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Motlvatlon Aging Reactors and Materials Failure

Estimated energy output from existing reactors
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Tailored Microstructures for Extreme Environments 3

* Grainboundaries(GBs) are a critical material interfaces = tailoring
network provides method for sophisticated microstructures

* GB character = variationsin GB structure/properties can lead to
subsequentchangesin response to extreme environments

Standard 316:4.2 mm/yr. Engineered 316L: 2.2 mm/yr.

Barret al. Corrosion Science (2016), under review
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Background: Grain Boundary Structures

* High and low angle GBs, tilt/twist, symmetric/ asymmetric
e CoincidenceSSite Lattice (CSL) notation (geometric model)

 Reportsindicate alink between some CSL GBs (e.g. 23) and
improvementsin intergranular corrosion, stress corrosion
cracking, and hydrogen embrittlement

CSL Boundary Notation

36.9" rotation
Axis of rotation: 100
Boundary type: X5
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GB Structure — Property Relationship

* GB landscape highlights specific GBs that have low energy or excess volume

 GB energy does not correlate with “low” coincidence ssite lattice (CSL) 2 GBs

* GB-defect interactions: formationenergies, load/pristine GBs, interaction
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Tschopp et al., Phil Mag (2009)

GB Energy Excess Volume/GB Area Mobility Trend
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Radiation Induced segregation (RIS): °

. Non—equilibrium segregation of Model Binary alloy with vacancy domi‘nated RIS
alloying elements caused by Sink GB (8ink)
flux of irradiation induced
defects

* Alloyingelements segregate
when a specific species is

preferentially interacting with a
defect flux

* Vacancy-species preferential
interaction

* Vacancy-solute exchange
mechanism

* Interstitial-solute exchange
mechanisms

Concentration [at.%]
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Objective:

Project Goals:

1) Design microstructure capable of obtainingparticular
improvementin irradiation response through GB character evolution

2) Provide predictive understanding of how particular GB structures
respond under radiation induced segregation and void denuded
zones.

Two Case Studies: Engineering Alloy 316 and Model Ni-Cr

Alloy Ni cr Void denuded zones (VDZs):

O.' -

DREXEL UNIVERSITY . Barretal., submitted JNM (2016 .
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Grain Boundary Engineering (GBE) in 316L:

Fe C
Bal| 0.02

Mn P Si
2.010.02 0.3

Ni
14.7

Cr
17.5

Mo
2.8

Cu
0.1

* GBE structure - design of
experiment with different strain,
time, and temperature

Alloy

wt. %

GBE 5% RR-1000°C-60 minutes
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GB Population Statistics

Triple Junction Distribution (TJD)
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Grain Boundary Dependent RIS in 316L: ’
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e 11 dpa, 1.6x10'®ionscm2, 3 MeV Cu?*heavy ion irradiation, 500°C
e Strongdependenceon grain boundary coherency
 Minimal Cr depletion variation observed between random HAGB types
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Model Ni-Cr Alloy:

Simple binary alloy provides more direct comparison to
models

— Correlated model-experiments provide ideal approach for
predictive microstructural evolution underirradiation

Variations in the radiation CB plane
response should existas function '
of GB characterand subsequently |
have different sink efficiency - -
dependentupon: Gost, o —

GB energy/free volume: N R

misorientation + inclination 0417 / T

. C, =conc.of vacacies .
Cv,eq. = thermal conc. of vacancies
0 Co = critical vacancy superstation
Distance from GB >
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Experimental Methods — lon Beam Irradiations: H

* Thermomechanical processingused to induced wide range of available GBs
e 20 MeV Ni**at 500°C on bulk Ni-5Cr to 3.4 dpa at lum depth

. gRIMdused to calculate dpa using Kinchin-Pease method with quick cascade
ase

SRIM determined damage profile for sample
cross-sectional

18

Heater and sample for bulk
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GB Character Irradiation — Defect Size Distribution: *

e 1.9x10%%jons/cm?

e 3.4dpaatlum depth
* Avoidedinjected interstitial effects at examined cross-sectional depth

BF-STEM: Defect density: 1.16x1022m3 Void density =9.09 X 1020 m-3
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GB Character Irradiation — 23 RIS: 13

60°<111> 23 coherent 60°<111> 23 incoherent 58.8°<14 17 12> (8.2° dev. 23)
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N13

Distance (nm) Distance (nm) Distance (nm)

Heavily anisotropic RIS within GBs considered “%3”

Clear distinction and response between coherent and incoherent
twins

Sink efficiency low for coherent plane {111} twin compared to

incoherentplane {112}
58.8° heavily deviated 23 behaves like random HAGB
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GB Character Irradiation — Low and High Angle GBs: *

* No statistical different between RIS response at high and low angle GBs

* RIS measured ata ~3.4 dpain steady-stateirradiationregime

* Possiblereason forthe absence of the expected reductionin sink efficiency for low
GB angles are GB strain effects
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GB Character Irradiation — RIS Model Comparison **

e Compared experimental RIS values to Wiedersich type » —
. . “Xperiment
rate theory model of RISin Ni-Cr —Vac Only, Perfect Sk

== AIMD-based, Perfect Sink
==Vac Only, Grain Boundary Sink
10 + ==AIMD-based, Grain Boundary Sink

* Modified to account differences in sink strength based
on misorientation (and plane for 23 system)

* Bias is greater for the vacancy mechanism, which result
in Cr depletion by RIS

!
x

-10 +

Cr Segregation (at %)
S

 Comparison yields good agreement in high angle -20 = ' : :
regime and for the coherent twin

* Low angle GBs RIS is underestimated compared to
experiment

100 200 300 400 500 600
Temperature (°C)
Barnard and Morgan, JNM 2014

1
2 B .
—=— Experiment i —=— Experiment —=— Experiment
1 Model Model Model
n 1 n 1 n 1 " 1 n 1 n 1 n 1 " ] 1 n 1 2 1 2 1 " 1 n 1 n 1 I 1 L J 1 " 1 2 1 L 1 " 1 2 1 1 1 n 1 " ]
40 -30 -20 -10 O 10 20 30 40 40 -30 20 10 O 10 20 30 40 40 -30 20 10 O 10 20 30 40

a) Distance (nm) b) Distance (nm) C) Distance (nm)



GB Character Irradiation — Void Denuded Zones °

Coher_enjc twin

GB Character VDZ Avg.
| 60° <111>{111} 23 0

60° <111> {112} >3 128
58.8°<14 17 12>, 23

Dev=8.2 115
D 59.0°<13 11 18> 155
LAGB GB (“6°) s 56.6° <15 8 13> 145
W BN 47.1°<8 15 11> 137
1 14.2°<19 18 1> 135

6.1° <17 16 14> 132

Scale brs =200 nm

* Minimal different in low verse high angle VDZ behavior based on misorientation
angle

* Indicates misorientation (only 3 of 5 DOF) insufficient to determine GB sink efficiency

* Observed asymmetry in VDZin most GBs
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Project Discussion and Outcomesin 316L:

o

17

» Effective light rollingfollowed by high temperature annealing
induces formation of GBE microstructures consistent with large
twin related domainsin 316L

* RISin 316 clearly indicate GB sink efficiency variations between
coherent twin and incoherenttwin while minimal difference in
random HAGB:s.

 GBE provides opportunityto increase 23 coherent length fraction
— improved corrosion resistance and minimized Cr depletion
during RIS

Q) SA 50hr: 4.2 mm/yr
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Project Discussion and Outcomes in Binary Ni-Cr:  *

* No apparent sink efficiency difference between random high and
low angle GBs

* Highlyanisotropicsink efficiencyin 23 GB plane for RIS and VDZs.
Agreement here in model-experimental approach.

* Sink efficiency increases with deviation from twin plane

* Breakdown in model-experimentat low angle GB — need for
better estimate of solute-defect interactionsin low angle GBs: GB
energy insufficient boundary term for estimating RIS

Future Direction:
1. Broader GB characters includingZ11 {113} tilt verse asymmetric
tilt; screw and edge components of low angle GBs for point

defect accommodation.
2. Determination of GB plane normalforrandom GBs
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