

Modeling charged defects and defect levels in semiconductors and oxides with DFT: *An improved inside-out perspective*

Peter A. Schultz

**Center For Computing Research: Multiscale Science, Dept. 1425
Sandia National Laboratories. Albuquerque NM 87185 USA**

(With special thanks to Art Edwards at Air Force Research Laboratory)

October, 2016

SAND2015-3847-RE
Unlimited Release

Why model defects in semiconductors and oxides?

Radiation effects in electronics

Process modeling for semiconductors

Radiation detectors

Defect chemistry in nuclear fuels and nuclear waste

Goals:

(1) Qualitative understanding - *Forensics*

Augment experiments

- incomplete, inconclusive, unavailable, expensive

(2) Quantitative characterization - *Predictive*

Predictive simulations, inform coarser models

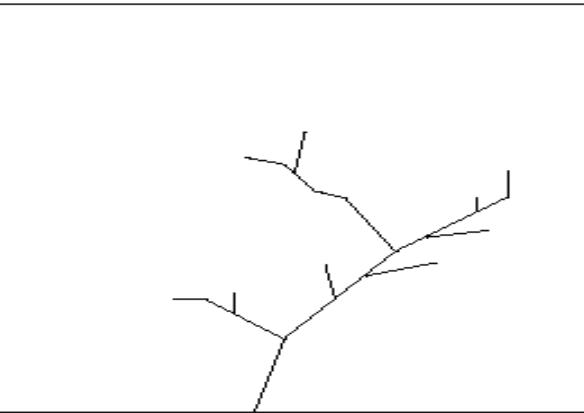
- not just publishable, but defensible to engineers

Defects: from atoms to devices

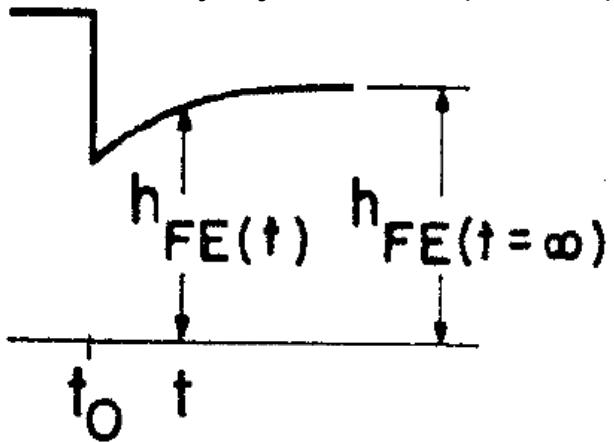
Initial defect distribution

Radiation creates displacement damage:

and charge carriers (electrons and holes)



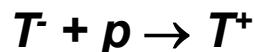
Thx: Harry Hjalmarson (Sandia)



Defect evolution

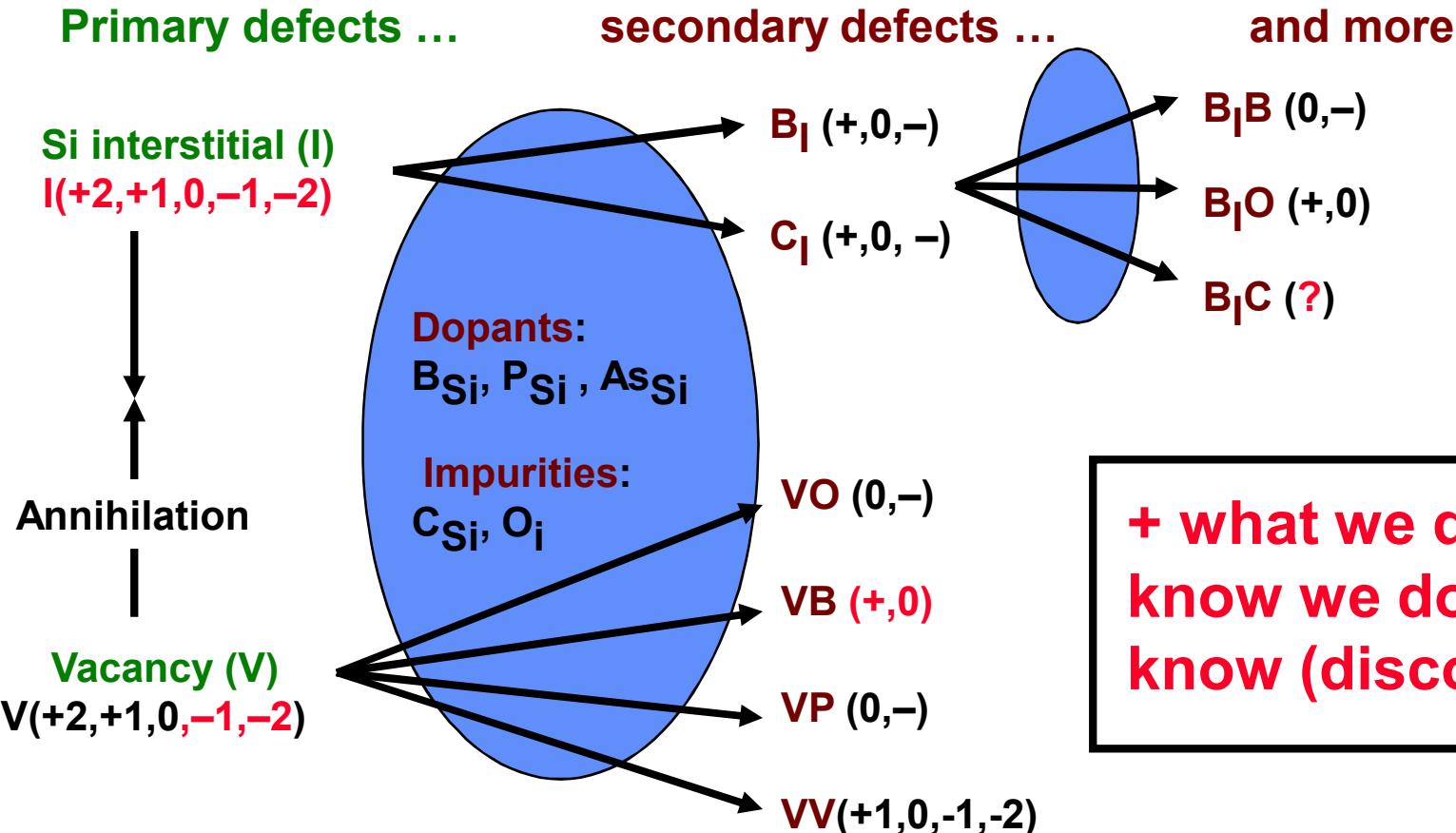
Defects react with each other, and with other dopants and impurities:

Defects recombine electrons and holes, modifying currents:



Radiation/implant/processing creates evolving chemistry of defects. Those defects govern the performance of electronic devices.

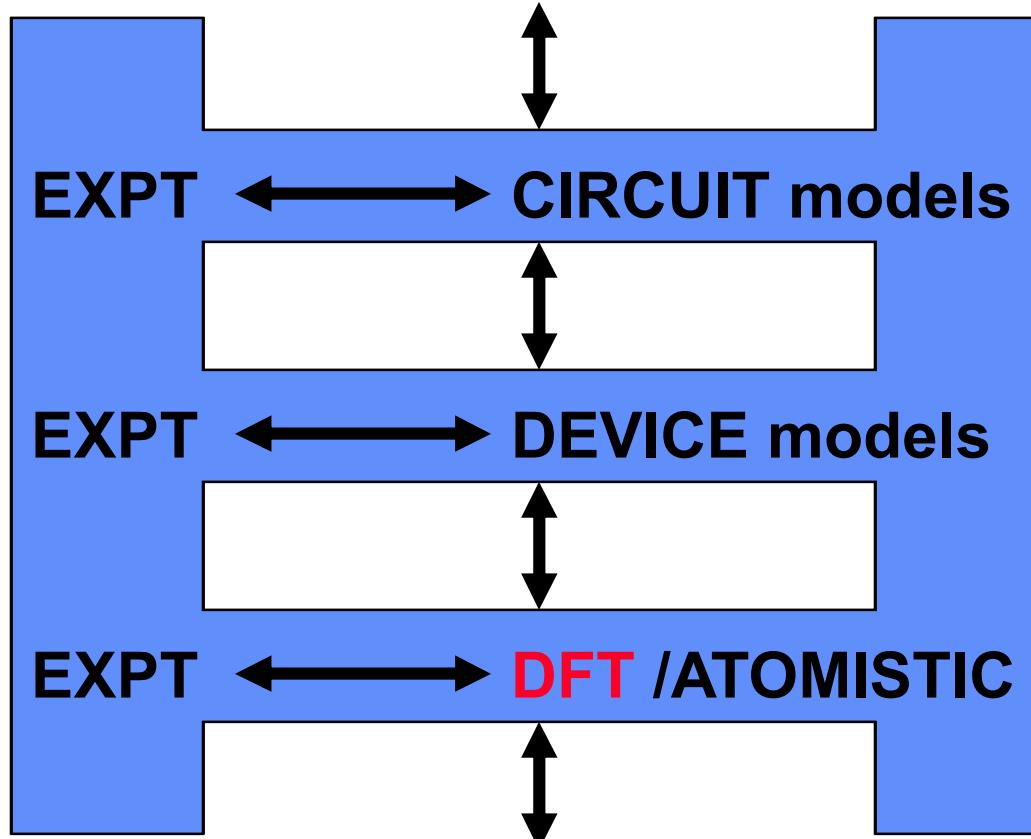
The radiation effect defect universe: Si



Need DFT - density functional theory - to fill gaps in defect physics: defect band gap energy levels, diffusion activation

Multiscale ladder for radiation damage

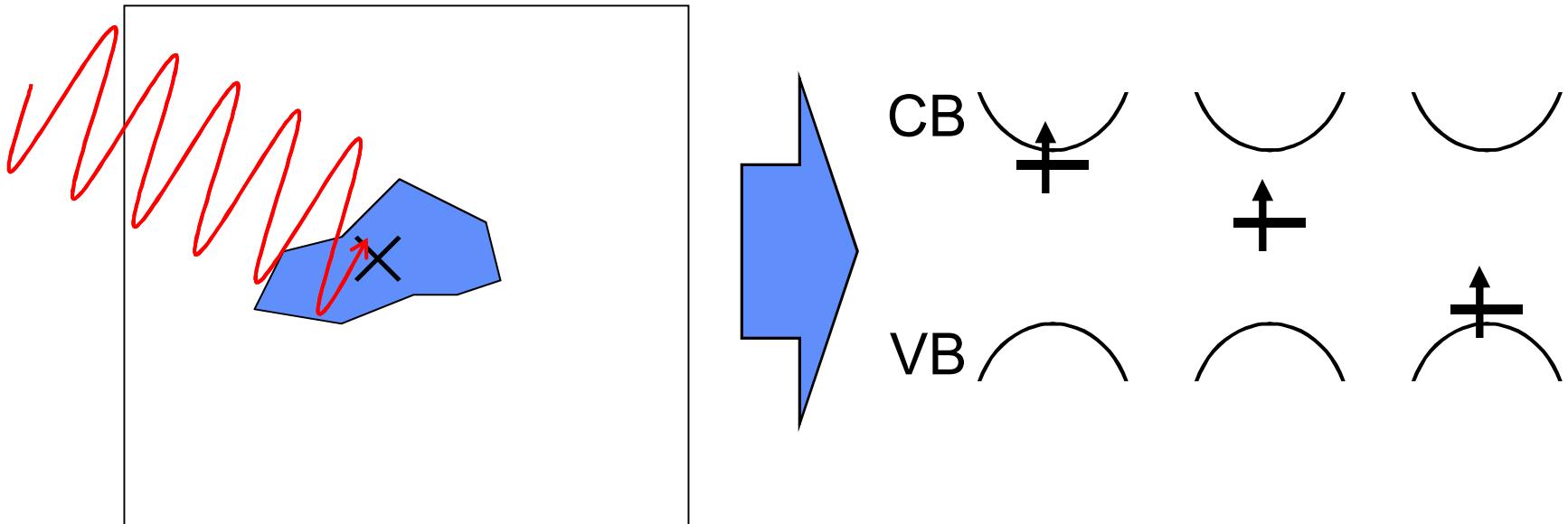
Electrical system response



Require: quantitative confidence
Verification, validation, uncertainty

Radiation damage and defect levels

Radiation damage ...

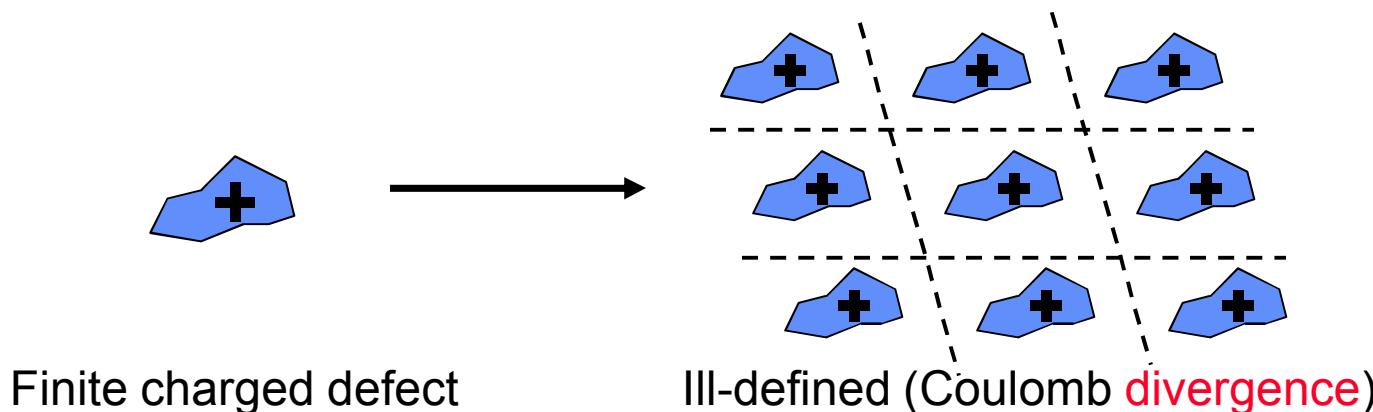


produces defects ... and introduces electronic transitions

... and we need to quantify these transitions; DFT

Challenges for density functional theory

- **Conventional DFT fails for defect levels in semiconductors**
 - (1) Physical accuracy: e.g., “band gap problem”
 - (2) Computational model size limitations
 - (3) Shortage of good data for validation
 - (4) Supercell problem for charged defects:



Lots of DFT calculations, no robust, predictive method

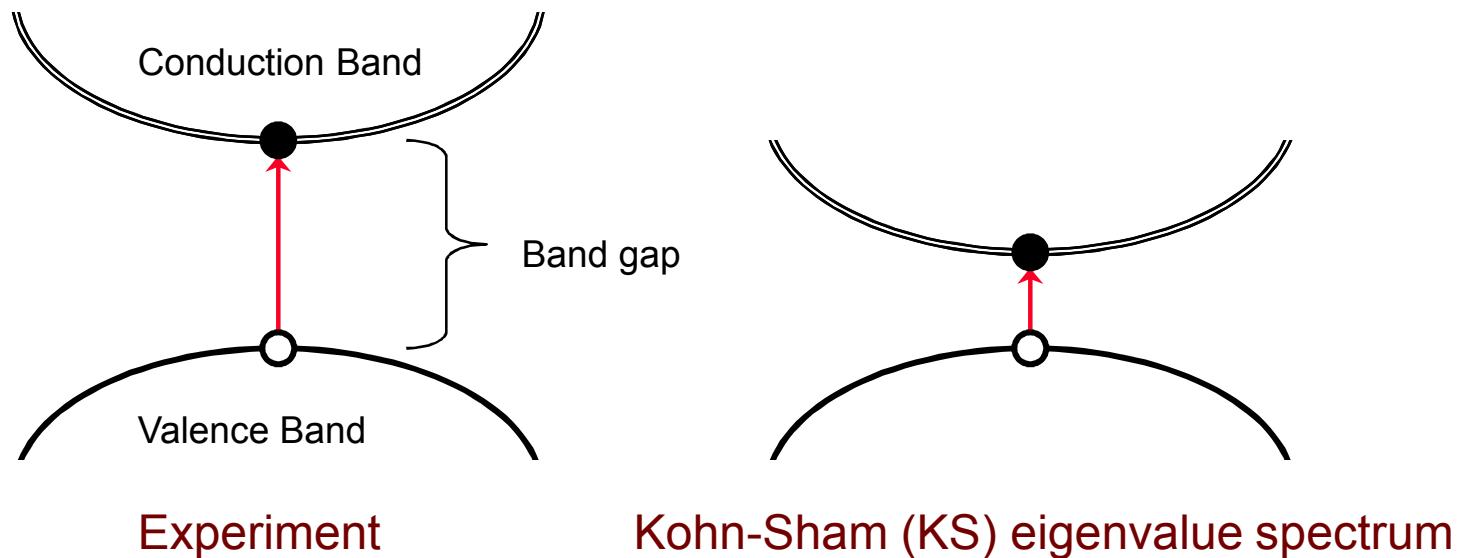
DFT “band gap problem”

DFT gap. i.e., in KS eigenvalues, significantly underestimates experiment

[L.J. Sham and M. Schlüter, PRL **51**, 1888 (1983); PRB **32**, 3883 (1985)]

Si: expt: 1.2 eV, DFT/LDA: 0.5 eV

GaAs: expt. 1.5 eV, DFT/LDA: 0.5 eV



The band gap defines the energy scale for defect levels

Fundamental impediment to quantitative predictions?

The Supercell Approximation

Fast Fourier Transforms are convenient means to solve 3D Poisson Equation.

DFT codes typically assume periodic boundary conditions.

However, our finite defect is not periodic ...



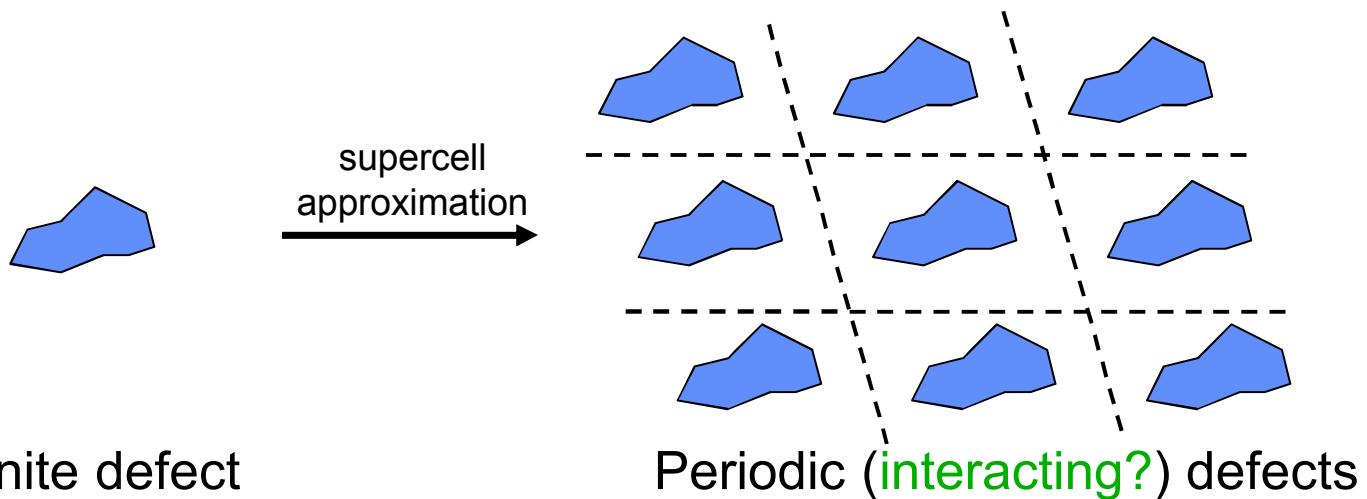
Finite defect

The Supercell Approximation

Fast Fourier Transforms are convenient means to solve 3D Poisson Equation.

DFT codes typically assume periodic boundary conditions.

However, our finite defect is not periodic ...



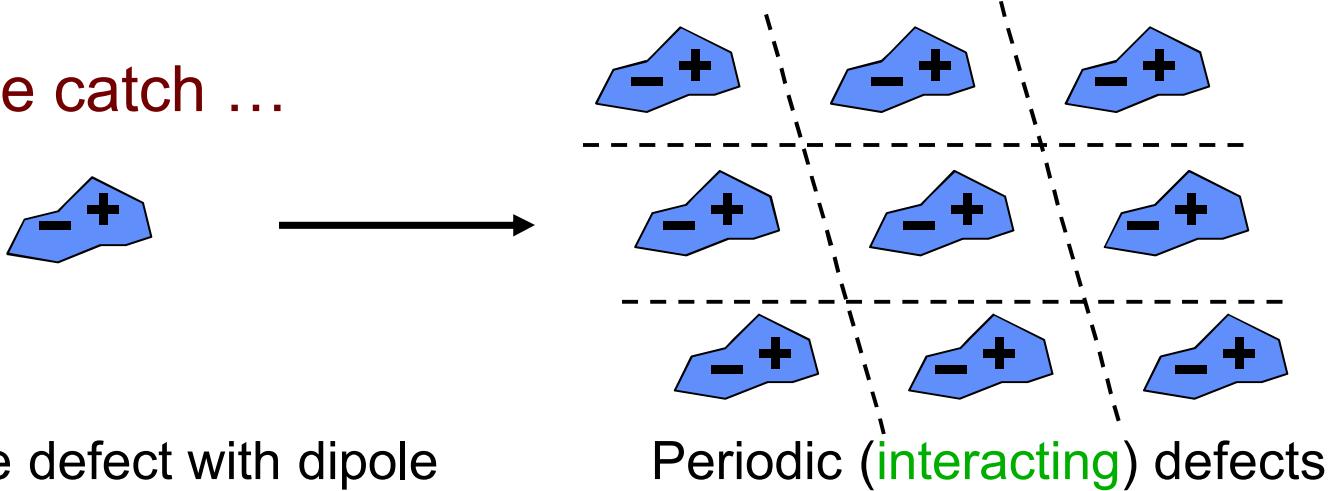
The supercell Idea:

Surround perturbed defect region with enough material to buffer defects.

In the limit of *large enough* supercells ... approach an isolated defect.

The Supercell Approximation

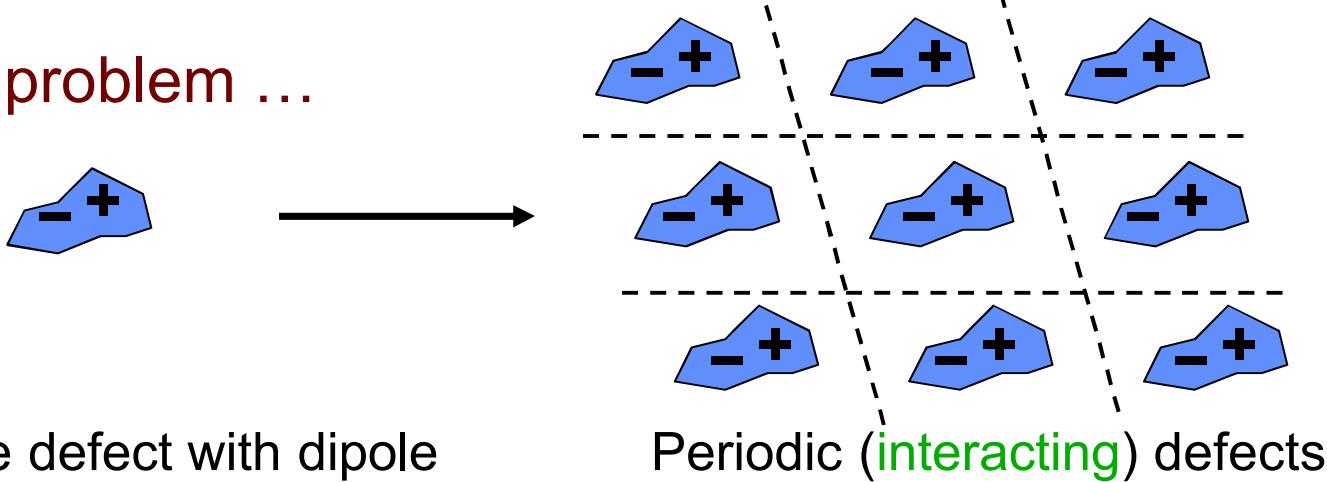
the catch ...



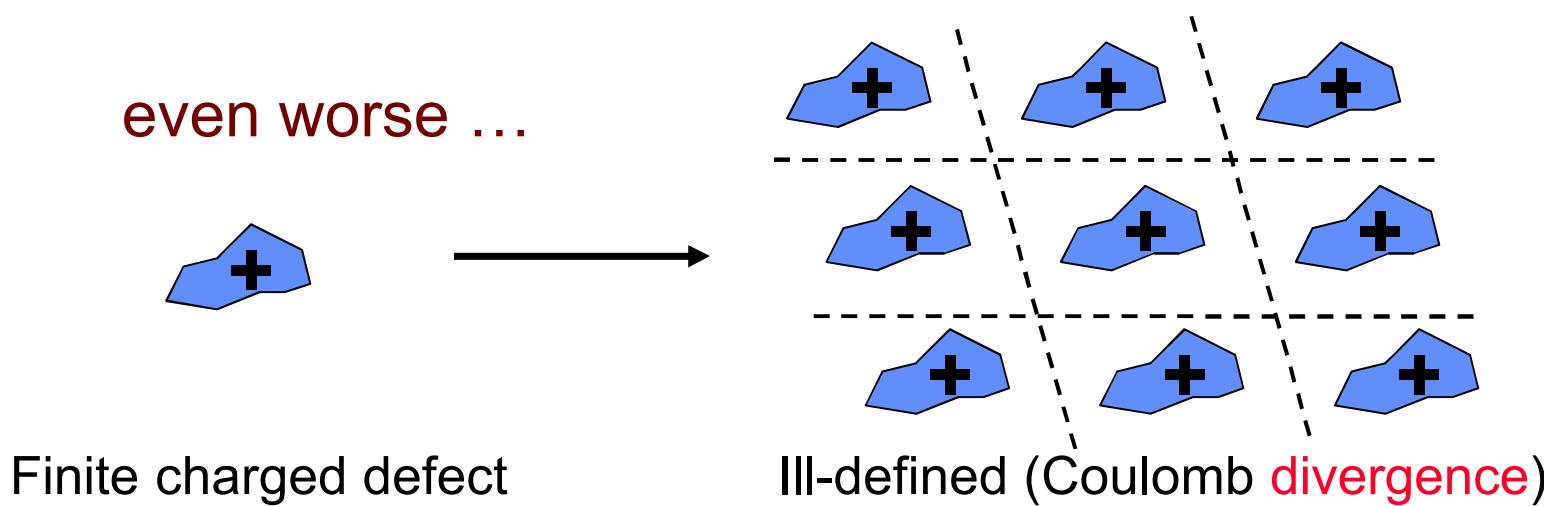
DFT expense limits size of supercell - defects interact

The supercell approximation

A problem ...



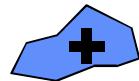
even worse ...



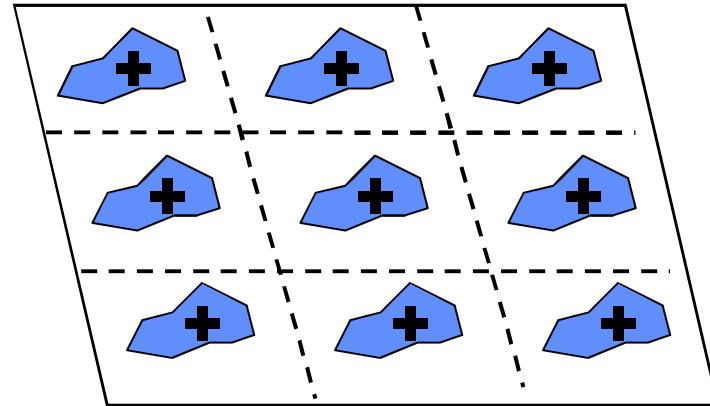
Interactions and divergence are key issues

Jellium to eliminate divergence?

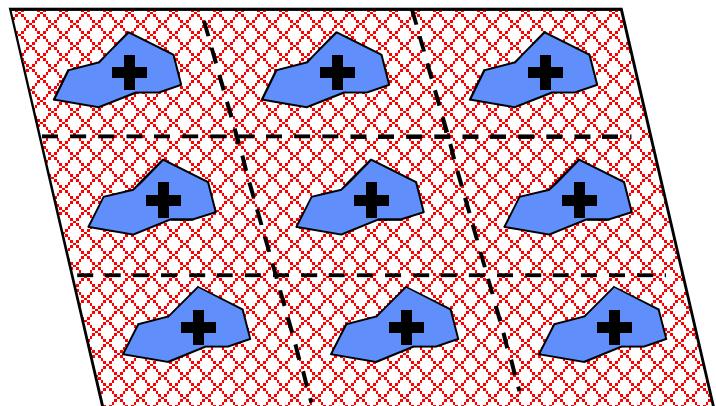
Isolated defect ...



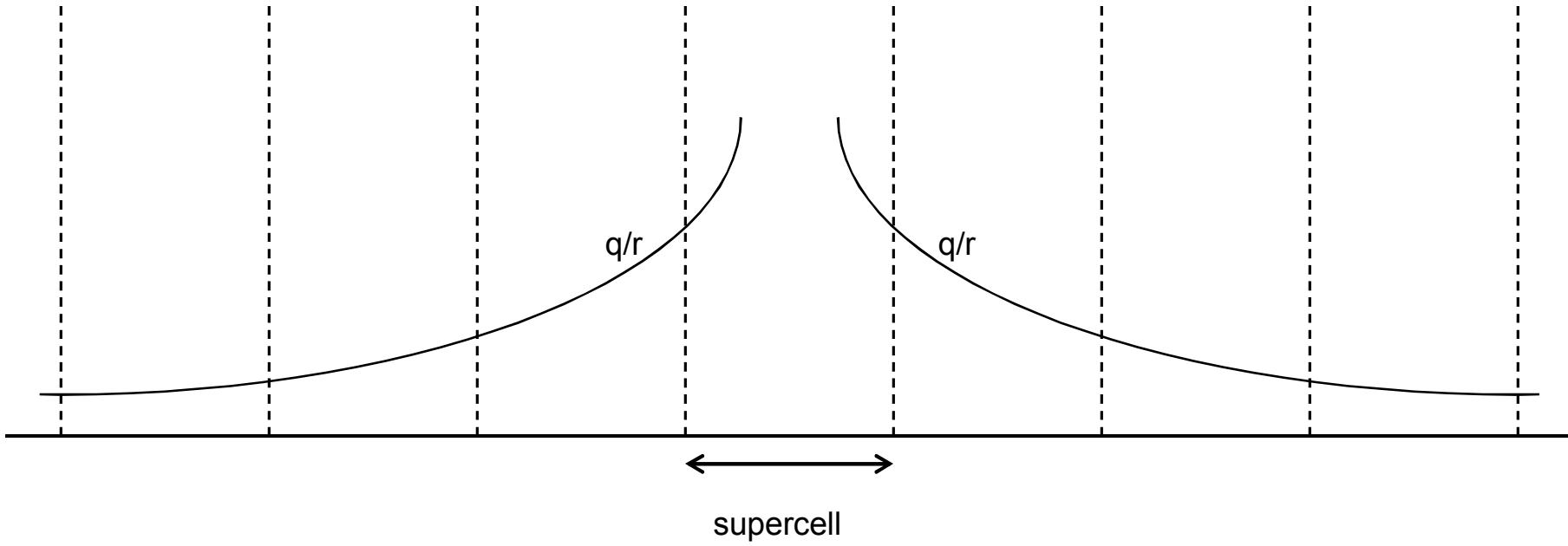
Apply supercell approximation ...



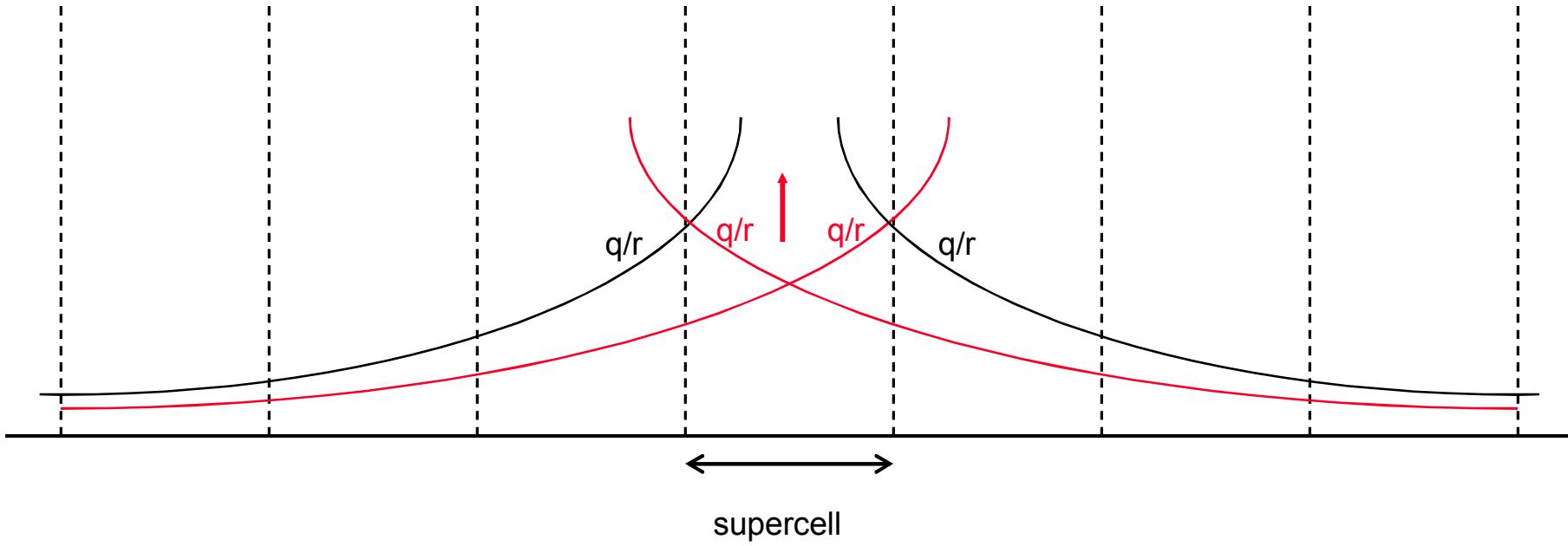
Neutralize with flat
background charge:
“jellium”



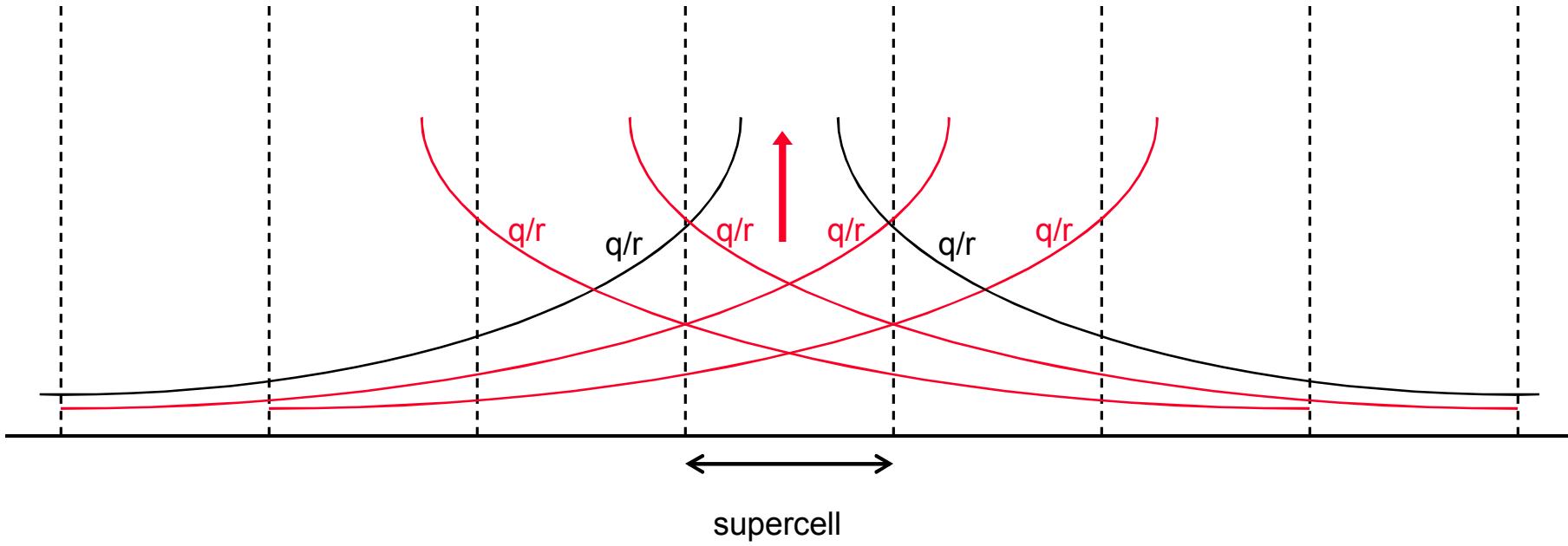
Whence the divergence?



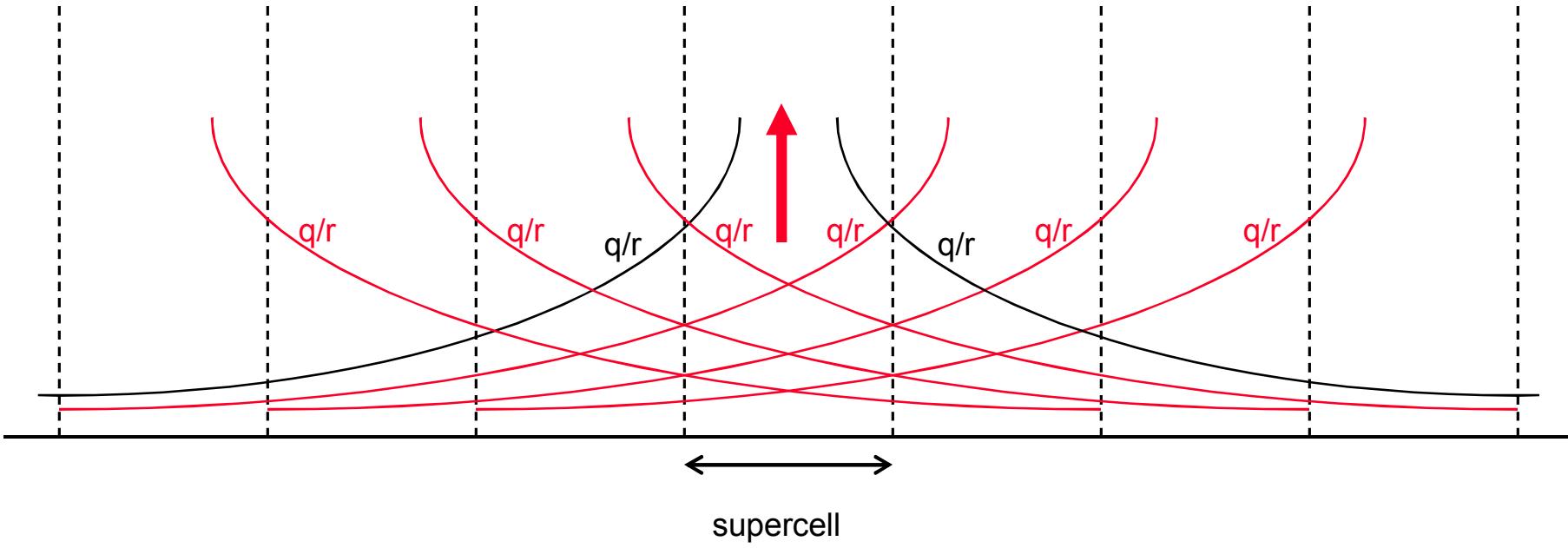
Whence the divergence?



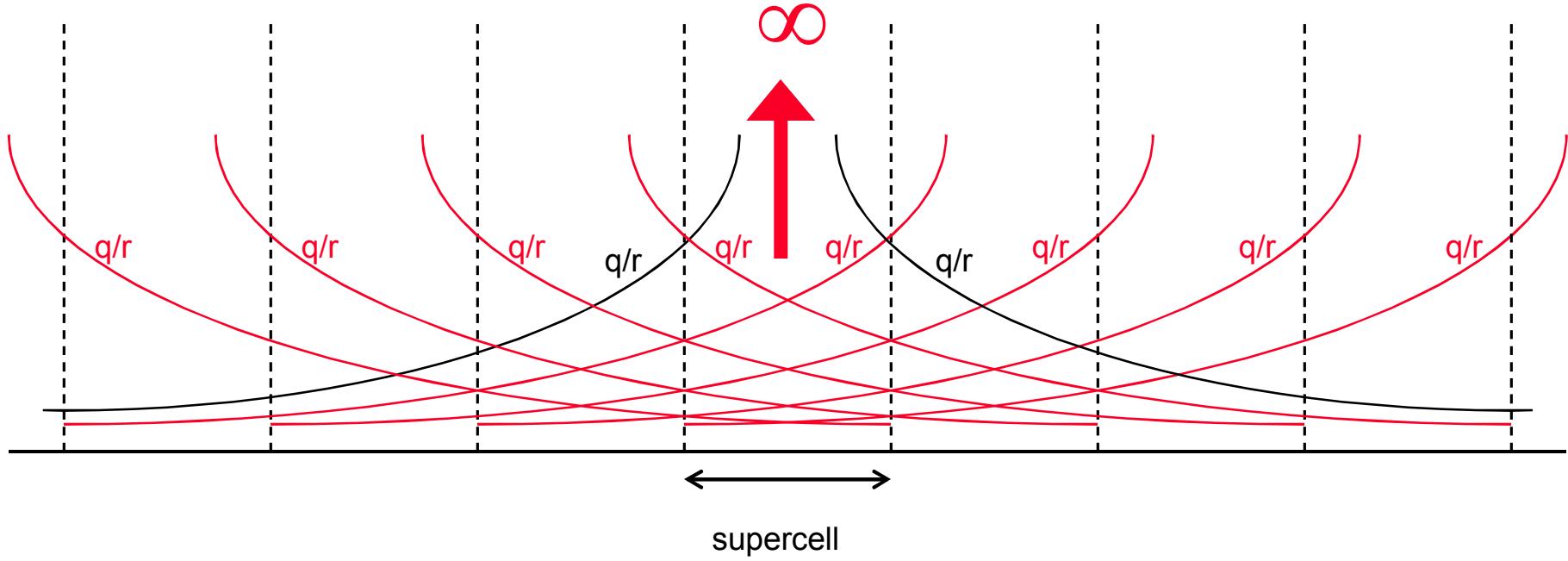
Whence the divergence?



Whence the divergence?



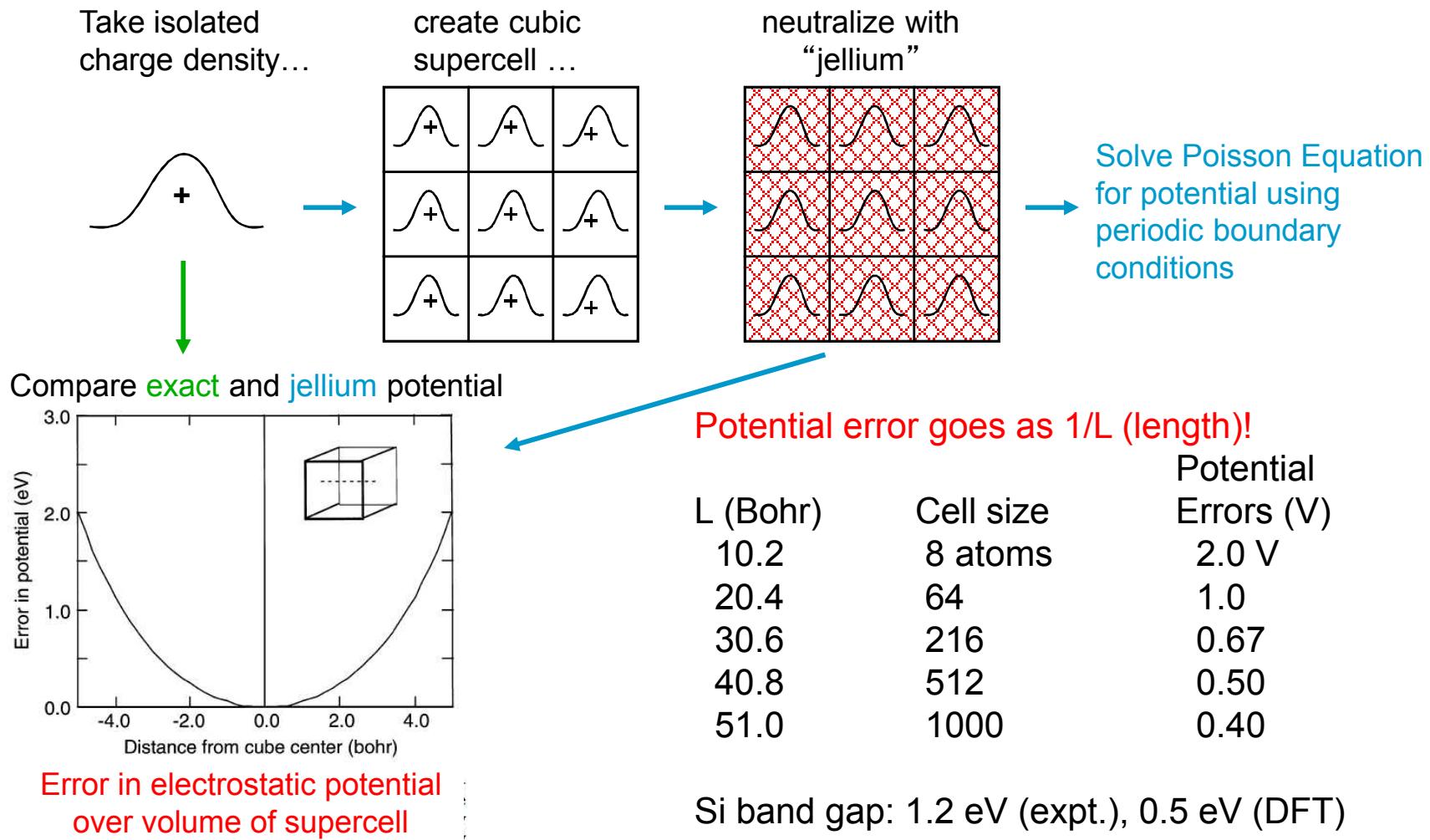
Whence the divergence?



Divergence arises from infinite-ranged q/r potentials from periodic images

Divergence is not flat

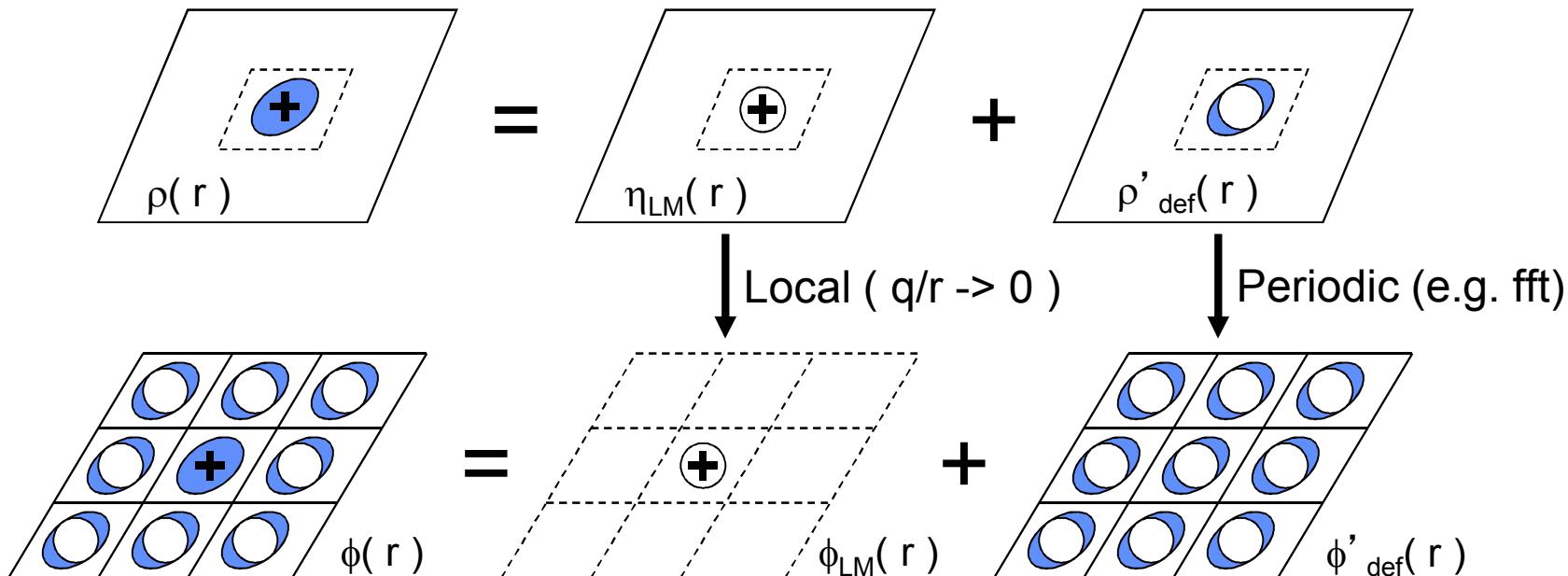
Net charge boundary conditions - jellium



Local Moment CounterCharge (LMCC)

P.A. Schultz, PRB **60**, 1551 (1999)

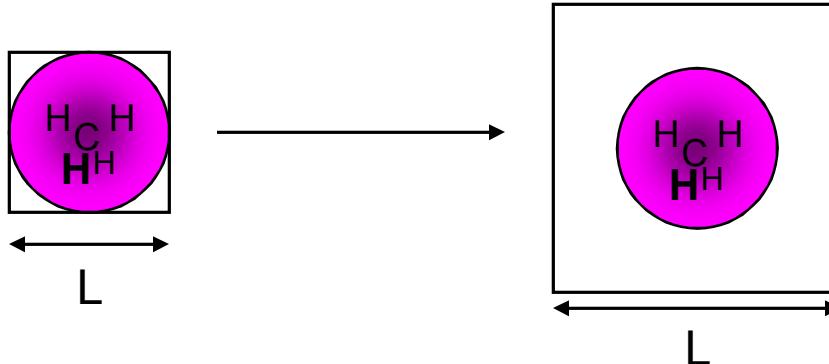
- Solution of Poisson Equation is linear in the density
- LMCC: split total density $\rho(r)$ into two pieces ...
 - (1) model local density $\eta_{LM}(r)$ matching multipole (charge) of $\rho(r)$
 - (2) remainder (momentless) density $\rho'_{def}(r) = \rho(r) - \eta_{LM}(r)$



Gives proper $r \rightarrow \infty$ asymptotic boundary condition
Avoid (not ignore!) Coulomb divergence

Charged cell convergence - LMCC

P.A. Schultz, PRB **60**, 1551 (1999)



Charged, no dipole: $\text{CH}_4 \rightarrow \text{CH}_4[+]$... Ionization Potential

$L = 18.0 - 30.0$ bohr (9.5-15.9 Å) IP varies $< 10^{-5}$ eV

Dipole, no charge: $\text{Na}-\text{Cl}$ diatomic molecule ... Total Energy

$L = 16.8 - 30.0$ bohr (8.9-15.9 Å) TE varies $< 10^{-5}$ eV

Dipole, charge: $\text{OH} \rightarrow \text{OH}[-]$... Electron Affinity

$L = 18.0 - 30.0$ bohr (9.5-15.9 Å) EA varies $< 10^{-3}$ eV

Total energy, levels, i.e. full Hamiltonian are all immediately converged.
-> electrostatic *potential* correctly represented by LMCC, not just energy

A supercell theory of defect energies

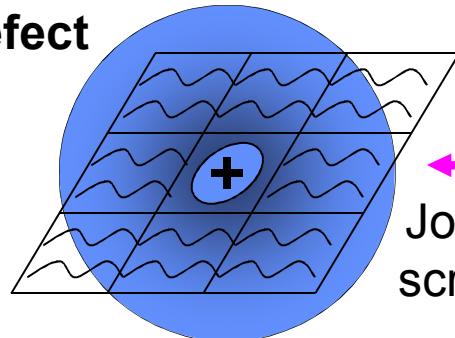
Peter A. Schultz, Phys. Rev. Lett. **96**, 246401 (2006).

Target system:
isolated defect

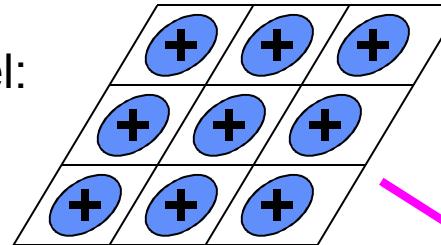
=

**Computational
model for
isolated defect**

(+ DDO
for defect
banding)



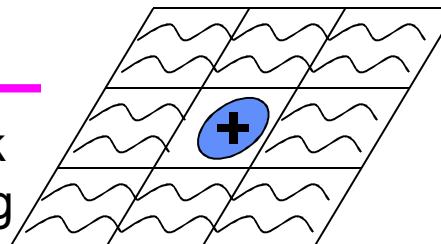
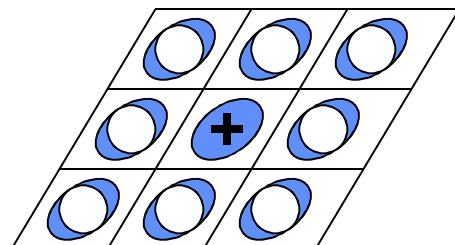
Standard
DFT model:
Supercell



LMCC to fix
boundary
conditions

Finite Defect Supercell Model

Jost Bulk
screening



Crystal embedding
to fix μ_e

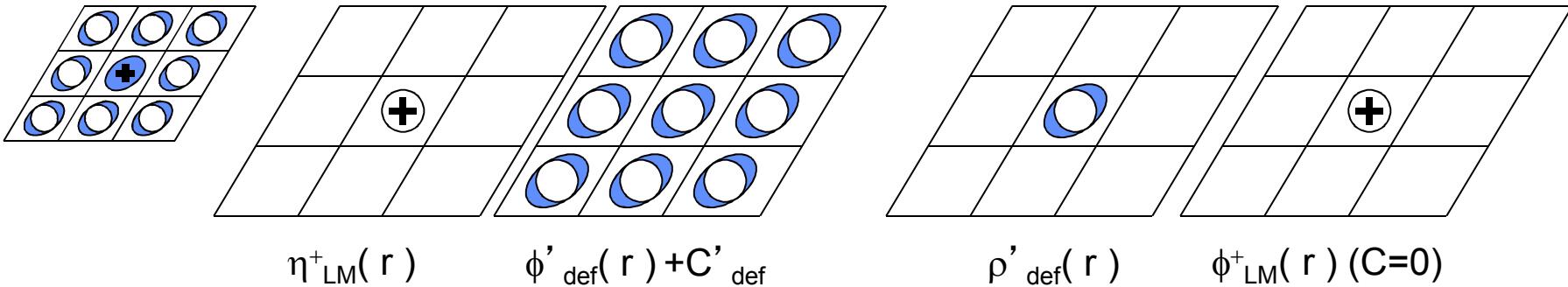
*“Ab initio” computational model – connect model to physics
Calculations with rigorous control of charge boundary conditions*

(i.e., not jellium-based)

A fixed chemical potential μ_e

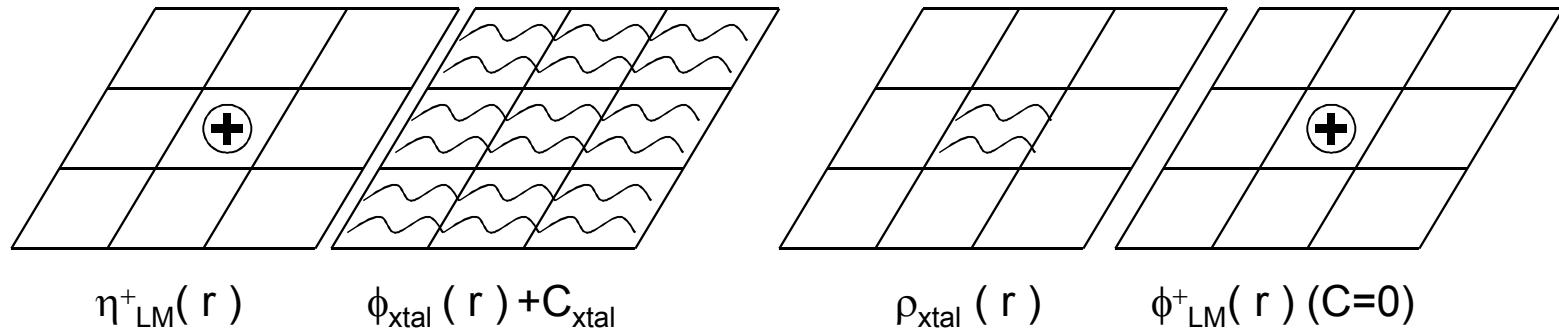
Replace interaction of net charge with periodic defect potential ...

$$E_{\mu_0} = - \int dr \eta^+_{LM} (\phi'_{def} + C'_{def}) + \int_{UC} dr \phi^+_{LM} \rho'_{def}$$



... with crystal potential:

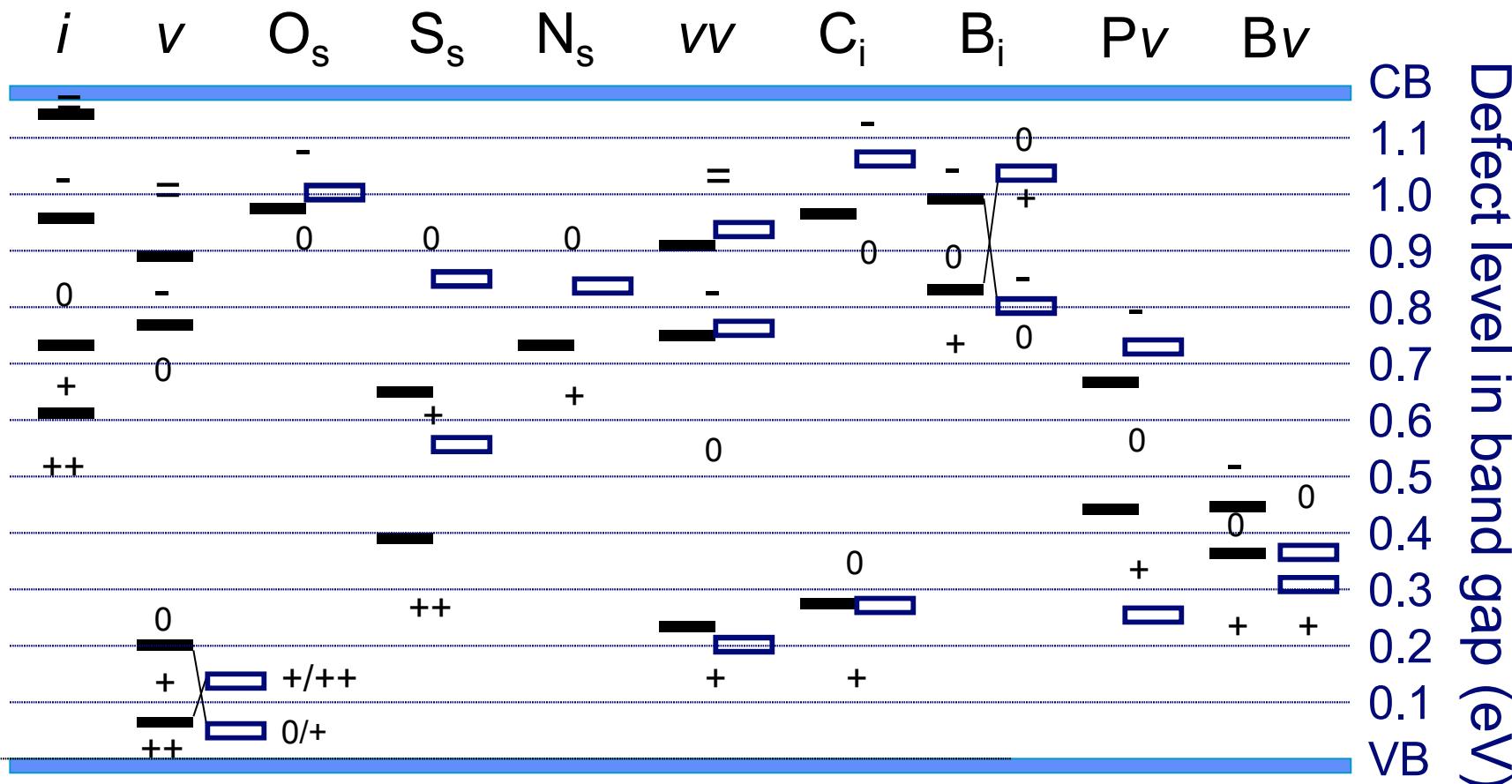
$$+ \int dr \eta^+_{LM} (\phi_{xtal} + C_{xtal}) - \int_{UC} dr \phi^+_{LM} \rho_{xtal}$$



Replace **variable** defect cell C'_{def} , with **fixed** crystal C_{xtal} reference
 Chemical potential equivalent to matching potential at $R=\infty$

Si: DFT/LDA vs. Experimental Levels

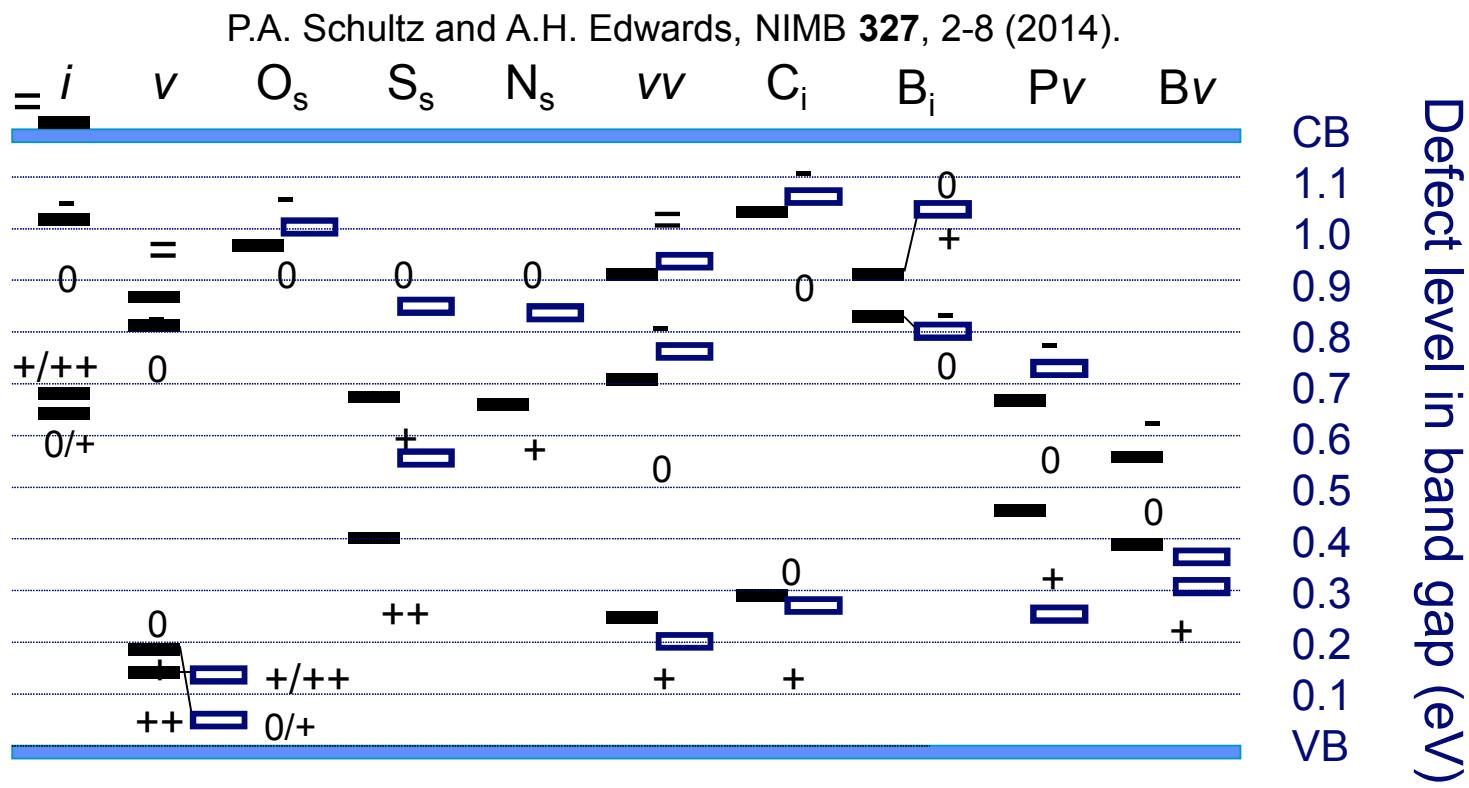
Peter A. Schultz, Phys. Rev. Lett. **96**, 246401 (2006).



LDA: max error=0.25 eV, mean |error|= 0.10 eV

Intrinsic, first-row, second-row, and complexes across gap
LDA Kohn-Sham gap is only 0.5 eV

Si: DFT/PBE vs. Experimental Levels



DFT/PBE defect level max error=0.20 eV, mean |error|=0.10 eV
DFT “defect gap” matches experiment (KS gap: 0.6 eV)
Band gap problem not seen in **total-energy-based** defect levels

Computational methods – III-V's

- General purpose DFT code SeqQuest (<http://dft.sandia.gov/Quest>)
 - well-converged (contracted-Gaussian) local orbital basis
 - both LDA and PBE functionals
 - converged norm-conserving pseudopotentials (Ga,In both $Z_{\text{val}}=3,13$)
 - full force relaxed (<1 meV total energies)
 - full FDSM ... robust control of boundary conditions
- Large bulk simulation supercells
 - $a_0=a_0(\text{theory})$; GaAs: 5.60 Å(LDA), 5.63 Å(3d), 5.74 Å(PBE); $a_0(\text{expt})=5.65$ Å
 - Cubic supercells: 64-, 216-, 512-, 1000-site
 - k -sampling: 3^3 for 64-site cells, 2^3 for 216-, 512-, 1000-site cells,
 - fully calibrated polarization model
 - all these computational parameters are tested for convergence

Comparable method that yielded 0.1 eV accuracy in Si

Simple intrinsic defects in GaAs: LDA

P.A. Schultz and O.A. von Lilienfeld, MSMSE 17, 084007 (Dec. 2009).

$216^- = 512^- = 1000$ -site

Verification: cell-converged

LDA-3d = LDA to ≤ 0.1 eV

Verification: PP converged

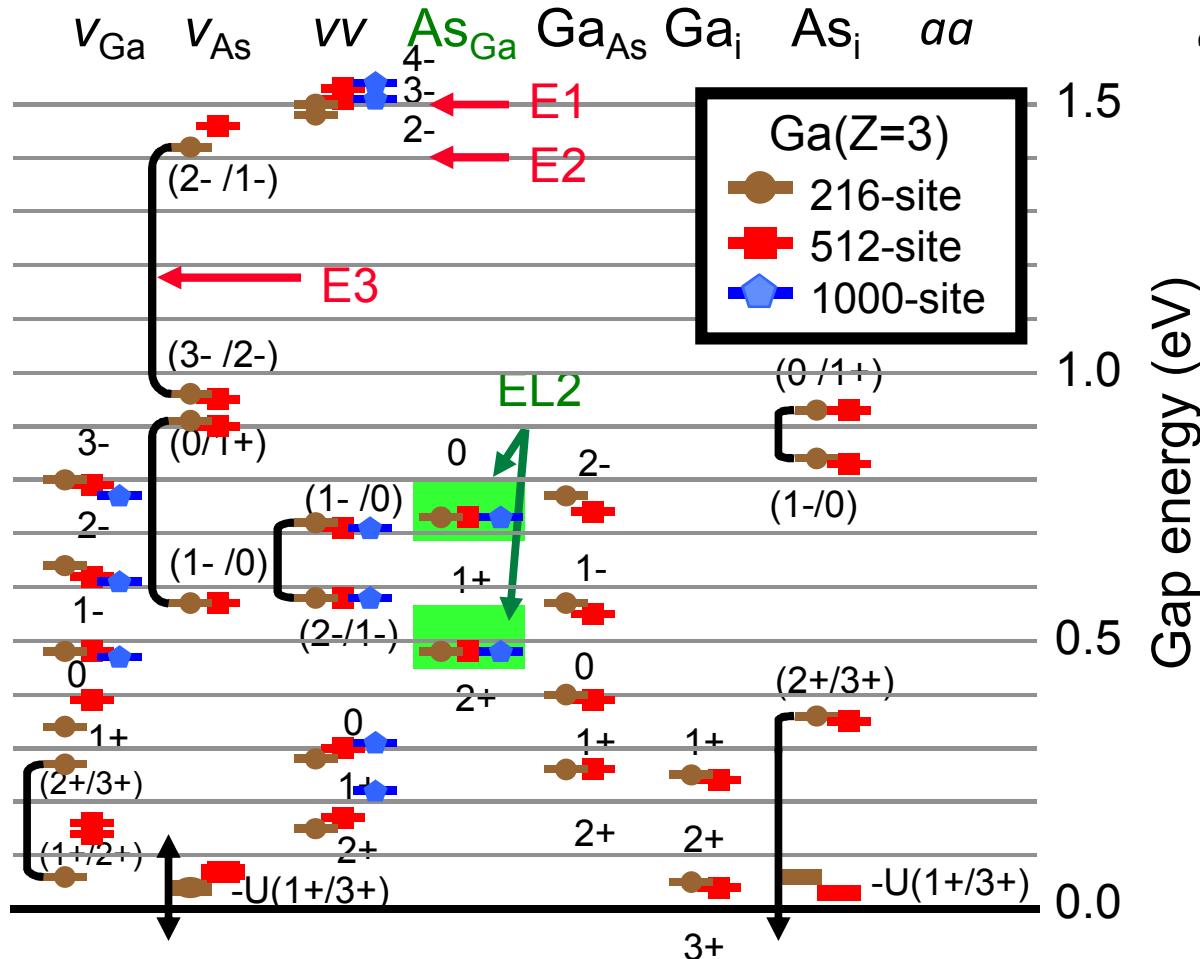
LDA~PBE; spin < 0.05 eV

Verification: functionals

V_{Ga} levels = EL2 levels

V_{As} levels below midgap

Validation: levels < 0.1 eV

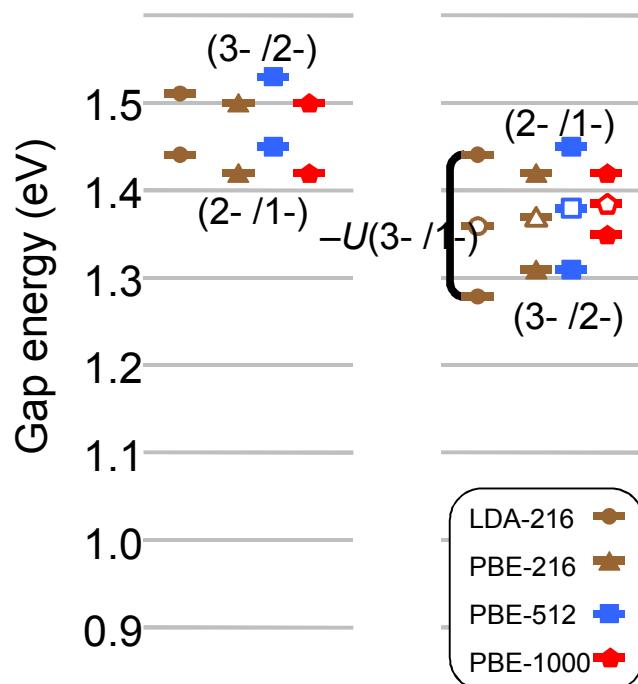


DFT+FDSM: Apparent accuracy of ~ 0.1 eV

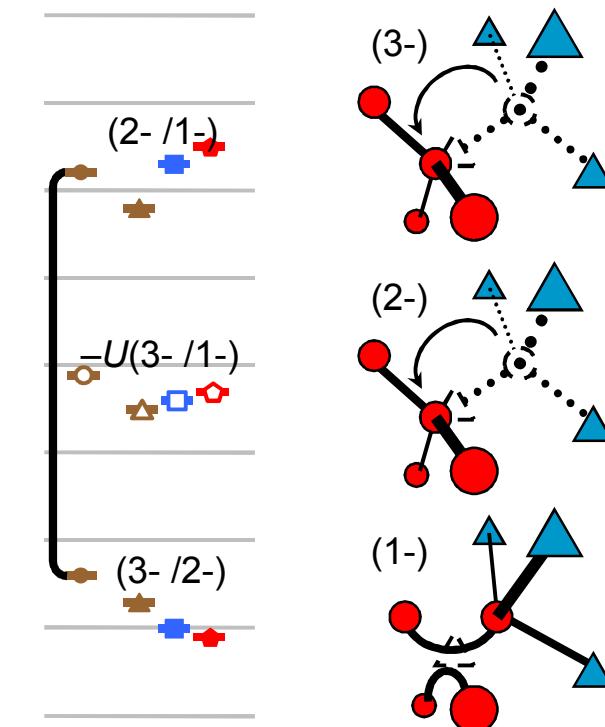
The v_{As} is *not* the E1-E2 center

Simple *Complex* *Site-shift*

v'_{As}
 T_d v'_{As}
 $pD_{2d} \leftrightarrow rD_{2d}$ v_{As}
 $v'_{As} \leftrightarrow v^*_{As}$



Incompatible with $E1-E2$
positron annihilation

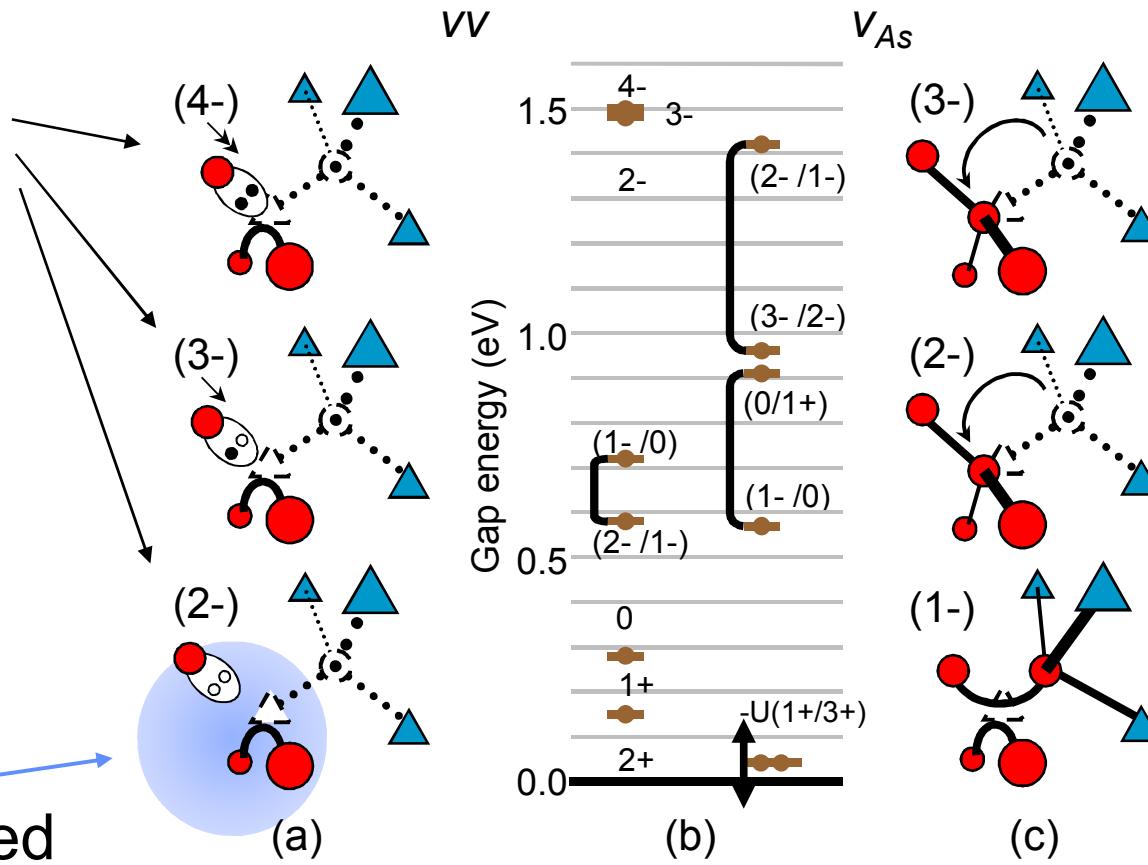


Matches $E3$
(DX-like,
level position)

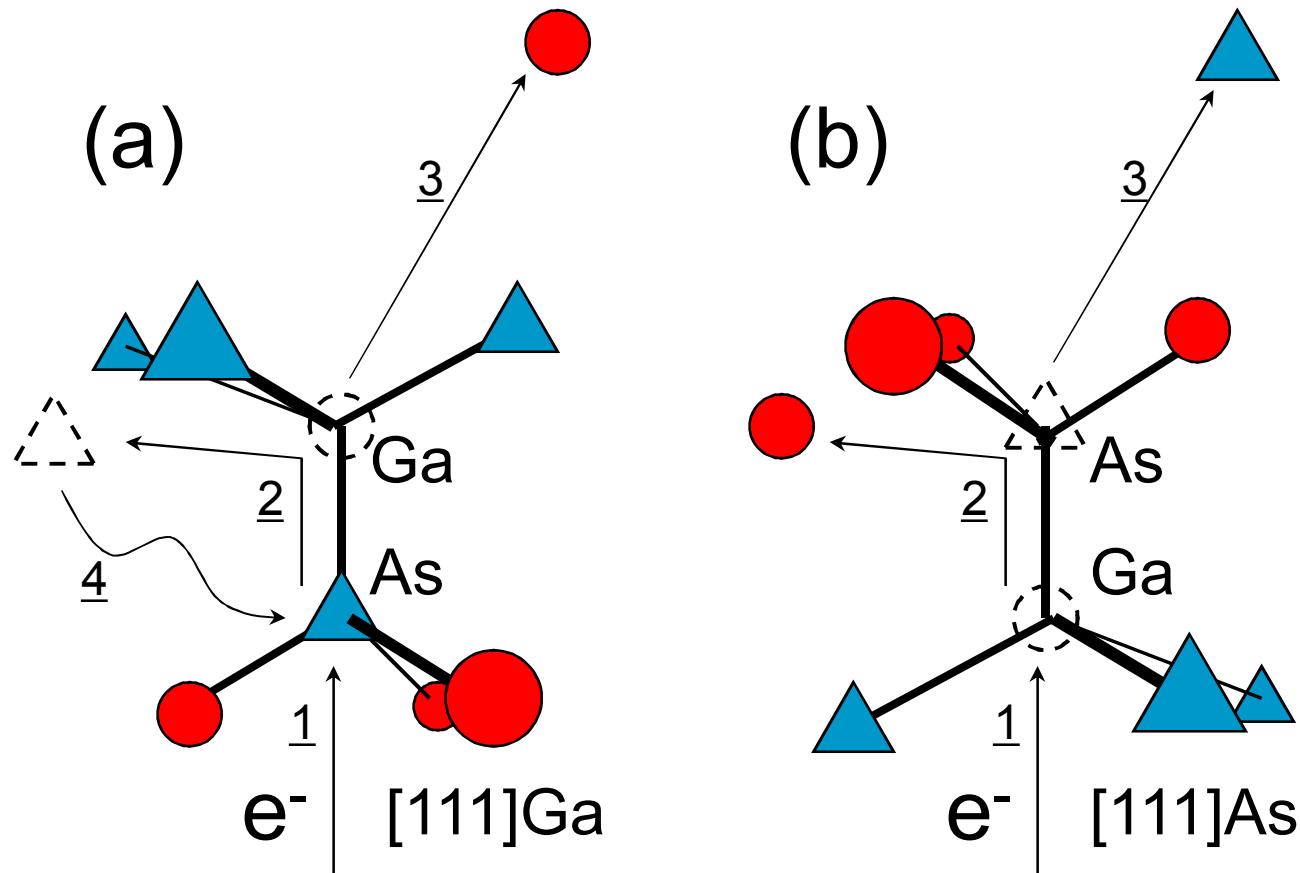
The GaAs divacancy *is* the E_1 - E_2 center

Larger charge states

PAS explained on V_{As} side



The GaAs divacancy *is* the E1-E2 center



$\nu\nu$ appears to be a threshold defect, on the As site
(same annihilation kinetics cf. As_i , and ν_{Ga} invisible)

The GaAs divacancy is the E1-E2 radiation center

P.A. Schultz, J. Phys.: Condens. Matter **27**, 075801 (2015).

Peter A. Schultz

Old (experimental) lore, back to 1988:

E1, E2 center = $v_{As}(-/0)$, $v_{As}(0/+)$

$$E_3 = V_{AS} + i$$

vv is dismissed

Level structure reassigned with DFT:

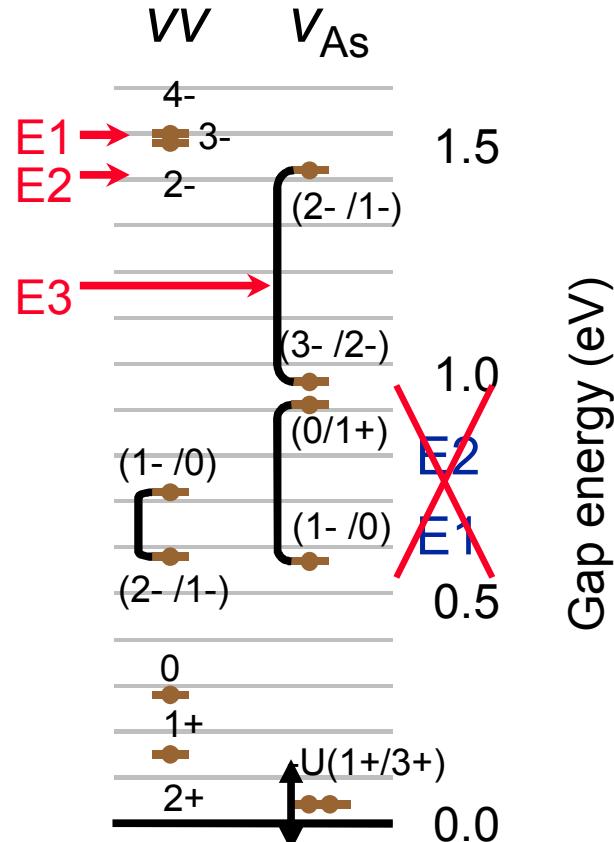
$v_{\text{As}}(-/+)$ is mid-gap negative-U (only one level)

v_{As} (3-/1-) is upper-gap -U (one level)

vv(4-/3-/2-) near conduction band

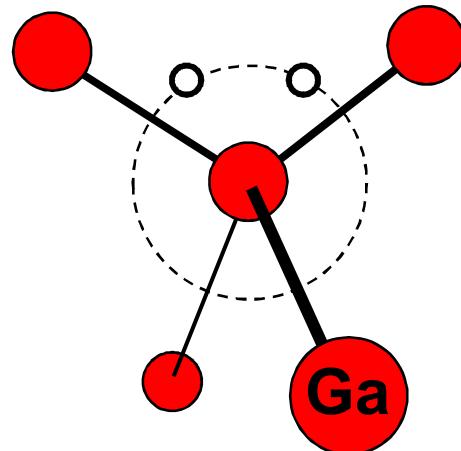
vv is major radiation defect: E1-E2

ν_{As} (3-/1-) transition is the E3



DFT-SeqQuest+FDSDM levels good enough to identify defects strictly on ***quantitative*** defect level calculations

Discriminating a deep defect from shallow acceptors in supercell calculations: **Gallium antisite in GaAs**



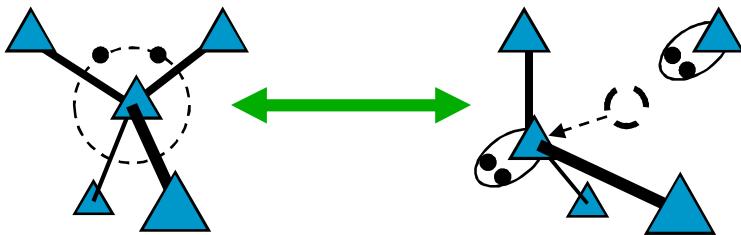
PAS, PRB **93**, 125201 (2016)

UUR
SAND2016-2676C

GaAs - defect physics poorly known

$\text{As}_{\text{Ga}} = EL2$

Well characterized – deep double donor



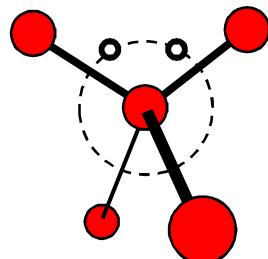
Theory crucial in characterization:

Dabrowski & Scheffler, PRL 1988

Chadi & Chang, PRL 1988

$\text{Ga}_{\text{As}} = ???$

Remains elusive



Experiment: Never definitively identified

Theory: Never definitively characterized
- supercell problem: deep or shallow?

Crucial to distinguish if defect shallow or deep

Ga_{As} history

Experiment: Ga-rich GaAs (>0.53 Ga) → “78/203” defect

Elliott 1982, 1983; Yu 1982

- *p*-type
- **residual shallow double acceptor at 78 meV and 203 meV**
- no distortion from T_d
- **Ga-rich and shallow double acceptor → Ga antisite**

Doubts about 78/203: inadvertent B-contamination?

Kiessling, et al. 2008 – grown boron-free

- **semi-insulating, no residual acceptor**
- **shallow double acceptor = B_{As} antisite**

Defect levels in GaAs: LDA

P.A.S. and O.A. von Lilienfeld, MSMSE **17**, 084007 (2009)

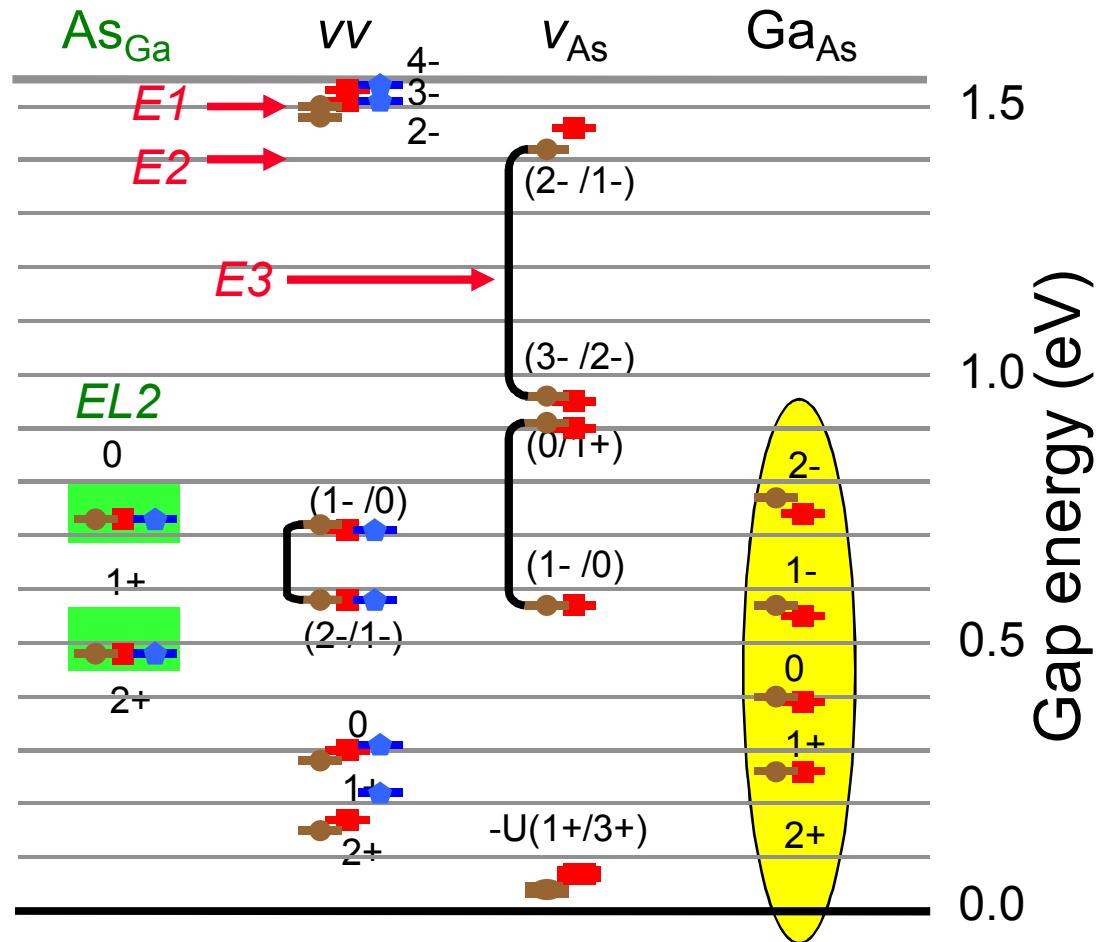
P.A.S., JPCM **27**, 075801 (2015)

DFT with SeqQuest

Gaussian basis pseudopotentials
LDA and PBE
216,512,1000-atom supercells
Converged model parameters
LMCC charge boundary conditions
216-, = 512-, = 1000-atom levels

DFT matches experiment

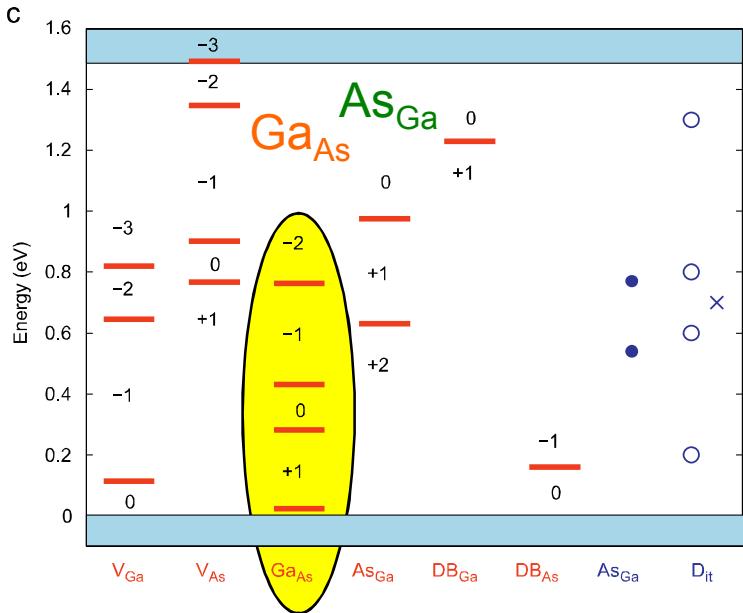
$EL2$ = As_{Ga}
 $E1-E2$ = divacancy
 $E3$ = $v_{As}(3-1-)$
Accuracy ~ 0.1 eV



Ga antisite: two deep acceptors, two donors?

Theory also inconclusive

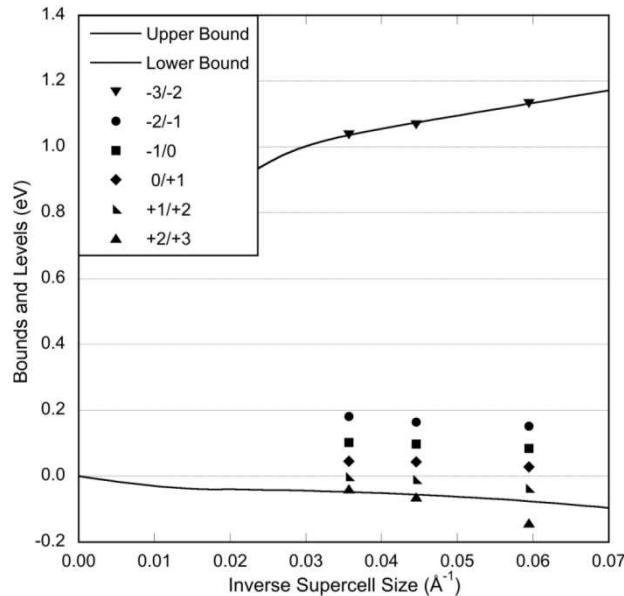
Komsa&Pasquarello, Physica B (2012)



HSE, 64-atom cells

Deep: two acceptor & two donor states

Wright&Modine, PRB (2015)



LDA, 216-, 512-, 1000-atom cells

Shallow double acceptor

HSE study agrees ...

... newer bounds analysis does not

Is Ga_{As} deep defect a supercell artifact?

Discriminating shallow/deep acceptors

Shallow: state and its charge delocalized, **supercell fails**

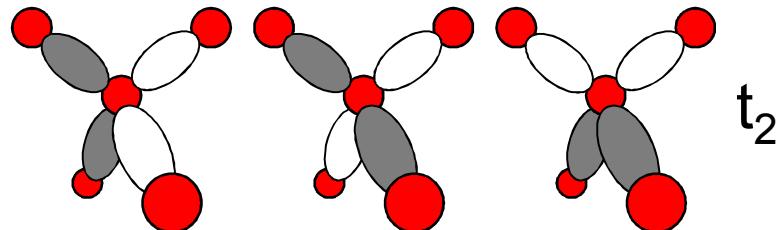
- defect banding, states entangled in VB
- less/no structural distortions

Deep: state and its charge localized, **DFT is valid**

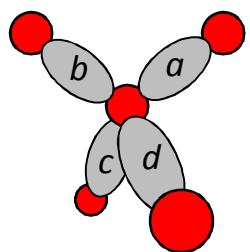
- eigenstates distinct from VBE
- greater structural distortions
- greater spin polarization

A conceptual model of Ga_{As}

Ga_{As} : LCAO-MO model
(thank you, George Watkins!)

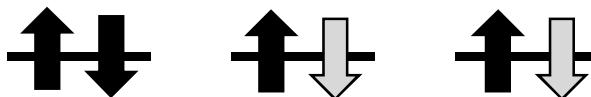
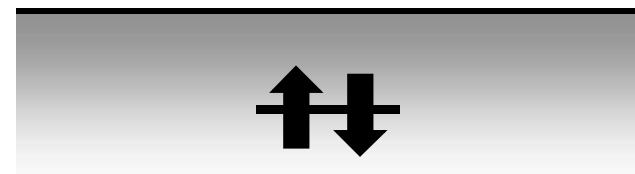


t_2



a_1

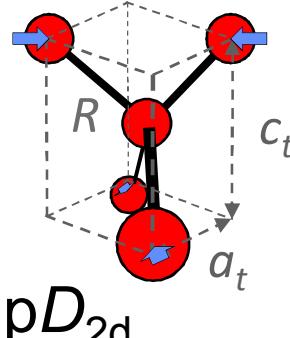
$\text{Ga}_{\text{As}}(0)$



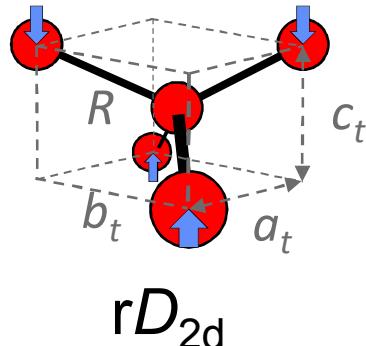
VBE

Jahn-Teller instabilities

Occupation level patterns determine proper distortion/spin states



pD_{2d}



rD_{2d}



C_{2v}

Ga_{As}(q) ground states

	Ground state		$\Delta E(T_d, \text{ meV})$
(2-)		T_d	0
(1-)		rD_{2d}	-71
(0)		pD_{2d}	-102
(1+)		T_d	-95
(2+)		rD_{2d}	-25

(1000-atom PBE)

$rD_{2d}(1-)$

Relaxation energy (meV)

3x3x3	-15
4x4x4	-23
5x5x5	-30

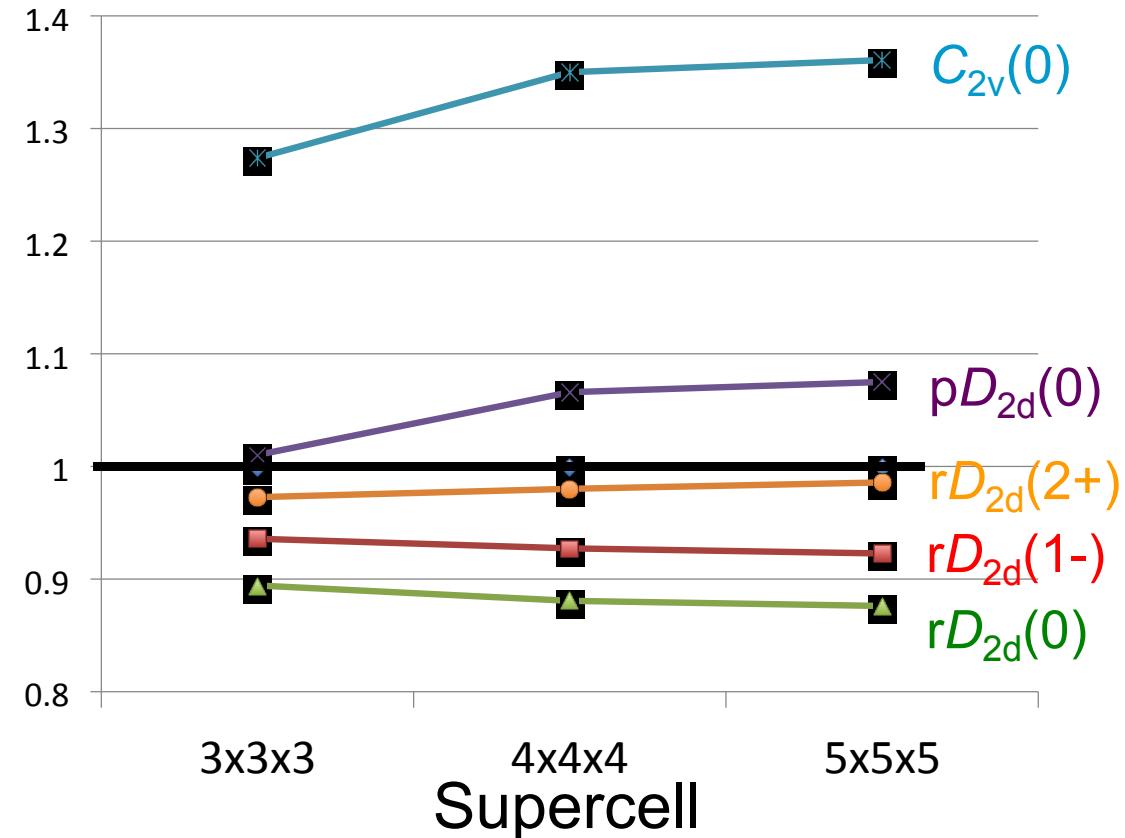
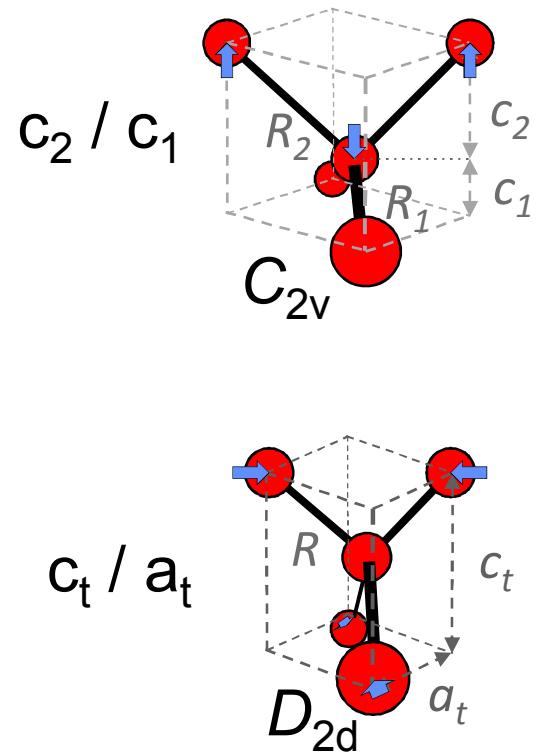
Spin energy (meV)

3x3x3	-33
4x4x4	-38
5x5x5	-41

All ground states distort from (spinless) T_d
 Relaxation, and spin polarization energy increase with cell size

Ga_{As} distortions magnify with cell size

Distortion ratios



... except for $pD_{2d}(2+)$, which is only barely distorted

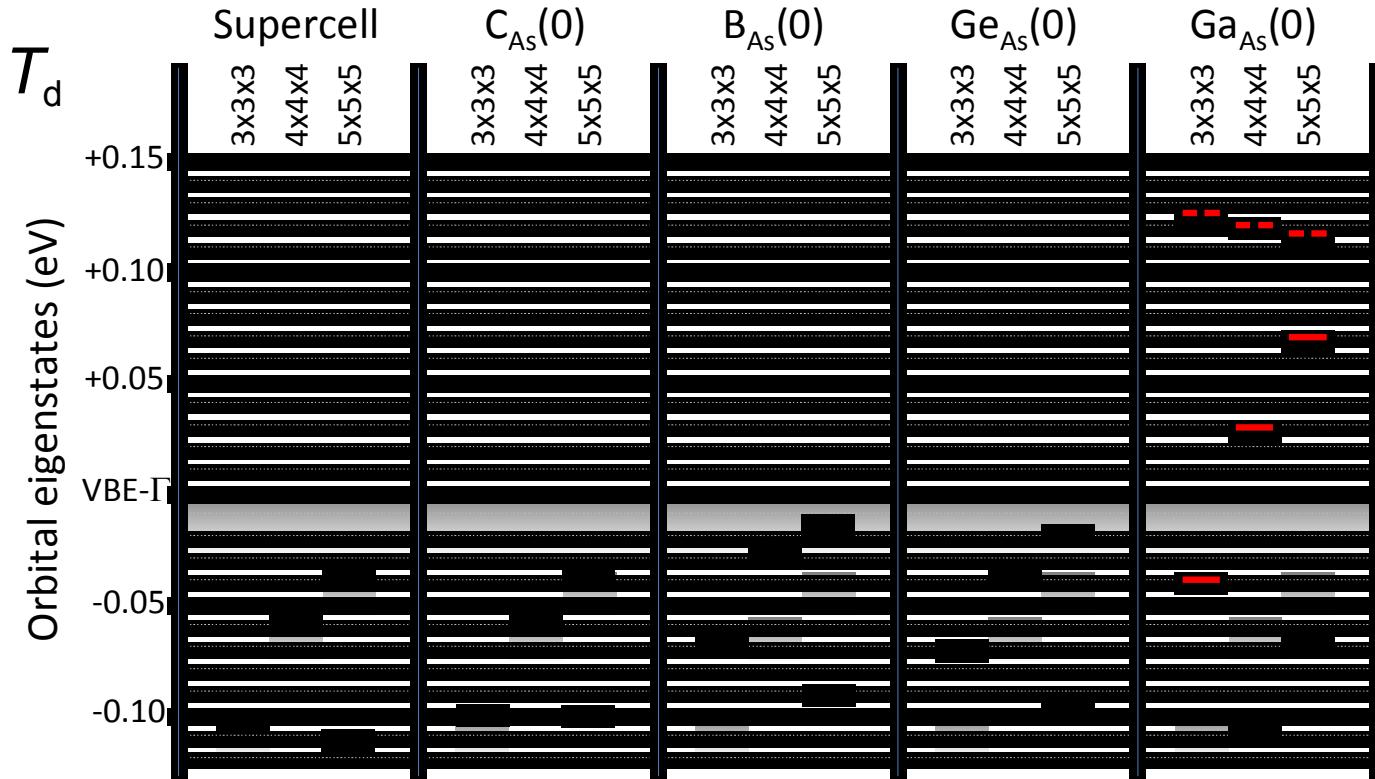
What do X_{As} shallow acceptor supercells look like?

C_{As} = shallow acceptor

B_{As} = shallow double acceptor

Ge_{As} = shallow acceptor

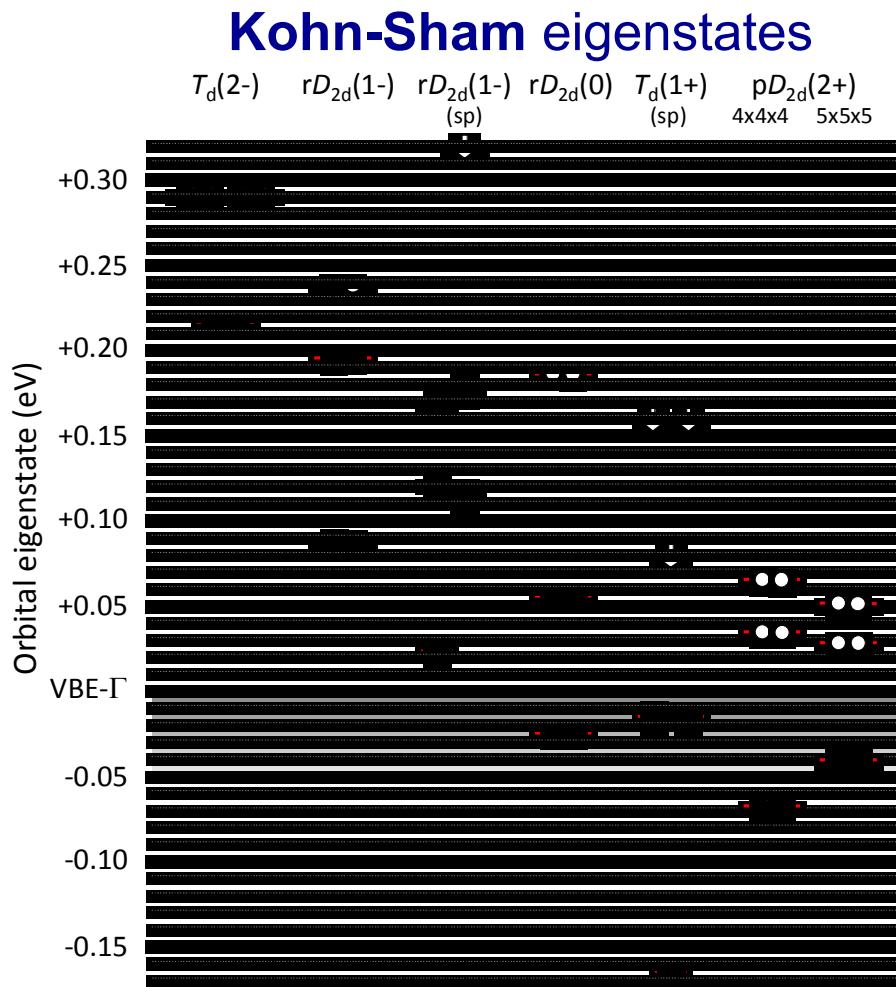
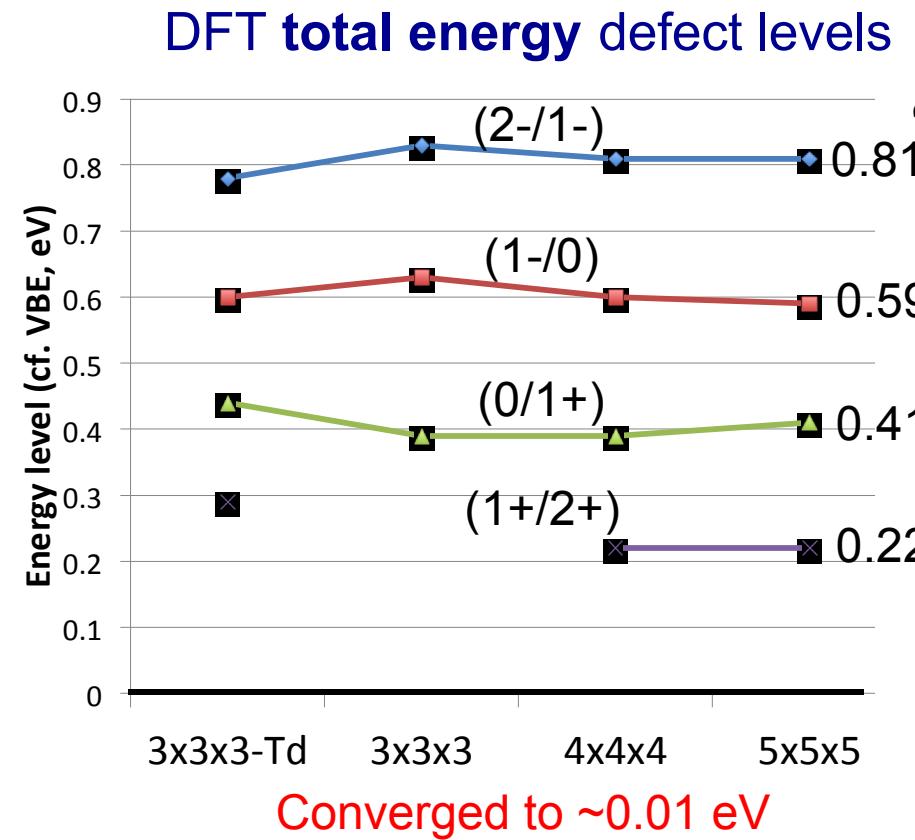
Ga_{As} = ????



C_{As} , B_{As} , Ge_{As} : no distortions (<1 meV)
no spin polarization (<3 meV)
no new defect eigenstates in “small” cells

Ga_{As} is different – Ga_{As} is not an effective mass state

Ga_{As} eigenstates and energy levels



KS eigenstates cleanly within global Kohn-Sham gap
Energy levels converged to ~0.01 eV with supercell

Eigenstates \neq energy levels: levels expanded

The Ga antisite summarized

Recently published: P.A.S. PRB **93**, 125201 (2016)

Shallow states in supercells: C_{As} , B_{As} , Ge_{As}

- no distortions (<1 meV)
- small, decreasing spin energy (< 3 meV)
- KS states entangled in VB in small supercells, “small” > 1000 atoms!

Ga_{As} is localized: two deep donor, two acceptor states

- large, increasing distortions, increasing spin, clean KS spectrum
- distinct from behavior of known shallow acceptors

Ga_{As} is not the 78/203 shallow double acceptor

- shallow- Ga_{As} is high-energy defect in Ga-rich p-type GaAs
- low-energy defects Ga_i , v_{As} , and deep- Ga_{As} are donors → semi-insulating

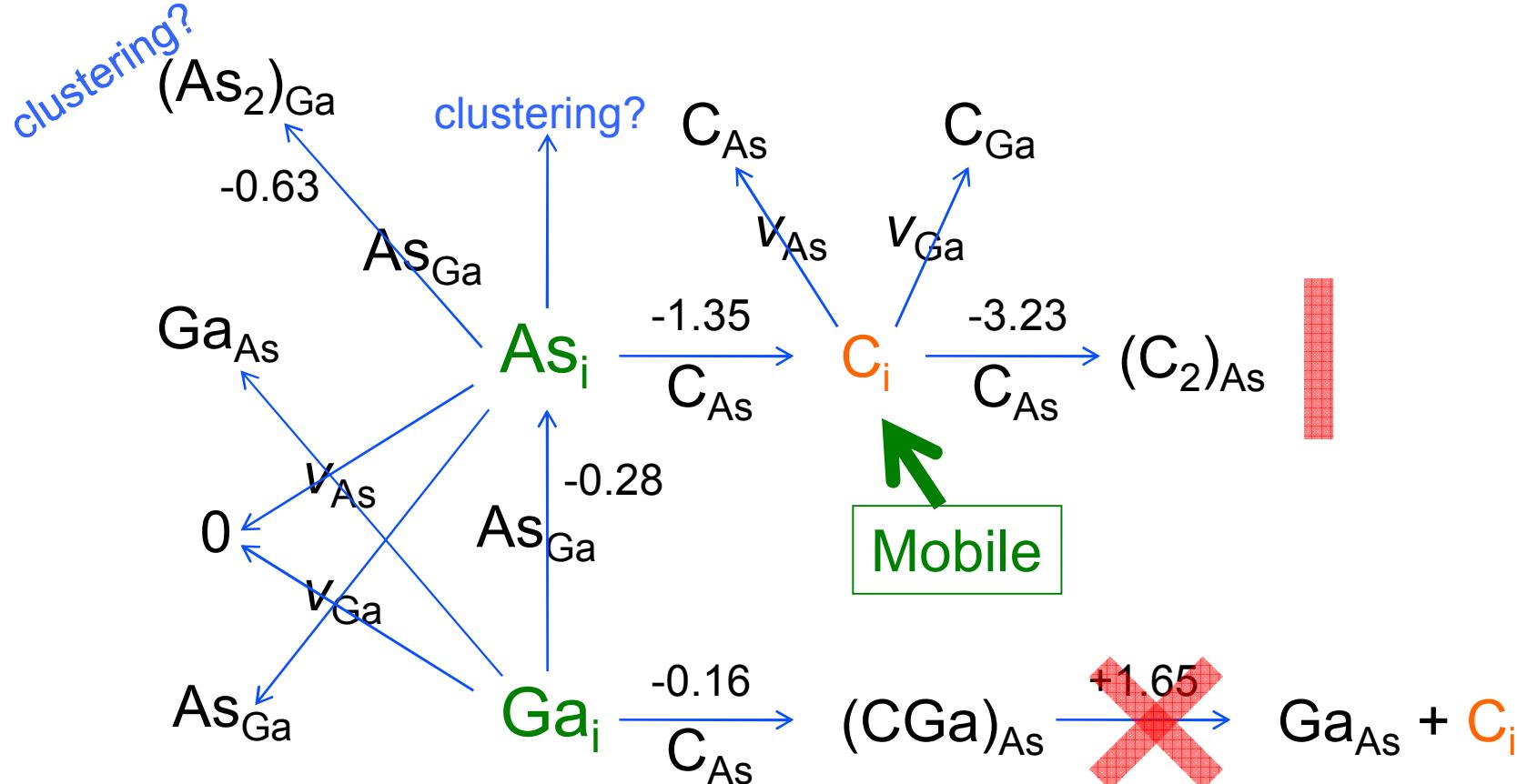
Energy level scale expanded compared to KS eigenstates

- “band gap problem” is ... not a problem

GaAs: C-doped reaction network

P.A. Schultz, J. Res. Eng: Rad. Effects **30**, 257 (2012).

SeqQuest, LDA, 216-site, thermodynamic energy with $E_f = VBE$ (p-type)
Reaction networks initiated by identified mobile species: As_i , Ga_i

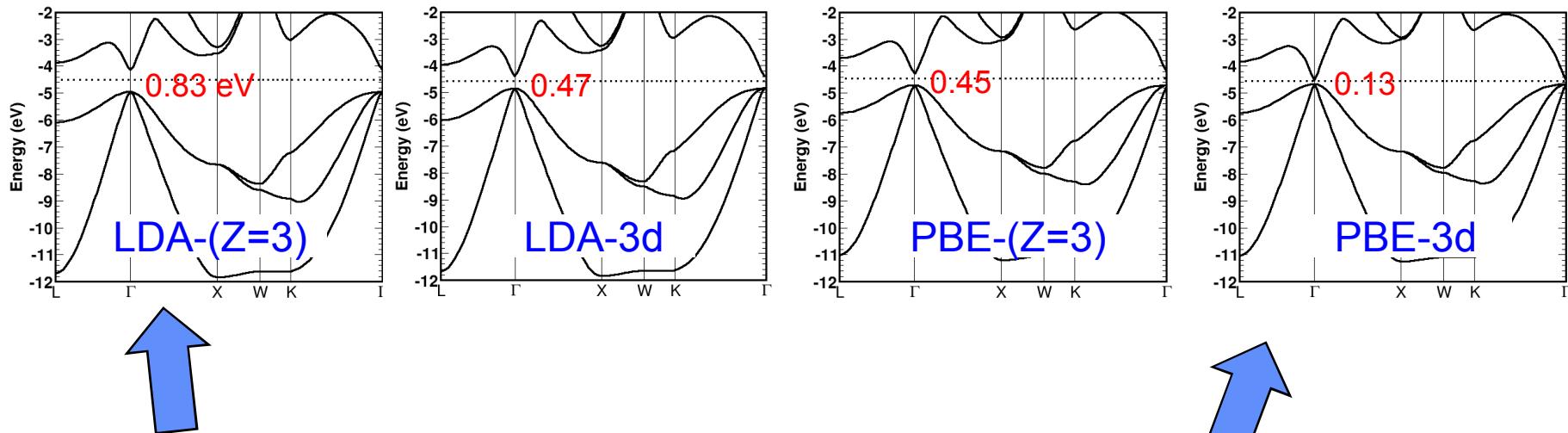


Reliable defect levels means reliable chemistry

GaAs: A theoretical laboratory

P.A. Schultz and A.H. Edwards, NIMB **327**, 2-8 (2014).

Change the Ga pseudopotential and the functional, and the **KS band gap shrinks...**



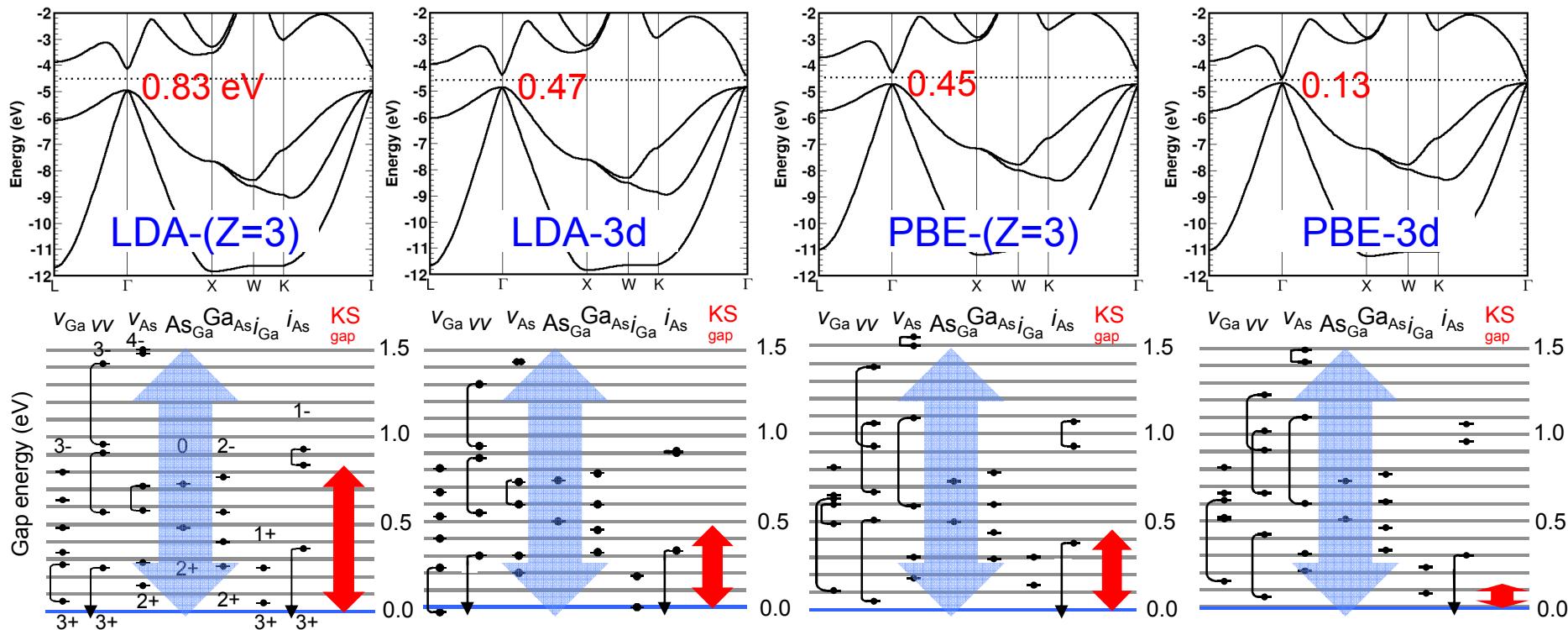
from 0.83 eV, LDA, Ga($Z=3$) pseudopotential (PP) ...

... to 0.13 eV, PBE-3d, Ga($Z=13$) pseudopotential (PP)

GaAs: A theoretical laboratory

P.A. Schultz and A.H. Edwards, NIMB 327, 2-8 (2014).

Change the Ga pseudopotential and the functional, and the **KS band gap** changes ...



... but span of (total-energy-based) defect levels, the “defect band gap”, does not

Defect levels/gap **insensitive** to size of Kohn-Sham gap!

GaAs Computational model lessons

- KS band gap not a problem for Si and GaAs defects
- Defect levels insensitive to size of Kohn-Sham gap!
 - total-energy differences vs. eigenvalue-referenced
 - GaAs is ideal theoretical laboratory for testing methods
- Detailed control of boundary conditions crucial: FDSM works
- Is this unique to Si and GaAs?

Simple intrinsic defects in AlAs: Energy levels

MRS Symposia Proceedings 1370, (MRS Spring 2011); SAND2012-2938 (April 2012)

Verified cell-convergence

Calibrated: $v_{\text{Al}}^{(\text{u})}$

Checked: As_{Al}

Verified: vv

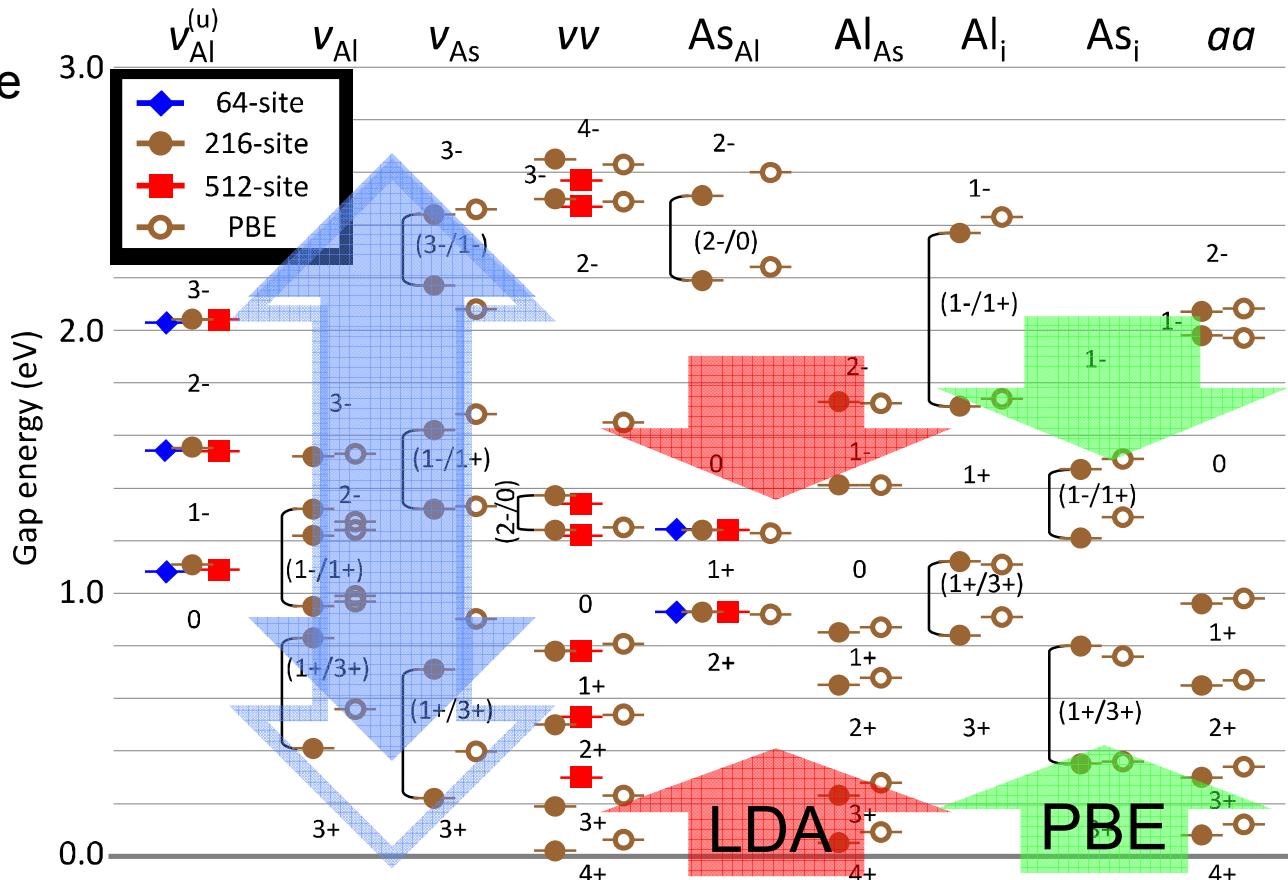
AlAs band gap

KS-LDA: 1.37 eV

KS-PBE: 1.53 eV

Defect span: 2.3 eV

Experiment: 2.16ⁱ eV



Very similar to GaAs defects, with some new features
A reverse band gap problem?

GaP intrinsic defects

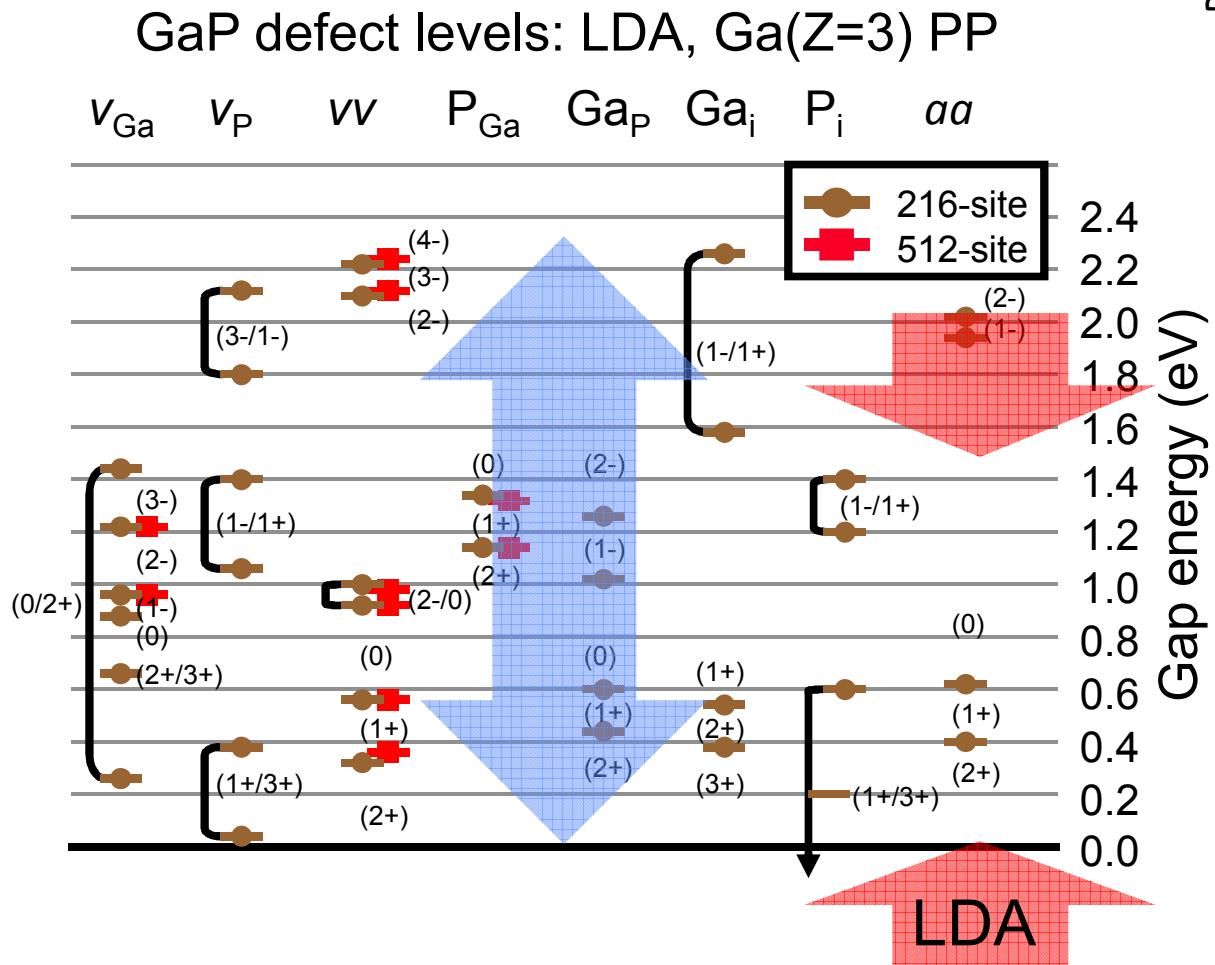
216-site results = 512-site
Verification: cell-converged

GaP band gap

KS-LDA: 1.51ⁱ eV

Defect span: 2.35 eV

Experiment: 2.35ⁱ eV



InP intrinsic defects

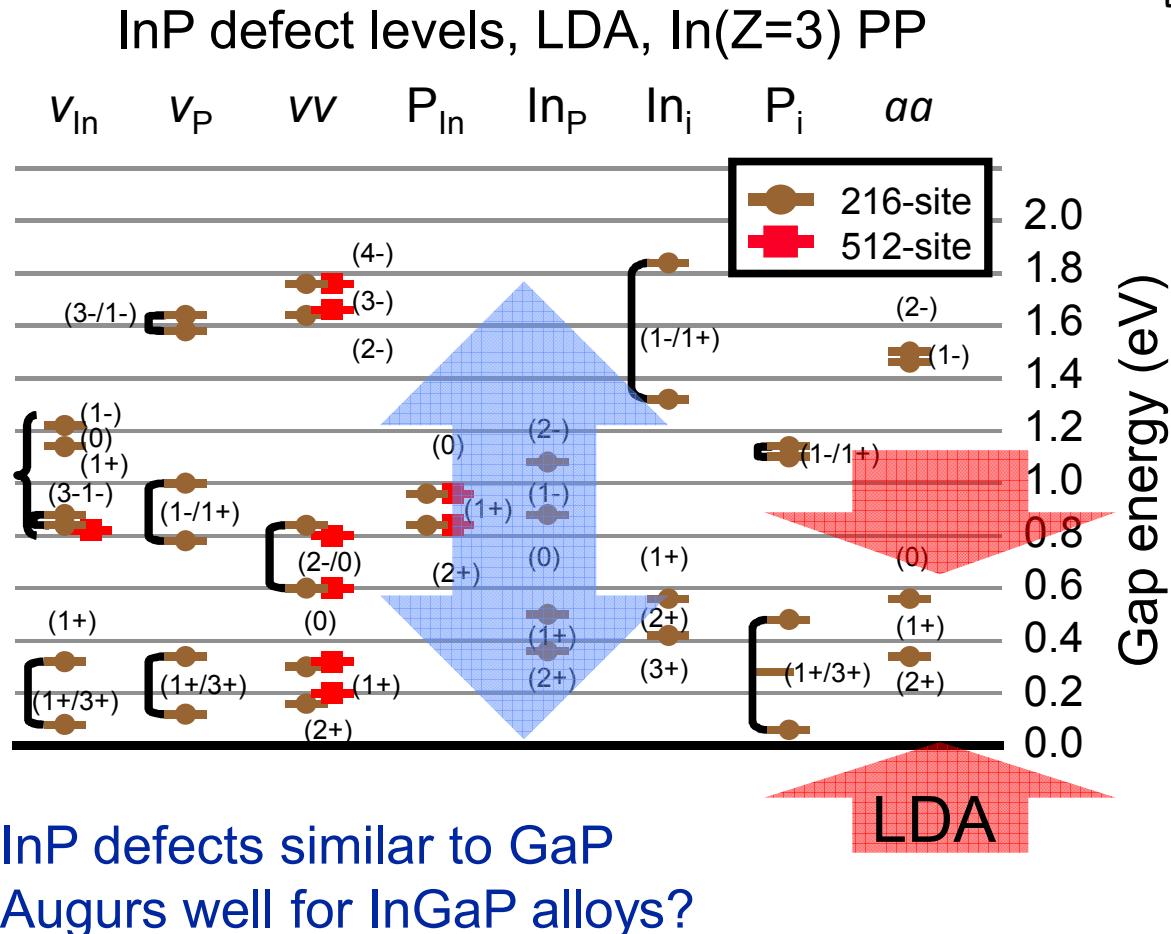
216-site results = 512-site
Verification: cell-converged

InP band gap

KS-LDA: 0.67 eV

Defect span: 1.7 eV

Experiment: 1.42 eV



AIP intrinsic defects

A.H. Edwards, H. Barnaby, A.C. Pineda, P.A. Schultz, IEEE-Trans. Nucl. Sci. **60**, 4109 (2013)

216-site results = 512-site
Verification: cell-converged

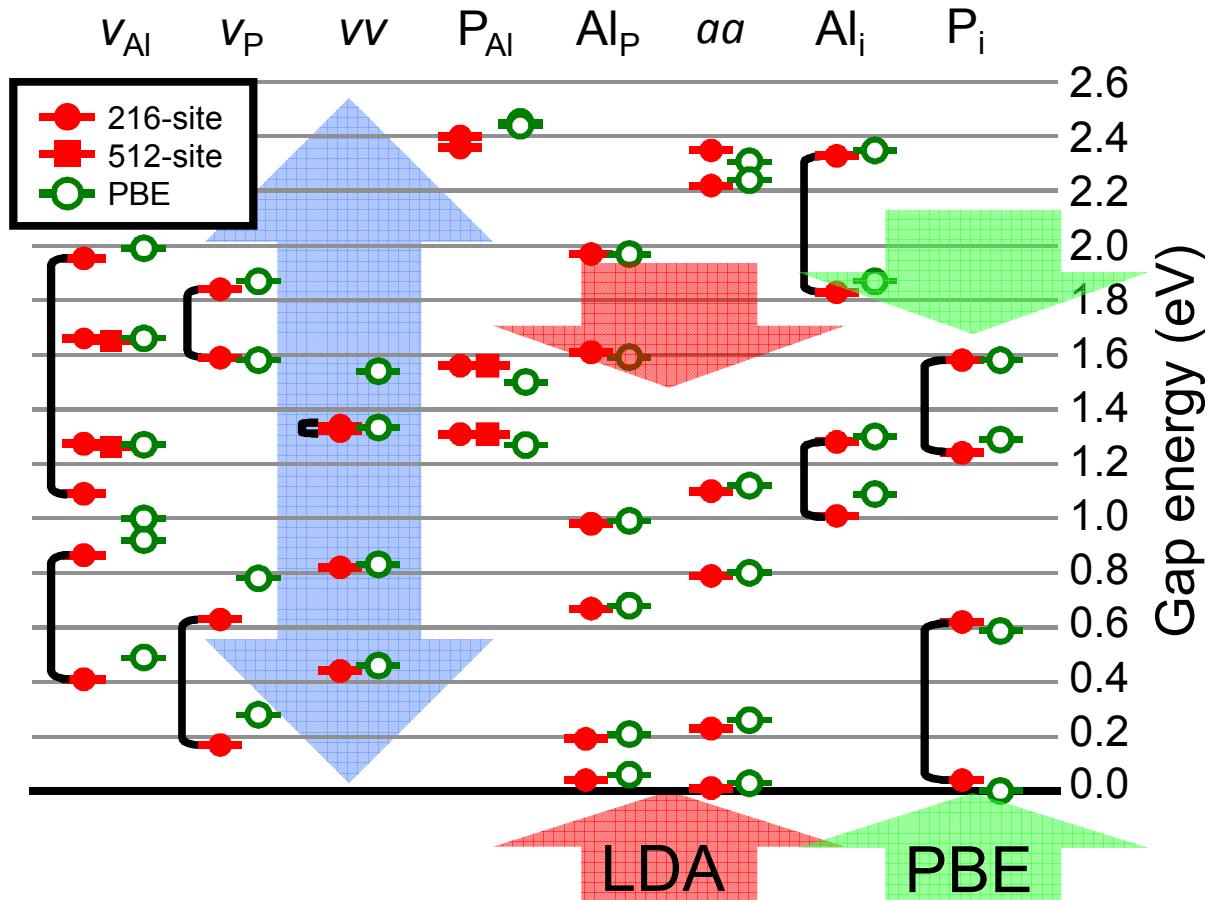
AIP band gap

KS-LDA: 1.48 eV

KS-PBE: 1.67 eV

Defect span: 2.55 eV

Experiment: 2.51 eV



The DFT “Defect band gap”

- Kohn-Sham gap: **outside** bounds of VB to CB *band eigenvalues*
- Defect band gap: **inside** bounds of transition **energies** for defect levels

Band gaps: **experiment**, Kohn-Sham, **DFT defect gap**

Si	1.17 eV		AlAs	2.16 ⁱ eV		AlP	2.51 eV	
	KS	Defect		KS	Defect		KS	Defect
lda	0.49	1.2	lda	1.37	>2.3	lda	1.48	2.55
pbe	0.62	1.2	pbe	1.53	>2.3	pbe	1.67	2.55
GaAs		1.52 eV		GaP		2.35 ⁱ eV		InP
	KS	Defect		KS	Defect		KS	Defect
lda	0.83	1.54	lda	1.51	2.35	lda	0.67	1.7
lda-3d	0.47	1.52	lda-3d	1.47	2.35	lda-3d	0.66	1.7
pbe	0.45	1.50	pbe	1.74	2.35	pbe	0.47	1.7
pbe-3d	0.13	1.50	pbe-3d	1.52	n/c	pbe-3d	0.46	n/c

Total energy defect gap insensitive to Kohn-Sham gap
Defect band gap matches (overshoots?) experiment

Other examples

IV-IV: 3C-SiC (cubic)

GGA/PBE KS Gap: 1.38 eV

Defect Gap (PBE): ~2.4

Experimental Gap: 2.40

II-VI: CdTe (3d-valence)

LDA KS Gap: 0.81 eV

PBE KS Gap: 0.69 eV

Defect Gap (LDA&PBE): ~1.6

Experimental band gap: 1.60

Close correlation of the **defect gap** with **experiment band gap**

What about a crystal that is not tetrahedral, and a large gap?

CsI defect level spectrum - DFT

R. M. Van Ginhoven and P.A. Schultz, J.Phys.: Cond. Matter **25**, 495504 (2013)

250-site results = 432-, 686-site

Verification: cell-converged

v_I levels match experiment

Validation of accuracy

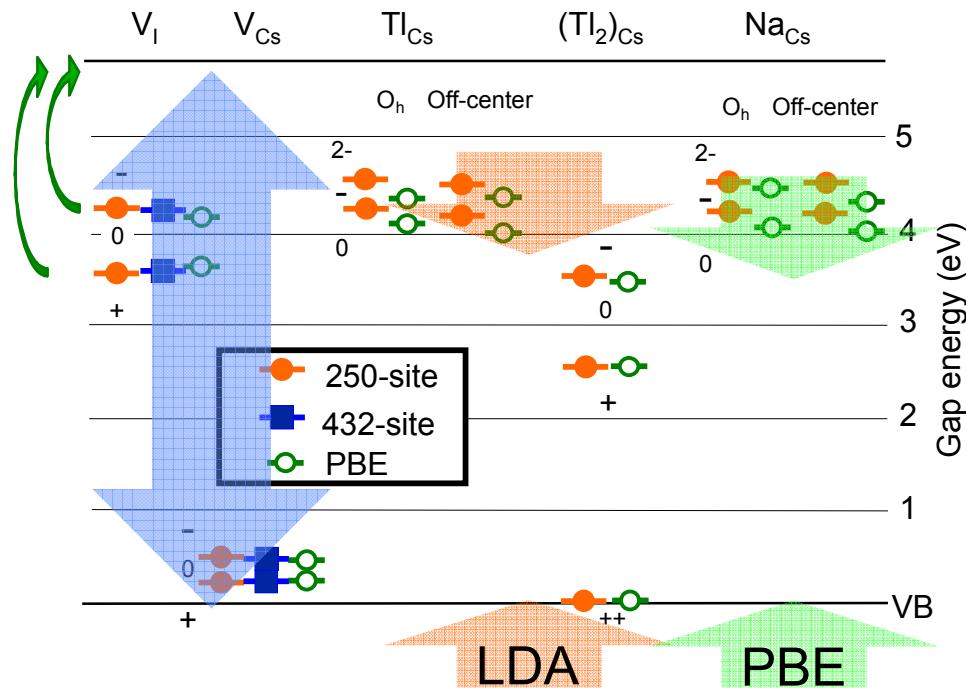
CsI band gap

KS-LDA: 3.80 eV

KS-PBE: 3.58

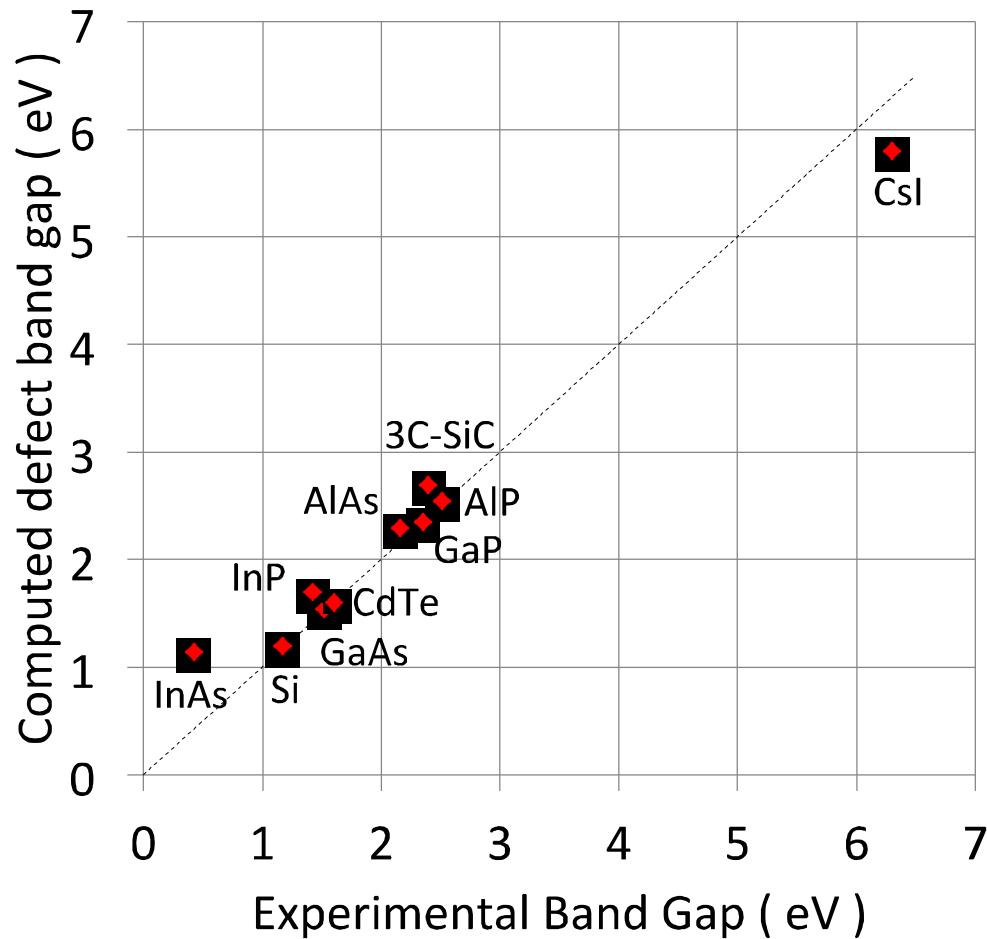
Defect span: >5.8 eV

Experiment: 6.3 eV



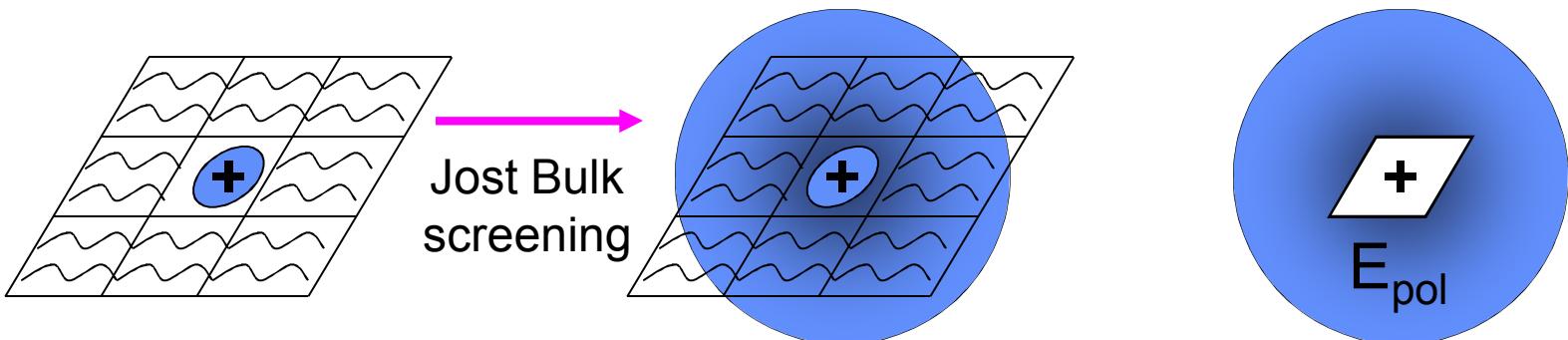
Not a band **gap** problem, a **band edge problem**—
where are they cf. total energy defect levels?

The Defect Gap vs. the Band Gap



Defect gap = experiment, despite a band gap problem

The polarization model



For extrapolation to bulk, need energy of screening outside of supercell: E_{pol}

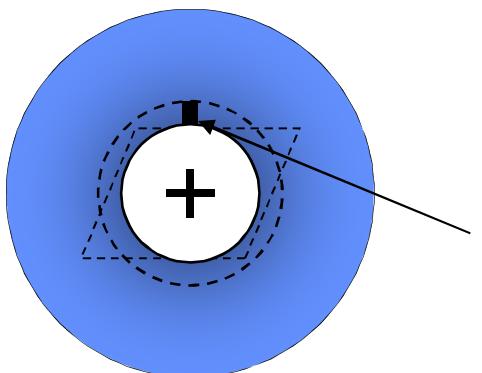
Jost model: $E_{pol} = \frac{(1 - 1/\epsilon_0) q^2}{R_{jost}}$

$$R_{jost} = R_{vol} - R_{skin}$$

q = charge on defect

$$R_{jost} = R_{vol} - R_{skin}$$

R_{vol} = radius of volume sphere

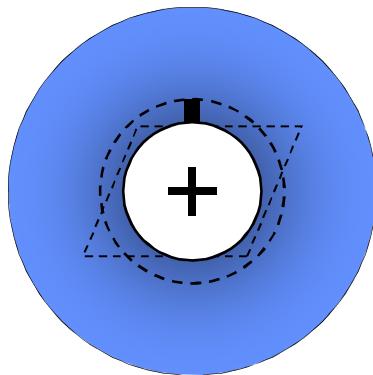


Two parameters for any material

R_{skin} = unscreened volume **inside** cell.
fit: = 1.3-1.7 Bohr

ϵ_0 = static dielectric constant - expt
Si GaAs InP GaP AlAs InAs
11.8 13 12.5 11.2 10.1 15.15

How big is bulk screening?



$$E_{\text{pol}} = \frac{(1 - 1/\epsilon_0) q^2}{R_{\text{jost}}}$$

Defects mostly converged at 64-site cells

E_{pol} mostly insensitive to ϵ_0 at 10-15, use GaAs (LDA)

Charge $q = +1, -1 \quad +2, -2 \quad +3, -3 \quad +4, -4$

Screening: 1.09 eV 4.36 eV 9.81 eV 17.43 eV

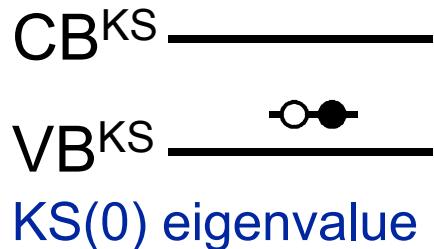
This is lower bound on classical screening energy

Bulk classical screening outside defect is **huge**
 Key insight to understanding KS gap vs. defect gap

How is a good defect band gap possible?

Conventional picture:

Defect state depicted as eigenvalue inside KS eigenvalue gap

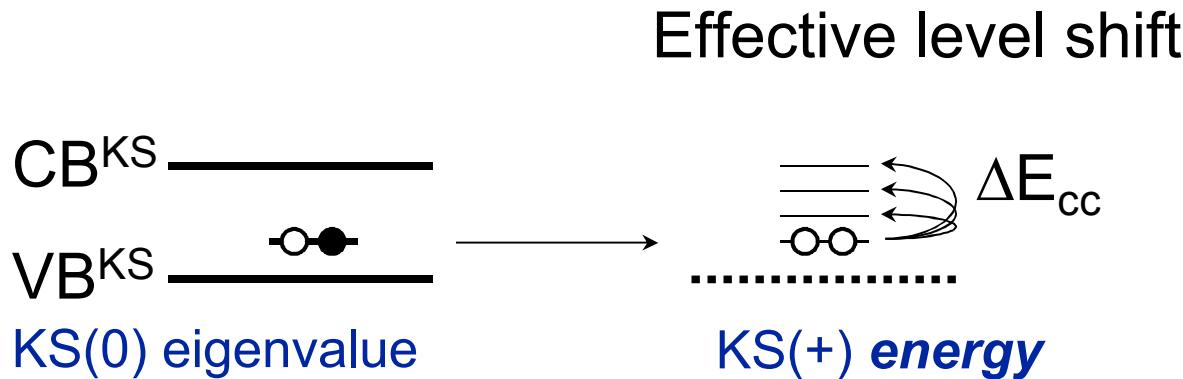


Sham and Kohn [Phys. Rev. 145, 561 (1966)]

the KS eigenfunctions and eigenenergies are auxiliary functions of the KS equations, and “must *not* be interpreted as corresponding to elementary excitations.”

How is a good defect band gap possible?

What about:
final state effects?

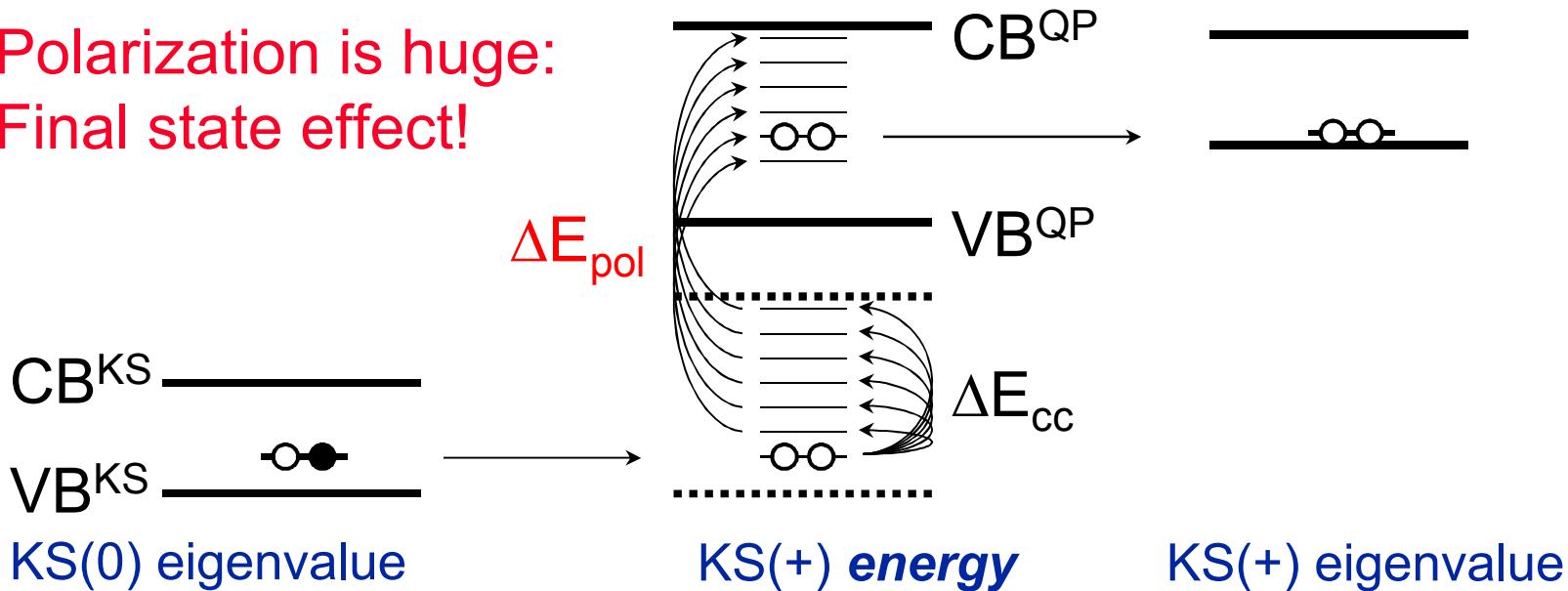


Central cell electronic relaxation (quantum): ΔE_{cc}

Sham and Kohn [Phys. Rev. 145, 561 (1966)]
the KS eigenfunctions and eigenenergies are auxiliary functions of the KS equations,
and “must *not* be interpreted as corresponding to elementary excitations.”

How is a good defect band gap possible?

Polarization is huge:
Final state effect!



Central cell relaxation (quantum): ΔE_{cc}

Long range screening (classical): $\Delta E_{\text{pol}} > E_g$

Defect levels bounded by (screened) quasiparticle gap, not eigenvalue gap

Sham and Kohn [Phys. Rev. 145, 561 (1966)]

the KS eigenfunctions and eigenenergies are auxiliary functions of the KS equations, and “must *not* be interpreted as corresponding to elementary excitations.”

Not only eigenvalues but eigenstates are meaningless

Conclusions

- **Total energy** DFT defect levels not constrained by KS band gap problem
- Semilocal DFT+FDSM - quantitative (~0.1 eV) for defect levels in semiconductors
- **Defect band gap** is good predictor of experimental band gap
- KS interpretation of band gap is not-even-wrong for defect levels
 - Sham and Kohn's ignored warning about misinterpreting KS eigenvalues
- **Rigorous charge boundary conditions** more crucial than KS band gap
 - **band edge problem** — where are they? — is the more serious question
- Path to better functionals: “fixing” using KS gap as primary metric is misguided
- **Diligence in credibility — verification/validation/UQ — crucial to predictive DFT**

Thanks to Arthur H. Edwards (AFRL) and also Renee M. Van Ginhoven (AFRL/RDHEC)

----- Supporting slides -----

A supercell theory of defect energies

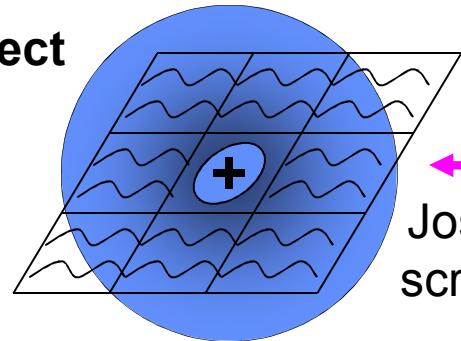
Peter A. Schultz, Phys. Rev. Lett. **96**, 246401 (2006).

Target system:
isolated defect

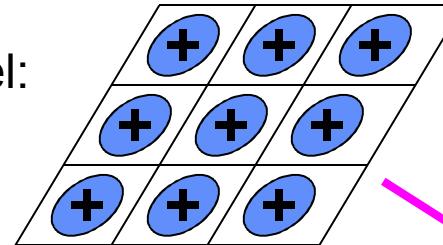
=

**Computational
model for
isolated defect**

(+ DDO
for defect
banding)

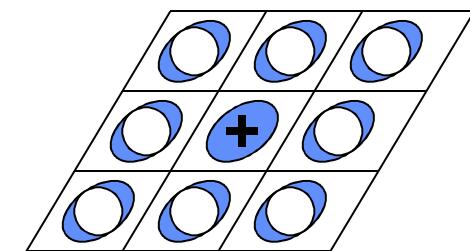


Standard
DFT model:
Supercell

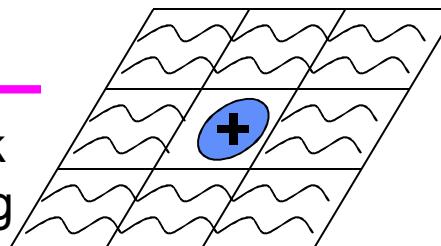


LMCC to fix
boundary
conditions

Finite Defect Supercell Model



Jost Bulk
screening

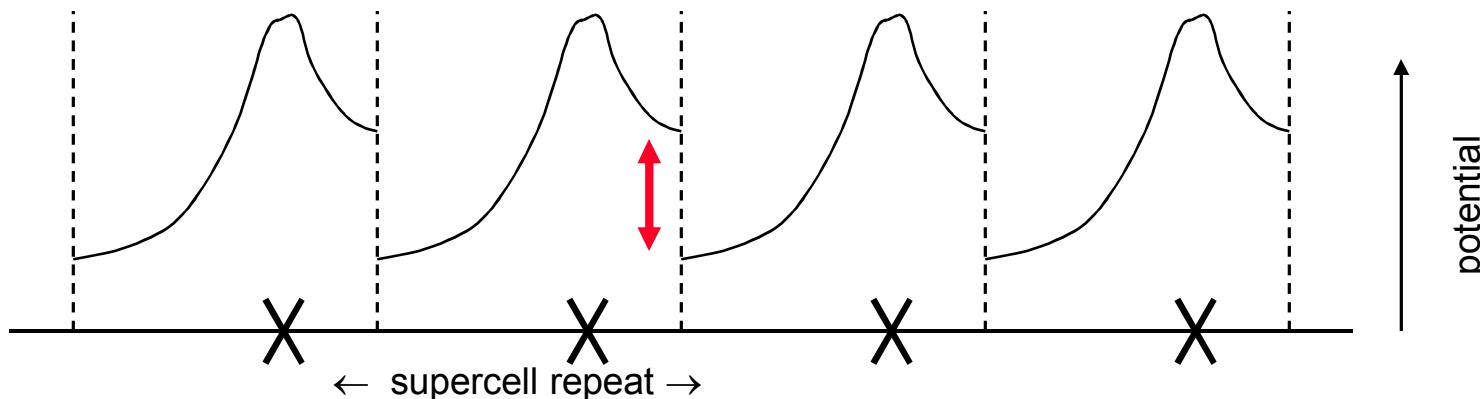


Crystal embedding
to fix μ_e

FDSM: *Ab initio* computational model – connect model to physics
Calculations with rigorous control of charge boundary conditions

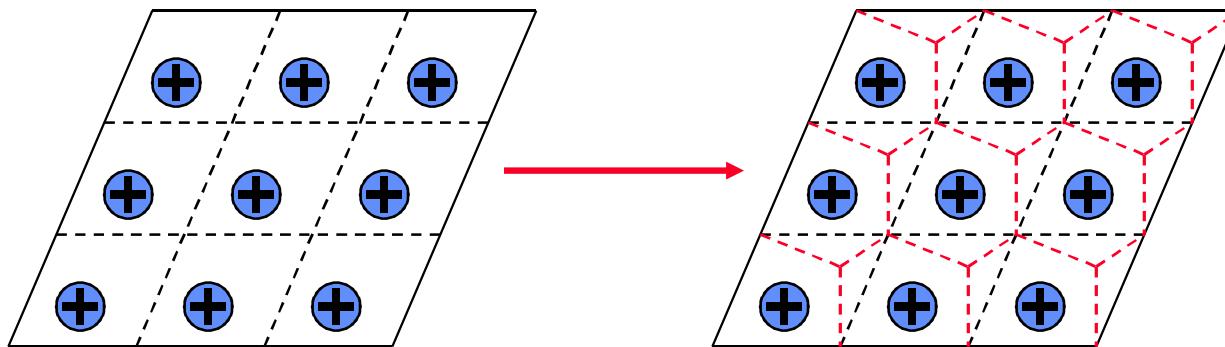
LMCC potential in bulk systems

A complication in bulk systems ...



Discontinuity in potential from LMCC at supercell boundary!

... is solved by using Wigner-Seitz cells around LMCC positions



With Wigner-Seitz local volume, LMCC potential is continuous

The electron chemical potential μ_e

- Standard E_{form} of charged defects needs electron reservoir:

$$E_{\text{form}}(q) = E_{\text{defect}}(q) - E_{\text{xtal}}(0) - \sum N_i \mu_i + q \mu_e$$

linked

- Supercells with charge: $\phi_{\text{def}}(r) = \phi_{\text{pbc}}(r) + C_{\text{def}}$

Periodic potential $\phi_{\text{def}}(r)$ only known to within a constant C_{def}

$C_{\text{def}} = \text{fcn}\{\text{defect type, configuration, cell shape, cell size, ...}\}$

$E_{\text{defect}}(q)$ has qC_{def} term in its internal energy

- Standard ad hoc workarounds unsatisfactory - unquantitative

- matching VB,CB edge, band structure features, average potentials ...
- Issue: renormalizing infinities, defect modified bands, band-bending, ...
- calibration uncertainty of “few tenths of eV” (Garcia & Northrup) - best case

Needed a more rigorous scheme to fix electron reservoir

Defect energy and level calculation

Finite Defect Supercell Model Formation Energy

$$E_{\text{form}}(q) = E_{\text{defect}}(q) - E_{\text{xtal}}(0) - \sum N_i \mu_i + E_{\mu_0}(q) + E_{\text{pol}}(q)$$

$E_{\text{defect}}(q)$: DFT energy with LMCC potential

$- E_{\text{xtal}}(0) - \sum N_i \mu_i$: match number of each type of atom

$E_{\mu_0}(q)$: fix chemical potential μ_e to common electron reservoir

$E_{\text{pol}}(q)$: bulk polarization response

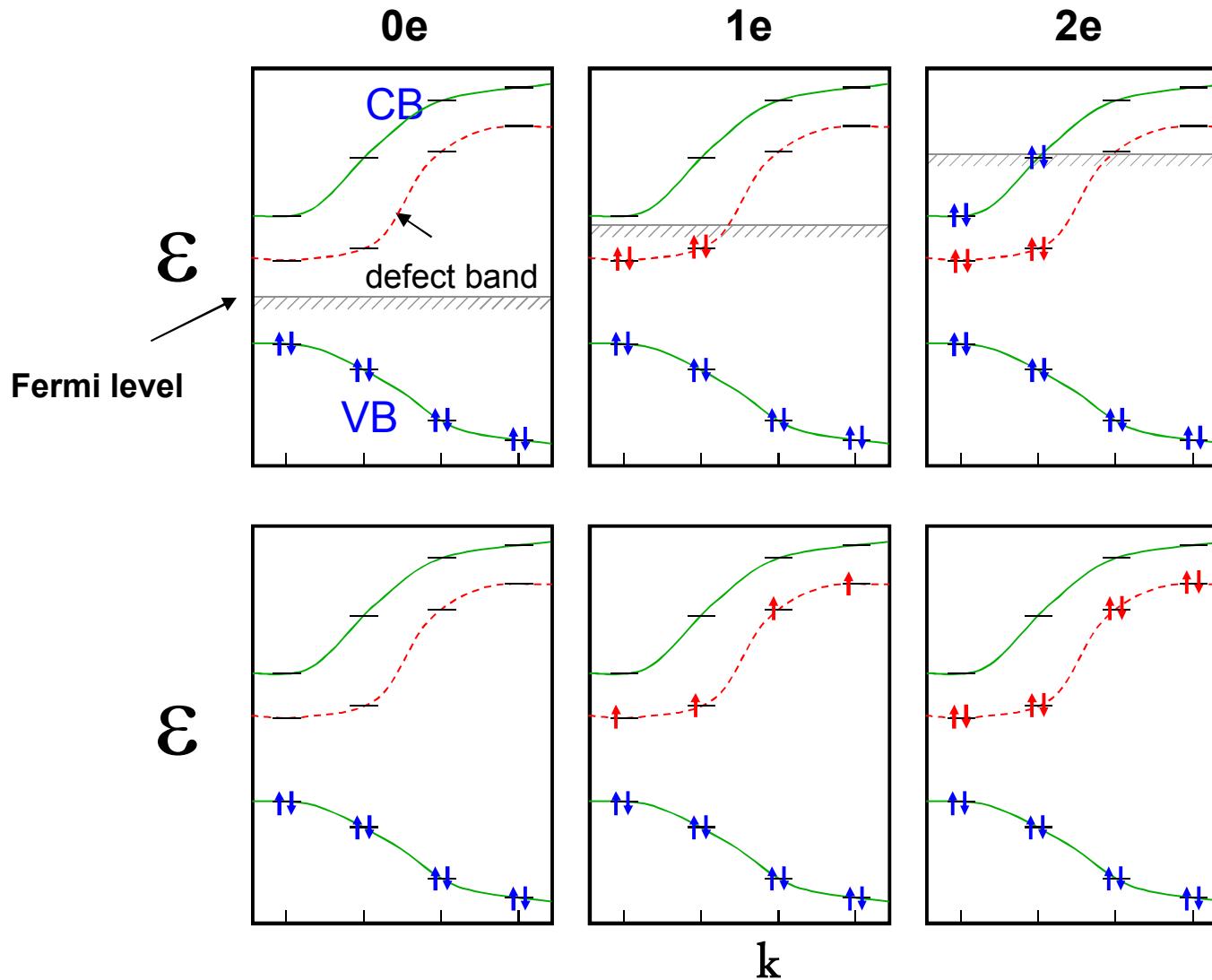
Defect level calculation

$$\Delta E(q/q-1) = E_{\text{form}}(q) - E_{\text{form}}(q-1)$$

Need to set spectrum vs. VB/CB by single marker.

All defect levels for all defects then fixed by continuity.

Defect banding: Discrete Defect Occupations



Charged cell convergence - Jellium

PHYSICAL REVIEW B

VOLUME 51, NUMBER 7

15 FEBRUARY 1995-I

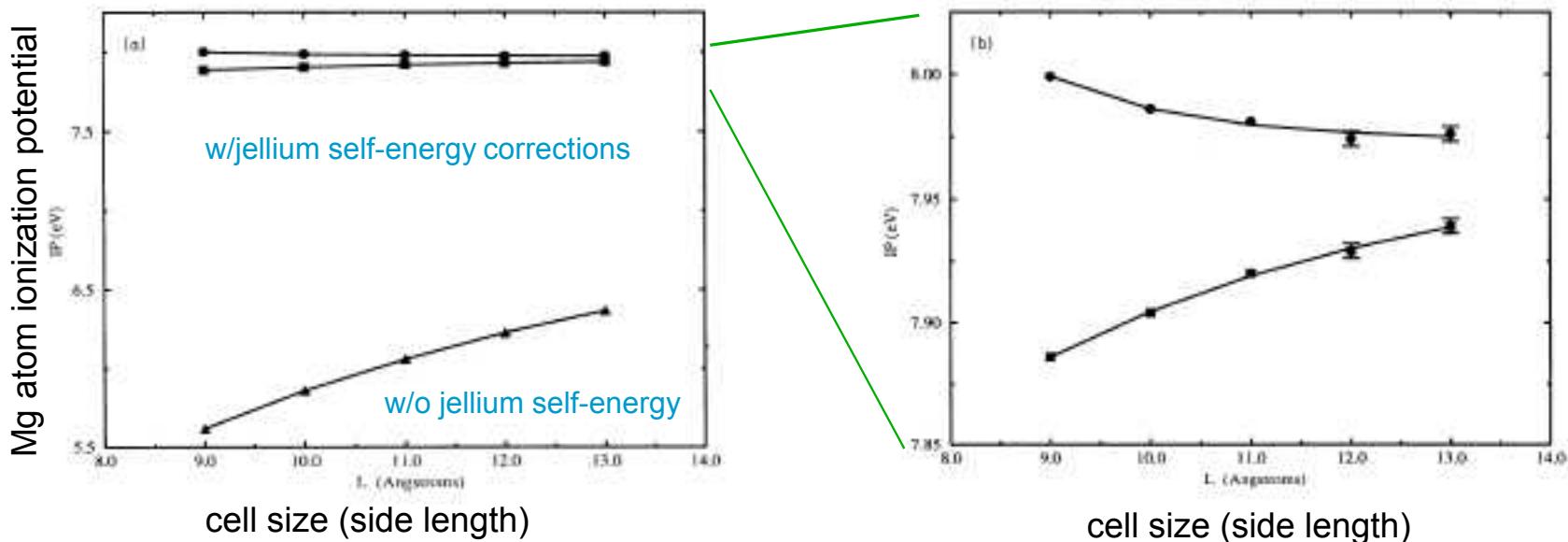
Periodic boundary conditions in *ab initio* calculations

G. Makov and M. C. Payne

Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, United Kingdom

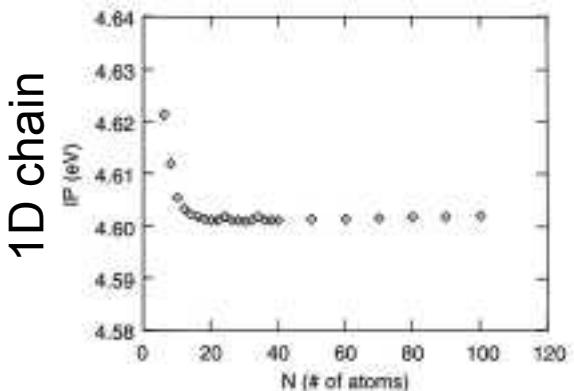
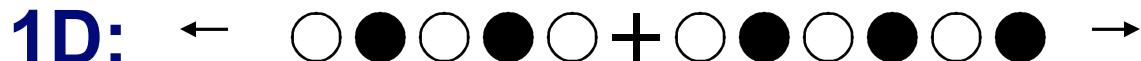
(Received 19 July 1994)

Figure 3

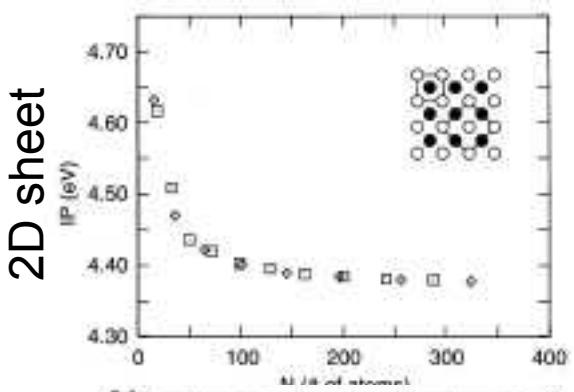


Variation in computed total energy due to incorrect charge potential

LMCC: NaCl - Cl vacancy ionization



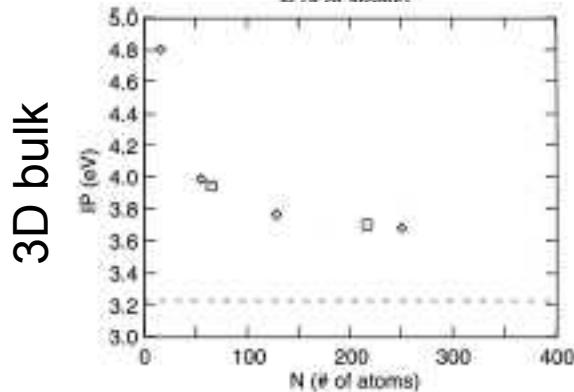
Supercell size dependence due to polarization.
Larger supercell \rightarrow more polarization
Apparent L^{-3} scaling = 1D classical dielectric screening



2D: single-layer 2D square sheet (polar&non-polar)

Apparent L^{-2} scaling = 2D classical dielectric screening

Insensitive to cell type, polar vs. non-polar



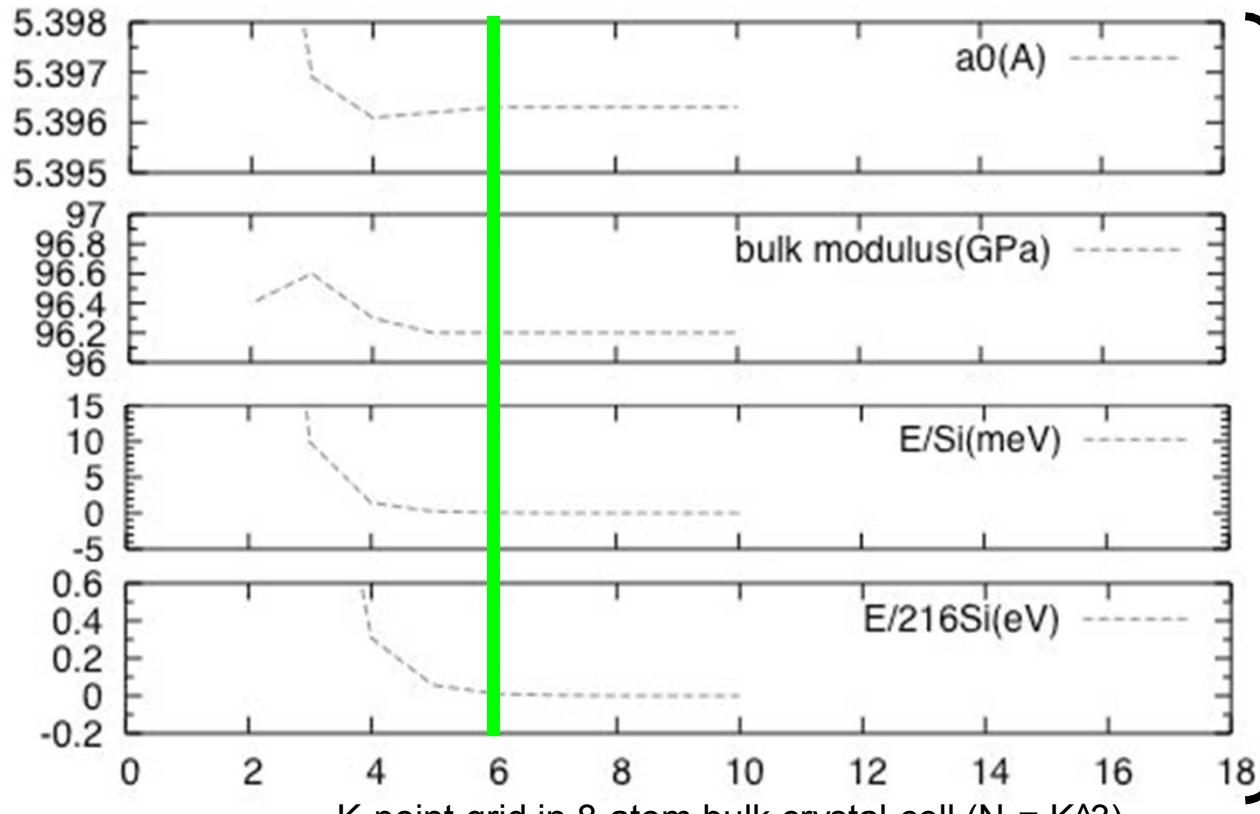
3D: bulk-layer 3D square sheet (fcc&sc cells)

Apparent L^{-1} scaling = 3D classical dielectric screening

Strictly screening due to large supercell volume

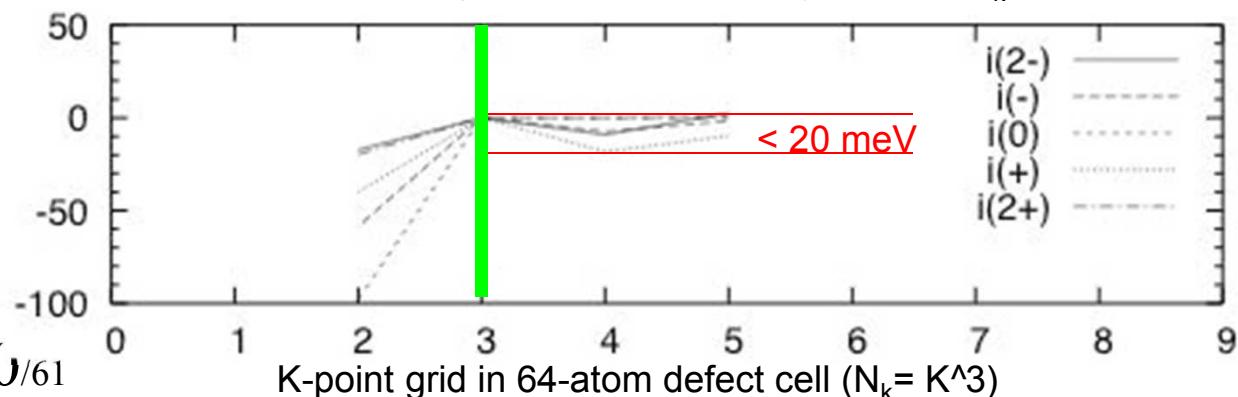
Insensitive to cell shape

BZ convergence: Si self-interstitial



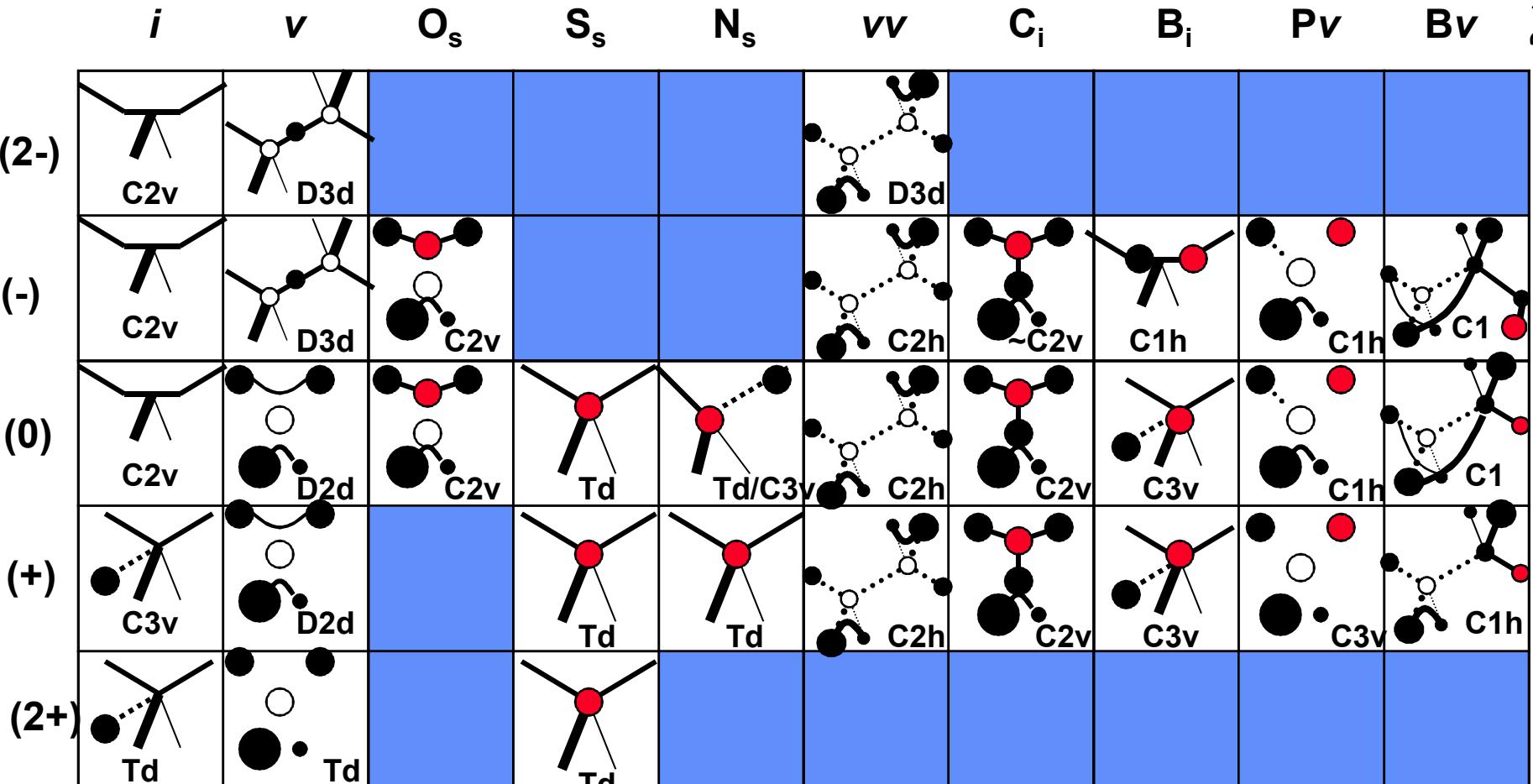
Bulk properties ($a_0, B, E/\text{Si}, E_{\text{tot}}$) converge quickly:
at 6^3 k w/8-cell
= 3^2 k w/64-cell
= 2^3 k w/216-cell

Defect energies should not vary faster than bulk, IF computational model is valid.



Interstitial formation energies in 64-site cell vary < 20 meV
{10 meV w/o $i(+)$ } beyond equivalent of 6^3 k-grid in 8-site.

Silicon defect structures



GGA: $E(C2v) < E(D3d)$ for $v(-)$

Si: new P-v and B-v charge states

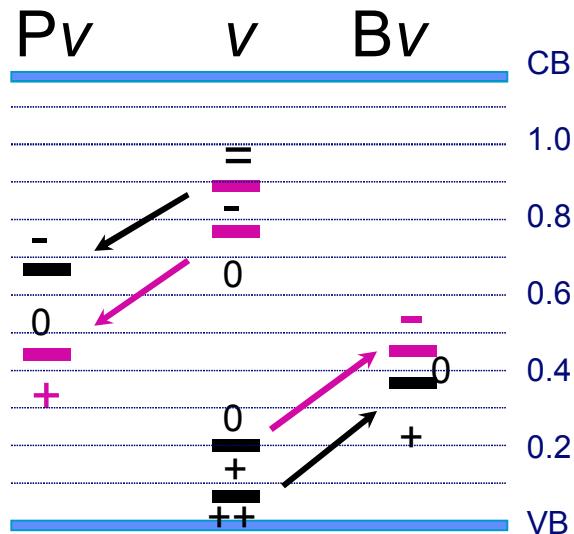
- Silicon level calculations - over 15 defects with levels

$i(=/-/0/+/++), v(=/-/0/+/++), vv(=/-/0/+), C_i(-/0/+), B_i(-/0/+), Pv, Bv$

O_s (A-center), O_i , N_s , S_s , v_2O , v_2O_2 , H_i , vP_2 , v_2P , ...

DFT “defect band gap” matches experiment (1.2 eV)

DFT: mean $|error| = 0.10$ eV, max error~0.2 eV



Task: Theory quantified $v(=/-)$, $v(-/0)$

Discovery: Theory predicted $Pv(+)$ and $Bv(-)$

“Absolute prediction”

new levels >0.4 eV from band edge

validation error: 0.2

$Pv(0/+)$ subsequently confirmed in experiment
[Larsen, et al PRL 97, 106402 (2006)]

VALIDATION is key to quantitative DISCOVERY - GaAs is ALL discovery

Calibrating the polarization model: v_{Ga}

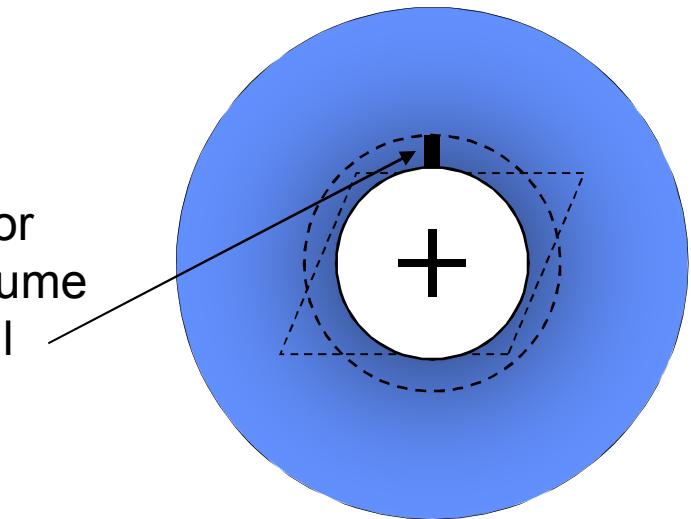
Jost model:

$$E_{\text{pol}} = \frac{(1 - 1/\epsilon_0) q^2}{R_j}$$

$$R_j = R_{\text{vol}} - R_{\text{skin}}$$

R_{skin} accounts for unscreened volume **inside** supercell

Need ϵ_0 (use 13), and R_{skin} (fit)



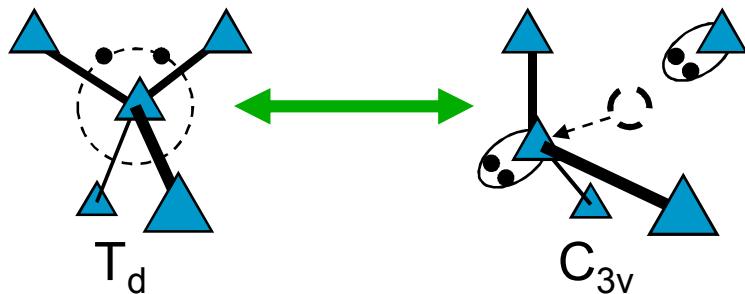
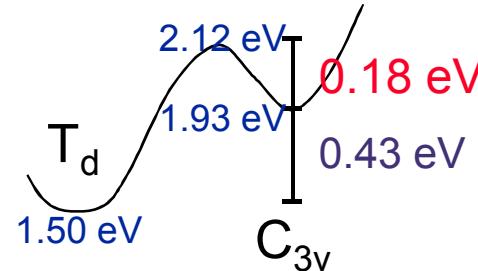
Why use v_{Ga} ?

Need higher charge states (0 to -3), best if not strongly distorted (near T_d)

Energy(eV)	$v_{\text{Ga}}(0)$	$E(2/-1)-E(1/0)$	$E(3/-2)-E(2/-1)$	$a\text{As}: E(0/+)-E(+/2+)$
64-site	2.81	0.167	0.174	0.231
216-site	2.69	0.168	0.152	0.246
512-site	2.75	0.162	0.141	0.252

GaAs EL2 and the As antisite

EL2 = antisite $\text{As}_{\text{Ga}}(0)$



216-site =
512-site
(~ 64-site)

	Experiment -EL2	SeqQuest/FDSM - As_{Ga}
EL2(0/1+)	E_c -0.74 eV	E_c -0.81 eV
EL2(1+/2+)	E_v +0.54 eV	E_v +0.48 eV
Splitting:	0.24 eV ($E_g = 1.52$)	0.25 eV
EL2*	no donor states	no donor states
Reorientation:	~0.3 eV	~0.2 eV

Verification: 64-216-512-1000-site supercell results match

Validation: DFT matches experiment for EL2 w/in 0.1eV