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Why model defects in semiconductors and oxides?

Radiation effects in electronics
Process modeling for semiconductors

Radiation detectors

Defect chemistry in nuclear fuels and nuclear waste

Goals:

(1)Qualitative understanding - Forensics

Augment experiments
- iIncomplete, inconclusive, unavailable, expensive

(2)Quantitative characterization - Predictive
Predictive simulations, inform coarser models
- not just publishable, but defensible to engineers
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Defects: from atoms to devices

Initial defect distribution

Radiation creates displacement damage:
R->V+]

and charge carriers (electrons and holes)
R—>n+p

Defect evolution

Thx: Harry Hjalmarson (Sandia)

Defects react with each other, and

with other dopants and impurities: :
V+1— Sig;
h h |
Defects recombine electrons and FE(t) FE{l1=w)
holes, modifying currents: _ L 4
TP+n->T 1,' t
T+po> T O

Radiation/implant/processing creates evolving chemistry of defects.
Those defects govern the performance of electronic devices.
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The radiation effect defect universe: Si

Peter A. Schultz

Primary defects ... secondary defects ... and more
BB (0,-
Si interstitial (1) By (+,0,-) 180-)
I(+2,+1,0,-1,-2) B|O (+,0)
Cy (+0,-)
B|C (?)

|

I

Annihilation

Vacancy (V)
V(+2,+1,0,—1,-2)

Vo (0.-) + what we don’ t

VB (+,0) know we don’ t
know (discovery)

VP (0,-)

VV(+1,0,-1,-2)

Need DFT - density functional theory - to fill gaps in defect
physics: defect band gap energy levels, diffusion activation @ Sandia
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Multiscale ladder for radiation damage

Electrical system response

Radiation damage

Require: quantitative confidence
Verification, validation, uncertainty

Peter A. Schultz
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Radiation damage and defect levels

Radiation damage ...

produces defects ...

... and we need to quantify these transitions; DFT

6/61
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CB\y/ \_/ \_/

1

VB/\/\%

m

and introduces electronic transitions
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Challenges for density functional theory

Peter A. Schultz

« Conventional DFT fails for defect levels in semiconductors
(1) Physical accuracy: e.g., “band gap problem”
(2) Computational model size limitations
(3) Shortage of good data for validation
(4) Supercell problem for charged defects:

______ *“““ﬂ““"
‘ “\‘ ‘ \“ ‘
Finite charged defect lll-defined (Coulomb divergence)

‘ Lots of DFT calculations, no robust, predictive method
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DFT “band gap problem”

DFT gap. i.e., in KS eigenvalues, significantly underestimates experiment
[L.J. Sham and M. Schliiter, PRL 51, 1888 (1983); PRB 32, 3883 (1985)]
Si: expt: 1.2 eV, DFT/LDA: 0.5 eV
GaAs: expt. 1.5 eV, DFT/LDA: 0.5 eV

Conduction Band

Band gap

Valence Band

Experiment Kohn-Sham (KS) eigenvalue spectrum

The band gap defines the energy scale for defect levels

Fundamental impediment to quantitative predictions?
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The Supercell Approximation

Fast Fourier Transforms are convenient means to solve 3D Poisson Equation.

DFT codes typically assume periodic boundary conditions.

However, our finite defect is not periodic ...

D

Finite defect

Peter A. Schultz
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The Supercell Approximation

Fast Fourier Transforms are convenient means to solve 3D Poisson Equation.

DFT codes typically assume periodic boundary conditions.

However, our finite defect is not periodic ...

supercell

‘ approximation
>

\

Peter A. Schultz

Finite defect Periodic (interacting?) defects

The supercell Idea:
Surround perturbed defect region with enough material to buffer defects.

In the limit of large enough supercells ... approach an isolated defect.
o)

m
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The Supercell Approximation

the catch ... ‘ ‘ ‘

\

Finite defect with dipole Periodic (interacting) defects

Peter A. Schultz

DFT expense limits size of supercell - defects interact
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The supercell approximation

A problem ...

< .

Finite defect with dipole

Peter A. Schultz

even worse ...
A "

Finite charged defect lll-defined (doulomb divergence)

‘ Interactions and divergence are key issues ‘ m
N
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Jellium to eliminate divergence?

Isolated defect ...

\ Apply supercell approximation ...

Neutralize with flat

background charge:
“jellium”
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Whence the divergence?

<€

supercell
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Whence the divergence?

supercell

Peter A. Schultz

@ Sandia
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Whence the divergence?

: q/r‘ q/rﬂl q/r qlr ;

SN g
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VvV L___[L__

<€

supercell
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Whence the divergence?

: qlr

Y

qlr :

Peter A. Schultz

;q/r q/r gr 1 qlr E q/r q/ri
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Whence the divergence?

Peter A. Schultz

3

; qlr ; qlr ; qlr q/r ﬂ: qlr q/rﬂ: q/r qlr ; qlr ; qlr ;

V L.

<€

supercell

Divergence arises from infinite-ranged qg/r potentials from periodic images

Divergence is not flat
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Net charge boundary conditions - jellium

Take isolated

charge density...

N~

|

create cubic

neutralize with

“jellium”

supercell ...

Compare exact and jellium potential

Error in potential (eV)

3.0 T T

0.0

1

-4.0 -2.0 0.0
Distance from cube center (bohr)

2.0

4.0

Error in electrostatic potential :

over volume of supercell

L (Bohr)
10.2
204 64
30.6
40.8
51.0

216
512
1000

—

' AI error goes as 1/L (length)!

Cell size
8 atoms

Solve Poisson Equation

for potential using
periodic boundary
conditions

Potential
Errors (V)
20V
1.0
0.67
0.50
0.40

Si band gap: 1.2 eV (expt.), 0.5 eV (DFT)

Standard jellium methbd has large O(1/L) error in potential
Error propagated into density distribution and into energy

Sandia
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Local Moment CounterCharge (LMCC)

P.A. Schultz, PRB 60, 1551 (1999)
 Solution of Poisson Equation is linear in the density
« LMCC: split total density p( r ) into two pieces ..

1 model local density 1 y( r)matchlng multlpole charge ofp
2) remainder (momentless) density p’ ( - Nl

L
o / Am/ / d;;as"

Local (g/r->0) Perlodlc (e.q. fft)

OO LT [O/00)

[O®0/ =,/ 577 + 000/

(O/O/O/wry [ ainy (OO y i
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Gives proper r—oo asymptotic boundary condition
Avoid (not ignore!) Coulomb divergence

Peter A. Schultz
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Charged cell convergence - LMCC

P.A. Schultz, PRB 60, 1551 (1999)

»
»

& »
< »

L
Charged, no dipole: CH, —» CH,/[+] ... lonization Potential

L =18.0 - 30.0 bohr (9.5-15.9A)  IP varies <105 eV

Dipole, no charge: Na—Cl diatomic molecule ... Total Energy

L =16.8 - 30.0 bohr (8.9-15.9A)  TE varies < 105 eV

Dipole, charge: OH — OH]I-] ... Electron Affinity
L =18.0-30.0 bohr (9.5-15.9 A)  EA varies < 103 eV

Total energy, levels, i.e. full Hamiltonian are all immediately converged.
-> electrostatic potential correctly represented by LMCC, not just energy:rhj

2161
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A supercell theory of defect energies

Peter A. Schultz, Phys. Rev. Lett. 96, 246401 (2006).

Standard

DFT model:  /&/&®/® / |

SuperrT::c()alle /‘/‘ /‘ / Lg/lo(agdtg r{:x
/ ‘/ ‘/ ‘ / \Conditions

| Finite Defect /0/0/0/
Computational Slt::eerceellel\;lzodel C/)O/ &0/

Peter A. Schultz

Target system:
isolated defect

model for
isolated defect

AL |
fc(): dDeli?ecc):t Jost Bulk L@ CryStﬁl) ﬁ)r?buiddmg
banding) screeningm/

“Ab initio” computational model — connect model to physics
Calculations with rigorous control of charge boundary conditions
Sandia

(i.e.,not jellium-based) National
22/61 Laboratories




A fixed chemical potential p,

Replace interaction of net charge with periodic defect potential ...
— + ’ ’ + ’
E= Jdr M (@ 4er *C o) Fluc dr Of v P ger

Lo S 000, S S S S
oo, /[ /e 000, SO0 S8 S
/S S o0, /S S S S S

nm(r) O 4ef( 1) +C ger P e T) drm( r) (C=0)
... with crystal potential:
+ +
+]dr M Lw (Ogear +C ial) - Juc dr 0L Py

A -~ = S/
[ /&) PR S L e S
A -~ = S /A

T'|+LM( r ) d)xtal ( r ) +Cxta| Pxtal ( r ) ¢+LM( r ) (C=O)

Replace variable defect cell C’ 4, with fixed crystal C,,,, reference

2361

Peter A. Schultz

Chemical potential equivalent to matching potential at R=>° @ i
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Si: DFT/LDA vs. E};@[@@[fﬁm@mﬁ@ﬂ Levels

Peter A. Schultz, Phys. Reuv. Lett. 96, 246401 (2006).

i v O, S N, w C B, Pv Bv

CB O
= - 0 11 &,
— = ~+ 10 &
— 0 0 0 = . =

- b — T 09 3
0= e = 0.8 S
— I + 0 C— —
T 0 p— 0.7 _—.

0 .
i _— ° =5 0.5 §
— 5 . L 04 o
= (0.3 Q

0 ++ — —) = . . O

+ +/++ +- + 8? 2

—/ + . CD

...... ++ =0/ VB S

LDA: max error=0.25 eV, mean |error|=0.10 eV
Intrinsic, first-row, second-row, and complexes across gap
LDA Kohn-Sham gap is only 0.5 eV r.h Sandia

National
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Si: DFT/PBE vs. E}X[@@[Fﬁﬁ[@@[ﬁ)ﬁ@ﬂ Levels

P.A. Schultz and A.H. Edwards, NIMB 327, 2-8 (2014).

- v O, S, N, w C( B Py Bv
CB
__________ — _' I — e 1.1
= = + 1.0
S — 00 0 m—r—l o — 09
or = F 0 — 0.6
- 0.5
- 0 —_— 04

+
_— = 0.3
0 ++ — — N 05
=’r§ +/++ + + 0-1
++ 0/+ Ve

... and some other defects

DFT/PBE defect level max error=0.20 eV, mean |error|=0.10 eV
DFT “defect gap” matches experiment (KS gap: 0.6 eV)
Band gap problem not seen in total-energy-based defect levels

Is silicon a magical material for theory, too?

(A\9) deb pueq ul |oAg] 198)0(

Sandia
National
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Computational methods — llI-V’s

» General purpose DFT code SeqQuest (http://dft.sandia.gov/Quest)
—well-converged (contracted-Gaussian) local orbital basis
—both LDA and PBE functionals

—converged norm-conserving pseudopotentials (Ga,In both Z,=3,13)

—full force relaxed (<1 meV total energies)
—full FDSM ... robust control of boundary conditions

- Large bulk simulation supercells

—a,=a,(theory); GaAs: 5.60A(LDA), 5.63A(3d), 5.74A(PBE); ay(expt)=5.65 A)

—Cubic supercells: 64-, 216-, 512-, 1000-site

—k-sampling: 33 for 64-site cells, 23 for 216-, 512-, 1000-site cells,
—fully calibrated polarization model

—all these computational parameters are tested for convergence

National
Lahoratories

Comparable method that yielded 0.1 eV accuracy in Si :] -
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Simple intrinsic defects in GaAs: LDA

P.A. Schultz and O.A. von Lilienfeld, MSMSE 17, 084007 (Dec. 2009).

Peter A. Schultz

3
1.0 —
>
>
)
c
)
S
0.5 O

216- = 512- = 1000-site Vea Vas VWV fSca Gaps Ga As; aa
Verification: cell-converged = #‘3‘4 E Ga(Z=3)
2-11- -
LDA-3d = LDA to <0.1eV &) o 216t
DO -site
Verification: PP converged — [3 @ 1000.site
Verification: functionals — (T A [--O-I-
2- -
o 1-10) “a (1-00)
o | (1-/0)] o] 1-
Asg, levels = EL2 levels 1- om ,'9'_/1'_\ e
Vs, levels below midgap '6"'_._ '2': -~ (2+/3+)
Validation: levels < 0.1 eV~ _#=q; N 1o qe [
(2%/3+) = B
| "-2'_,_ 2+ 2+
-9- vb_L_J(»].|./3.|.) g r_ -U(1+/3+) 0.0

3+

DFT+FDSM: Apparent accuracy of ~0.1 eV ‘

2761
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The v, is not the E1-E2 center

Simple  Complex
VAs VAs
Td PD g+ 1Dy,
(3- ./.2-)
T @4
3 14 = =_2
= EM)_ya.fy ="
£ 1.3 -
% (3- /2-)
o 1.2
@®
O 41
LDA-216 =o=
1.0 PBE-216
09 PBE-512 +i

PBE-1000"#"

Incompatible with E1-E2
positron annihilation

Site-shift

VAs
*
V,As‘"’ V' As

Matches E3
(DX-like,
level position)

Peter A. Schultz
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The GaAs divacancy is the E1-E2 center

)y A 4-

charge
states

K.
1<,
St
\.
D"
N
)
~—
—

S (3-/2-)
) 4A 210 —
R (2 > (0/1+)
O YO N 1-/0)
f—. A o (1-/0)
© 2-1-) =
O 05
A A
(2-) 0 0
ol -,
4 T e U(1+/3+)

0.0

>
@
o 4
>

explained (b)

oN Vv, Side

29561 :@
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The GaAs divacancy is the E1-E2 center

e | [111]Ga e | [111]As

vv appears to be a threshold defect, on the As site
(same annihilation kinetics cf. As;, and v, invisible)

Peter A. Schultz




The GaAs divacancy is the E1-E2 radiation center

P.A. Schultz, J. Phys.: Condens. Matter 27, 075801 (2015).

VW Vi
Old (experimental) lore, back to 1988: 4-
E1, E2 center = v, (-/0), v, (0/+) E1=> %3 1.5
E3=v, ti * * E27 2 (5 )
vv is dismissed
E3—™ >
: : 3- /2-
Level structure reassigned with DFT: t; ) 1
Vas(-/+) is mid-gap negative-U (only one level) (1=10) (0/1+)
Vas(3-/1-) is upper-gap -U (one level) l: o
vv(4-/3-/2-) near conduction band G0
(2-/1-) 05
<
vv is major radiation defect: E1-E2 1+

U(1+/3+
Vas(3-/1-) transition is the E3 L(h 2)0

DFT-SeqQuest+FDSM levels good enough to identify
defects strictly on quantitative defect level calculations :ﬂ"j

311
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Gap energy (eV)
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Discriminating a deep defect from shallow
acceptors in supercell calculations:

Gallium antisite in GaAs

PAS, PRB 93, 125201 (2016)

UUR
SAND2016-2676C
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GaAs - defect physics poorly known

Peter A. Schultz

Asg, = EL2  Well characterized — deep double donor

Theory crucial in characterization:
Dabrowski &Scheffler, PRL 1988
Chadi & Chang, PRL1988

Ga,, = 77?7  Remains elusive

Experiment: Never definitively identified

Theory: Never definitively characterized
- supercell problem: deep or shallow?

Laboratories

Crucial to distinguish if defect shallow or deep :rh] Notiona
3361
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Ga,  history

Experiment: Ga-rich GaAs (>0.53 Ga) = “78/203" defect

Elliott 1982,1983; Yu 1982

- p-type
- residual shallow double acceptor at 78 meV and 203 meV
- no distortion from T

- Ga-rich and shallow double acceptor - Ga antisite

Doubts about 78/203: inadvertent B-contamination?

Kiessling, et al. 2008 — grown boron-free
- semi-insulating, no residual acceptor
—> shallow double acceptor = B, antisite

Peter A. Schultz
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Defect levels in GaAs: LDA

P.A.S. and O.A. von Lilienfeld, MSMSE 17, 084007 (2009)
PA.S., JPCM 27, 075801 (2015)

Peter A. Schultz

Asg, Vv Vas Ga,

4-
E1 —> B E3 1.5
DFT with SeqQuest o —t 2- ol
Gaussian basis pseudopotentials (2-11-)
LDA and PBE
216,512,1000-atom supercells — e E—————
Converged model parameters £ ;
LMCC charge boundary conditions (3- /2-) 1.0 ()]
216-, = 512- = 1000-atom levels E[ 2 o ~ . \;
0 T o) >
B - ..L' ) [ | )
DFT matches experiment 1+ (1- /0) 1. T
— - I = -~ vy
EL2 ASg, S— (2-11-) 0.5
E1-E2 =divacancy ou — 8
E3 = v (3-/1-) L. =T
~ 1ig=
Accuracy ~ 0.1 eV - U+/34) Cor ]
= 00

Ga antisite: two deep acceptors, two donors?
35561
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Komsa&Pasquarello, Physica B (2012)

c 1.6

1.4
-3 —— Upper Bound
- Lower Bound
14
— ASGa 0 12 v .32
Ga — . 2
12 F As w| o 8
-1 0 *+1
1l = * 0+
— 2 o8 o2
< - £ A 42043
2 08} +1 3
5 — 2 06
2 1 N -
o 0.6 B
+2 g 0.4
04 b - ®
0.2
0.2 ] ]
* *
0.0 N a 3
0 S ]
A
-0.2

Theory also inconclusive

Wright&Modine, PRB (2015)
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0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Inverse Supercell Size (AJ)

HSE, 64-atom cells
Deep: two acceptor & two donor states

LDA, 216-,512-,1000-atom cells
Shallow double acceptor

HSE study agrees ...

‘ Is Ga,, deep defect a supercell artifact? ‘

h)

Peter A. Schultz

... hewer bounds analysis does not

Sandia
National
Laboratories




Discriminating shallow/deep acceptors

Shallow: state and its charge delocalized, supercell fails
- defect banding, states entangled in VB
- less/no structural distortions

Deep: state and its charge localized, DFT is valid
- eigenstates distinct from VBE
- greater structural distortions
- greater spin polarization

Peter A. Schultz

‘ sandia
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A conceptual model of Ga,,

Ga,.: LCAO-MO model Ga,(0)

(thank you, George Watkins!)

VBE

a, _t_l_

Jahn-Teller instabilities

o
(2

Occupation level patterns determine proper distortion/spin states

Sandia
fh National
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Ga,.(q) ground states

(2-)
(1-)
(0)

(1+)

(2+)

Ground state

ot

+
HH

1t

o+t

tt

T
rD,,
PDyq
T

rD,,

AE(T,4, meV)
0

-71

-102

-95

-25

(1000-atom PBE)

Peter A. Schultz

rD,4(1-)
Relaxation energy (mev)
3x3x3  -15
4x4x4 -23
oxoxd  -30
Spin energy (meV)
3x3x3  -33
4x4x4  -38
oxox5  -41

All ground states distort from (spinless) T
Relaxation, and spin polarization energy increase with cell size

3961
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Ga,. distortions magnify with cell size

Peter A. Schultz

Distortion ratios

1.4
/ —= CZV(O)
1.3 —
1.2
1.1
./.— —a pDZd(O)
1 = o REDI
E- —i- & rD,4(1-)
0.9 A 2ad\
e rD,4(0)
0.8 \
3x3x3 4Ax4x4 5x5x5
Supercell

40,61

... except for pD,4(2+), which is only barely distorted
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What do X,, shallow acceptor supercells look like?

Cas = shallow acceptor Ge, = shallow acceptor
B,s = shallow double acceptor  Ga, = 7777
Supercell C,.(0) B,(0) Ge,.(0) Ga,(0)
T n < un n < wn N << n n < un N < n
d S EEEE BEEEE BEEEE B EE:
X X X X X X X X X X X X X X X

+
©
=
o

+
o
o
Ul

Orbital eigenstates (eV)

Cass Basr Gepg: no distortions (<1meV)
no spin polarization (<3 meV)
no new defect eigenstates in “small” cells

Ga, is different — Ga, is not an effective mass state
4161

Peter A. Schultz




Ga,. eigenstates and energy levels

Peter A. Schultz

+0.05

Kohn-Sham eigenstates DFT total energy defect levels
T4(2-)  rD,y(1-) rD,4(1-) rD,4(0) T,(1+) pD,4(2+) 0.9
(sp) (sp) 4x4x4  5x5x5 : (2_/1 _)
+0.30 0.8 ﬁ — 20.81
;0.7
+0.25 °’. (1-/0)
§ 0.6 B = —E— —m 0.59
+0.20 Y=
3 22 (0/1+)
g +0.15 204 7 7 n 0.41
z (35 = 1+/2+
+0.10 g
& s e w022
o £o.
E
o

o
=

VBE-I"

o

3x3x3-Td  3x3x3 Ax4Ax4 5x5x5
Converged to ~0.01 eV

-0.05

-0.10

-0.15

KS eigenstates cleanly within global Kohn-Sham gap
Energy levels converged to ~0.01 eV with supercell

Eigenstates g= energy levels: levels expanded

42 /61




The Ga antisite summarized

Recently published: P.A.S. PRB 93, 125201 (2016)

Shallow states in supercells: C,q, Bas, Geaq

- no distortions (<1 meV)
- small, decreasing spin energy (< 3 meV)
- KS states entangled in VB in small supercells, “small” > 1000 atoms!

Ga,, is localized: two deep donor, two acceptor states

- large, increasing distortions, increasing spin, clean KS spectrum
- distinct from behavior of known shallow acceptors

Ga,, is not the 78/203 shallow double acceptor

- shallow-Ga,, is high-energy defect in Ga-rich p-type GaAs
- low-energy defects Ga,, v,,, and deep- Ga,, are donors - semi-insulating

Energy level scale expanded compared to KS eigenstates
- “band gap problem” is ... not a problem

Peter A. Schultz
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GaAs: C-doped reaction network

P.A. Schultz, J. Res. Eng: Rad. Effects 30, 257 (2012).

SeqQuest, LDA, 216-site, thermodynamic energy with E=VBE (p-type)
Reaction networks initiated by identified mobile species: As;, Ga,

(9.
\)‘5& a (ASZ)Ga )
o) X clustering” CGa
Ga -1 3>\ /—3 23
o AS c_~ C > (Co)as
As
s -0.28 R
0 AS, Mobile
As G -0.16
Ga a — A (CGa)AS GaAS + Ci

CAs

4461
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Reliable defect levels means reliable chemistry ‘ @
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GaAs: A theoretical laboratory

P.A. Schultz and A.H. Edwards, NIMB 327, 2-8 (2014).

Change the Ga pseudopotential and the functional, and the KS band gap shrinks...

-2 -2 -2r 1

i : N ;

~OF '3’ '3? E

) 7 “ -4__/-\/\_/ :
- ; e _ 5E _ -557 ........... 0.45 : ~
S o e S o 1%
5 ol 5 7 57 |3
2 gf 2 8f 2 gf {1 2
u - ; s u 9F w _9; _f w

o/ LDAL(ZZ3) T 7 W/ PBEAZ=3) |

2 T X W K 1 13 2 T X W K T

45/61

1

from 0.83 eV, LDA, Ga(Z=3) pseudopotential (PP) ...

...100.13 eV, PBE-3d, Ga(Z=13) pseudopotential (PP)

Peter A. Schultz
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GaAs: A theoretical laboratory

Change the Ga pseudopotential and the functional, and the KS band gap changes ...

P.A. Schultz and A.H. Edwards, NIMB 327, 2-8 (2014).

Peter A. Schultz

-2 - -2 =
F ] / ]
-3F \/ \/\ -3k \
-4/\/\" { \
R -5; ............. 0.838\/ ............. f R -5_ A : _
3 o 13 3 g
3 7t 187t 5 )
9oF — -9F
“ [/ LDA-(Z=3) ' | ™ PBE(: PBE-3d
2 1|“ X W K | y r
Vaa w st AsGansi, s ng s mo o VGa v ‘QA.S_ASGg':‘aAsiGa Ins S Veaww Vas AsSansiy, Ins gﬁf 5
3 =
< 1.0 C 1.0 = 1.0
E‘) -
% T
o 0.5 0.5 4= 0.5
0.0 0.0 i = =

... but span of (total-energy-based) defect levels, the “defect band gap”, does not

Defect levels/gap insensitive to size of Kohn-Sham gap! ‘
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GaAs Computational model lessons

* KS band gap not a problem for Si and GaAs defects

 Defect levels insensitive to size of Kohn-Sham gap!

- total-energy differences vs. eigenvalue-referenced
- GaAs is ideal theoretical laboratory for testing methods

 Detailed control of boundary conditions crucial: FDSM works

* |s this unique to Si and GaAs?

Peter A. Schultz
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Simple intrinsic defects in AlAs: Energy levels

fer A. Schultz

MRS Symposia Proceedings 1370, (MRS Spring 2011); SAND2012-2938 (April 2012)

)
W vy vae w Asy Al Al As,  aa

[ [
== 64-site
-@- 216-site

3.0

Verified cell-convergence
Calibrated: v,

Checked: As,, W Sl2-site B o
. -O- PBE —
Verified: vv 2
00
< 20 . 8o
AlAs band gap :«i @Z 0
KS-LDA: 1.37eV & £
. -0
KS-PBE: 1.53 eV oo
1+/3+) =
Defect span: 2.3 eV f_._ :{}
Experiment: 2.16'eV PBE «°
' 4+
Very similar to GaAs defects, with some new features
A reverse band gap problem? r-rF Sandia
48/61 e la([mramnus




GaP intrinsic defects

GaP defect levels: LDA, Ga(Z=3) PP
Vea Vp W Pg, Gap Ga, P, aa

Peter A. Schultz

216-site results = 512-site |-@= 216-site 54
Verification: cell-converged -’ | 512site 55
it - '
f(';_) (2-) 2.0 ;
)
>
—#"—rt o4
GaP band gap | Bty it 12 2
(2-) ( )
. e 2 o) 1.0
KS-LDA: 1.51 eV B o O 08 &
=@=(2+/3+)
o o——— 06 O
Defect span: 2.35 eV (1) o)
_ o= |(1+3+4) -
Experiment: 2.35' eV Lo @
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InP intrinsic defects

Peter A. Schultz

InP defect levels, LDA, In(Z=3) PP
Ve, V% w P, Inp In P, aa

216-site results = 512-site |-®= 216.site
ey : 2.0
Verification: cell-converged (4-) | = 512site 18
(3/1-) g :-(3') (2) 1:6 >
@) - ) gy 2
1.) e
1) e=¢1-/1 1'5 %
(1-11+) - &
InP band gap o ( o o
: (1+4) (0) - 0 0'4 ©
KS-LDA: 0.67 eV o= -~ 4 (9
e[ 2130) geie) 1Y @ 0.2
E:d | .- 2+)

Defect span: 1.7 eV — 0

0
Experiment: 1.42 eV |nP defects similar to GaP ‘

Augurs well for InGaP alloys?

= Sandi
i Natioral
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AIP intrinsic defects

A.H.Edwards, H.Barnaby, A.C. Pineda, P.A. Schultz, IEEE-Trans. Nucl. Sci. 60, 4109 (2013)

Peter A. Schultz

Vay Vo W Py Al aa Al P

2.6
216-site results = 512-site @~ 216-site Lo _ 24
Verification: cell-converged | < aizsie o3 [* 2.2
2.0 ,>\
1.8 o
o =-O- ~
4B
AIP band gap P— o= o Leo |, ©
- O L._.o. 1' 5
KS-LDA: 1.48 eV 23 -0 0
r~ --O- 0.8 %
KS-PBE: 1.67 eV I 06 O
O
Defect span: 2.55 eV 8-‘21
Experiment: 2.51 eV — 0.0
PBE
) Sandia
51 ) teoo




The DFT “Defect band gap”

» Kohn-Sham gap: outside bounds of VB to CB band eigenvalues

» Defect band gap: inside bounds of transition energies for defect levels

Band gaps: experiment, Kohn-Sham, DF T defect gap

Si 1.17 eV
KS Defect
lda 049 1.2
pbe 0.62 1.2
GaAs 1.52 eV
KS Defect
lda 0.83 1.54
lda-3d 0.47 1.52
pbe 045 1.50
pbe-3d 0.13 1.50

AlAs 2.16' eV
KS Defect
lda 1.37 >2.3
pbe 1.53 >2.3
GaP 2.351 eV
KS Defect
lda 1.51 2.35
lda-3d 1.47 2.35
pbe 1.74 2.35
pbe-3d 1.52 n/c

AlP 2.51eV
KS Defect
lda 148 2.55
pbe 1.67 2.55
InP 1.42 eV
KS Defect
lda 0.67 1.7
lda-3d 0.66 1.7
pbe 047 1.7
pbe-3d 0.46 n/c

Total energy defect gap insensitive to Kohn-Sham gap

5261

Defect band gap matches (overshoots?) experimentD ,,
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Other examples

IV-IV: 3C-SiC (cubic)

GGA/PBE KS Gap: 1.38 eV
Defect Gap (PBE): ~2.4
Experimental Gap: 2.40

lI-VI: CdTe (3d-valence)

LDA KS Gap: 0.81 eV
PBE KS Gap: 0.69 eV
Defect Gap (LDA&PBE): ~1.6
Experimental band gap: 1.60

Peter A. Schultz

Close correlation of the defect gap with experiment band gap

What about a crystal that is not tetrahedral, and a large gap?

mh
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Csl defect level spectrum - DFT

R. M. Van Ginhoven and P.A. Schultz, J.Phys.: Cond. Matter 25, 495504 (2013)

250-site results = 432-,686-site

Verification: cell-converged

v, levels match experiment

Vv Ves Tles (Tly)cs Nac,

O, Off-center O, Off-center
2

5

<> -0 -;‘-'0' +.o.
Validation of accuracy oS ob o5y
0
3
Csl band gap 250-site X
432-site 2

KS-LDA: 3.80eV

KS-PBE: 3.58 1
Defect span: >5.8 eV " VB

5461

Experiment: 6.3 eV PBE

Not a band gap problem, a band edge problem—

where are they cf. total energy defect levels? ) e

Peter A. Schultz

Gap energy (eV)
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The Defect Gap vs. the Band Gap

Csl

aP

N

(BN

7
>
Vg
o
()
oo 5
Noi
=
o1
8] o
2 5 3C-SiC -
3]
g o) AlAs AlP
go
Q
]
S5
o
&
o
@)

o

0 1 2 3 4 5 6
Experimental Band Gap (eV)

7

Defect gap = experiment, despite a band gap problem

)
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The polarization model

Peter A. Schultz

LSS

For extrapolation to bulk, need energy of screening outside of supercell: E,

56761

9 RjOSt RvoI - Rskin
Jost model: E = (1-1/5)q q = charge on defect
0]
i RjOSt Rjost: vol ~ Rskin

R, = radius of volume sphere

Two parameters for any material

R.in = Unscreened gy = static dielectric constant - expt
volume inside cell. Si  GaAs InP GaP AlAs InAs
fit: =1.3-1.7 Bohr 11.8 13 125 11.2 10.1 15.15

Sandia
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How big is bulk screening?

_(1-1/g)q?

E
pol
Rjost

Defects mostly converged at 64-site cells

EpoI

Charge g=  +1,-1 +2,-2 +3-3 +4,4

Screening: 1.09eV 4.36eV 9.81eV 17.43 eV

This is lower bound on classical screening energy

mostly insensitive to g, at 10-15, use GaAs (LDA)

Bulk classical screening outside defect is huge
Key insight to understanding KS gap vs. defect gap

57 61
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How is a good defect band gap possible?

Conventional picture:

Defect state depicted as eigenvalue inside KS eigenvalue gap

CBKS
VBKS O
KS(0) eigenvalue

Sham and Kohn [Phys. Rev. 145, 561 (1966)]
the KS eigenfunctions and eigenenergies are auxiliary functions of the KS equations,
and “must not be interpreted as corresponding to elementary excitations.”

Peter A. Schultz
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How is a good defect band gap possible?

What about:
final state effects?

Effective level shift

CBKS —5 AE ..
\VBKS o S o0
KS(0) eigenvalue KS(+) energy

Central cell electronic relaxation (quantum): AE_.

Sham and Kohn [Phys. Rev. 145, 561 (1966)]
the KS eigenfunctions and eigenenergies are auxiliary functions of the KS equations,
and “must not be interpreted as corresponding to elementary excitations.”

Peter A. Schultz
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How is a good defect band gap possible?

Polarization is huge: —  CB¥
Final state effect! /@ . 00
AEpOI ------------- VBQP
cBrs e,
VBKS ——¥ A
KS(0) eigenvalue KS(+) energy KS(+) eigenvalue

Central cell relaxation (Qquantum): AE_,
Long range screening (classical): AE ;> E,
Defect levels bounded by (screened) quasiparticle gap, not eigenvalue gap

Sham and Kohn [Phys. Rev. 145, 561 (1966)]
the KS eigenfunctions and eigenenergies are auxiliary functions of the KS equation

and “must not be interpreted as corresponding to elementary excitations.”
Not only eigenvalues but eigenstates are meaningless

S,
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National
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Conclusions

» Total energy DFT defect levels not constrained by KS band gap problem
» Semilocal DFT+FDSM - quantitative (~0.1 eV) for defect levels in semiconductors

» Defect band gap is good predictor of experimental band gap

 KS interpretation of band gap is not-even-wrong for defect levels

- Sham and Kohn'’s ignored warning about misinterpreting KS eigenvalues
* Rigorous charge boundary conditions more crucial than KS band gap

- band edge problem — where are they? — is the more serious question
 Path to better functionals: “fixing” using KS gap as primary metric is misguided

* Diligence in credibility — verification/validation/UQ — crucial to predictive DFT

Thanks to Arthur H. Edwards (AFRL) and also Renee M. Van Ginhoven (AFRL/RDHEC)

Quest DFT code information: http://dft.sandia.gov/Quest rl" Sandia

S5, U.S. DEPARTMENT OF e
National

VENERGY Paschul@sandia.gov http://www.cs.sandia.gov/~paschul

Peter A. Schultz
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http://www.cs.sandia.gov/~paschul
mailto:paschul@sandia.gov
http://dft.sandia.gov/Quest
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A supercell theory of defect energies

Peter A. Schultz, Phys. Rev. Lett. 96, 246401 (2006).

Standard

DFT model:  /&/&®/® / |

SuperrT::c()alle /‘/‘ /‘ / Lg/lo(agdtg r{:x
/ ‘/ ‘/ ‘ / \Conditions

Peter A. Schultz

Target system:

isolated defect
= Finite Defect /O0/0/0/
Computational Supercell Model [O/®0O/
model for /O/O/O/

isolated defect

AL |
fc(): dDeli?ecc):t Jost Bulk L@ CryStﬁl) ﬁ)r?buiddmg
banding) screeningm/

FDSM: Ab initio computational model — connect model to physics
Calculations with rigorous control of charge boundary conditions

Sandia
National
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LMCC potential in bulk systems

A complication in bulk systems ...

§

X <« supercell r2§eat—> X X
Discontinuity in potential from LMCC at supercell boundary!

... Is solved by using Wigner-Seitz cells around LMCC positions

With Wigner-Seitz local volume, LMCC potential is continuous

6461

potential

Peter A. Schultz
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The electron chemical potential

Standard E;,,,, of charged defects needs electron reservoir:

> linked
Supercells with charge: ¢4 () = —
Periodic potential ¢4 ( r ) only known to within-a-constant C

C4ef = focn{defect type, configuration, cell shape, cell size, ...}
E crect(q) has qC, ¢ term in its internal energy

Eform(d) = Egetect(q) = Extal(0) - Z N, b

Standard ad hoc workarounds unsatisfactory - unquantitative

- matching VB,CB edge, band structure features, average potentials ...

- Issue: renormalizing infinities, defect modified bands, band-bending, ...

- calibration uncertainty of “few tenths of eV” (Garcia & Northrup) - best case

Needed a more rigorous scheme to fix electron reservoir ‘

Peter A. Schultz




Defect energy and level calculation

Finite Defect Supercell Model Formation Energy

Eform(d) = Egefect(q) - Extal(0) - Z N; p; + E g (q) + Ejq(q)
Ejcrect(d): DFT energy with LMCC potential
- E,(,(0) - £ N; u, : match number of each type of atom

E 0 (9): fix chemical potential u, to common electron resevoir
E, .i(d): bulk polarization response

Defect level calculation

AE(qu'1) = Eform(q) - Eform(q'1)

Need to set spectrum vs. VB/CB by single marker.
All defect levels for all defects then fixed by continuity.

6661
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Defect banding: Discrete Defect Occupations

e |-
7

Fermi level

6761

Standard
methods:
metallic,
poor model
of defect.

DDO: valid
model of
defect state
with 0,1,2
electrons

Candis
odnaia
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Mg atom ionization potential

6861

Fi

PV

&5 F

Charged cell convergence - Jellium

PHYSICAL REVIEW B

VOLUME 51, NUMBER 7

15 FEBRUARY 19951

Periodic boundary conditions in ab initio calculations

0. Makov and M. C. Payne
Cavendisck I.r.l!w:m:.unr_}-. .Hudl'n].r.':r_p Rogd, f_'a'r.r.'hr.;d';;;l:- CEIOHE, United ﬁ'r'r:lgﬂ'nnr

gure 3 (Received 19 July 1994)
= —
= I_._ - = al ‘\‘\ﬁ—l
w/jellium self-energy corrections
M
T -
w/o jellium self-energy
R "'11:- u:l.'- u;-.- i ;ll 1o ) 4 1'.h:l'l u." |:1|| III|| Izl-'- | ;--
1. (&g wmans| L §Aagmmms

cell size (side length)

cell size (side length)

Variation in computed total energy due to incorrect charge potential
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1D chain
P {e}y P e

2D sheet

3D bulk

6961

P [}

LMCC: NaCl - Cl vacancy ionization

20

1 1 1
il D B

M 1% al atoens|

@ 1T 1 I

104

o 10

=00
M (¢ of alimns)

S

1D: - C0000+000000e —

Supercell size dependence due to polarization.
Larger supercell -> more polarization
Apparent L=3 scaling = 1D classical dielectric screening

2D single-layer 2D square sheet (polar&non-polar)
Apparent L=2 scaling = 2D classical dielectric screening

Insensitive to cell type, polar vs. non-polar

3D: bulk-layer 3D square sheet (fcc&sc cells)

Apparent L= scaling = 3D classical dielectric screening
Strictly screening due to large supercell volume
Insensitive to cell shape

Peter A. Schultz
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BZ convergence: Si self-interstitial

a0(A)

1 | 1 1 1 1 1

1)

Tl Bl Bl |

bulk modulus(GPa)

Ledalal

-
—
—

E/Si(meV)

1 | 1 1 1 1 |

E/216Si(eV)

1 1 1 | 1 | 1

0 2 4 6 8 10 12 14 16
K-point grid in 8-atom bulk crystal cell (N,= K*3)
1 I 1 | || 1 )
: I(2-) ]
T NN i i(-) 5
: -~ e <20meV  1(0) :
: i(+) :
F 1 ] | l 1 1 1
0 1 2 3 4 5 6 7 8

K-point grid in 64-atom defect cell (N,= K*3)

Peter A. Schultz

Bulk properties
(ay,B,E/Si,E,y)
converge quickly:
at 63 k w/8-cell

= 32 k w/64-cell

= 23 k w/216-cell

Defect energies
should not vary
faster than bulk,
IF computational
model is valid.

Interstitial formation
energies in 64-site
cell vary <20 meV
{10 meV w/o I(+)}
beyond equivalent

of 6° k-grid in8ssite,..
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Silicon defect structures

(2-)

(-)

(0)

(+)

vv

Peter A. Schultz

(2+]

7161

GGA: E(C2v) < E(D3d) for v(-)

)
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Si: new P-v and B-v charge states

« Silicon level calculations - over 15 defects with levels
i(=/-10/+/++), v(=/-/0/+/++), vv(=/-/0/+), C,(-/0/+), B,(-/0/+), Pv, Bv
OS(A'Center), Oi’ NS’ SS’ Vzo, V202, Hi’ VP2, V2P,

DFT “defect band gap” matches experiment (1.2 eV)
DFT: mean |error| = 0.10 eV, max error~0.2 eV

Pv v Bv

- 1.0
-

. // T 0.8

7 - 0.6

— A ) 0.4

+ il
-+ 0.2
+ / '

e —— \/B

VALIDATION is key to quantitative DISCOVERY - GaAs is ALL discovery

7261

Task: Theory quantified v(=/-), v(-/0)

Discovery: Theory predicted Pv(+) and Bv(-)

“Absolute prediction”
new levels >0.4 eV from band edge
validation error: 0.2

Pv(0/+) subsequently confirmed in experiment

[Larsen, et al PRL 97, 106402 (2006)]
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Calibrating the polarization model: v,

Peter A. Schultz

£ = (1-1/gy)q?
pol
R
Jost model:
R, @ccounts for
Ri=Ry-Rs«in  unscreened volume

inside supercell

Need ¢, (use 13), and R, (fit)

Why use vg,?
Need higher charge states (0 to -3), best if not strongly distorted (near T)

Energy(eV) Vea(0)  E(2-1-)-E(1-0) E(3-/2-)-E(2-/1-) | aAs: E(0/+)-E(+/2+)
64-site 2.81 0.167 0.174 0.231
216-site 2.69 0.168 0.152 0.246
512-site 2.75 0.162 0.141 0.252
) hsflrmia-l
ol la(;i:'ﬁgg)nes
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GaAs EL2 and the As antisite
EL2 = antisite Asc,(0)

Peter A. Schultz

18eV  216-site =
0.43 eV 512-site
(~ 64-site)

Experiment -EL2 SeqQuest/FDSM - Asg,

EL2(0/1+) E.-0.74 eV E.-0.81¢eV
EL2(1+/2+) E,+0.54 eV E, +0.48 eV
Splitting: 0.24 eV (Eg=1.52) 0.25eV

EL2* no donor states no donor states
Reorientation: ~0.3 eV ~0.2 eV

Verification: 64-216-512-1000-site supercell results match
Validation: DFT matches experiment for EL2 w/in 0.1eV
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