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Nuclear Reactors and TPBARs @ P

Tritium Producing Burnable Absorber Rod: device that uses neutron
flux from a nuclear reactor to produce tritium.
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Ton beams can simulate radiation conditions to @ sand

Laboratories

accelerate materials research and development
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Multiple beam concurrent irradiation produces effects not seen with
sequential irradiation, however the difficulty of performing triple-beam
® RGSAM 2016 irradiation has resulted in a limited number of facilities world wide.




Sandia’s Concurrent In situ Ion Irradiation @ STRES
TEM (I°TEM) Facility

Laboratories
Collaborators: D.L. Buller, K. Hattar, and J. Scott
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Direct real time observation of ion
irradiation, ion implantation, or both

with nanometer resolution
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Dlsplacement Damage In Sztu () =

Video playback speed x5.
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Au film: 3.6 MeV. A@
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Helium Implantation In situ () it

| | Laboratories
Collaborators: C. Chisholm and A. Minor

4.0 x 10'¢ ions/cm2.4 @l 1.0 x 10'7 ions/cm?




Sequential Implantation & Irradiation E'IJ Natona

Laboratories
Collaborators: C. Chisholm and A. Minor

2.8 MeV Au then

» Equal fluences:
10 keV He

o AU 3 x101% jons/cm?2
o He 2 x10" ions/cm?

10 keV He Sl Ry & No noticeable
then 2.8 MeV Au [[—_ _ o SEELWN differences between
| | BTN A these sequential

irradiation conditions.
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Concurrent Implantation & Irradiation In Situ @ e

Collaborators: C. Chisholm and A. Minor

Au film: 2.8 MeV Au & 10 keV He
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Single Ion Strikes during Concurrent Irradiation: Direct @ S

: . Laboratories
CaV1ty NUCleathn Collaborators: C. Chisholm and A. Minor

a) Initial microstructure

b) Cascade: Creation of
dislocation loops, vacancy
clusters, and three cavities

d) Cascade damage still
evolving

g e) Apparent stabilit
. PP y

f) Final microstructure:
Only two remaining
cavities

Direct cavity nucleation process seen
with concurrent irradiation that was not

seen with sequential beams!
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Triple beam irradiation: Au and He™ /D, @ ot

Video playback speed in real time.
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Laboratories

Triple beam irradiation: Au and HeJr / D E‘IJ e

Video playback speed x1.5.

« Approximate fluence:

o Au 1.2x10"8jons/cm?

o He 1.3 x10" jons/cm?

o D 2.2x10"ions/cm?

« Cavity nucleation and
disappearance

® RGSAM 2016 Lots of activity: still working to understand this behavior el




Irradiation / Implantation Sequence Sand
Effect on Cavity Structure

Laboratories
Ni3* then He* s He* then Ni3*

A5

e 10 keV He
e 3 MeV Ni

Evenly distributed cavities Apparent higher
over the entire grain structure concentration of cavities
R i 001 ¢ along grain boundaries




In Situ Annealing of Sequentially Irradiated Ni: Cavity Sandia

National
Growth Laboratories
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Average Diameter (nm)

Temperature ('C)

10 keV He then 3 MeV Ni

Bubble to cavity
transition and cavity
evolution can be

Maximum Diameter (nm)

directly studied

Temperature ("C) ®]3
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Precession Electron Diffraction @ Sonda
Reveals Hidden Grain Structure
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Cavities in helium implanted,
self-ion irradiated, nc nickel
film annealed to 400 °C

Cavities span multiple
grains at identified grain
boundaries
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Summary and the Future () s

. gnhonced cavity nucleation with concurrent helium implantation and displacement
amage
« Total fluence and irradiation order do affect cavity evolution, but temperature has the
most dramatic effects
« Combination with orientation mapping begins to clarify the role of local microstructure

e

time 0.0001 ps

Kai Nordlund (2008)
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Deflection

Sandia
National
Laboratories

Tandem beam MEP too high to be bent toward TEM

2.8 MeV Au*

(u-MeV/g?)

'm beam MEP too low and deflected
Bo much by Bending Magnet
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+ +
keV He™/ D,
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TEM
Obj. Len
2.8 MeV Au*
Bending
Mixing of beams is

*  Must compensate for deflection of Tandem beam by bending magnet | ggssible in limited
Colutron beams deflected by the TEM objective lens conditions!

« Insignificant deflection of Tandem beams
«  With 10 keV He/D, we can use Tandem beams £13 MeV/g?
Au, He, and D, ions all reach the sample concurrently ®]6
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Ion Beam Conditions
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3 MeV Ni3t Irradiation Sandii

followed by 10 keV He* Implantation e

Ni3*then He*
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10 keV He* Implantation Sandia

. i cancy
followed by 3 MeV Ni3* Irradiation s
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eam Effects Sandi
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AT=2K

Max Energy
Transferred = 14.5 eV
Threshold E =22 eV
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Include the diffusion model...
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