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Electrochemical Modeling of 
Atmospheric Corrosion

2
Cole et al., 2011

Shi, Kelly, 2013

 Electrolyte geometry can 
govern corrosion damage 
distributions and kinetics 

 Limited experimental 
options for directly probing 
corrosion reactions hinders 
mechanistic insight

 Rich opportunity space for 
integrated computational and 
experimental approach



Classic Understanding: Evans Drop
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Differential Aeration Cell 

Diffusion limited O2

reduction kinetics control 
attack rate and damage 

distribution 
Evans, 1926

Chen and Mansfeld, 1997

Li and Hihara, 2012



Divergence from Evans Drop 
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0.25 h 24 h0 hSecondary Spreading

Tsuru et al, 2004

rate and extent
• initial drop size and 

chemistry
• substrate alloy
• environment (PCO2, RH)



Impact of Secondary Spreading
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High potential areas in 
secondary spreading 
regions

Chen, 2005

��,���� = ���,����	+ ���,����

To what extent do films 
contribute to cathodic 
current?



Study Framework
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Driving Question
How do secondary films impact corrosion kinetics and 
damage distributions? 

Approach
• Define physiochemical properties of film and realize 

influence of film and drop size on corrosion rates and 
damage distributions – Cu, NaCl

• Multiphysics continuum model of droplet-film system-
physical-chemical evolution of system for experiment 
interpretation, predict damage distribution and rates



Experimental: NaCl Drops on Cu Pads
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25 µm Cu
1 µm Si3N4

4M NaCl

85% RH, 25 °C, 
< 1 ppm CO2

damage profiles

spreading chemistry 
and distribution



Unrestricted Spreading: Chemistry
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2mm  Windows

300 μmCOClNa

85% RH, 25 °C, 
< 1 ppm CO2

0 h 17 h

• Spreading chemistry in accordance 
with previous studies

• After 17 hours, can spread > 2x 
original drop radius



Unrestricted Spreading: Damage
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• Damage and 
spreading dependent 
on drop size

• Corrosion under 
spreading dominates 
at  Ø ≥ 225 μm, 
inverse Evans



Restricted Substrates: Damage
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Corrosion loss strongly dependent on spreading S.S. at Ø ≥ 
225 μm



Electrolyte and Damage Evolution
Initiation
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Electrolyte and Damage Evolution
Interior Perimeter Trenching
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Cu2O/CuCl Cu(OH)2

O2[OH-]

[O2]

100 µm

85%RH,<1ppm CO2

16 h

[O2] gradient may cause trenching near drop edge

10 ≥ pH ≥ 12

10-4 ≥ mCuCl2- ≥ 10-2
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Electrolyte and Damage Evolution
Secondary Spreading

13Trenching in spreading film region due to CuCu2O, Cu(OH)2
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*Biton et al., 2006 



Conclusions
 Damage distribution and rate highly dependent on drop size/secondary 

spreading 

 Larger drops exhibit damage pattern inverse of classic Evans drop, with 
greatest corrosion loss in secondary spreading zone- not strictly a 
cathode

 Damage evolution rationalized via mixed potential theory in analogous 
bulk electrolyte solution- preferential, high pH anodic dissolution

 Exemplifies need to account for electrolyte evolution in 
electrochemical atmospheric corrosion models predicting damage 
distributions and rates
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EXTRAS
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Droplet-Film Model: Construct
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Governing Equation- Nernst Planck

thin film addition

Sandia Sierra multiphysics architecture

Moving boundary capability – electrolyte evolution
+

E, 
[O2]



Restricted Substrates
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200 μmCO Cl Na

220 µm Windows

85% RH, 25 °C, 
< 1 ppm CO2

• Development of S.S. chemistry over Si3N4 with 
highest concentrations on non-deposited pads

0 h 17 h


