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Motivation
 Problem: Many applications require compact temperature sensors with no wire 

feedthroughs, no optical access, and no extra power systems at multiple sensing points

 Proposed Solution: Magnetic temperature sensing
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Concept

Prior art measured temperature using a single magnet or as a bulk average:

 Temperature sensing by measuring the magnetic field loss in permanent magnet motors (Regiosa et al. 2012)

 Temperature sensing with a single fixed magnet (Gupta and Peroulis 2012)
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3-Axis Sensor 

Temperature of Multiple Magnets
Model

 The magnetic field of each magnet sums linearly

 Cylinder magnets behaves similar to a dipole model
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 We are operating in the linear recoverable region and the 
field magnitude is isotropic with temperature
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Temperature of Multiple Magnets
Model

 The magnetic field of each magnet sums linearly

 Cylinder magnets behaves similar to a dipole model
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 We are operating in the linear recoverable region and the 
field magnitude is isotropic with temperature

Solution

 Assume position and orientation fixed, known, or can be 
calibrated via a variety of methods, then the only 
unknown is Tj in BTj(Tj). The system becomes linear.

 With J magnets and I magnetic sensor axes (I ≥ J), we can 
rewrite in matrix form

Y = P  A
 With the least squares solution

such that

rank(PTP) = 1

rank(PTP) = 3
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Experimental Setup

 Custom boards for HMC 1053 magnetoresistive 3-Axis 
Magnetic Field Sensors

 NI 16-Bit Analog PXI6255 cards

 ±6 Gauss with max resolution of 120 μG (DAQ 
limits resolution to 600 μG)

 Calibrated with Helmholtz coil and NIST 
traceable gaussmeter

 Two CMA-25CCCL linear stages

 3.175 mm N52 cylindrical magnets

 Aluminum and non-magnetic mounting components

 Temperature sources are hot and cold water

 Type K thermocouples for reference (not perfect 
temperature match due to contact resistance)

 Labview User Interface (sampled 0.28 Hz)
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Stationary Magnets

 Two sensors (I = 6) and 3 magnets (J = 3)

 Applied cold water to each magnet in 
sequence followed by hot water in 
sequence

 The measured change in the field is small 
because CT is small

 When the temperature is solved, the cold 
and hot source responses can be seen and 
match with the thermocouple 
measurements
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Moving Magnets: Untracked Positions

 Moving the magnets

 Magnet 1 stationary

 Magnet 2 moves up to 12 mm in 
0.2 mm steps

 Magnet 3 moves up to 6 mm in 0.2 
mm steps

 The magnet movement dominates the 
field measurement

 If the position is untracked or unknown, 
the temperature estimate is wrong

8

3

2
1

Sensor 1

Sensor 2
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Moving Magnets: Tracked Positions

 Create calibrations of the P matrix terms 
at each position of each magnet 

 Calibrations of each combination of 
magnets is not needed since the system 
is linear

 Using the new P matrix calibrations to 
solve for temperature and we can 
recover the applied temperatures well
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Moving Magnets: Error Estimation

 For 2 sensors (I=6) and three magnets (J =3)

 We can evaluate the P matrix condition 
number at every point in time

 We can also evaluate the estimation noise 
which comes from 

 Electronic sensor noise (standard 
deviation)

 Covariance Matrix 
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 For this configuration, the condition 
number is low near 5

 The temperature noise estimate is on the 
order of 0.5 degrees C varying with position 
changes of the magnets.



Moving Magnets: Error Estimation
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 For the same experiment removing the data 
from one of the sensors completely gives 1 
sensor (I = 3) and three magnets (J = 3) for a 
square P matrix

 The condition number increases drastically to 
as high as 150

 The temperature noise increases drastically 
up to 3 degrees C 

 Careful selection of magnet orientations, 
sensor positions and the quantity of magnets 
and sensors is required to obtain low-noise 
temperature solutions



Conclusions and Future Work

Summary

 Described wireless temperature sensor using 
permanent magnets

 Created method for measuring the 
temperature of multiple magnets 
simultaneously

 Method can track the temperature of moving 
magnets if calibrated

 Described temperature estimation error 
analysis methods and experiment design 
methodology 

 Measuring temperatures inside metal vessels 
or with moving stainless steel components

Current Work

 Evaluate larger arrays of magnet temperature

 Optimize magnet position and orientation

 Simultaneous position, orientation and 
temperature tracking
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QUESTIONS?
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External Disturbances

 ~1.3 mm thick metal plates were moved between a magnet and sensor placed 32 mm apart

 The field deviation was measured showing significant changes for materials with relative 
permeability μr≠1 

 The repeatability of the measurements does not change.  Therefore, as long as these high 
permeability materials are tracked, we can continue to use them during temperature sensing

 The μr≠1 materials contribute nonlinearly to the field, so calibra�ons must be done of each 
combination of the position of the material and magnets.
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3x3 Experimental Arrangement
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Matrix Rank and Determinant
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Magnet Time Constants and Properties
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t = 0 t > 0



Temperature Constant Calibration

22



xy
z

^^
^

Sensor 2Sensor 3

Sensor 4

1
2

3

4
5

6

7
8

9

Sensor 1

Configuration A Configuration A

1 2 3 4 5 6 7 8 9

Non-optimal configuration of 9 magnets

23



Optimal configuration of 9 magnets
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Temperature Error Metrics
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Experiments inside metal vessels
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