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Development of RVs at Sandia ) e
= Sandia has strong historical roots in hypersonic reentry
problems
= Flown more than 100 instrumented RVs since 1968

= Continued support and interest in the advancement of
understanding of entry phenomena
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A Balanced Approach ) S

Modeling & Simulation Ground Testmg




Flight Vehicle Analysis ) .

Planetary entry is a complex process
encompassing many problems:

= Trajectory
= Vehicle dynamics
= Force and moment integration
= Ballistic/lifting entries
= Aerothermal environment
= Compressible flow, real gas effects
= Laminar/turbulent boundary layers

= Material response
= Decomposing/non-decomposing ablators

= 3D material properties

= Consequences to substructure/payload
= Vehicle conduction
= Thermal contact
= Enclosure radiation



Modeling to Meet the Need ) .

= |n addition to the breadth of these problems, there is a
spectrum of needs:

Complexity of geometry

Desired level of accuracy

Need for quantities integrated over flight duration
Need for parametric sweeps of conditions

Balance of computational cost with resources and time




Aerothermal Codes )

model fidelity
computational cost =y
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Material Thermal Response Codes
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* In-depth decomposition
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Integrated Codes ) i,

TAOS used to compute trajectories
= Solves Newton’s 2" Law, 3/6 DOF trajectories
= SABRE

= TAQOS, 2IT-SANDIAC-HIBLARG, CMA
= Automates reentry analyses

= LAPS
= TAOQOS, HANDI, CMA

= Used for large parametric sweeps of entry conditions

= PIRATE

= 17 codes

= Computes RF attenuation on RVs

= ParChaleur
= US3D aeroheating -> Chaleur




The Future of Ablation Modeling @&

= These approaches have been very
successful for research and design

= However, they uncouple a tightly
coupled process

= Next generation vehicles (e.g. boost-
glide) will need next generation TPS

= \With the increase in COmputationaI Artist's rendering of HTV-2

power and need for greater
accuracy, need something better




Enter SPARC ) i

= Aero-ablation code under development at Sandia

= Solve the coupled problem from surface to centerline

= Designed for use on next generation heterogeneous
architectures

= Scalability, performance portability
= Modular, object oriented design

= Fully couples a compressible, reacting Navier-Stokes solver
with a three-dimensional material thermal response solver
= Thermochemical nonequilibrium
= Decomposing and non-decomposing ablators

= Allows surface recession, mesh motion




Sandia

SPARC Continued ) e,

Both structured and unstructured finite volume
implementations for fluid solver, plans for hybrid meshes

Being coupled to Sierra Aria for solving substructure
conduction

Plans to couple to trajectory code TAOS

Plans for capabilities to model melting/subliming ablators




Code-to-Code Comparison

SPARC vs. US3D
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Performance )

For a generic RV problem with roughly 4 M cells:

= 1000 iterations on 32 cores
= Codes were run as similarly as possible

Assembly (min) Solve (min) Total (min) Relative to SPARC

SPARC Structured 6.72 10.60 17.73 1.0x
US3D N/A N/A 27.11 1.53x
SPARC Unstructured 15.77 10.50 32.57 1.84x
DPLR N/A N/A 38.20 2.15x
Sierra Aero 21.25 16.37 41.17 2.33x

= Plans for further optimization
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Simulation of AHF )

= Demonstrate SPARC for a common
problem

= Simulate Iso-Q geometry in NASA Ames AHF
20 MW Arcjet

= Use conditions prescribed by Prabhu et al.?
= Modeling assumptions:
= 6-species (N2, 02, NO, N, O, Ar) gas model
= Park T-T, model for thermal non-equilibrium
= Fully catalytic wall BC (293 K)




Flow Domain ) &

= Simple, 70K cell axisymmetric grid
= Subsonic inflow is expanded through straight nozzle
= h,is 11.38 MJ/kg

_
Mach
6.67

5.01

’ 3.34
x 1.67

0.00




Comparison of heat flux ) .

= Previous work using 100
US3D did not use a ok . Prabnu etal DPLA
catalytic wall 300;__‘ TP

= US3D and DPLR show I L
good agreement when gzoof- :
including catalytic BC % ol .

= (placeholder for line 100 '
about agreement of 0 i
SPARC)

y (in)

Surface heat flux vs distance from stagnation point
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Sandia

Previous Work ) &
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Simulation of AHF Iso-Q Graphite-
by Howard and Blackwell?
Surface heat flux passed

from US3D to inform
SPARC material response

Recession of TACOT - Time =000
demonstrates need for

: TACOT
passing shape change -

back to flow solver
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Time = 60.000




A Coupled Problem ) ..

= TACOT (no blowing)

Preliminary demonstration
of coupled aerothermal/
ablation with shape
change of the Iso-Q

Results in reasonable
shape change which one
way transfer could not
predict




Summary )

= Sandia has a complete array of tools for modeling reentry
environments:
= Trajectory
= Aerothermal environment
= Material thermal response
= Substructure conduction

= A new aero-ablation code, SPARC, is being developed to

tightly couple these phenomena, to tackle the future’s most
challenging ablation problems
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