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Approach and Capabilities rh) i,
Battery Pack/System Testing

Cell and Module Testing Thermal Test Complex (TTC) and Burnsite
Battery Abuse Testing Laboratory (BATLab)




Lithium-ion Safety Issues
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Testing program aimed at understanding and improving
abuse tolerance of energy storage systems




Calorimetry of Lithium-ion Cells ) 5.

Accelerating rate calorimetry (ARC) of 18650 cells with different cathode materials
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* Develop an understanding of how the runaway response scales with cell size.

* Traditionally testing performed at 100% SOC; how does this change at lower SOC? 4
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Impact of capacity - LFP ) .
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* ARC testing on LFP cells ranging from 2.6 to 38 Ah
* Rates increase somewhat with cell size
e Largest increase in peak heating rates observed when going from 2.6 to 20 Ah; Little
change observed when increasing from 30 to 38 Ah
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Impact of capacity - NCA ) 5.
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* ARC Testing on 3.4 and 27 Ah NCA cells; larger capacity NCA cells not tested in ARC
due to very high peak heating rates. 34 Ah heating rates estimated from thermal
ramp test shown on right

* Very high peak heating rates are observed in the larger two cells



Comparison of Chemistry and Size [@&.
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* Enthalpy scales generally linearly with size, and is similar for both chemistries — This
data suggests that failure enthalpy is largely tied to the available stored energy

* Peak heating rates significantly higher for large NCA cells

* High peak heating rates are generally thought to carry a higher thermal runaway
risk, but what is the impact when significant energy is available in numerous smaller
cells?




SOC and Thermal Runaway

16 Ah automotive (PHEV) pouch cells (mixed LiMn,O, spinel)

Significant impact can be easily observed above 60% SOC, very low rate self
heating below that
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Impact of SOC on Runaway ) .
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* Results show a nearly linear relationship between total heat release (kJ) and cell SOC - similar to
data for cell size this suggests that failure enthalpy is based largely on the stored energy
available

* Heat release rates (e.g. runaway reaction kinetics) follow an almost exponential relationship
with cell SOC - again this is traditionally thought to cause a greater risk of thermal runaway

* Could a runaway still occur with large numbers of low SOC cells or cells in well insulated
conditions? 9



Configuration based scaling - Batter\@
Failure Propagation

Simply, the propensity of the energetic failure
of a single cell to cause widespread thermal
runaway within a battery

Most large battery systems are designed to
withstand the loss of several cells from a
performance standpoint

A point failure becomes more serious if it can
send nearby cells into thermal runaway
Recent events (Fisker, Boeing) have had
battery runaway events that engulfed the
entire pack

Provide previously collected data as well as
new data to developers of battery propagation
models

National
Laboratories

Pack Negative

Pack Positive

Diagram showing cell and thermocouple
locations
Series and parallel constructions used, series

pack wired in order from Cell 1 to cell 10
Simple compared to a large battery system to
understand general driving forces

Detailed procedure described in
SAND2014-17053 “Propagation Testing
Multi Cell Batteries” Available from Sandia



Battery Failure Propagation ) .

LFP 26650 cells — 1051P
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* Pack constructed from 2.6 Ah LFP cells, failure initiated with nail penetration to central cell
* No cell to cell failure observed
* Heating rates observed similar to that for single cell
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Battery Failure Propagation ) i,
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How a cell with low peak heating rates can have a catastrophic failure

LFP 26650 cells - 1S10P
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* Pack constructed from 2.6 Ah LFP cells, failure initiated with nail penetration to central cell

 Complete propagation failure in LFP-26650 1S10P pack
e Significant increase in the severity of failure from a single cell — Single cell peak heating

rates of “105 W 1




Internal shorts in parallel ) =

Laboratories

Two cell parallel module — single cell short created with nail penetration
Short circuit current measured across constantan bridge wire of known resistance

Peak current almost 98 A
3.7 W-Hr (~13 kJ) of energy into the shorted cell
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A single cell delivered a peak of “98A and 13 kJ of energy into the shorted cell in ~2 minutes

This shows how the presence of stored energy within a system increases the potential for failure

Could a runaway still occur with large numbers of low SOC cells or cells in well insulated
conditions?




Summary ) e,

e Data collected so far suggests that while the intensity of a
single cell failure is highly dependent on cell size, chemistry
and state of charge, the total energy of a failure is largely only
dependent on the stored energy

* This distinction is of greater consequence as more energy is
made available, demonstrated here by adding multiple cells
to a single system

e Future questions include how do equivalent energies but
different numbers of cells compare (i.e. one 50 Ah cell vs. 5 10
Ah cells) and how large amounts of stored energy might
impact a system even at low states of charge
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