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Motivation
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= Problem: Many applications require compact temperature sensors with no wire
feedthroughs, no optical access, and no extra power systems at multiple sensing points

=  Proposed Solution: Magnetic temperature sensing
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Prior art measured temperature using a single magnet or as a bulk average:
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Temperature sensing by measuring the magnetic field loss in permanent magnet motors (Regiosa et al. 2012)
Temperature sensing with a single fixed magnet (Gupta and Peroulis 2012)



Model

The magnetic field of each magnet sums linearly
Cylinder magnets behaves similar to a dipole model
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We are operating in the linear recoverable region and the
field magnitude is isotropic with temperature

Br;(T;) = Br(Tpy) |1 T;—To)]

Callbratlng for C; in a N52 Nd-Fe-B Magnet
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Temperature of Multiple I\/Iagnets ) .

Model rank(PTP) =

=  The magnetic field of each magnet sums linearly

N>

=  Cylinder magnets behaves similar to a dipole model

J 3(H;-X;;)Xi; H;
ZBTj(Tj)( JRSJ J‘_R3j)
Jj=1 ij ij

B; = BiX+ B,y +Bi-2

=  We are operating in the linear recoverable region and the rank(PTP) = .
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field magnitude is isotropic with temperature
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Solution
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=  Assume position and orientation fixed, known, or can be
calibrated via a variety of methods, then the only

unknown is 7} in By(T)). The system becomes linear. rank(PTP) =
=  With J magnets and | magnetic sensor axes (I =J), we can
rewrite in matrix form
A
YHP|A y ‘
=  With the least squares solution | i ‘

A = (PTP)_]PTY such that T},‘ = C— (1 —Aj) —I—TO
T
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Experimental Setup L

Thermocouple
Cylindrical Magnets /, = &
Three-Axis Sensor | = )
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Custom boards for HMC 1053 magnetoresistive 3-Axis
Magnetic Field Sensors
= NI 16-Bit Analog PX16255 cards

= 6 Gauss with max resolution of 120 uG (DAQ
limits resolution to 600 uG)

= (Calibrated with Helmholtz coil and NIST
traceable gaussmeter
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Two CMA-25CCCL linear stages

3.175 mm N52 cylindrical magnets

Aluminum and non-magnetic mounting components
Temperature sources are hot and cold water

Type K thermocouples for reference (not perfect
temperature match due to contact resistance)

Labview User Interface (sampled 0.28 Hz)




Stationary Magnets

Sensor 2
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Two sensors (I = 6) and 3 magnets (J = 3)

Applied cold water to each magnet in
sequence followed by hot water in
sequence

The measured change in the field is small
because C;is small

When the temperature is solved, the cold
and hot source responses can be seen and
match with the thermocouple
measurements
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Moving Magnets: Untracked Positions ) o,
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Moving the magnets
= Magnet 1 stationary

= Magnet 2 moves upto 12 mm in
0.2 mm steps

= Magnet 3 moves upto 6 mmin 0.2
mm steps

The magnet movement dominates the
field measurement

If the position is untracked or unknown,
the temperature estimate is wrong
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Moving Magnets: Untracked Positions ) o,
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Moving the magnets
= Magnet 1 stationary

= Magnet 2 moves upto 12 mm in
0.2 mm steps

= Magnet 3 moves upto 6 mmin 0.2
mm steps

The magnet movement dominates the
field measurement

If the position is untracked or unknown,
the temperature estimate is wrong
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Moving Magnets: Tracked Positions
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Create calibrations of the P matrix terms

at each position of each magnet

is linear

Calibrations of each combination of
magnets is not needed since the system

Using the new P matrix calibrations to

solve for temperature and we can

recover the applied temperatures well
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Moving Magnets: Error Estimation LU f
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For 2 sensors (1=6) and three magnets (J =3)

We can evaluate the P matrix condition
number at every point in time

We can also evaluate the estimation noise
which comes from

= Electronic sensor noise (standard
deviation)

=  Covariance Matrix

er; A 2 \/dia.g ((PTP}_I)J_

For this configuration, the condition
number is low near 5

The temperature noise estimate is on the
order of 0.5 degrees C varying with position
changes of the magnets.
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For the same experiment removing the data
from one of the sensors completely gives 1
sensor (I = 3) and three magnets (J = 3) for a
square P matrix

The condition number increases drastically to
as high as 150

The temperature noise increases drastically
up to 3 degrees C

Careful selection of magnet orientations,
sensor positions and the quantity of magnets
and sensors is required to obtain low-noise
temperature solutions
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Conclusions and Future Work

Sensing temperature of array of 9
magnets simultaneously

Sensing temperature
through stainless steel tube

Particle Position and
Orientation Tracking
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Summary

Described wireless temperature sensor using
permanent magnets

Created method for measuring the
temperature of multiple magnets
simultaneously

Method can track the temperature of moving
magnets if calibrated

Described temperature estimation error
analysis methods and experiment design
methodology

Measuring temperatures inside metal vessels
or with moving stainless steel components

Current Work

Evaluate larger arrays of magnet temperature
Optimize magnet position and orientation

Simultaneous position, orientation and

temperature tracking 1
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QUESTIONS?
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External Disturbances ) &

Uy Field Deviation  Repeatability

Material Ref. [14] (%) (G)
Air 1 0.064+0.04 0.10+0.08
Copper 1 0.06£0.05 0.15+£0.09
Aluminum 6061 | 0.06 £0.04 0.15£0.13
Stainless 304 (Austenitic) lto7 0.50+0.52 0.144+0.12
Stainless 313 (Austenitic) lto7 0.544+0.37 0.11+£0.09
Stainless 410 (Martensitic) 95 to 750 34.0+£3.48 0.14+0.10
Stainless 430 (Ferritic) 1800 86.6+4.90 0.16 £0.10

= ~1.3 mm thick metal plates were moved between a magnet and sensor placed 32 mm apart

= The field deviation was measured showing significant changes for materials with relative
permeability p,#1

= The repeatability of the measurements does not change. Therefore, as long as these high
permeability materials are tracked, we can continue to use them during temperature sensing

= The p,#1 materials contribute nonlinearly to the field, so calibrations must be done of each
combination of the position of the material and magnets.

18



3x3 Experimental Arrangement )i
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Matrix Rank and Determinant ) s,

rank(PTP) = 3 rank(PTP) =3
Normalized |det(PTP)| Normalized |det(PTP)|

rank(PTP) = 2 rank(PTP) = 1
Normalized |det(PTP)| Normalized |det(PTP)|

. ik i
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Magnet Time Constants and Properties @&
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Time (s)

Type D (mm) L (mm) Fg Normalized B, (G) *t% Cr (%/°C) * Measured 7 (s) * Normalized 7 (s) ¥
Nd-Fe-B 3.175 3.175 3.24 343+ 0.19 -0.095 £ 0.014 229 £ 0.28 1.91 £ 0.23
Al-Ni-Co 3.175 3.175 3.24 1.224 0.07 -0.007 £ 0.001 2.39 £ 0.34 1.99 £+ 0.28
Ceramic 6.35 7.137 3.99 0.71£ 0.13 -0.117 £ 0.011 6.17 £+ 0.93 2.53 £ 0.38
Sm-Co 2:17 6.35 2.54 0.80 2.65+ 0.04 -0.017 =+ 0.001 3.05 £ 0.18 1.65:4:0.10
Sm-Co [:5 3075 3.175 3.24 2.554+ 0.02 -0.039 £ 0.003 1.85 £ 0.34 1.54 4+ 0.28

* Obtained from time constant experiments up to 40°C for Nd-Fe-B and 60°C for other types. Four measurements were taken of each magnet type.

T The magnetic field values were measured from a distance of 19 mm from the magnet center to the sensor center and can be used to compare the field
strengths of each magnet type.

t For magnet j in each row, the normalization is conducted such that, B. = B.Vp/V; and T = 17(As; Vo) /(AsoV;) where Vp is the volume and A is
the total surface area of the Nd-Fe-B magnet. Note that Vj is the volume and A; is the surface area exposed to the fluid for magnet j. 21



Magnetic Field Change (%)
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Non-optimal configuration of 9 magnets

. Configuration A___ Configuration A
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Optimal configuration of 9 magnets @

__Configuration B Configuration B
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Temperature Error Metrics =

EXPERIMENTAL CONDITION NUMBER AND TEMPERATURE ESTIMATE STANDARD DEVIATION AS A FUNCTION OF INVERSION DIMENSIONS

Experimental Temperature Standard Deviation ep

Setup Inversion Condition ~ Magnet Magnet Magnet Magnet Magnet Magnet Magnet Magnet Magnet
Configuration  Dimensions Number 1(°C) 2(°C) 3(¢°C) 4(°C) S5 6((°C) 7€) 8O 9O
A, Fig.8(d) O magnets, 12 axes 967 0.865 0.777 0.557 0.812 3.67 0.588 0.556 0.591 0.749
A 9 magnets, 9 axes? 4.19%10° 18.8 16.5 8.75 204 78.4 9.29 23.1 7.24 12.6
A 9 magnets, 9 axes3 1.37x10%  0.951 0.900 0.573 0.946 4.50 0.734 0.565 0.748 0.963
A. Fig.8(e) 8 magnets?, 12 axes  19.9 0.448 0.332 0.401 0.289 N.A. 0.240 0.446 0.304 0.522
A 8 magnets?, 8 axes®  42.9 0.687 0.322 0.385 0.300 N.A. 0.241 0.479 0.318 0.649
B, Fig.9(c) O magnets, 12 axes  9.98 0.270 0.345 0.238 0.356 0477 0.399 0.243 0.451 0.268
B 9 magnets, 9 axes!  5.76x10*  0.972 7.25 0.304 37.5 2.07 0.414 0.822 8.54 0.546
B 9 magnets, 9 axes® 56.9 0.293 0.350 0.253 0.366 1.18 0.417 0.630 0.509 0.704
B 8 magnets?, 12 axes  8.82 0.271 0.343 0.240 0.355 N.A. 0.401 0.243 0.442 0.225
B 8 magnets?, 8 axes®  9.47 0.381 0.350 0.238 0.370 N.A. 0.414 0.458 0.472 0.287

The condition number was derived from the PTP matrix and the estimated temperature noise (standard deviation) of each magnet was measured by taking
the first 10 s (sampled at 10 Hz) in the data from Fig 8 and Fig 9 when no temperature sources were applied.

L For this
2 For this
3 For this
4 For this
5 For this
6 For this

solution,
solution,
solution,
solution,
solution,
solution,

sensor | axis x.
sensor | axis x,
sensor 2 axis z,
sensor 2 axis z,

sensor 4 was dropped from the inversion process.

magnet 5 was dropped from the inversion process.

sensor |
sensor |
sensor 3
sensor 3

axis z, and sensor 2 axis x were dropped from the inversion process.
axis z, sensor 2 axis X, and sensor 2 axis z were dropped from the inversion process.
axis y. and sensor 4 axis x were dropped from the inversion process.
axis y, sensor 4 axis x, and sensor 4 axis y were dropped from the inversion process.
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Experiments inside metal vessels .
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