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Abstract—The increased penetration of solar photovoltaic (PV) 

energy sources into electric grids has increased the need for 

accurate modeling and prediction of solar irradiance and power 

production. Existing modeling and prediction techniques focus 

on long-term low-resolution prediction over minutes to years. 

This paper examines the stochastic modeling and short-term 

high-resolution prediction of solar irradiance and PV power 

output. We propose a stochastic state-space model to 

characterize the behaviors of solar irradiance and PV power 

output. This prediction model is suitable for the development of 

optimal power controllers for PV sources. A filter-based 

expectation-maximization and Kalman filtering mechanism is 

employed to estimate the parameters and states in the state-

space model. The mechanism results in a finite dimensional filter 

which only uses the first and second order statistics. The 

structure of the scheme contributes to a direct prediction of the 

solar irradiance and PV power output without any linearization 

process or simplifying assumptions of the signal’s model. This 

enables the system to accurately predict small as well as large 

fluctuations of the solar signals. The mechanism is recursive 

allowing the solar irradiance and PV power to be predicted 

online from measurements. The mechanism is tested using solar 

irradiance and PV power measurement data collected locally in 

our lab. 

Index Terms— Photovoltaics, solar variability, distributed 

energy resources, stochastic prediction, state-space model, 

Kalman filter, expectation-maximization algorithm. 

I. INTRODUCTION 

The deployment of distributed energy resources (DERs) 
has increased dramatically over the last decade, especially 
solar photovoltaics (PV). The use of solar PV has many 
benefits that include no emissions and pollution from electric 
power production, abundant resource, silent operation, long 
lifetime, and little maintenance [1]. However, the application 
of solar PV to the electric grid also has drawbacks, in 
particular the variability of power output that adds stress and 
uncertainty to the system. The variable nature of solar PV 

could hamper further deployment due to the increase in 
reserves needed on the electric grid to compensate for 
fluctuations in the power output. In addition, the solar energy 
conversion systems have a fast and nonlinear response to 
incident radiation [2]. Thus, the knowledge of temporal 
variability of solar radiation is essential for the study of these 
systems and the fluctuating nature of solar radiation should be 
taken into consideration [3]. 

Real-time high-resolution predictions of solar irradiance 
and power output are necessary to overcome the temporal 
variability challenges of solar radiation. Accurate real-time 
high-resolution predictions allow for the development of 
optimal controllers that improve the stability, reliability, and 
efficiency of the electric grid and microgrids. Previous 
attempts to model solar irradiance can be classified into three 
general types [4]: physical, frequency distribution, and 
stochastic. The physical approach studies the physical 
processes occurring in the atmosphere and influencing solar 
radiation. It is exclusively based on physical considerations, 
allowing that the radiant energy exchanges take place within 
the earth-atmosphere system. This approach dictates models 
that account for the estimated solar irradiation at the ground in 
terms of a certain number of physical parameters, such as, 
water vapor content, dust, aerosols, clouds and cloud types, 
etc. [5]. The frequency distribution approach provides 
descriptive statistical analysis, for each place and period of the 
year, of the main quantities of interest such as hourly or daily 
global, diffuse or beam solar irradiation and statistical 
modeling of the observed empirical frequency distributions. 
The stochastic modeling approach is more flexible having the 
ability to incorporate any non-deterministic influences such as 
cloud movement and pollution levels into the model, and any 
non-standard features such as shading specific to a particular 
location [4]. Thus, stochastic modeling is capable for 
capturing the intrinsically non-deterministic (uncertain) nature 
of irradiance fluctuations. For example, understanding the 
sub-minute behavior of photovoltaic generation will be 
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necessary to develop realistic predictive models (controllers) 
of small microgrids on the order of single houses to single 
buildings. 

Several stochastic modeling and prediction methods of 
solar irradiance and power have been reported in the literature. 
The works in [6], [7], [8] represent solar irradiance using 
hidden Markov models (HMMs). The works in [4], [9], [10] 
represent solar irradiance using autoregressive integrated 
moving average (ARIMA) model. While, the works in [11], 
[12] provide a framework to predict solar irradiance using 
artificial neural networks (ANNs). Lastly, the work in [13] 
presents a stochastic solar irradiance forecasting framework 
based on conditional random fields (CRFs). These works 
provide accurate models and predictions that capture the 
hourly, daily, and seasonal solar PV trends. However, they 
lack accurate high-resolution modeling and prediction of fast 
and large fluctuations of solar irradiance/PV power that often 
occur as illustrated in Fig. 1 for a typical summer day.  

This paper presents and evaluates a state-space method for 
the short-term high-resolution solar irradiance and power 
prediction. We employ a filter-based expectation 
maximization (EM) algorithm [14], [15] and Kalman filtering 
[16] to estimate the parameters and states, respectively, in the 
state-space model. The proposed mechanism results in a finite 
dimensional filter which only uses the first and second order 
statistics. The structure of the method contributes to a direct 
prediction of the solar irradiance and PV power output without 
any linearization process or simplifying assumptions of the 
signal’s model. This enables the system to accurately predict 
small as well as large fluctuations of the PV signal. This 
mechanism has been initially employed in [17] for wireless 
communication channel prediction, however, this paper 
introduces its first employment for solar PV prediction. The 
mechanism is recursive allowing the irradiance and power to 
be predicted online from measurements. The mechanism is 
tested using solar irradiance and PV power measurement data 
collected locally in our laboratory. This method of short-term 
high-resolution predictions of the PV variability enables the 
design of optimal controllers for PV power output 
management that can better respond to the fast variations in 
solar irradiance. 

 

Fig. 1.  The solar PV power profile for a typical summer day collected 
from 13kW PV panel and showing the fast and large fluctuations of PV power 
output. 

The rest of this paper is organized as follows. Section II 
describes the PV signal (irradiance/power) model and the 
formulation of the filter equations where the state-space 
model, as well as the parameter estimation, is introduced. 
Section III discusses the simulation results of the proposed 
approach for prediction of solar irradiance (or power output) 
from real measurements. Finally, Section IV highlights the 
main conclusions and contributions of this paper. 

II. PREDICTION OF PV IRRADIANCE/POWER VIA THE EM 

ALGORITHM AND KALMAN FILTERING  

In this section, we will first briefly discuss the state-space 
model and apply it to modeling solar irradiance and PV power 
output signals. After that, the EM algorithm [14], [15] and 
Kalman filter [16] will be introduced to estimate the model 
parameters and states, respectively, from received PV 
irradiance/power measurements. 

A. Stochastic State-Space Model 

The state-space model has been widely employed in 
control systems and signal processing since its parameters and 
states can be updated online after receiving new observations. 
It consists of a state (or system) equation and a measurement 
(or output) equation as described in (1). The solar irradiance 
(or PV power) can be described by the following discrete-time 
stochastic linear time-variant state-space model 

1k k k k k

k k k k k

x A x B w

y C x D v

  

 
                                   (1) 

where subscript k is the discrete-time index and it belongs to 

the set {0,1,2,...} , 1

1

n

kx 

   ( 1n  denotes the space of 

real vectors of dimension 1n ) is the state vector at time k 

that characterizes the solar signal; it is described by the 

previous state 
kx  and the state noise process 1m

kw   

introduced at each k; while n n

kA   and n m

kB   are the 

corresponding coefficients. 1

ky   is the discrete-time solar 

irradiance (or power) measurement vector; it is described by 

the previous state kx  and the measurement noise process 
1m

kv  ; while 1 n

kC   and 1 m

kD   are the 

corresponding coefficients.  

The time-varying property of the parameters renders the 
state-space model to be able to adapt dynamically to a variety 

of irradiance/ PV power values. The noise processes 
kw  and 

kv  are able to capture small perturbations or uncertainties 

introduced at each time k that improves the flexibility of the 
model. In this paper, the noise processes are assumed to be 
independent zero-mean and unit-variance Gaussian processes, 

and their covariances are described by the coefficients kB  

and kD . Due to these properties, we propose to use the state-

space model to track and predict the behaviors of solar 
irradiance and PV power. The unknown system parameters 

{ , , , }k k k k kA B C D   and the system states 
kx  can be 

estimated through a finite set of received signal measurement 

data 1 2{ , ,..., }N NY y y y . Future irradiance/ PV power values 



can be predicted recursively based on these estimated 
parameters. The parameters are identified using a filter-based 
EM algorithm [14], [15] and the system states are estimated 
using the Kalman filter [16]. It has been previously proven 
that the Kalman filter could optimally estimate the system 
state in the mean square sense and that the filter-based EM 
algorithm yields a maximum likelihood (ML) parameter 
estimate [18]. The Kalman filter is introduced next. 

 

B. State Estimation: The Kalman Filter 

The Kalman filter estimates the system states 
kx  for 

given system parameter 
k  and measurements 

kY . It is 

described by the following equations [16] 
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where 0,1,2,...,k N , any variable denoted with “
^
” refers to 

estimated value, and |k kP  is given by 
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where 
2

1 1 1

T

k k kB B B   , and 
2

1 1 1

T

k k kD D D   . The model 

parameters { , , , }k k k k kA B C D   are estimated using the EM 

algorithm which is introduced next. 
 

C. Parameter Estimation: The EM Algorithm 

The filter-based EM algorithm uses a bank of filters to 
yield a ML parameter estimate of the Gaussian state space 
model. The EM algorithm is an iterative numerical algorithm 
for computing the ML estimate. Each iteration consists of two 
steps: the expectation and the maximization steps. The 
filtered expectation step only uses filters for the first and 
second order statistics. The memory costs are modest and the 
filters are decoupled and hence easy to implement in parallel 
on a multi-processor system [15]. 

Let { , , , }k k k k kA B C D   denotes the system parameters 

in (1) and  ;
k kP    denotes a family of probability 

measures induced by the system parameters 
k . The EM 

algorithm computes the ML estimate of the system 

parameters k , given the data kY . The expectation step 

evaluates the conditional expectation of the log-likelihood 
function given the complete data as 
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where ˆ
k  denotes the estimated system parameters at time 

step k. The maximization step finds 
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The expectation and maximization steps are repeated until the 
sequence of model parameters converge to the real 
parameters. The EM algorithm is described by [15] 
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where ( )E   denotes the expectation operator and ( | )kE Y  is 

the conditional expectation given the measurable set 
kY . 

Thus, the filter-based EM algorithm that computes the ML 
estimate of   can be summarized as follows: Choose an 

initial parameter estimate 0̂ , then compute ˆ
k  at each 

iteration according to system (6) for the model. Furthermore, 

since ˆ( , )k k   is continuous in both 
k  and ˆ

k , the EM 

algorithm converges to a stationary point in the likelihood 

surface [15], [19]. The system parameters ˆ
k  can be 

computed from the following conditional expectations [14] 
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where Q, R and S are given by 
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in which 
ie  is the unit vector in the Euclidean space; that is 

1ie   in the ith position, and 0 elsewhere. For instance, 

consider the case 2n = 2, then 
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where  / 2; , 1,2T

ij i jR e e i j  . The other terms in (6) can be 

computed similarly from (7). For more details on how to 

estimate the conditional expectations  (1) (2) (3) (4), , ,k k k kL L L L  from 

measurements 
kY , we refer the reader to [17]. 

After estimating all the parameters in the state-space 
model, we can achieve a one-step prediction of the solar 
irradiance and PV power by [18] 
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where 
1

ˆ
ky 

 denotes the predicted solar irradiance (or PV 

power) at time k + 1 and ˆ
kK  is the Kalman gain described by 
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The algorithm yields parameter estimates with non-
decreasing values of the likelihood function, and converges 
under mild assumptions [19]. 

 

III. NUMERICAL RESULTS 

In this section, we present numerical results that highlight 
the performance of the proposed EM algorithm and the 
Kalman filter in predicting the solar irradiance and PV power 
from measurements. We have tested the proposed prediction 
mechanism on 12-month measurement of solar irradiance and 
PV power output data collected from 13kW PV panel located 
on the roof of our lab at Oak Ridge National Laboratory 
(ORNL) in Oak Ridge, Tennessee. It is shown in [20] that 
there is minimal energy delivered by PV systems in variations 
faster than one hertz. So, the collected irradiance (in W/m

2
) 

and power (in kW) data is recorded at one sample per second 
(sampling rate is 1 Hz). 

Figure 2 demonstrates the performance of the proposed 
one-step prediction algorithm acting on real solar irradiance 
data for one sample day selected at random using a 4

th
 order 

state-space model. Observe that the irradiance has been 
predicted with very high accuracy. It takes only a few 
iterations (about 5 iterations) for the prediction algorithm to 
converge. The absolute prediction error is illustrated in Figure 
2 (b). Figure 3 demonstrates the performance of the proposed 

one-step prediction algorithm acting on real solar PV power 
output data for the same day using a 4

th
 order state-space 

model. The same observations for the solar irradiance 
prediction case hold here for the PV power prediction. In 
addition, it can be concluded that a 4

th
 order stochastic model 

is sufficient to capture the dynamical fluctuations of PV 
measurements. 

 

(a) 

 
(b) 

Fig. 2.  (a) Numerical results illustrating the performance of the 

developed EM algorithm together with the Kalman filter in one-step 

prediction of solar irradiance and (b) its corresponding absolute prediction 
error. 

 

Table 1 illustrates the normalized root mean square error 
(RMSE) performance for one, ten, and one hundred steps 
prediction of the proposed EM algorithm combined with the 
Kalman filter approach and compared with the traditional 
autoregressive (AR) prediction method [21]. It is observed 
that the performance of the proposed prediction approach 
outperforms the baseline AR prediction method by an order of 
magnitude, in particular at one-step (high-resolution) 
prediction period. Based on these observations, it can be 
concluded that the EM algorithm combined with the Kalman 
filter can dynamically track the short-term high-resolution 
stochastic behavior of future solar irradiance and PV power 
measurements. 



 
(a) 

 
(b) 

 

Fig. 3.  (a) Numerical results illustrating the performance of the 
developed EM algorithm together with the Kalman filter in one-step 

prediction of PV power output and (b) its corresponding absolute prediction 

error. 

 

 

Table 1.  Normalized RMSE of the proposed EM-KM prediction 
approach with different prediction steps and compared with the traditional 
autoregressive prediction method. 

  

       

Algorithm Steps
Irradiance 

(%)

Power 

(%)

1 1.3 1.0

10 6.1 4.6

100 11.9 8.8

1 5.6 4.7

10 10.4 7.8

100 15.2 13.2

EM-KF

AR

 
  
     
 

      

VI. CONCLUSION 

In this paper, we have considered the modeling and 
prediction of short-term high-resolution solar irradiance and 
PV power output using stochastic state-space model. The EM 
algorithm and Kalman filtering were proposed for 
dynamically predicting the behavior of solar irradiance and 
PV power output signals. We validated the stochastic models 
using real measurement data. The proposed mechanism was 
able to achieve good prediction performance of solar 
irradiance and PV power output using a 4

th
 order stochastic 

model. Notice that, for simplicity and data availability issues, 
our attention was restricted to only solar irradiance and PV 
power. The suggested state-space model and prediction 
mechanism for solar irradiance and PV power forecasting, 
however, can be further enhanced by taking into account other 
important factors such as cloud cover, temperature, satellite 
data, and physical location. 
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