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A theoretically simple process



5

Cascading Pressure Reactor

• Direct solar absorption
• Internal heat recovery between TTR and TWS

• Continuous on-sun operation
• Temperature and product separation
• Pressure separation (thermal reduction step 

vacuum pumping )
• Non-monolithic oxide
• Reaction kinetics decoupled from reactor 

operation

• Thermal reduction pressure (0.1-10Pa)
• Decreased solid-solid heat recovery 

requirement
• Decreased pump work requirement
• Compatibility with MW-scale plant

An improvement of an earlier moving packed bed concept

83 kPa

30 Pa

100 Pa
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Gas Permeation: The Simple Approach

Pressure separation possible as predicted by model
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Darcy flow for compressible fluids: Nitrogen flow rate through a 2.16m tall (ID=12.7mm) 
static column of steel grit (d~180m)
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Maximum pressure separation capacity:

Goal 1: Minimize gas permeation between chambers.

Goal 2: Keep connecting beds packed at all times.

Onset of fluidization near top: p=79kPa
Predicted: p=76kPa

FD=6Rv

Fluidization at top: Stokes drag
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Particle Elevation w/ Pressure Separation

• Elevation – sufficient capacity
• Power requirement – comparatively small
• Pressure separation – demonstrated
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Gas Permeation: Detailed Approach
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Must use full equations because of substantial pressure drops
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First Obstacle: Gas Expansion

Design must include flow diameter increases

d�

d�
= −

�̇�

�(�)

��

����

1 − �

��
150 1 − � �

��	 �� ��
+ 1.75

�̇�

�(�)

83 kPa100 Pa H2

T=800°C
=0.4
Dp=300 m 

ID=15 mm
incline=45°
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Flow Expansion: Problem Solved?
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83 kPa100 Pa H2

T=800°C
=0.4
Dp=300 m 

IDi=15 mm
IDf=200 mm
incline=45°

But…
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Second Obstacle: H2-O2 Recombination Loss

Gas flow to TR chamber must be significantly decreased
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83 kPa100 Pa H2

T=800°C
=0.4
Dp=300 m 

IDi=15 mm
IDf=200 mm
incline=45°
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Staged flow expansion ensures pressure separation without fluidization
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Putting it all Together

oxide
inlet

oxide
outlet

H2

outlet
800 Pa
10 kPa

H2
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WS to Buffer 3 Permeation
83 kPa10 kPa H2

T=800°C
=0.4
Dp=300 m 

IDi=15 mm
IDf=50 mm
incline=45°

�� =
�(������ − ����)��

18

� = 1 + � ∙ ��

� = � + ��
��
��

H2

H2 permeation volumetric flow vastly decreased
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Permeation vs. Gas Species
83 kPa10 kPa H2O
T=800°C
=0.4
Dp=300 m 

IDi=15 mm
IDf=50 mm
incline=45°
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H2 and H2O pressure profiles are virtually identical
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Void fraction affects pressure separation capacity.
Adequate margins are required.

=0.35

Permeation vs. Void Fraction

=0.45
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Temperature variations are of negligible importance

T=700°C

Permeation vs. Temperature

T=900°C
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Buffer 3 to TR Chamber Permeation
83 kPa10 kPa H2

T=800°C
=0.4
Dp=300 m 

IDi=15 mm
IDf=50 mm
incline=45°

H2

H2 permeation volumetric flow vastly decreased
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From Concept to Machine
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Reactor Efficiency: Two Limiting Cases

• TTR=1500°C
• C=3000
• Extensive heat recovery
• Efficient pumping

Ultimate CeO2 Case First Prototype Target

• TTR=1450°C
• C=1750
• No heat recovery
• Off-the-shelf pumps

• Existing components substantially affect efficiency
• Low reduction pressure of great importance
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Summary

• Thermal reduction pressure limited by O2 flow

• >10x pressure decrease feasible in staged reduction

• Pressure separation modeled and tested

• Particle elevation at high T, in vacuum, with pressure 
separation demonstrated

• Stick-slip receiver design

• Countercurrent flow WS chamber design
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