
Exceptional service in the national interest

 Sandia
National
Laboratories

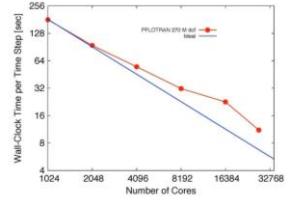
$$\frac{\partial m_a}{\partial t} = -\nabla \cdot (\rho_l X_a^l \mathbf{q}_l + \rho_g X_a^g \mathbf{q}_g + \mathbf{J}_a^l + \mathbf{J}_a^g) + q_a^G,$$

$$\frac{\partial m_w}{\partial t} = -\nabla \cdot (\rho_l X_w^l \mathbf{q}_l + \rho_g X_w^g \mathbf{q}_g + \mathbf{J}_w^l + \mathbf{J}_w^g) + q_w^G,$$

$$\frac{\partial e}{\partial t} = -\nabla \cdot (\rho_l H_l \mathbf{q}_l + \rho_g H_g \mathbf{q}_g - \kappa_{\text{eff}} \nabla T) + q_e^G,$$

Introduction to PFLOTRAN

Glenn Hammond


Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S. Department of Energy.

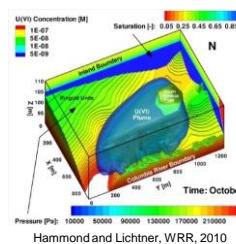
PFLOTRAN

- **Petascale** reactive multiphase flow and transport code
- **Open source** license (GNU LGPL 2.0)
- **Object-oriented** Fortran 2003/2008
 - Pointers to procedures
 - Classes (extendable derived types with member procedures)
- Founded upon well-known (**supported**) open source libraries
 - MPI, PETSc, HDF5, METIS/ParMETIS/CMAKE
- Demonstrated performance
 - Maximum # processes: 262,144 (Jaguar supercomputer)
 - Maximum problem size: 3.34 billion degrees of freedom
 - **Scales well to over 10K cores**

2

Number of Cores	Wall-Clock Time per Time Step (sec)
1024	256
2048	128
4096	64
8192	32
16384	16
32768	8

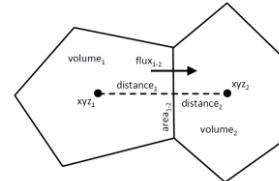
Benefits of Open Source Development


- Encourages collaboration
 - Development
 - Testing
 - Debugging
- Transparency exposes implementation details critical to scientific reproducibility, but excluded by journal publications.
- More optimal use of funding
 - Funding is pooled across a diverse set of projects/budgets.
 - What would have been spent on licensing fees can be redirected towards development.
 - Infinite benefit to those who are unfunded.
- The most fit codes tend to survive (natural selection).
- A community can drive the code to evolve beyond the original vision (evolution).

3

Application of PFLOTRAN

- Nuclear waste disposal
 - Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM
 - DOE Used Fuel Disposition Program
 - SKB Forsmark Spent Fuel Nuclear Waste Repository (Sweden, Amphos²¹)
- Climate: coupled overland/groundwater flow; CLM
 - Next Generation Ecosystem Experiments (NGEE) Arctic
 - DOE Earth System Modeling (ESM) Program
- Biogeochemical transport modeling
 - U(VI) fate and transport at Hanford 300 Area
 - Hyporheic zone biogeochemical cycling
 - Columbia River, WA, USA
 - East River, CO, USA
- CO₂ sequestration
- Enhanced geothermal energy
- Radioisotope tracers
- Colloid-facilitated transport



4

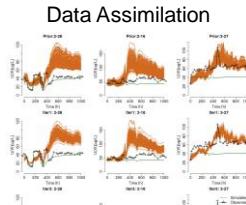
Numerical Methods

- Spatial discretization
 - Finite volume (2-point flux default)
 - Structured and unstructured grids
- Time discretization: backward Euler
- Nonlinear solver
 - Newton-Raphson
 - Line search/damping with custom convergence criteria
- Linear solver: direct (LU) or iterative (BiCGStab)
- Multi-physics coupling
 - Flow and transport/reaction: sequential
 - Transport and reaction: global implicit
 - Geomechanics and flow/transport: sequential
 - Geophysics and flow/transport: sequential

5

PFLOTRAN Multi-Physics Capability

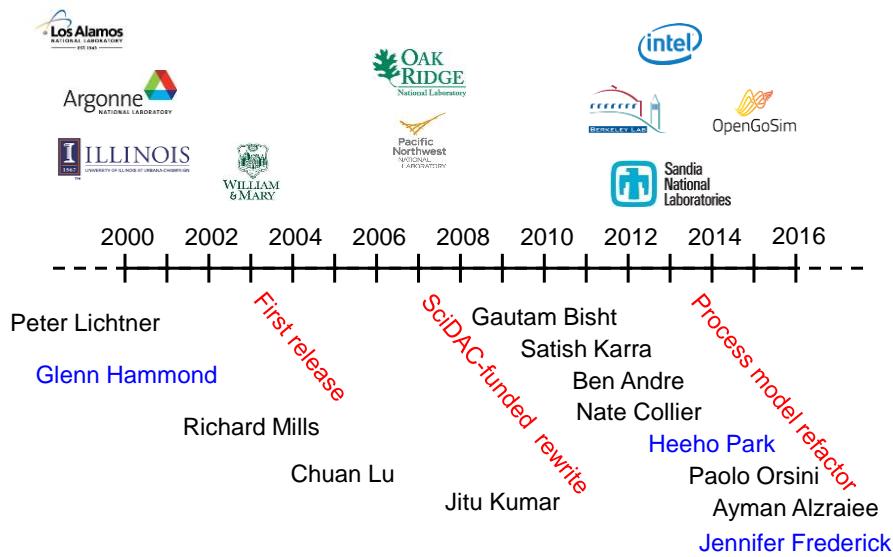
- Flow
 - Single phase, variably-saturated
 - Multiphase gas-liquid
 - Interchangeable constitutive models and equations of state
- Energy
 - Thermal conduction and convection
- Multi-Component Transport
 - Advection
 - Hydrodynamic dispersion
- Chemical Reaction
 - Aqueous speciation
 - Mineral precipitation-dissolution
 - Sorption
 - Microbiological
 - Radioactive decay with daughter products
- Geomechanics
 - Elastic deformation
- Geophysics
 - Coupling to E4D


(Tim Johnson, PNNL)

6

PFLOTRAN Computing Capability

- High-Performance Computing (HPC)
 - Increasingly mechanistic process models
 - Highly-refined 3D discretizations
 - Massive probabilistic runs
- Open Source Collaboration
 - Leverages a diverse scientific community
 - Sharing among subject matter experts and stakeholders from labs/universities
- Modern Fortran (2003/2008)
 - Domain scientists remain engaged
 - Modular framework for customization
- Leverages Existing Capabilities
 - Meshing, visualization, HPC solvers, etc.
 - Configuration management, testing, and QA



Xingyuan Chen, PNNL, 2011

7

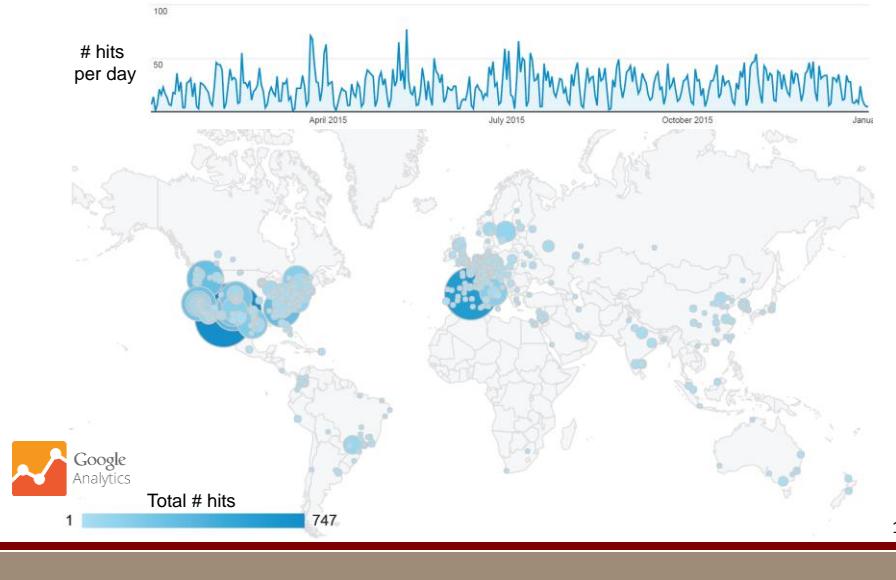
PFLOTRAN Development Timeline

8

PFLOTRAN Developers

9

PFLOTRAN Support Infrastructure


- Mercurial: distributed source control management tool
- Bitbucket: online PFLOTRAN repository
 - hg clone <https://bitbucket.org/pfotran/pfotran-dev>
 - Source tree
 - Commit logs
 - Wiki
 - Installation instructions
 - Quick guide
 - FAQ (entries motivated by questions on mailing list)
 - Pull requests
 - Issue tracker
- Buildbot: automated building and testing (regression and unit)
- Google Groups: pfotran-users and pfotran-dev mailing lists
- Google Analytics: tracks behavior on Bitbucket

Emily Stein, SNL, 2015

10

Hits on PFLOTRAN Bitbucket Site in 2015

PFLOTRAN Bitbucket Site

Atlassian, Inc. [US] https://bitbucket.org/pflotran/pflotran-dev/wiki/Home

Bitbucket Dashboard Teams Repositories Create Find a repository...

Wiki pflotran-dev / Home View History Edit

PFLOTRAN

PFLOTRAN is an open source, state-of-the-art massively parallel subsurface flow and reactive transport code. The code is developed under a GNU LGPL license allowing for third parties to interface proprietary software with the code, however any modifications to the code itself must be documented and remain open source. PFLOTRAN is written in object oriented, free formatted Fortran 2003. The choice of Fortran over C/C++ was based primarily on the need to enlist and preserve tight collaboration with experienced domain scientists, without which PFLOTRAN's sophisticated process models would not exist.

PFLOTRAN employs parallelization through domain decomposition using the MPI-based PETSc framework with pflotran-dev tracking the developer version of PETSc (i.e. petsc-dev) available through Bitbucket.

PFLOTRAN Performance

Installation Instructions

Windows

Windows No METIS

Windows Cygwin GNU

Linux

Legacy Build

Documentation

Code Development

12

PFLOTRAN Quick Guide

The screenshot shows a Bitbucket wiki page for the 'pflotran-dev / Documentation / QuickGuide / Chemistry / RadioactiveDecayReaction' card. The page content includes:

- Required Cards:**
REACTION <string>
Reaction equation. Only one reactant species may be listed on the left side of the equation (i.e. or on the right side with a negative stoichiometry). The reactant's stoichiometry is fixed at 1.0. The forward rate is applied to that one species as a first order rate constant (1/sec). Multiple species are supported as daughter products on the right hand side and stoichiometries can be specified.
RATE_CONSTANT or HALF_LIFE (but not both)
- Optional Cards:**
RATE_CONSTANT <float>
rate constant for 1st-order decay reaction [1/sec]. The rate constant may be calculated from $-\ln(0.5) / \text{half-life}$
HALF_LIFE <float>
half life of species [sec].
Note that rate constant or half life units other than sec or 1/sec may be specified.
- Examples:**

```
RADIOACTIVE_DECAYREACTION
REACTION Tracer <-> Tracer2
RATE_CONSTANT 1.7584e-7 ! half life at 0.125 y
/

CHEMISTRY
PRIMARY_SPECIES
  A(aq)
  B(aq)
  C(aq)
/
...
RADIOACTIVE_DECAYREACTION
REACTION A(aq) <-> B(aq)
! Calculating forward rate from half-life
! rate =  $-\ln(0.5) / \text{half-life}$  [1/sec]
RATE_CONSTANT 1.7584e-7 ! 1/s half life = 12.5 yrs
/
RADIOACTIVE_DECAYREACTION
REACTION B(aq) <-> C(aq)
RATE_CONSTANT 8.7918e-10 ! 1/s half life = 25. yrs
/
RADIOACTIVE_DECAYREACTION
! Note that C(aq) simply decays with no daughter products
REACTION C(aq) <->
HALF_LIFE 5, y
/
...
```

13

PFLOTRAN Quick Guide (cont.)

The screenshot shows a Bitbucket wiki page for the RadioactiveDecayREACTION card. The page content includes:

- Optional Cards:**
RATE_CONSTANT <float>
rate constant for 1st-order decay reaction [1/sec]. The rate constant may be calculated from $-\ln(0.5) / \text{half-life}$
HALF_LIFE <float>
half life of species [sec].
Note that rate constant or half life units other than sec or 1/sec may be specified.
- Examples:**

```
RADIOACTIVE_DECAYREACTION
REACTION Tracer <-> Tracer2
RATE_CONSTANT 1.7584e-7 ! half life at 0.125 y
/

CHEMISTRY
PRIMARY_SPECIES
  A(aq)
  B(aq)
  C(aq)
/
...
RADIOACTIVE_DECAYREACTION
REACTION A(aq) <-> B(aq)
! Calculating forward rate from half-life
! rate =  $-\ln(0.5) / \text{half-life}$  [1/sec]
RATE_CONSTANT 1.7584e-7 ! 1/s half life = 12.5 yrs
/
RADIOACTIVE_DECAYREACTION
REACTION B(aq) <-> C(aq)
RATE_CONSTANT 8.7918e-10 ! 1/s half life = 25. yrs
/
RADIOACTIVE_DECAYREACTION
! Note that C(aq) simply decays with no daughter products
REACTION C(aq) <->
HALF_LIFE 5, y
/
...
```

Updated 2015-10-30

14

PFLOTRAN Bitbucket Commit Log

The screenshot shows a list of commits for the PFLOTRAN project on Bitbucket. The commits are listed in chronological order from top to bottom. Each commit includes the author, commit hash, message, date, and build status. The commits are color-coded by author: Glenn Hamm (red), Jennifer Frede (blue), and Heeho Park (green). The commit log is filtered to show 'All branches'.

Author	Commit	Message	Date	Builds
Glenn Hamm...	1ea80b8	Moved members of th_auxvar_type that are specific to lc...	2016-05-13	
Jennifer Frede...	54de14b	merge	2016-05-12	
Jennifer Frede...	62fa5ac	Added new member variables in the waste form which he...	2016-05-12	
Jennifer Frede...	edc8b7	Added an update to the fractional dissolution rate in the f...	2016-05-12	
Glenn Hamm...	ea28f36	merge	2016-05-12	
Glenn Hamm...	65f4ef3	merge	2016-05-11	
Glenn Hamm...	068918a	merge	2016-05-03	
Glenn Hamm...	eecc265	merge	2016-05-02	
Jennifer Frede...	eb7ff6d	Updated printing for when FMDM is called.	2016-05-12	
Jennifer Frede...	49caf3e	Fixed issues with eff_dissolution_rate equation and move...	2016-05-12	
Jennifer Frede...	14338a5	Updated and merged the revert.	2016-05-12	
Jennifer Frede...	0638782	Reverted pm_waste_form to last version where update in...	2016-05-12	
Heeho Park	907a6ae	.hgignore edited to remove previously added *.chk and *.h5	2016-05-11	
Heeho Park	50e99ff	abaqus2pfotran.py edited comments	2016-05-11	
Heeho Park	2661422	abaqus2pfotran.py generates boundary region snippets i...	2016-05-11	
Heeho Park	8f8a001	merged	2016-05-11	
Heeho Park	64c14c5	error messages added back on to abaqus2pfotran	2016-05-11	

15

PFLOTRAN Bitbucket Commit

The screenshot shows a detailed view of a commit for the PFLOTRAN project on Bitbucket. The commit is by Jennifer Frederick and is dated 2016-05-10. The commit message describes a fix for the waste form linear dissolution rate. The commit has been approved. The commit page includes sections for comments, files changed, and a diff viewer.

Commit Details:

- Author: Jennifer Frederick
- Date: 2016-05-10
- Message: Corrected the waste form linear dissolution rate so that it is first calculated by getting the mass dissolved in the time step using an exponential decay equation given the fractional dissolution rate and then take the mass and divide it by the timestep length to get the corrected linear rate. Changed when waste form volume gets updated (now in the dissolution routines) so that dV uses the same dt length (occurs in same timestep). Updated the regression files because the physics have changed.
- Status: Approved

Comments (0): No comments have been added to this commit.

Files changed (3):

- regression_tests/ufd/fmdm_dummy.regression.gold
- regression_tests/ufd/glass.regression.gold
- src/pfotran/pm_waste_form.F90

Diff View: A side-by-side diff viewer shows the changes made to the regression_tests/ufd/fmdm_dummy.regression.gold file. The changes are as follows:

29	29	Mean: 1.000000000000000E-03
30	30	1: 1.000000000000000E-03
31	31	-- CONCENTRATION: Total Tracer --
32	-	Max: 3.2378415318990E-06

16

PFLOTRAN Bitbucket Pull Request

Atlassian Inc. [US] https://bitbucket.org/pfotran/pfotran-dev/pull-requests/182/outputting-mass-in-a-specific-region

Bitbucket Teams Projects Repositories Snippets Find a repository...

PFLOTRAN / code / pfotran-dev

Pull requests

#182 MERGED Jennifer_frederick

outputting mass in a specific region

Overview Commits Activity

Author Jennifer Frederick

Reviewers

Description

- Added a TOTAL_MASS_REGIONS block under the MASS_BALANCE_FILE block under the new OUTPUT block, where the user can list region names. The mass balance file will output the total mass of aqueous, sorbed, and precipitated solute. Read routine implemented and header in mass balance file printed.
- Added the region total mass to mass balance file output by calling PatchGetMassInRegion if the mass balance region list object is associated. At time of input file read, the regions are not yet localized to patches, so another subroutine was made to point the mass balance region to the patch%region after localization. The total mass calculations are based on region cell_ids. It seems in parallel, the cell_ids are not correct?
- Renamed PatchGetMassInRegion to PatchGetCompMassInRegion so it represents what is getting calculated better (component mass, not mass in general). Changed.

Comments (2)

Glenn Hammond

I hate to do this to you, but I want to propose the following modification. After looking over the dependencies, I don't know that I want output_option_type to be dependent on region_type... it is the whole issue of minimizing the number of tentacles from one object in another. All that we need from region is the list of cell_ids. Therefore, I propose that we replace the pointer to a region type in mass_balance_region_type derived type with a pointer to an array of PetscReals. We then point that pointer to the "cell_ids array in the

17

PFLOTRAN Bitbucket Blame

Atlassian Inc. [US] https://bitbucket.org/pfotran/pfotran-dev/annotate/7837cd164398ac05c3218ec99d337c

Imported From IE Bookmarks Other bookmarks

Pao Orsini 98016C 2015-10-18 60 PetscInt :: gas_phase
Glen Hammond 250190C 2008-02-18 61 PetscInt :: oil_phase
Glen Hammond 250190C 2008-02-18 62 PetscInt :: nflowof
Glen Hammond 6974189 2010-05-02 63 PetscInt :: nflowspec
Satish Karra 465021C 2010-04-02 64 PetscInt :: nmechof
Satish Karra 465021C 2010-04-02 65 PetscInt :: nseccells
Ben Andre Rebbeds 2014-01-03 66 PetscBool :: use_th_freezing
67
Gautam Bishn 8ab3f21 2014-07-30 68 PetscBool :: surf_flow_on
Gautam Bishn 3670bd0 2012-05-11 69 PetscInt :: nsurfflowof
Gautam Bishn 4337f7a 2012-06-08 70 PetscInt :: subsurf_surf_coupling
Gautam Bishn 522f54c 2012-10-06 71 PetscInt :: surface_flow_formulation
Gautam Bishn 8ab3f21 2012-10-31 72 PetscReal :: surf_flow_time_surf_flow_dt
Gautam Bishn 8ab3f21 2012-10-31 73 PetscReal :: surf_subsurf_coupling_time
Gautam Bishn 8ab3f21 2012-10-31 74 PetscReal :: surf_subsurf_coupling_flow_dt
Gautam Bishn 8ab3f21 2013-06-11 75 PetscBool :: surf_restart_time
Gautam Bishn 8ab3f21 2013-06-11 76 PetscBool :: surf_restart_flag
Gautam Bishn 8ab3f21 2013-02-08 77 character(len=MAXSTRINGLENGTH) :: surf_initialize_flow_filename
Gautam Bishn 8ab3f21 2013-06-11 78 character(len=MAXSTRINGLENGTH) :: surf_restart_filename
Satish Karra 7948370 2010-07-20 79
Satish Karra 9577f6e 2010-01-20 80 PetscBool :: geomech_on
Satish Karra 9577f6e 2010-01-20 81 PetscBool :: geomech_initial
Satish Karra 9577f6e 2010-01-20 82 PetscInt :: ngeomechof
83 PetscInt :: n_stress_strain_dof
Satish Karra eb5ca5b 2013-07-03 84 PetscReal :: geomech_tme
Gautam Bishn 9577f6e 2010-01-20 85 PetscInt :: geomech_subsurf_coupling
Satish Karra 5d68958 2013-09-26 86 PetscReal :: geomech_gmres(3)
Satish Karra 8444644 2012-01-12 87 PetscBool :: sec_over_update
Glen Hammond 2e4437c 2011-03-08 88 PetscInt :: air_pressure_id
89 PetscInt :: capillary_pressure_id
90 PetscInt :: vapor_pressure_id
Glen Hammond ce539c5 2014-01-24 91 PetscInt :: saturation_pressure_id
Glen Hammond 2e4437c 2011-03-08 92 PetscInt :: water_id / index of water component dof
93 PetscInt :: air_id / index of air component dof
94 PetscInt :: oil_id / index of oil component dof
95 PetscInt :: energy_id / index of energy dof
96
Glen Hammond 250190C 2008-02-18 97 PetscInt :: ntrandof
Glen Hammond f91723b 2011-10-12 98 PetscInt :: iflag
Glen Hammond c910480 2008-06-13 99 PetscInt :: status
99
Satish Karra 465021C 2010-04-02 100 PetscInt :: record
101 PetscBool :: init_record
102 Ipmh:: record once loop code is gone.
103 PetscBool :: init_stage
104 / these flags are for printing outside of time step loop
105 PetscBool :: print_to_screen
106 PetscBool :: print_to_file

18

PFLOTRAN User Support

Welcome to the PFLOTRAN users mailing list.

12 posts 69 views Roland Hendel +5 Jul 29

16 84 paolo trincheri +3 Jul 27

15 56 Linwei Hu +3 Jul 22

3 16 Igal Tsarfis +1 Jul 19

1 16 Karra, Satish Jul 5

14 21 Franz M Krumenacker +3 Jun 30

6 27 Andy Ward +1 Jun 29

4 13 Paolo Orsini +2 Jun 29

1 10 Hammond, Glenn E Jun 23

1 11 Wissmeier Laurin Jun 17

12 24 Romain P. +2 Jun 16

5 14 Hammond, Glenn E +1 Jun 15

Testing

- **Verification:** Results match analytical solutions or other results from other simulators
- **Validation:** Results are correct
- **Unit:** Chunks of code return the expected result
 - Constitutive relations: capillary pressure, saturation, relative permeability functions
 - Equations of state: density, enthalpy, viscosity, etc.
- **Regression:** Entire simulation returns the expected result
 - Flow, transport, reaction
 - Structured, unstructured grids

Testing (cont.)

- Example regression test failure
 - Perturb critical pressure for water equation of state by 10 billionths of a percent

```
diff -r f9f01bbf557a src/pflotran/eos_water.F90
--- a/src/pflotran/eos_water.F90      Thu Jul 28 18:59:00 2016 -0700
+++ b/src/pflotran/eos_water.F90      Fri Jul 29 10:31:57 2016 -0700
@@ -893,6 +893,7 @@
 
     tc1 = H2O_CRITICAL_TEMPERATURE      ! K
     pc1 = H2O_CRITICAL_PRESSURE        ! Pa
+    pc1 = pc1 + 1.d-10*H2O_CRITICAL_PRESSURE ! perturb by 1e-10
     vc1 = 0.00317d0 ! m^3/kg
     utc1 = one/tc1 ! 1/C
     upc1 = one/pc1 ! 1/Pa
```

21

Unit

Regression

```
Test log file : pflotran-tests-2016-07-29_10-27-50.testlog
Running pflotran regression tests :
.....F.F.....FFFF.F.F.....F.....F.....F.F.....F.....F.....F.F.F.F.
...FF.....F.F.....FF.F.....F.....F.F.....F.....F.....F.F.....F.F.
.....F.....F.....F.....F.....F.....F.....F.....F.....F.....F.....F.....F.
-----  
Regression test summary:
  Total run time: 178.551 [s]
  Total tests : 179
  Tests run : 179
  Failed : 37
```


22

Buildbot: pflotran.lbl.gov/pbbot/waterfall

23