
That Is One BIGINT:
A Novel Relational Database Data

Versioning Framework

Christopher Frazier
Sandia National Laboratories

Post Office Box 5800
Albuquerque, NM 87185-1188

Phone (505) 284-7922
email: crfrazi@sandia.gov

Asael Sorensen
Sandia National Laboratories

Post Office Box 5800
Albuquerque, NM 87185-1188

Phone (505) 844-5249
email: ahsoren@sandia.gov

Abstract—Tracking the revisions to a database table over time
is useful for many applications, such as when prior analyses need
to be vetted or replicated. A novel system is introduced to track
the revisions in a database with minimal modifications to the
existing structure. Specifically, every modification to a table is
captured as a new row, with the use of a single integer field to
capture the revision metadata. Using standard database queries,
the state of the data at any time in the past can be extracted. The
system also allows for parallel branches of data modifications to
be tracked. Details of using the system, its consequences, and an
evaluation of its performance are also presented.

I. INTRODUCTION

When storing data in database tables, the transactional
changes to that data over time can often be of interest. Such
revision tracking can be used not only to track how and when
the data was modified or updated, but also to recreate the state
of the data at a specific point in the past. This latter point
can be particularly useful for recreating modelling results or
examining previous analyses. Additionally, revision tracking
the data can allow for hypothetical or “what if” scenarios to
be developed within the same data store without losing access
to the source data state.

In this paper, a framework for maintaining the transaction
history of data stored in a relational database is presented.
The motivations for this work were to provide a system which
satisfied the following needs:

• A means of tracking the changes made to rows of data
in specific tables, including additions, deletions, and
updates. This requirement does not include schema
changes. The revision tracking should include infor-
mation about who made the change and when it
happened.

• The ability to extract the state of the data in a tracked
table at a specific time in the past.

• The ability to create revision data branches which
isolate the transactional changes between branches.
That is, changes made in a branch will only be visible
within that branch, allowing multiple independent
lines of data modification to be maintained in parallel.

• The avoidance of reliance on a specific database pro-
gram’s functionality for the implementation. In other
words, the solution should be (roughly) portable across
differing database vendor products.

• A “lightweight” solution was preferred. While this
goal is not specific, the general intention was to
avoid having the underlying database schema heavily
influenced by the inclusion of revision tracking. Ad-
ditionally, if special database requirements or controls
were needed for the solution, then the end user should
be provided with a simple or transparent interface for
interacting with the database.

• A reasonable performance penalty for the inclusion of
data revision tracking.

II. PRIOR WORK

Before developing the data revision tracking framework, a
number of existing technologies were investigated to determine
if a solution satisfying the above requirements already existed.
Data change tracking has been implemented in a variety of
contexts, both within the database program and on top of
it. For example, Microsoft SQL Server has change tracking
functionality which maintains a history of changes to a table,
and allows a user to capture the state of the data at a given point
in time [1]. However, this solution does not provide branching
support, and requires the use of SQL Server.

An example of change tracking using only SQL is the
revision tracking system built into the MediaWiki database
which uses a separate revision table referenced by change
tracked tables [2]. However the MediaWiki database does not
incorporate branching and, being specifically geared towards
MediaWiki applications, is not a generic solution but rather an
implementation example. Another SQL-based change tracking
example described in [3] uses a table to track every row
entry change using triggers. While it is extremely lightweight,
the method allows for neither recreation of data states nor
branching.

An interesting implementation of data versioning involves
the use of long transactions, which may span days or even
years [4]. Each unique data state of interest is separated into

SAND2016-10022C



its own transaction, which can be extracted, modified, or
replicated as long as it stays open. Branching functionality
could be provided by such a formulation (where each branch
is stored in its own long transaction), though revision tracking
within a branch would still need to be implemented.1

Temporal databases are an extension of relational databases
which have special support for tables holding data involving
time. At a very high level, a temporal table includes columns
which indicate over which time range a row of data is
valid [5].2 The support for transactional temporal information
allows the extraction of historical data states in a generalized
framework that is built into the database system. Although
branching is not a basic concept in temporal databases, the
native support of temporal information makes them interesting
for investigation as a base upon which branching could be
added.

While the concept of temporal databases has been known
and researched for decades (e.g. [8]), only recently has it begun
to find more widespread availability. The SQL:2011 standard
codified the functionality and extensions for temporal tables
[9]. However, not all database vendors have implemented this
part of the standard, and those that have done so in only very
recent versions of the software (Microsoft SQL Server 2016
[10]) or through third-party extensions (PostgreSQL [11]).
Additionally, a temporal table may have limitations compared
with standard tables [10], which may impact usability. There
has also been some discussion in the literature of improving
the performance of temporal database performance through the
use of special indexing, which are not commonly available in
most databases [12], [13]. Finally, temporal databases include
support for functionality which is beyond the scope of what is
required here (such as interacting with ranges of data) which
indicates the possibility of a simpler solution.

Other research involves how to capture the changes to data
that are made over time. A complex management system which
runs on top of a standard database is presented in [14], but it
is much more extensive than what is needed here as it includes
features such as interacting time-ranges. Tracking data changes
through comparisons of state is a related problem, but the
applications are not well aligned with the current problem
as the focus is on data consistency, merging changes across
separate data sources, or capturing knowledge from the actual
changes over time [15]–[18]. Some research has been done
into how to extract previous data states, including discussions
of the scope of persistance [19] and the tradeoffs between
space and performance when storing temporal data [20], but
this research is aimed at developing new data structures and
algorithms within a database management system, rather than
working with existing systems as-is.

A final issue which arises from the use of existing tech-
nologies for data revision tracking is how to manage the data
state for simultaneous users. While some technologies (such
as many temporal databases) can efficiently manage the data
state at an individual query or transaction level, other solutions

1In theory, full revision tracking could be provided if separate transactions
were created every modification. It is doubtful that such a system would be
manageable, though.

2Temporal data may exist across both the data and transaction dimensions,
respectively called valid (stated) time and transaction (logged) time, the latter
of which is relevant to the problem addressed in this paper [5]–[7].

require the extraction or replication of the full valid data
state needed for each connection [4], [13], which may cause
performance issues if different data states need to be accessed
often and/or simultaneously.

III. CAPTURING DATA STATE

In order to meet the previously enumerated criteria, a new
technique was developed to track the revisions in the data state
over time. This technique uses a single 64-bit integer column
as a bitfield to hold all of the information necessary to capture
the state of the data at any point in (transaction) time. Careful
ordering of the information in the bitfield allows for efficient
extraction of the data states using standard SQL.

The underlying structure of the revision tracking is as
follows: Data branches, which are independently revision
tracked data states, are uniquely identified by an integer, called
the branch id. Data modifications are tracked to the second
resolution, though there is flexibility to operate at courser or
finer time granularities. An individual user is associated with a
unique identification integer, called the user id. Both the user
and the branch may have additional information about them
stored in separate tables using the branch/user id as the primary
key.

Every revision tracked table includes a single 64-bit integer
(BIGINT) column to store the revision track information;
throughout this paper, this column will be referred to as RS
(an abbreviation of revision stamp). The generic form of the
bitfield is shown in Figure 1. Because unsigned 64-bit integers
are not available in some databases, a signed integer is assumed
and the most significant bit (the sign bit) is kept at zero (a
possible modification of this is discussed later).3 After that,
most significant bits hold the branch id, and the next most
significant bits hold the time of the modification encoded as
an integer. The remaining bits are used to hold the user id, a
flag indicating a deletion, and any other information as needed.

063

0 Branch Timestamp User,Deleted,. . .

Figure 1. Generic bitfield layout for data revision tracking.

Whenever a table modification occurs, a new row is added
to represent the updated data state. A new or modified row
is just the row data with the appropriate RS value. A deleted
row will be added as the most recent row data along with a
RS value with the “deleted” bit set to 1.4 Thus, in a revision
tracked table, a UPDATE or DELETE action will never occur.5

3Using the sign bit is possible and does not invalidate the methodology
discussed here, but it is preferable to avoid it because it causes complications
with the required binary and arithmetic operations used to extract a data state.

4It is not necessary for a deleted element to have its last data state replicated
in the row marking its deletion. However, doing so preserves the state of
the element when it was deleted. Furthermore, some data would need to be
included in the row, and if the table includes columns that cannot hold NULL
values, then what data to put in the row would need to be determined. Finally,
before marking the element as deleted, a sanity check of its last state should
be made to confirm that the element exists, which means that the state will
be readily available.

5Another way to look at this is a Create-Read-Update-Delete (CRUD)
application has been reframed as CR.



In doing this, all distinct transactional changes are retained in
the table.

The process for encoding time as an integer is not restricted
to any specific function or methodology, but the resulting
timestamp must obey the following properties:

• If two timestamps, TA and TB , represent different
times with respect to the chosen temporal resolution,
then TA 6= TB .

• If one timestamp, TA, represents a time that occurred
before another, TB , then TA < TB .

Note there is not a requirement that timestamps repre-
senting the same time be equal, only that they satisfy the
distinctness and ordering properties. As mentioned above, any
temporal resolution and date-time span (the minimum and
maximum recorded transaction time) can be used provided
its range can fit in the (bit) space allocated to the timestamp
value. For the examples discussed here, so-called “Unix time”
is used, which is the number of seconds that have elapsed
since midnight January 1, 1970 in Coordinated Universal Time
(UTC). This timestamp provides one second resolution, and
can be calculated easily in all major database systems.

Because the coordination of clocks across systems can be
difficult, it is recommended that a single entity (system or
service) be responsible for providing the timestamps, so that
the transaction times are consistently recorded. Additionally,
changes to the data spanning multiple cells, rows, or tables
that need to be considered atomic (so that the data state is not
invalid) must be registered with timestamps representing the
same transaction time.

The actual bit layout for the application that was developed
to use this framework is presented in Figure 2. With this layout,
up to 16,383 branches and 1,023 unique users may be tracked.
The timestamp fits into a standard 32-bit singed integer, and
has a maximum transaction time occurring during January 19,
2038. The seven least significant bits are reserved for possible
future needs, which may include expansion of the branch or
user id space and encoding a version number of the bitfield.

07174863

0 Branch Timestamp User

D
el

et
ed

1 14 31 10 1 7

Figure 2. Actual bitfield layout used in prototype system. The second row
gives the width of each field in bits.

Placing the branch and timestamp in the bitfield as de-
scribed allows for relatively easy extraction of data states
primarily through the use of ordering, grouping, and filtering
operations. For a given table, ordering the rows by the RS field
will result in all of the data (including changes) for a given
branch to be contiguous. A result of this is that a maximum and
minimum RS value for a given branch can be calculated, and
all rows within that range will belong only to that branch. Thus,
isolating a given branch requires only an ordering statement
(on one column) and a WHERE clause with two predicates
involving integer comparisons.

Within the data for a given branch, the rows can be further
filtered so that they only include those entries which occurred
before a given time. This is done by calculating the timestamp
for this cutoff, and then calculating the RS value from it and the
branch id (the remaining bits are set to zero). Selecting only
those rows which are less than this value provides the data
history of the table for that branch up to the time represented
by the timestamp.

Within the time-restricted branch data, rows can be grouped
together by the id column (or columns) of the table data.
(Typically this unique id would be considered the primary key
for the table, but, as discussed below, the inclusion of revision
tracking no longer allows this.) Within a group with the same
id, if the rows are sorted by the RS field in descending order,
then they represent the full transaction history of that data
element, with the more recent transactions listed higher in the
result. The first row of the result table (for the grouped data) is
the state of the data within the branch at the selected maximum
transaction time.

Finally, any row in the data state whose RS field has the
“deleted” flag set to 1 is filtered out (using bit-wise arithmetic).
Thus, using standard query operations the data state at any
transaction time can be extracted. Furthermore, because this
occurs entirely within a query, multiple simultaneous requests
for different data states - across both branch and transaction
time dimensions - are inherently supported.

IV. IMPLEMENTATION CONSIDERATIONS

A. Keys

Maintaining the entire transactional history of a given data
item in a single table requires the use of the RS field in any
primary key for that table. That is, if a given item has a
unique identifier I (which may be composite), then for every
modification to that data item a new row will be added to the
table with the same identifier. So, by itself, I cannot be used
as a primary key; instead, a composite key of (i,RS) must
be used to uniquely identify each row.

However, whenever a unique data state is extracted, each
row in a given table will have a unique identifier (in I), so,
in the context of an individual data state, it does form a valid
key. Building an index on the identifier field (excluding RS)
will provide the lookup benefits of a key to queries on a
data state, as they will be inherited by subtables representing
the data state. Because RS cutoffs are used to isolate data
branches, having an explicit index on RS will also improve
query lookups.

Unfortunately, building table relationships is complicated
by the inclusion of transaction history. This is actually a
problem that applies to temporal data in general, as the
linkages between data rows may change depending on what
time the data state is queried on [5]. For example, say that one
row in a table (RA) has a foreign key relationship to a row in
another table (RB) at a given time t, and that the data in RA

is changed between t and a later time t′. For the data state at
time t, the foreign key relationship between the rows is valid,
but at t′ it is not, as the row that was modified should replace
the original. This issue is depicted in Figure 3.



id= n

id= n

id= n

id= n

RS= r

RS= r′

RS= r

RS= r′

. . .

. . .

. . .

. . .

fk_id= n

fk_id= n

RS= r

RS= r

. . .

. . .

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.Ti

m
e

Figure 3. Illustration of foreign key relationship changing over transaction
time. The dotted line separates the data state at two distinct (transaction) times,
with the color fill indicating which rows are included in the data state at that
time. The table on the left is a foreign key to the table on the right, and
the row with id = n has been modified during the time between the states.
Although the foreign key is relationally the same at the two times, the actual
rows forming the relationship in the database have changed.

A B

A B
Id_A Id_B

id

RS

id

a_id

RS

id

RS

id

a_id

RS

id id

..
.

..
.

..
.

..
.

Figure 4. Illustration of the use of identifier tables in revision tracked tables;
the colors represent columns with foreign key relationships. The upper part
of the figure shows the actual foreign key relationship between tables A and
B in a given data state. The lower part shows the relationship when using an
identifier table (Id_B) which removes the transaction time dependency from
the relationship. An identifier table has also been added for B to express the
restriction that its identifier (id) be unique within a given data state.

While it is possible to forego referential database checks
and drop foreign key relationships between revision tracked
tables altogether, this is not ideal. Though it will decrease the
impact on the database design, such a solution would discard
any relational information from the database and would allow
unchecked inclusion of invalid data into the database.

A better solution is to create a new table for each revision
tracked table to hold only the foreign key identifier column(s).
This new identifier table will have a foreign key relationship
with the original table. All foreign key relationships with
the original table will now point to the identifier table, thus
expressing the basic structural relationship as well as providing
some referential integrity (see Figure 4). This identifier table
has the additional benefit of providing a straightforward (and
standard) way to get new unique identifiers when new items
are added to the revision tracked data.

Using the identifier table will provide only a subset of

the referential integrity typically associated with foreign keys.
Specifically, referential constraints will not work correctly with
respect to the underlying data states, since the foreign key
references are indirect. For example, referring to Figure 4,
if the original relationship has a CASCADE constraint, then
deleting a referenced row from A should delete the referencing
rows from B with matching foreign key.6 However, when
using an identifier table the actual relationship between A and
B at a given point in transaction time is not known to the
underlying database engine, and thus the CASCADE constraint
cannot be maintained. If the data using this revision tracking
system requires such propagation or referential constraints,
then custom triggers will need to be added to enforce them.

B. Interacting With Revision Tracked Data

Querying revision tracked data requires putting together
all of the steps outlined in Section III into a single query,
which will return a table which captures the data state for the
specified branch and transaction time. A prototype of such a
query, using T-SQL syntax, is presented in Figure 5. If the list
of columns (<COLUMNS>) includes everything except RS, then
the returned table will represent the data as it existed at the
specified transaction time as if there was no revision tracking.
For a specific table, query can be pre-built with the table
and column names, leaving the transaction time and branch
as parameters to be specified. Though such a parameterized
query cannot be used as a view, it can be implemented as a
table-valued function or (less ideally) a stored procedure, for
convenient access. The benefit of using a table-valued function
(if supported by the database) is that the function can used
directly in other queries.

SELECT
<IDS>,<COLUMNS>

FROM (
SELECT
RANK() OVER (
PARTITION BY SiteID ORDER BY <IDS>,RS DESC

) AS ROW_NUM,
128 & RS AS DELETED,
<IDS>,<COLUMNS>

FROM <TABLE>
WHERE
RS >= <BRANCH>*562949953421312 AND
RS <= <BRANCH>*562949953421312 +

<TIMESTAMP>*262144 + 262143
) T
WHERE
ROW_NUM=1 AND
DELETED=0

Figure 5. Prototype (T-SQL) query for extracting the data state of table
<TABLE> for branch <BRANCH> at transaction time <TIMESTAMP. <IDs>
is a comma-separated list of the unique id columns, and <COLUMNS> is a
comma-separated list of the remaining columns. The hardcoded numbers are
powers of 2 used as bitshifts and bitmasks and, for simplicity, required casts
to BIGINT have been removed.

Because this revision tracking system requires that opera-
tions modifying rows are transformed into row additions, these
operations must be controlled. One method for this is to create
custom triggers for UPDATE and DELETE procedures for each
revision tracked table. A trigger for INSERT procedures might
be needed as well, to enforce correct unique id assignment.

6Delete here means inserting a new row with a RS value with the “deleted”
flag set.



An alternative to triggers, which was used for the example
implementation, is to build an API for interactions with the
database, and to build the required logic into the system serving
the API. While such a system will not provide the protection
that triggers do for direct database interactions, it can be
preferable if access to the database can be restricted to the
API. Because such a system is not restricted to using a query
language, it can be easier to program the required functionality
and there is greater flexibility in exposing the system to a user.
If querying functionality is also implemented, then this may
be an alternative to table-valued functions or stored procedures
for convenient access to the table data states.

Often, the data’s state, rather than its transaction history,
is important to an application and thus the information held
in the RS field will not be directly needed. However, there
can be situations where the capturing changes in the data over
time may be important (such as data state differencing), and
in these cases, the RS provides useful information. The fixed
structure of the RS field allows the information in the field
to be quickly extracted and presented in a useful format. For
example, the prototype query (using T-SQL) in Figure 6 will
return a table listing the transactional history (starting with the
most recent change) of a single data element in a given branch,
including information about who may the changes and when
they happened.

SELECT
<COLUMNS>,
RS / 562949953421312 AS Branch,
DATEADD(S,

(RS & 562949953159168)/262144,
’1970-01-01’

) AS TransactionTime,
(RS & 261888) / 256 AS UserID,
(RS & 128) / 128 AS Deleted

FROM <TABLE>
WHERE
RS >= <BRANCH>*562949953421312 AND
RS < (<BRANCH> + 1)*562949953421312 AND
<ID_COLUMN> = <ID>

Figure 6. Prototype (T-SQL) query for capturing the transactional history of a
data element with unique id <ID> in table <TABLE> for branch <BRANCH>.
<COLUMNS> is a comma-separated list of the table’s columns. The transaction
time will be represented in UTC time. The hardcoded numbers are bitmasks
and bitshifts and, for simplicity, required casts to BIGINT have been removed.

C. Data Maintenance

Because this system of revision tracking will add a full row
for every modification, the size of a database can grow much
larger than the size of any one of its actual data states. For
this reason, it might be useful or necessary to remove rows
from revision tracked tables as part of an overall maintenance
strategy. Such culling of records can have major implications
for the transactional information represented in the database,
so great care must be taken if performing such tasks. As is the
case even with non-revision tracked databases, deleting records
should only happen when it is certain that they will not be
needed at any future time. Note that one of the motivations
for revision tracking was to have the data state used for a
particular analysis available for reference, and removal of data
may make this impossible.

If an entire branch used for analysis is deleted, then
obviously the data state cannot be extracted, but if only some

records are removed, then a possibly worse problem of an
incorrect data state may arise. Specifically, if a row that
represented a particular element in a data state is removed
and then the state recreated, the previous transaction involving
the data element will be used for the data state. Not only
is the data state incorrect, it may very well be implausible
or inconsistent, and tracing such an error would very likely
be difficult if not impossible. Furthermore, deleting an entire
section of data based on the transaction times (e.g. delete all
rows with a timestamp less than t) can also create problems,
as the actual transaction which is valid - that is, most recent
- for a given timestamp may have occurred well before that
timestamp and would be incorrectly removed.

Because corrupting the proper data states is difficult to
avoid, it is suggested that any deletions occur over an entire
branch. If such a strategy is needed for branch management as
opposed to reducing the database size, an alternative strategy
may be useful: If, across all the data in a branch, the RS field’s
most significant bit is set to 1, then the RS values will become
negative and will no longer be part of the “mainline” branch
space. While this will provide no direct performance benefits,
it may be convenient if queries across the branch space are
ever performed (such as inter-branch summaries). Using this
method can thus be viewed as an archiving operation, where
the branch history is retained, but the direct availability of the
branch is removed.

Another concern with tracking data revisions is what
should happen when the database schema is modified. Specif-
ically, if a revision tracked table’s definition is modified, how
should those modifications be reflected in the data history?
When confronting schema changes with non-revision tracked
data, the primary concern is how to apply the changes through
the existing data in a manner that is consistent and meaningful.
While this remains an issue with this revision tracking system,
a more fundamental one also arises: If a table schema is
modified, then the data state returned by the system for
a transaction time before the schema modification will not
accurately represent the data state at that transaction time.
That is, the change to the schema will propagate backwards
throughout the entire history of the table. Unfortunately, with
this system there is no straightforward way to deal with this,
outside of creating custom queries which (if possible) will
revert the modifications for transaction times prior to the
change. Though some modifications (such as adding a column)
may be relatively harmless, it is emphasized that schema
modifications can have much deeper implications when the
data is revision tracked, and that care must be taken when
applying them.

V. PERFORMANCE EVALUATION

Utilizing this revision tracking framework will clearly have
some performance implications. When inserting or updating
data, a process (either external or via triggers) will need to
occur to transform the query into an appropriate row insert
reflecting the change. This process adds time to the operation,
and will involve checking the most recent state of the modified
data element (to ensure data integrity) as well as calculating
a new value for the RS column. A more subtle issue is the
impact on transactional consistency when the system is under
load. The longer processing time will increase the chance that



A B
Id_A Id_B

a_id INT

a1 INT

RS BIGINT

b_id INT

a_id INT

b1 INT

RS BIGINT

a_id INT b_id INT

Figure 7. Schema diagram for database used to evaluate revision tracking
read performance. Bold fields form the primary keys for the table, and arrows
indicate foreign key relationships.

two data modifications will collide, especially if the temporal
resolution of the tracking is on the order of (or slower than)
the rate of the updates.

A larger concern is that the introduction of time into the
system means that transactional consistency alone cannot be
relied on to ensure temporal consistency in the data. That
is, it is possible that two updates on the same element may
create a revision history which is insensible. For example, two
different modifications on the same element may be registered
at the same time by different users, or, more pernicious, a
delete operation may be saved before a modification on the
same element. These issues can be mitigated through the use
of a more complex system which performs failsafe checks
before modifications are saved. Such a system will be difficult
to correctly implement (and integrate) and will have further
performance implications (e.g., see [21]). It is noted that the
consistency problems only arise for existing data elements,
since new data element consistency (which involves ensuring
unique identifiers) can be controlled through the use of the
identifier tables discussed previously.

The original target application for the revision tracking
system involved a limited number of users and infrequent
updates to existing data (relative to the one second revision
tracking resolution). The larger concern was the cost of the
system to data reads, specifically the performance of the
system when extracting the data state at a given transaction
time. To evaluate this, a simple database was set up (see
Figure 7) and two queries were executed and timed to quantify
the performance of the system. One query just captured the
entire data state of A, and the other (left) joined A to B.
Both used the query prototype in Figure 5 with a specific
branch and transaction time. To get a baseline performance
for comparison, the state of the data in the A and B tables
for the specific branch and transaction time was loaded into
“fixed” versions of the tables (which did not include the RS
column). Queries equivalent to those described were then run
on these fixed tables.

The evaluation database tables were loaded with random-
ized data that varied in the following dimensions:

• The number of data elements (unique items) stored.

• The total number of data modifications. This is equiv-
alent to the total number of rows in the tables.

• The total number of data branches.

Table I enumerates the various combinations of these
dimensions against which the queries were evaluated. To

Table I. ENUMERATION OF TEST DATABASE DIMENSIONS AND TABLE
STATISTICS.

Undeleted Elementsa Total Table Sizeb

Elements Branches A B A B

100 10 100 100 100,000 91,213
100 10 100 100 1,000,000 954,303
100 100 100 100 100,000 96,505
100 100 100 100 1,000,000 954,653
100 100 97 100 10,000,000 4,709,283
100 1,000 80 81 100,000 99,676
100 1,000 100 100 1,000,000 932,966
100 1,000 100 100 10,000,000 5,265,964

1,000 1 992 995 100,000 99,581
1,000 10 990 989 1,000,000 950,819
1,000 100 999 1,000 1,000,000 953,870
1,000 1,000 779 786 1,000,000 953,668

10,000 1 9,950 9,956 1,000,000 996,748
10,000 10 9,988 9,990 1,000,000 995,280
10,000 100 9,992 9,995 10,000,000 9,508,104
100,000 1 99,494 99,501 10,000,000 9,947,960
100,000 10 99,907 99,917 10,000,000 9,948,994

aThese columns are the number of rows in the queries on A and
B JOIN A, respectively.

bThis is equivalent to the number of modifications to the data elements.

generate the data, a program was run which randomly added,
modified, or deleted elements, until the desired sizes were
achieved. Because of the randomization and the deletions,
the final number of elements and table sizes did not always
equal round numbers. Because query timings can vary from
one execution to the next, the queries were repeated and the
evaluation times averaged.

Scatter plots comparing the queries for revision tracked and
fixed tables are shown in Figure 8. The number of branches
does not appear to have any correlation with the running time
of the queries, which makes sense given that the branch is used
purely to restrict the range of RS, independent of the number
of branches in the table.

The query times for the revision tracked tables tend to
take roughly an order of magnitude longer than the fixed
table queries, which indicates that scaling issues would have
impacts for queries involving millions of data elements or
higher. For queries involving fewer elements, the query times,
while slower than with fixed tables, are reasonable given the
fact that a data state is being dynamically extracted. Note,
however, that for a specific number of data elements, there is
much more variation in the query times for the revision tracked
tables than for fixed tables. This is especially evident for the
tables involving about 100 elements, where the fixed tables
have nearly instant query times but the revision tracked tables
shown execution times spanning multiple orders of magnitude.

The primary determiner of query performance is actually
the number of data modifications in the table, or, more specifi-
cally, the number of rows in the subtable for a given branch. It
is over this subtable in the prototype query (Figure 5) that the
rows are partitioned and the most recent modification selected.
The equivalent measurement for the fixed tables is the size of
the entire (fixed) table, which is just the number of elements.
Figure 9 plots the query times against the size of the branch or
fixed table, and a similar relationship is seen with respect to
the query times. That is, as the table size influences a standard
query, so too does the entire branch size for revision tracked



(a)

(b)

Figure 8. Comparison of the average query times for fixed vs. revision tracked
tables.

tables. Note that the use of a join does not appear to incur
much of an additional penalty above that shown by the size of
the branch subtable.

VI. CONCLUSION

The framework described in this paper provides a relatively
simple way to add revision tracking to databases. The tracking
is performed per table, so that it can be excluded from tables
which do not require it. For each table that is tracked, the
schema changes include one additional 64-bit integer column
and an new unique identifier table comprising a single in-
teger column. Additionally, indexes should be built on the
unique identifiers and RS field to attain good performance
and expected behaviors with the data state subtables. With
this structure, the data state at any previous transaction time
can be extracted using standard query operations. Modifying
the data requires the fairly straightforward mapping from
data transformations to new row inserts. Additionally, multiple
branches of modifications can be maintained in parallel, and
the revision tracked tables retain every modification which was
made to the data, including what time it occurred and by which
user.

(a)

(b)

Figure 9. Comparison of the table/branch size vs. the average query times for
fixed vs. revision tracked tables. The x-axis for the fixed table is the number
of rows in (a) A and (b) B. The x-axis for the revision tracked table is the
number of rows in the branch queried; this value is roughly equal to the total
number of rows in A or B divided by the number of branches.

Despite its relative simplicity, a number of potential issues
must be taken into consideration when using the framework.
First, to be user-friendly, a system must be developed to
manage access to the database. This system will control data
edits, as well as provide an interface through which the data
states can be accessed. Such a system may involve database-
based programming, such as triggers, stored procedures, and/or
table-valued functions. However, developing an external appli-
cation and controlling access through an API can provide more
flexibility, although such a solution will be less “lightweight”
than a database-based one.

Consistency, both in terms of the data states and the trans-
actional history, can be difficult to maintain if the interactions
with the database involve simultaneous edits of the same
data elements. Additionally, the size of the data table will
grow with the number of edits, which has a direct impact
on the performance of read queries on the data. Because of
this, the framework may not be suitable for applications with
large numbers of data modifications, or if many users will be
modifying the data simultaneously. If only a limited number of



previous data states are needed, then the performance impact
of too many data modifications may be reduced by removing
interim data edits (those between the transaction times of
interest), though doing must be done with great care so as
to not incorrectly capture the data state histories. Because
reducing the number of saved edits has a direct impact on
query times, developing robust strategies for such data cleaning
would be a worthwhile area of future investigation.

Another area of potential research would be to look into
alternative structures for the RS field. Specifically, the use of
more columns to hold the information, while creating more
complicated schema modifications, may provide performance
benefits. Also, the issues with simultaneous edits may partly
be addressed by splitting the RS field into two columns, with
one including only the branch and edit time. This branch/time
column would be used in the primary key for the table (along
with the unique identifier), and thus would prevent two users
from registering an edit at the same time.

Despite these concerns, for many applications this frame-
work can provide a simple way to include revision tracking to a
database. It is not tied to functionality specific to any database
vendor or less common SQL standards. For situations where
analyses or models are run on data which is updated over
time, vetting or reproducing previous results is straightforward
since the state of the data when the analysis/model run oc-
curred is inherently retained. Additionally, different scenarios
or hypotheses can be represented in the database through the
use of branches, without the need to fully copy the database.
Finally, the data modification history, which includes the user
making the changes, helps create a “story” of the data which
can provide context to the data states and their changes over
times.

REFERENCES

[1] Microsoft MSDN. “Track Data Changes (SQL Server)”. Accessed
November 5, 2015. [Online]. Available: https://msdn.microsoft.com/
en-us/library/bb933994.aspx

[2] MediaWiki. “Manual:Database layout”. Accessed November 5, 2015.
[Online]. Available: https://www.mediawiki.org/wiki/Manual:Database
layout

[3] H.-J. Schoenig. “Tracking changes in PostgreSQL”. Accessed
November 5, 2015. [Online]. Available: http://www.cybertec.at/2013/
12/tracking-changes-in-postgresql/

[4] R. Chatterjee, G. Arun, S. Agarwal, B. Speckhard, and R. Vasudevan,
“Using applications of data versioning in database application develop-
ment,” in Software Engineering, 2004. ICSE 2004. Proceedings. 26th
International Conference on, May 2004, pp. 315–325.

[5] C. J. Date, H. Darwen, and N. Lorentzos, Time and Relational Theory,
2nd ed. Amsterdam: Elsevier (Morgan Kaufmann), 2014.

[6] C. S. Jensen and R. T. Snodgrass, “Semantics of time-varying informa-
tion,” Inf. Syst., vol. 21, no. 4, pp. 311–352, Jun. 1996.

[7] J. Clifford, C. Dyreson, T. Isakowitz, C. S. Jensen, and R. T. Snodgrass,
“On the semantics of &ldquo;now&rdquo; in databases,” ACM Trans.
Database Syst., vol. 22, no. 2, pp. 171–214, Jun. 1997.

[8] P. Dadam, V. Y. Lum, and H.-D. Werner, “Integration of time ver-
sions into a relational database system,” in Proceedings of the 10th
International Conference on Very Large Data Bases, ser. VLDB ’84.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1984, pp.
509–522.

[9] K. Kulkarni and J.-E. Michels, “Temporal features in sql:2011,” SIG-
MOD Rec., vol. 41, no. 3, pp. 34–43, Oct. 2012.

[10] Microsoft MSDN. “Temporal Tables”. Accessed November 5,
2015. [Online]. Available: https://msdn.microsoft.com/en-us/library/
dn935015.aspx

[11] arkhipov/temporal tables (Github repository). Accessed November 5,
2015. [Online]. Available: https://github.com/arkhipov/temporal tables

[12] D. Lomet and F. Nawab, “High performance temporal indexing on
modern hardware,” in Data Engineering (ICDE), 2015 IEEE 31st
International Conference on, April 2015, pp. 1203–1214.

[13] M. Kvet, “Temporal data approach performance,” in Proceedings of
International Conference CSSCC 2015, March 2015, pp. 75–83.

[14] P. N. Hbler and N. Edelweiss, “Implementing a temporal database
on top of aconventional database: Mapping of the data model and
data definition management,” in Proc. 15th Brazilian Symposium on
Databases (SBBD), 2000, pp. 259–272.

[15] S. Song and L. Chen, “Differential dependencies: Reasoning and
discovery,” ACM Trans. Database Syst., vol. 36, no. 3, pp. 16:1–16:41,
Aug. 2011.

[16] V. Papavasileiou, G. Flouris, I. Fundulaki, D. Kotzinos, and
V. Christophides, “High-level change detection in rdf(s) kbs,” ACM
Trans. Database Syst., vol. 38, no. 1, pp. 1:1–1:42, Apr. 2013.

[17] G. Karvounarakis, T. J. Green, Z. G. Ives, and V. Tannen, “Collabo-
rative data sharing via update exchange and provenance,” ACM Trans.
Database Syst., vol. 38, no. 3, pp. 19:1–19:42, Sep. 2013.

[18] A. Shah, S. Ahsan, and A. Jaffer, “Temporal object-oriented system
(tos) for modeling biological data,” Journal of American Science, vol. 5,
no. 3, pp. 63–73, 2009.

[19] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan, “Making
data structures persistent,” Journal of Computer and System Sciences,
vol. 38, no. 1, pp. 86–124, Feb. 1989.

[20] P. Buneman, S. Khanna, K. Tajima, and W.-C. Tan, “Archiving scientific
data,” ACM Trans. Database Syst., vol. 29, no. 1, pp. 2–42, Mar. 2004.

[21] D. Lomet, A. Fekete, R. Wang, and P. Ward, “Multi-version concurrency
via timestamp range conflict management,” in ICDE. IEEE Computer
Society, April 2012.


