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Electrochemical Modeling of
Atmospheric Corrosion

Surface: Current derwity [A/n]
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Classic Understanding: Evans Drop
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Divergence from Evans Drop

Secondary Spreading 0h

rate and extent

« initial drop size and
chemistry

e Substrate alloy

« environment (Psg,, RH)

absorbed water layer
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Impact of Secondary Spreading

High potential areas in "
secondary spreading w5 ST ot
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regions

Im,drop — IOZ,drop + Ioz,film

To what extent do films
contribute to cathodic
current?




Study Framework

Driving Question
How do secondary films impact corrosion kinetics and
damage distributions?

Approach

« Define physiochemical properties of film and realize
influence of film and drop size on corrosion rates and
damage distributions — Cu, NaCl

« Multiphysics continuum model of droplet-film system-
physical-chemical evolution of system for experiment
interpretation, predict damage distribution and rates




Experimental: NaCl Drops on Cu Pads

4M NaCl
— 1 isin.
25 um Cu

=0 = caingcremisty
85% RH, 25 °C, and distribution

<1 ppm CO,

damage profiles




Unrestricted Spreading: Chemistry

2mm Windows

85% RH, 25 °C, S

« Spreading chemistry in accordance
with previous studies

» After 17 hours, can spread > 2x
original drop radius




Unrestricted Spreading:
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Restricted Substrates: Damage
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Electrolyte and Damage Evolution @

Laboratories

Initiation
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Electrolyte and Damage Evolution @i,
Interior Perimeter Trenching
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Electrolyte and Damage Evolution @&,
Secondary Spreading
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Conclusions

= Damage distribution and rate highly dependent on drop size/secondary
spreading

= Larger drops exhibit damage pattern inverse of classic Evans drop, with
greatest corrosion loss in secondary spreading zone- not strictly a
cathode

= Damage evolution rationalized via mixed potential theory in analogous
bulk electrolyte solution- preferential, high pH anodic dissolution

= Exemplifies need to account for electrolyte evolution in
electrochemical atmospheric corrosion models predicting damage
distributions and rates
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Droplet-Film Model: Construct

Sandia Sierra multiphysics architecture

Moving boundary capability — electrolyte evolution
+
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Restricted Substrates

220 ym Windows

85% RH, 25 °C,
<1 ppm CO,

» Development of S.S. chemistry over SizN, with
highest concentrations on non-deposited pads




