicity and data availability issues,
our attention was restricted to only solar irradiance and PV
power. The suggested state-space model and prediction
mechanism for solar irradiance and PV power forecasting,
however, can be further enhanced by taking into account other
important factors such as cloud cover, temperature, satellite
data, and physical location.
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