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 Resin-bonded MoS2

 Phenolic Binder w/ MoS2+graphite particles

 Impingement Coatings
 “N2-Sprayed MoS2”

 “Harperized MoS2”

 Silicone Fluids
 polydimethylsiloxane (PDMS), 0.65 – 20 cSt

Materials used in Electromechanical Device 
Lubrication
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MoS2 As A Lubricant
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graphene-supermarket.com/MoS2-Crystal.html

wearcotetechnologies.in/2014/06/wct-mos-cote.html
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Environmental Effects on MoS2 Aging

 Oxidation increases start-up and dynamic 
friction at elevated temperature
 at low T or non-oxidizing atmosphere, 

oxidized layer is rapidly worn through

H. Khare and D. Burris, Tribology 
Letters 53 (2014) p.329-336

 Surface oxidation can dramatically 
increase the initial friction coefficient
 exposure to atomic oxygen oxidizes upper 

~100 nm

 Surface oxidation increases friction during run-in

 Oxidized layer is rapidly worn through at RT : low COF
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M.T. Dugger, T.W. Scharf and S.V. Prasad, 
Adv. Mat. and Processes 172 (2014) p.35-38
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N2-Sprayed MoS2 Processing

 thickness not adjustable; maximum ~100 nm thick, limiting operating life
 coat by hand, one fixture at a time

Clean Load MoS2 in Powder Feeder

SprayBlow Off Excess MoS2

Load Parts in Spray Cabinet
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Red – MoS2
Grey – Steel Substrate

Ideal Coupons – Heterogeneous Coverage

Fractional Coverage
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N2 Spray MoS2 on Flat Substrates

“Ideal” flat coupons exhibit inconsistent coverage

Highly Oriented MoS2 Coatings: Tribology and Environmental Stability Tribology Letters (Submitted, Under Review)
John F. Curry et. al.



Advent of Sputtering Improved Consistency

 A process is needed that is compatible with precise, small, complex parts, 
and which facilitates quantitative quality assurance monitoring

 Synthesize coatings via Physical Vapor Deposition (PVD) 

I. Efeoglu, in Encyclopedia 
of Tribology, Q. Wang and 
Y.-W. Chung, eds. (2013) 
Springer, p. 3233-3252

T. Spalvins, ASLE Transactions 
12 (1969) p. 36-43

sputtered MoS2 has 
been investigated 
for lubrication for 
almost 50 years

• initially DC 
sputtering in low 
vacuum

• developed by NASA 
for use in US space 
program

modern deposition 
systems result in 
improved properties
• RF magnetron, arc 

discharge, etc. allow for  
densification, doping, 
tailored structures, etc.

• several variants 
commercially available
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Controllable film structure/composition
 Tailored film structures improve performance in a range of atmospheres

 Expect dense films to resist long-term oxidation/environmental effects

 May be possible to reduce or eliminate “run-in” 

 Controllable thickness

 Batch Processing

columnar

equiaxed

M.R. Hilton, et al., Surf. Coatings 
Tech. 53 (1992) p.13-23

H. Singh et al., Surf.
Coating Tech. 284 (2015) 
p. 281-289

MoS2+Sb2O3+Au

performance 
improvements via 

doping

performance 
improvements 

via densification

R.S. Colbert, Ph.D. Dissertation (2014) 
U. of Florida, Gainesville, FL

air airN2 N2
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Reciprocating Plain Journal Bearing:

Mission Requirements Summary

• >100K actuations

• Assembled in Open Air/Stored In 
Inert Atmospheres

• Not used for decades

• Must be predictable in terms of 
aging and functional performance
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Pawl

Journal- Cross-Section



Video - Operation

 Reciprocating Journal-Shaft Contact Pair

 Pawl shaft and journal ID coated with test 
lubricant

 Protective environment established via flow-thru 
and positive pressure

 Dry nitrogen, <20 PPM O2,-60 ͦC Dew Point

 Lift-off force set at 40gf at start of test

 Cyclically loaded 0-10 degrees, snaps to resting 
position

 3 actuations per second

 Fall Time and Displacement calculated for each 
actuation, displayed and saved before next 
iteration.
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Setup Summary



Simulated Raw Data + Real Time Analysis
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Experimental Theory

How does friction change for various thicknesses over many repetitive tests?



Impingement Coating – N2 Spray
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Sputtered – 100nm 
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Analysis Method

14

Failure Threshold Setting: 50% of Average Initial Velocity



Results/Comparison
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Impact of Surface Roughness

Friction Behavior

Smooth Coupon
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Rough Coupon

Surface Roughness actually helps friction/wear behavior
Highly Oriented MoS2 Coatings: Tribology and Environmental Stability Tribology Letters (Submitted, Under Review)
John F. Curry et. al.

Red – MoS2
Grey – Steel Substrate

Red – MoS2
Green – Steel Substrate



Thickness Measurements

• Confounds ability to correlate life 
with thickness due to uncertainty 
in thickness measurement

• Poor quality witness coupons 
yielded inconsistent thicknesses

• Pointed out stark differences 
between commonly used 
thickness measurements

• FIB sectioning/ TEM is in progress 
and will settle the dispute
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Summary 

 Coatings have a wide life variability
 Variety of possible sources: Bearing Tolerances, Load on Contact, 

Setup, etc.

 Thickness measurements varied significantly from targets

 Testing of more parts may be required
 Weibull analysis may be more appropriate for life prediction
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Special Thanks

 John Curry (Lehigh University/Sandia National Labs)

 Nicolas Argibay (Sandia National Labs)

 Paul Kotula (Sandia National Labs) TEM/EDS
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Future Work/Improvements

 Sputtered coatings and vary thickness
 Three different thicknesses and one to match impingement coatings

 Should see much more consistent results compared to impingement 
coatings

 Investigate ability to extract other data from experiments

20
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QUESTIONS
Performance of Impingement Solid Lubricants In A Plain Journal Bearing
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Journal
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Lubricated Surfaces



Fractional Coverage- FIB

N2 Spray Harperized
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Same “thickness” different coverage



Pawl
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Lubricated Surfaces



Journal Cross-Section
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Lubricated Surfaces



4 Modules Installed
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INDEX
Performance of Impingement Solid Lubricants In A Plain Journal Bearing
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Single Test Module Installed
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Torsion Spring

Optical Displacement Sensor

Replaceable Pawl Stop

Actuation Arm

Motor 
Shaft



Impingment Coating - Harperized
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Harperized MoS2 Processing

 thickness not adjustable; maximum ~100 nm thick, limiting operating life
 batch process with high impact; not appropriate for delicate/precision parts 

Clean Barrel in Debur Tool ~20 min.

Separate PartsBlow Off Excess MoS2

Parts, Pins, MoS2 in Barrel

30

Open Air + Heat



Surface Appearance Differences

N2 Spray Harperized

31

Harperized Surfaces Show Damage



Environmental Effects on MoS2 Friction 
Coefficient

 Water vapor in the operating atmosphere 
increases friction coefficient
 deep penetration of water into structure
 friction increase due to alteration of transfer 

film adhesion and dynamics

H. Khare and D. Burris, Tribology 
Letters 53 (2014) p.329-336

 Steady-state friction coefficient at 30ᵒC of 
sputtered MoS2

 friction increases with water vapor content
 far less sensitive to oxygen

O2 has little influence on dynamic friction, while H2O in the 
atmosphere significantly increases friction
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XPS Provides a Quantitative Measure of the 
Degree of MoS2 Oxidation

 Controlled oxidation at various times and temperatures 
permits kinetics to be determined
 metal oxides accelerate MoS2 oxidation compared to Vespel composite
 a PTFE grease covering decreases the oxidation rate of MoS2
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Oxidation Kinetics Combined with 
Performance Data Yields Aging Prediction

 O2 results in more rapid MoS2 oxidation than H2O

 Stainless steel promotes faster MoS2 oxidation than copper-
beryllium substrates
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Diamond-Like Carbon (DLC) Industrial 
Applications

 DLC has been a technologically important material since the mid 1980’s

 Adopted early for use in magnetic recording hard disks

 Presently used in many other industrial applications 

 solid lubricant

 scratch resistant coating

 decorative coating
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www.phys.org/news7207.html

www.sts-group.it/eng/dlc.htmll

www.windsystemsmag.com

Wind Turbine Gearbox Bearings

Gears and Splined Shafts

Magnetic Recording Technology

Swiss Watch (XETUM)

www.forums.watchuseek.com
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Environmental Effects on DLC Friction

 Many films exhibit friction spike early in sliding in dry N2 or vacuum

 Early friction spike in N2 can be mitigated by prior running in an air (oxygen 
and water vapor) environment

 facilitates transfer film formation

 Surface oxidation is not a contributor to friction changes with age
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