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Two-Step Thermochemical Fuel Production

solar input
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heat recovery

A theoretically simple process
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Cascading Pressure Reactor

An improvement of an earlier moving packed bed concept

Direct solar absorption

Internal heat recovery between T.; and T
Continuous on-sun operation

Temperature and product separation
Pressure separation (thermal reduction step
vacuum pumping )

Non-monolithic oxide

Reaction kinetics decoupled from reactor
operation

Thermal reduction pressure (0.1-10Pa)
Decreased solid-solid heat recovery
requirement

Decreased pump work requirement
Compatibility with MW-scale plant
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Gas Permeation: The Simple Approach

Darcy flow for compressible fluids:

_KApi-p)) &P
2ulp, 5.6

Qph —Pi1>Py

Goal 1: Minimize gas permeation between chambers.

Maximum pressure separation capacity:
APmax=Ppuik8h

Fluidization at top: Stokes drag
Fo=6TTRV

Goal 2: Keep connecting beds packed at all times.

Nitrogen flow rate through a 2.16m tall (ID=12.7mm)
static column of steel grit (d~180um)

25 3.0
o Superficial Velocity E
—_ o0 Flow Rate o5
8 20 ’
£
L, m]
=) 1.5 ) >
-3 0
1.5
> :
w 1.0 -
%a 1.0
2 o 9
3 0.5 - 05
g
0.0 _—tt 0.0
0 10 20 30 40
Ap [kPa]

Onset of fluidization near top: Ap=79kPa
Predicted: Ap=76kPa

Pressure separation possible as predicted by model
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Particle Elevation w/ Pressure Separation
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Gas Permeation: Detailed Approach

m
+1.75—2| Ergun equation with Knudsen correction
fe (Kn)D,, Al

dp 1y, RT 1-¢[150(1— @)
dl —  A()pMD, ¢3 [

4Kn
fe = [1+ a(Kn)Kn] [1 + m] Knudsen correction factor

A krT
Kn=— A 5

Dy - V2md?p ~ >
"N
7100 Pa

2
a(Kn) = a, Etan‘l(alKnﬁ)

64
ao = aKn—)OO = 4 ‘
3m (1l —+
( b) ~..83 kPa
Must use full equations because of substantial pressure drops
-~
\
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First Obstacle: Gas Expansion

83 kPa=>100PaH, |D=15mm

dp _ _thy RT 1-¢[1500—¢)u iy T=800°C incline=45°
dl ~ A()pMD, ¢3 | f. (Kn)D, A $=0.4
D,=300 um
100 C E 100
: . —_ 1000
0 I
£
- 10 100 a
Q) =
E 1 -
1 3
s 1
z
g 0.1
- 0.1 S
= . 0.01 :
e 10 £ 90%p_max [Pa] “-\\‘ ] 10 100 1000
-; ....... v(l) [m/s] \\ . Particle diameter [um]
0 e S o X ok
0 2 3
I [m]

Design must include flow diameter increases
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Flow Expansion: Problem Solved?

83 kPa—2>100PaH, |D=15mm

dp my RT 1-¢ 150(1 — p)u L 17s My T=800°C ID=200 mm
dl ~ A()pMD, ¢3 | f.(Kn)D, A $=0.4 incline=45°
Dp=300 nm
100 _ -1
90 S Muz_ogmd/s  Vpw=TA/st 3 1000
AN ' Z :
80 N E
F » 100 |
70 NG > = =
60 _E ________________ ‘ ________________ T‘ ................ :' ............ 5¢ __________ - % 10 B
50 - SN s i L 0.1 3
: L g !
40 + N oA ! =
= \\ L ’ | E 0.1
30 _:—p(l)[Pa] \\ """""""""""""""""" T E
— 20 + == pmax{Pa] ‘ 0.01 ;
§ 10 E e 90%p_max [Pa] 10 100 1000
-;- ....... v(l) [m/s] Particle diameter [um]
0 1 1 L L } ! ! t T 0.01
0 2 3
I [m]

But...
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Second Obstacle: H,-O, Recombination Loss

83 kPa=>100PaH, ID=15mm
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Staged flow expansion ensures pressure separation without fluidization

Gas flow to TR chamber must be significantly decreased
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Putting it all Together

Simulator
module #1

Simulator
module #2 Z TR chamber

Heat rejection

800 Pa Buffer2
10 kPa Buffer 3

Flex, B3-B2 p/Sep >

WS-B3 pressure
separation

WS chamber

Bottom
reservoir
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Permeation vs. Gas Species
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Permeation vs. Void Fraction
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Void fraction affects pressure separation capacity.
Adequate margins are required.
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Permeation vs. Temperature
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Temperature variations are of negligible importance
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p [kPa]

p [kPa]

Buffer 3 to TR Chamber Permeation
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H, permeation volumetric flow vastly decreased
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From Concept to Machine

Simulator
module #1

Simulator
module #2 = TR chamber
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WS-B3 pressure
separation

WS chamber

Bottom
reservoir

12 ft =144 in = 3.66m
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Reactor Efficiency: Two Limiting Cases
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Extensive heat recovery
Efficient pumping

No heat recovery
Off-the-shelf pumps

 Existing components substantially affect efficiency
. * Low reduction pressure of great importance
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Summary

Thermal reduction pressure limited by O, flow
>10x pressure decrease feasible in staged reduction
Pressure separation modeled and tested

Particle elevation at high T, in vacuum, with pressure
separation demonstrated

Stick-slip receiver design
Countercurrent flow WS chamber design
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