
Exceptional service in the national interest

7th Ablation Workshop, 6-7 October 2016, Tucson, AZ

Derek Dinzl, Justin Smith, David Kuntz, Micah Howard, Ross Wagnild

Outline

- History of RV Development at Sandia
- Modeling Tools at Sandia
 - Aerothermal Codes
 - Material Thermal Respose Codes
 - Integrated Codes
- Development of SPARC
 - Development Goals
 - Preliminary Results
- Summary

MaST recovery vehicle

Development of RVs at Sandia

- Sandia has strong historical roots in hypersonic reentry problems
- Flown more than 100 instrumented RVs since 1968
- Continued support and interest in the advancement of understanding of entry phenomena

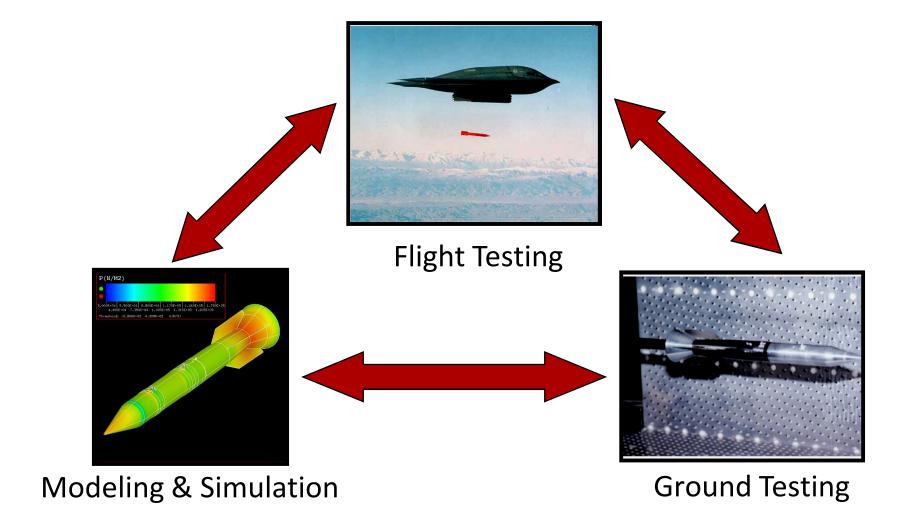
MaST

LBRV I

NASA SHARP-B01

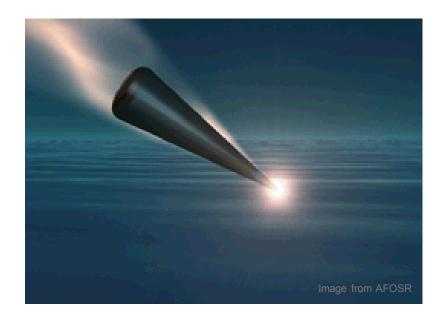
GRANITE

A.N.T. I


SAMAST/MINT

PAS II

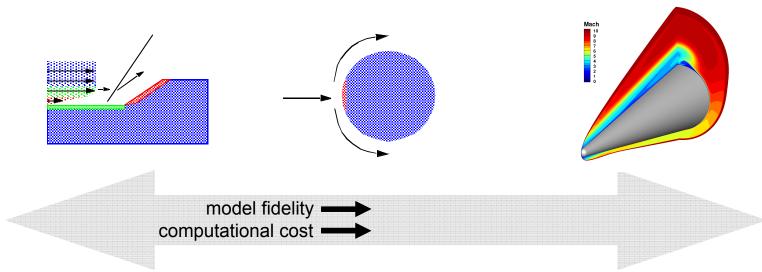
A Balanced Approach



Flight Vehicle Analysis

Planetary entry is a complex process encompassing many problems:

- Trajectory
 - Vehicle dynamics
 - Force and moment integration
 - Ballistic/lifting entries
- Aerothermal environment
 - Compressible flow, real gas effects
 - Laminar/turbulent boundary layers
- Material response
 - Decomposing/non-decomposing ablators
 - 3D material properties
- Consequences to substructure/payload
 - Vehicle conduction
 - Thermal contact
 - Enclosure radiation


Modeling to Meet the Need

- In addition to the breadth of these problems, there is a spectrum of needs:
 - Complexity of geometry
 - Desired level of accuracy
 - Need for quantities integrated over flight duration
 - Need for parametric sweeps of conditions
 - Balance of computational cost with resources and time

Aerothermal Codes

HANDI

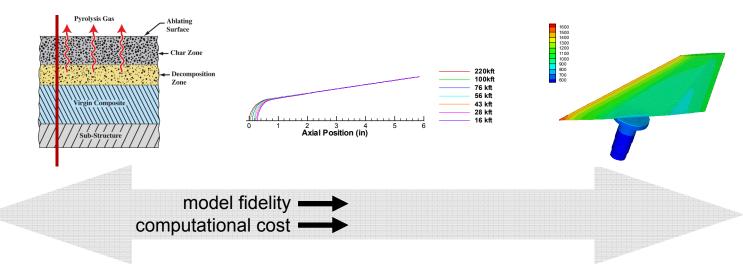
correlation based methods

 Analytical/empirical relationships for engineering design

2IT-SANDIAC-HIBLARG

integral boundary layer equations

- Inviscid transonic flow over nosetip
- Euler equations for supersonic flow on aftbody


DPLR(NASA) US3D(U of MN)

Navier-Stokes solvers

 Compressible, real gas effects

Material Thermal Response Codes

Chaleur CMA(Aerotherm)

1-D models

• In-depth decomposition

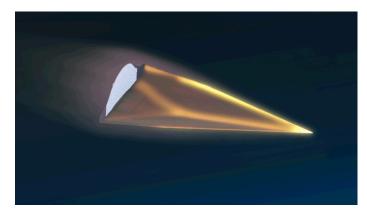
ASCC SMITE specialized for nosetips

Coyote-ab Coyote-Q

multidimensional models

- ab: subliming/melting, nondecomposing
- Q: decomposing

Integrated Codes


TAOS used to compute trajectories

- Solves Newton's 2nd Law, 3/6 DOF trajectories
- SABRE
 - TAOS, 2IT-SANDIAC-HIBLARG, CMA
 - Automates reentry analyses
- LAPS
 - TAOS, HANDI, CMA
 - Used for large parametric sweeps of entry conditions
- PIRATE
 - 17 codes
 - Computes RF attenuation on RVs
- ParChaleur
 - US3D aeroheating -> Chaleur

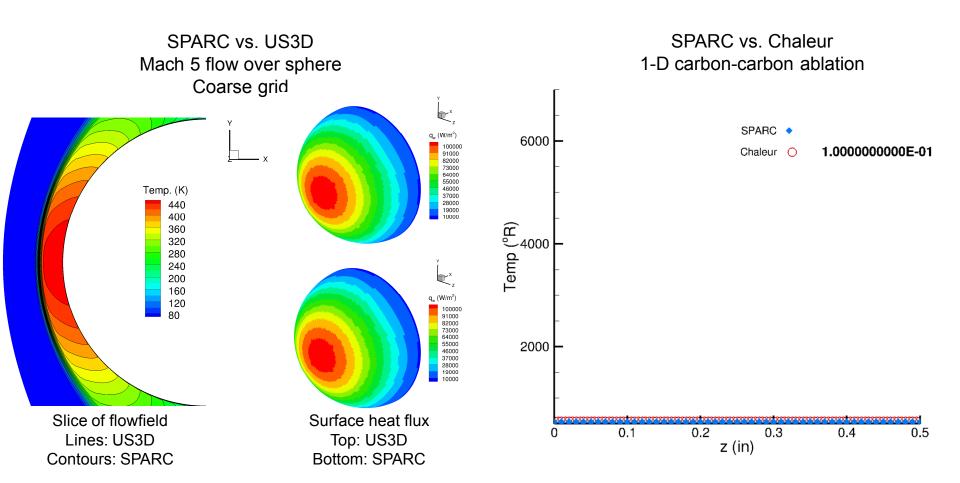
The Future of Ablation Modeling

- These approaches have been very successful for research and design
- However, they uncouple a tightly coupled process
- Next generation vehicles (e.g. boostglide) will need next generation TPS
- With the increase in computational power and need for greater accuracy, need something better

Artist's rendering of HTV-2

Enter SPARC

- Aero-ablation code under development at Sandia
 - Solve the coupled problem from surface to centerline
- Designed for use on next generation heterogeneous architectures
- Scalability, performance portability
- Modular, object oriented design
- Fully couples a compressible, reacting Navier-Stokes solver with a three-dimensional material thermal response solver
 - Thermochemical nonequilibrium
 - Decomposing and non-decomposing ablators
 - Allows surface recession, mesh motion


SPARC Continued

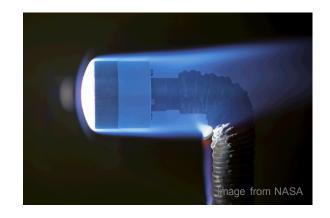
- Both structured and unstructured finite volume implementations for fluid solver, plans for hybrid meshes
- Being coupled to Sierra Aria for solving substructure conduction
- Plans to couple to trajectory code TAOS
- Plans for capabilities to model melting/subliming ablators

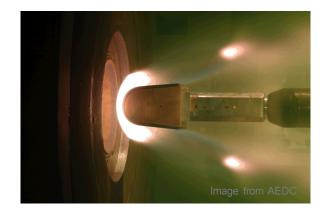
Code-to-Code Comparison

Performance

For a generic RV problem with roughly 4 M cells:

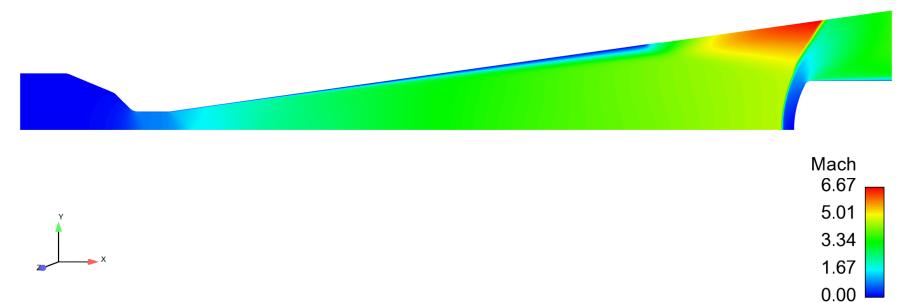
- 1000 iterations on 32 cores
- Codes were run as similarly as possible


Code	Assembly (min)	Solve (min)	Total (min)	Relative to SPARC
SPARC Structured	6.72	10.60	17.73	1.0x
US3D	N/A	N/A	27.11	1.53x
SPARC Unstructured	15.77	10.50	32.57	1.84x
DPLR	N/A	N/A	38.20	2.15x
Sierra Aero	21.25	16.37	41.17	2.33x

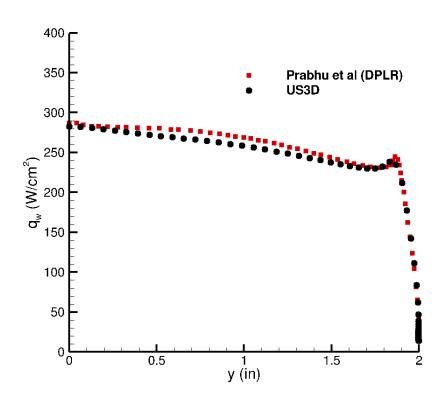

Plans for further optimization

Simulation of AHF

- Demonstrate SPARC for a common problem
 - Simulate Iso-Q geometry in NASA Ames AHF 20 MW Arcjet
 - Use conditions prescribed by Prabhu et al.¹
 - Modeling assumptions:
 - 6-species (N2, O2, NO, N, O, Ar) gas model
 - Park T-T_v model for thermal non-equilibrium
 - Fully catalytic wall BC (293 K)

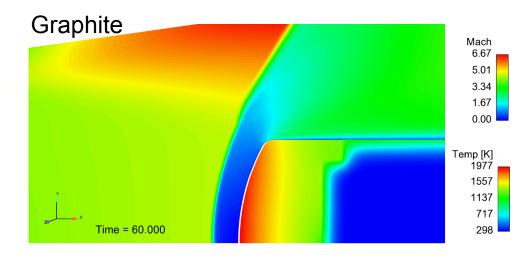


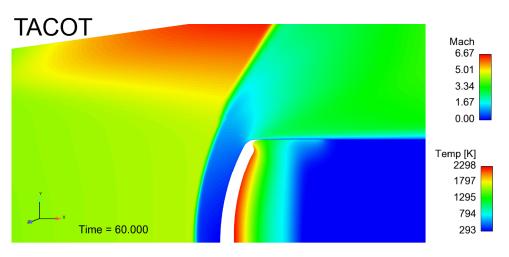
Flow Domain


- Simple, 70K cell axisymmetric grid
- Subsonic inflow is expanded through straight nozzle
- h_0 is 11.38 MJ/kg

Comparison of heat flux

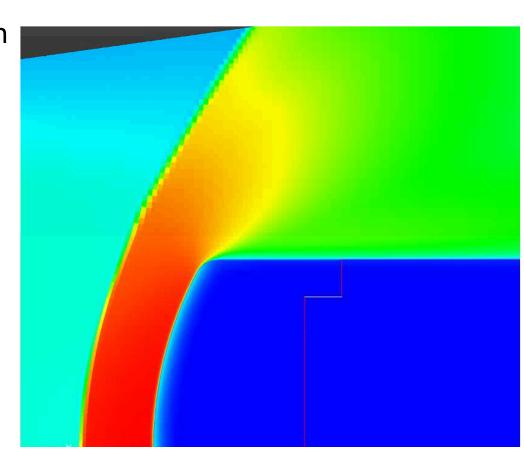
- Previous work using US3D did not use a catalytic wall
- US3D and DPLR show good agreement when including catalytic BC
- (placeholder for line about agreement of SPARC)




Surface heat flux vs distance from stagnation point

Previous Work

- Simulation of AHF Iso-Q by Howard and Blackwell¹
- Surface heat flux passed from US3D to inform SPARC material response
- Recession of TACOT demonstrates need for passing shape change back to flow solver



A Coupled Problem

- Preliminary demonstration of coupled aerothermal/ ablation with shape change of the Iso-Q
- TACOT (no blowing)
- Results in reasonable shape change which one way transfer could not predict

Summary

- Sandia has a complete array of tools for modeling reentry environments:
 - Trajectory
 - Aerothermal environment
 - Material thermal response
 - Substructure conduction
- A new aero-ablation code, SPARC, is being developed to tightly couple these phenomena, to tackle the future's most challenging ablation problems

Thank you!