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Introduction to Viscoelasticity

 Viscoelasticity: The relationship between stress and strain 
(stiffness) depends on time.

 Examples of viscoelastic materials
 Biological tissue: bone, ligament, skin, cardiac tissue

 Foam and foam composites

 Epoxy: electronic encapsulates, bonding materials

 Rubber: tires, o-rings

 Metals (especially at high temperature)

 Why study viscoelasticity?
• Structural applications
• Probe 

• Causal links between phenomena and 
microstructure 



Viscoelastic Phenomena

 Some important viscoelastic phenomena

 Creep

 Progressive deformation under constant stress

 Stress relaxation

 Stress decay under constant strain

 Hysteresis

 Energy dissipation during a loading cycle

 Rate-dependent stiffness

 Relaxation during loading events

 Origins of tissue viscoelasticity:
 Intermolecular viscoelasticity of collagen fibrils1

 Interactions between solid-phase constituents 
(fibers and matrix)2,3

 Fluid movement through the tissue4

 Origins of polymer viscoelasticity:
 Distortion of chemical bonds (length and angle)

 Molecular rearrangements
4

CreepStress Relaxation

1Mosler, 1985; 2Ciarletta, 2006; 3Puxkandl, 2002; 4Henninger, 2010



Viscoelastic Equations

Linear elastic material

� = E�� ⇒ � =
�

��

Linear viscoelastic material

� � = E(�)�� ⇒ � � =
� �

��
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Consider a 1-D rod subjected to a small instantaneous strain �� =
�� 
��

Young’s modulus: 
• Resistance to deformation
• Independent of time

Relaxation modulus:
• Resistance to deformation
• Dependent upon time



Viscoelastic Equations
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� � = �
0 � < 0
1 � ≥ 1

Heaviside step function

We can approximate the strain history using a discrete number of steps: � � =�∆��� � − ��

�

���

∆��

The resulting stress is: � � =�∆��� � − �� � � − ��

�

���

As the number is steps increases to infinity, and imposing 
� � − �� = 1 since � ≥ 1, we converge on the hereditary integral:  
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�� �
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Viscoelastic Equations

 The Prony Series
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 Example: 
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 How to compute numerically:

� � + ∆� =� �
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��ℎ� � +
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∆� ��⁄
∆�
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���
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 All forms of � � must satisfy thermodynamic restrictions

 Monotonically decreasing function 7



Types of Viscoelasticity

 Linear viscoelasticity

� � = � � � − �
��

��
��

�

�

 Assumptions:
1. Linear relationship between stress 

and strain

2. Relaxation modulus is independent 
of strain level
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Relaxation modulus



Types of Viscoelasticity

 Quasi-linear viscoelasticity

� �, � = � � � − �
��� �
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 Generalization of linear viscoelasticity

 Widespread use
 Relatively simple mathematical interpretation

 Easily incorporated into finite element software

 Assumptions:
 Relaxation modulus is independent of the applied 

strain level (linear viscous assumption)
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Viscous 
component

Hyperelastic
component



Types of Viscoelasticity

 Nonlinear viscoelasticity

� �, � = � � �, � − �
��

��
��

�

�

 No assumptions with regard to material 
linearity

 Non-separable relaxation modulus
 Simultaneously describe elastic and 

viscous nonlinearities

 Overall objectives of this research:
 Develop a robust viscoelastic 

characterization technique to capture 
nonlinear viscoelasticity

 Implement this behavior into FE software
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APPLICATIONS IN BIOMECHANICS
Nonlinear Viscoelasticity of Tendon
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Motivation
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 QLV popularity

 Relatively straight-forward mathematical 
interpretation

 Easily incorporated into FE software packages

 Limitations of QLV

 In vivo tissues are subjected to varying loading 
conditions

 Cannot capture deformation-dependent 
properties1-7

 Current nonlinear viscoelastic characterization 
techniques

 May affect the predictive accuracy of the FE 
model

 Goals for Experiment 2:

1. Develop a FE nonlinear viscoelastic formulation

2. Validate predictive accuracy of the FE model

1Duenwald+, 2009; 2Hingorani+, 2004; 3Provanzano+, 2001; 4Troyer and Puttlitz, 2011; 5Ambrosetti-Giudici+, 2010; 6Thornton+, 1997; 7Bonifasi-Lista, 2005
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Methods: Experimental Setup

13http://www.cvmbs.colostate.edu/ilm/program/internship.htm

x-y table

6 d.o.f
load cell

cryoclamp

specimen

uniaxial
load cell

MTS
actuator

 Ovine Achilles tendon (n=7)

 Selected for: relatively large size and 
constant cross section

 Dissection and potting:

 Carefully removed muscle belly

 Potted calcaneous in PMMA bone 
cement

 Frozen (-20 °C)

 Testing protocol

 Preconditioning: 7% strain, 0.5 Hz (50 
cycles), 1 Hz (50 cycles)

 Stress relaxation (ramp rate: 10 mm/s):

 Strain magnitudes 1% to 6%

 Hold: 100 s

 Dynamic:

 Strain amplitudes: 3% and 6%

 Frequencies: 1 Hz and 10 Hz



Methods: Finite Element Formulation
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Five –component mechanical model Total stress:

 Tangent stiffness:

 Tension-only FE model

 Linear truss element (T3D2)

 Model geometry: initial length and area
definitions obtained experimentally

 FE model used to predict stress relaxation 
and dynamic behavior

 Comparisons
 Non-weighted RMSE

 Percent error (Kruskal-Wallis, post hoc: 
Wilcoxon rank-sum test with Bonferroni
adjustment (p<0.005)



Results: Stress Relaxation
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Results: Relaxation Moduli
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r2 ≥ 0.89

p=0.93
p<0.0001

p=0.90

p=0.59 p=0.44



Results: Cyclic Predictions
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6% strain, 1 Hz



APPLICATIONS IN BIOMECHANICS
Nonlinear Viscoelasticity of Spinal Ligaments
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Adapted from Womack, 2009



Motivation

 Role of spinal ligaments:

 Facilitate 3D physiologic motion patterns

 Maintain static vertebral postures

 Limit excessive motion

 Absorb additional energy during traumatic 
loading events

 Requires consideration of viscoelastic behavior

 Few studies have explicitly characterized the 
viscoelastic behavior

 QLV theory1,2

 Over-simplified nonlinear models3-5

 Affect the predictive accuracy of the model

 Goals of experiment:

1. Characterize the nonlinear viscoelastic constitutive 
behavior of ALL, PLL, LF

2. Validate this constitutive relationship via cyclic 
predictions

19

Adapted from Womack, 2009

1Lucas+, 2008; 2Little and Khalsa, 2005; 3Troyer and Puttlitz, 2011; 4Yahia+, 1991; 5Ambrosetti-Giudici+, 2010



Experimental Methods

 Experimental data subset of a larger study1

 Three cervical spinal ligaments: 

1. Anterior longitudinal ligament (ALL; n=8)

2. Posterior longitudinal ligament (PLL; n=8)

3. Ligamentum flavum (LF; n=6)

 Dissection and potting

 Isolated via removal of non-osteoligamentous tissue

 Potted in polymethlmethacrylate for attachment to 
the testing device (858 Mini Bionix II; MTS)

 Experimental setup

 Environmental chamber (isotonic saline, 37 C)

 Translation (x-y) table

 Validation data acquisition: Cyclic behavior

 Cyclic frequency sweep: 0.001 Hz to 1 Hz

 Strain amplitudes: 10% and 15% (peak-to-peak)

 Fitted data acquisition: Relaxation behavior

 Incremental strain magnitudes: 4%-25% strain2

 Ramp: <0.3 s, hold: 100 s, recover: 600 s

20

LF PLL ALL

PMMA

1Troyer and Puttlitz, 2011; 2Bass+, 2007



Results
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 Constitutive equation fit both the long-term and short-term relaxation data well`



Results
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 The strain-dependent moduli for each ligament type was unique (p≤0.0376 for all 
comparisons)

 ALL and PLL  dominated by long-term and short-term moduli

 LF  consistent across temporal decades

 LF  reduced with respect to the longitudinal ligaments



APPLICATIONS IN AEROSPACE 
ENGINEERING

Reduced Order Models of Structures with Linear Viscoelastic Materials
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What is our goal?
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 Develop reduced order models (ROMs) of finite element 
models with linear viscoelastic material behavior for 
time domain structural dynamic simulations

 Reduce computational burden of repetitive numerical 
solutions while preserving the accuracy of the full order 
model

 Incorporate non-viscous damping into ROMs via 
material property data



Applications with Linear Viscoelastic Behavior

25

(http://altairenlighten.com/2012/07/sandwich-structures/)
(http://www.epoxies.com/blog/try-our-new-
flame-resistant-potting-compounds/)

Sandwich Structured CompositesEncapsulation

Aluminum Foam

(Jacobs, 2016)

Ministack



Reduced Order Modeling
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FE mesh in physical coordinates

   tmatl fxxfKxxM   ,

Solve reduced equations

   tmatl fqqfqKqM ˆ,ˆˆ  

Determine appropriate basis, or shape vectors 
based on the physical equations of motion

Project full equations of motion onto a 
small set of basis vectors

Related by transformation:
	� t = �� �

*� t ≪ � �



Linear Viscoelasticity with Prony Series
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 Stress dependent upon time

�(�) = 	� �(� − �)
�

�

��

��
��

 Prony series
� � = �� + (�� − ��)�(�)

� � = ����
�� ��⁄

�

���

         tdtdt e

t

GGv

t

KKv fxKxKxKxM  
0

,

0

,  

 FEA equations of motion

…
…

. (skipping detailed mathematics)

*Typically have many degrees-of-freedom!

Relaxation modulus: describes 
time- and history-dependent 
behavior!



Linearized Complex Eigenmode Basis
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 Linearized Complex Eigenmodes
 Iterative approach that uses linearized quadratic eigensolver in 

Sierra/SD
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Application to Plate Model in Sierra/SD
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 Viscoelastic Sandwich Plates 

• Aluminum 6061-T6 (linear elastic)

• PMDI 22 foam (linear viscoelastic)



Viscoelastic Sandwich Plate with Linearized Complex 
Modes
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Viscoelastic Sandwich Plate with Linearized Complex 
Modes
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Viscoelastic Sandwich Plate with Linearized Complex 
Modes
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Viscoelastic Sandwich Plate with Linearized Complex 
Modes
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Viscoelastic Sandwich Plate with Linearized Complex 
Modes
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Transient Solutions of Sandwich Plate

Model Eigensolution Solution Time Total Cost

Full FEA model n/a ~10 days*

(dt = 1e-7)

~864,000 seconds

(~14,400 min)
1501 mode ROM 
with real modes

229 seconds 2571 seconds 

(dt = 1e-6)

2800 seconds 

(~47 min)

32 mode ROM 
with linearized 
complex modes

4923 seconds 4.2 seconds 

(dt = 5e-6)

4927 seconds 

(~82 min)

*Estimate based on integration in Matlab on single processor
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