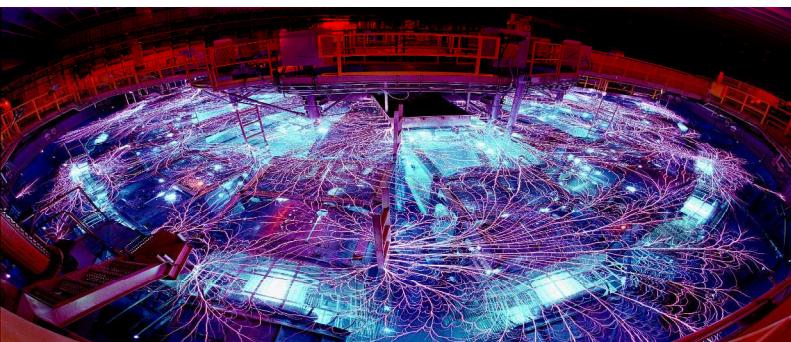
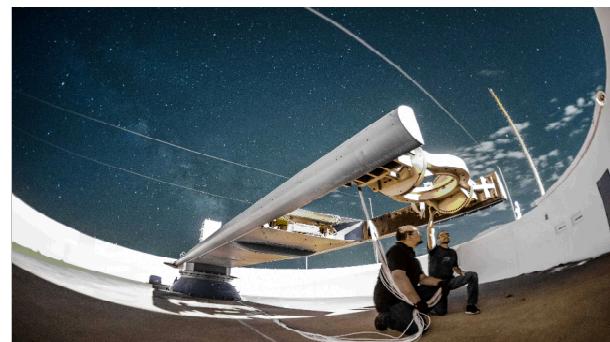


Exceptional service in the national interest



Viscoelasticity in Biomechanics and Aerospace Engineering

Kevin Troyer, PhD

Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

My Background

- Orthopaedic Bioengineering Research Laboratory
- United States Food and Drug Administration
- Honeywell Federal Manufacturing and Technologies
- Sandia National Labs

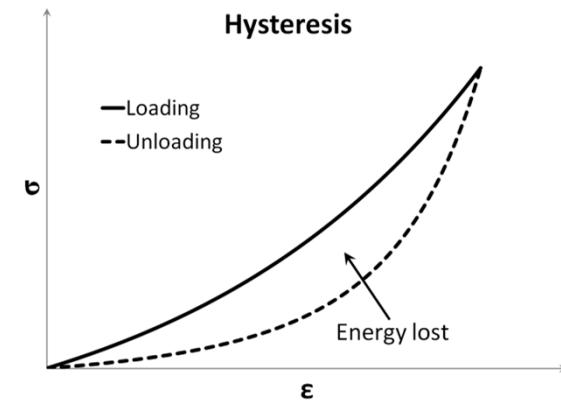
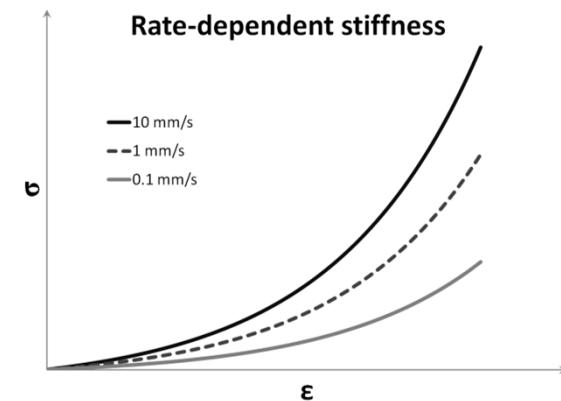
Introduction to Viscoelasticity

- Viscoelasticity: The relationship between stress and strain (stiffness) **depends on time**.
- Examples of viscoelastic materials
 - Biological tissue: bone, ligament, skin, cardiac tissue
 - Foam and foam composites
 - Epoxy: electronic encapsulates, bonding materials
 - Rubber: tires, o-rings
 - Metals (especially at high temperature)
- Why study viscoelasticity?
 - Structural applications
 - Probe
 - Causal links between phenomena and microstructure

Viscoelastic Phenomena

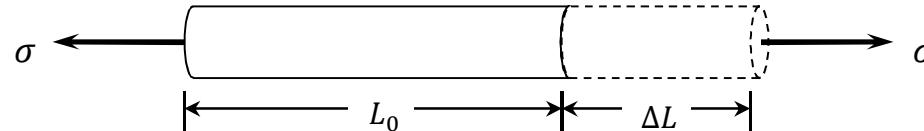
- Some important viscoelastic phenomena
 - **Creep**
 - Progressive deformation under constant stress
 - **Stress relaxation**
 - Stress decay under constant strain
 - **Hysteresis**
 - Energy dissipation during a loading cycle
 - **Rate-dependent stiffness**
 - Relaxation during loading events
- Origins of tissue viscoelasticity:
 - Intermolecular viscoelasticity of collagen fibrils¹
 - Interactions between solid-phase constituents (fibers and matrix)^{2,3}
 - Fluid movement through the tissue⁴
- Origins of polymer viscoelasticity:
 - Distortion of chemical bonds (length and angle)
 - Molecular rearrangements

Stress Relaxation



Viscoelastic Equations

Consider a 1-D rod subjected to a small instantaneous strain $\varepsilon_0 = \frac{\Delta L}{L_0}$



Linear elastic material

$$\sigma = E\varepsilon_0 \Rightarrow E = \frac{\sigma}{\varepsilon_0}$$

Young's modulus:

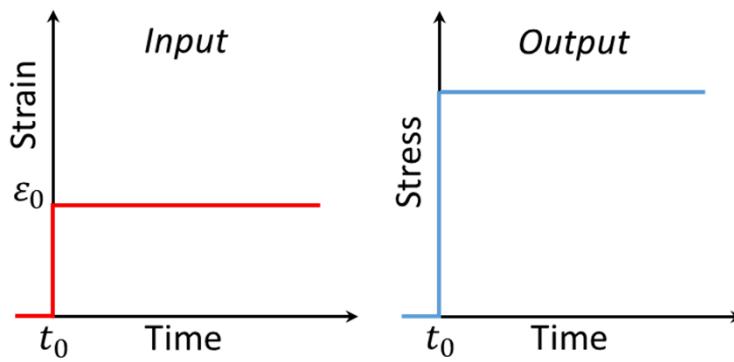
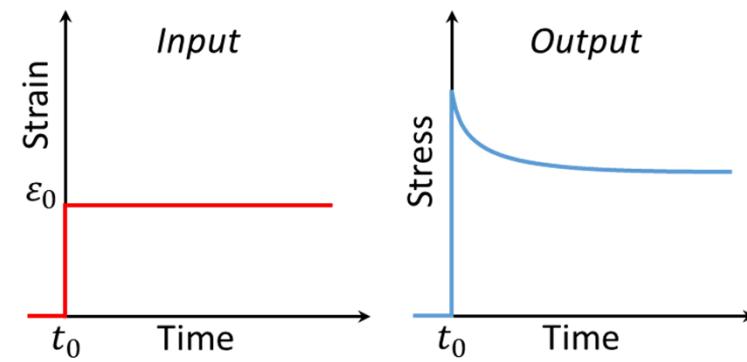
- Resistance to deformation
- Independent of time

Linear viscoelastic material

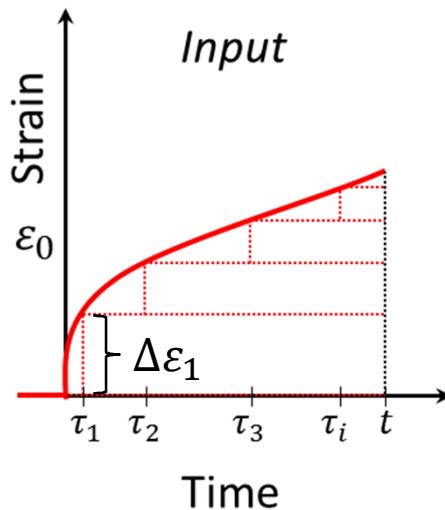
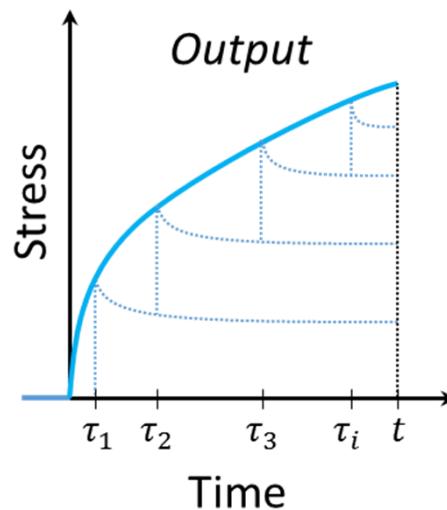
$$\sigma(t) = E(t)\varepsilon_0 \Rightarrow E(t) = \frac{\sigma(t)}{\varepsilon_0}$$

Relaxation modulus:

- Resistance to deformation
- **Dependent upon time**



Viscoelastic Equations



Heaviside step function

$$H(t) = \begin{cases} 0 & t < 0 \\ 1 & t \geq 1 \end{cases}$$

We can approximate the strain history using a discrete number of steps: $\varepsilon(t) = \sum_{i=1}^r \Delta \varepsilon_i H(t - \tau_i)$

The resulting stress is: $\sigma(t) = \sum_{i=1}^r \Delta \varepsilon_i E(t - \tau_i) H(t - \tau_i)$

As the number of steps increases to infinity, and imposing $H(t - \tau_i) = 1$ since $t \geq 1$, we converge on the hereditary integral:

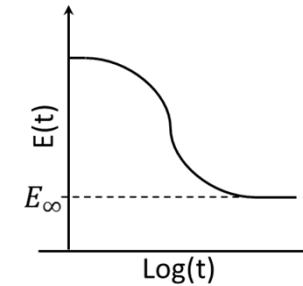
$$\sigma(t) = \int_0^t E(t - \tau) \frac{d\varepsilon(\tau)}{d\tau} d\tau$$

σ
 $=$
 E
 \times
 ε

Viscoelastic Equations

- The Prony Series

$$E(t) = \sum_{i=1}^N E_i e^{-\frac{t}{\tau_i}} + E_\infty \quad \rightarrow$$



- Example:

$$\sigma(t) = \int_0^t \left[E_1 e^{-\frac{t-\tau}{0.1}} + E_2 e^{-\frac{t-\tau}{1}} + E_3 e^{-\frac{t-\tau}{10}} + E_4 e^{-\frac{t-\tau}{100}} \right] \frac{d\varepsilon(\tau)}{d\tau} d\tau + E_\infty \varepsilon(t)$$

- How to compute numerically:

$$\sigma(t + \Delta t) = \sum_{i=1}^N \left[e^{-\frac{\Delta t}{\tau_i}} h_i(t) + \frac{E_i \left(1 - e^{-\frac{\Delta t}{\tau_i}} \right)}{\Delta t / \tau_i} \Delta \varepsilon \right] + E_\infty \varepsilon(t + \Delta t)$$

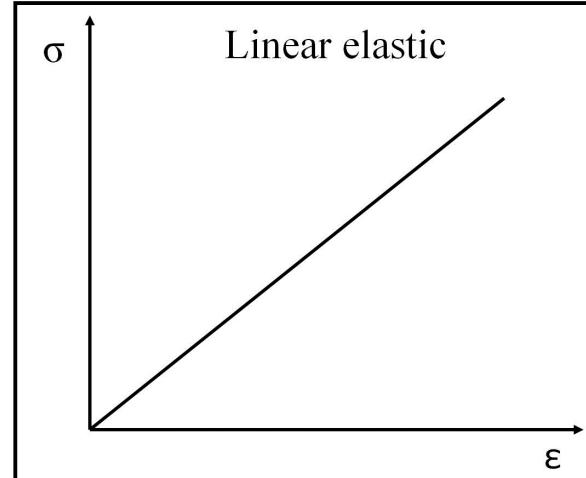
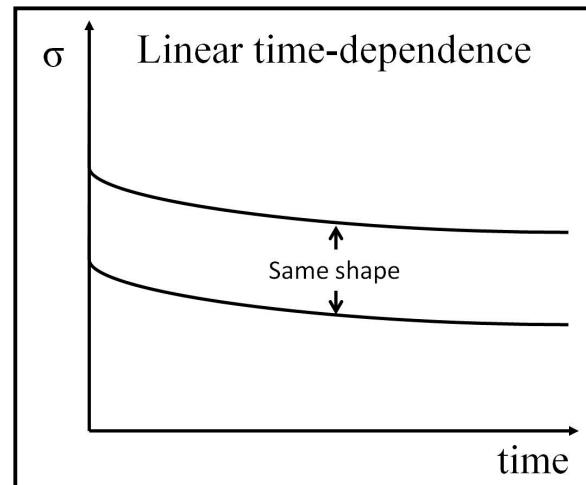
- All forms of $E(t)$ must satisfy thermodynamic restrictions
 - Monotonically decreasing function

Types of Viscoelasticity

- Linear viscoelasticity

$$\sigma(t) = \int_0^t \underbrace{E(t-\tau)}_{\text{Relaxation modulus}} \frac{d\varepsilon}{d\tau} d\tau$$

Relaxation modulus



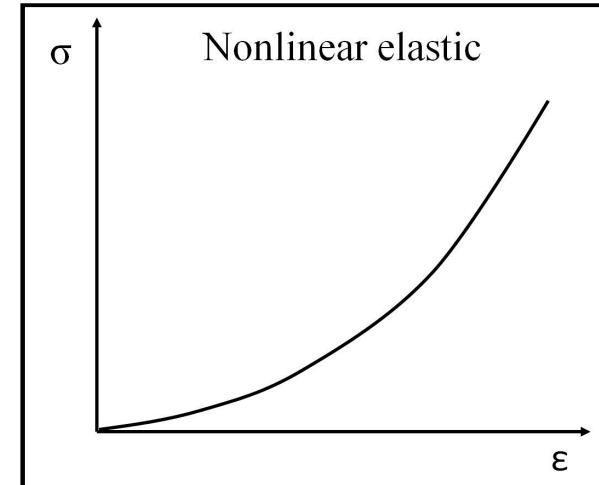
- Assumptions:

1. Linear relationship between stress and strain
2. Relaxation modulus is independent of strain level

Types of Viscoelasticity

- Quasi-linear viscoelasticity

$$\sigma(t, \varepsilon) = \int_0^t G(t - \tau) \underbrace{\frac{\partial \sigma^e(\varepsilon)}{\partial \varepsilon}}_{\text{Hyperelastic component}} \underbrace{\frac{d\varepsilon}{d\tau}}_{\text{Viscous component}} d\tau$$



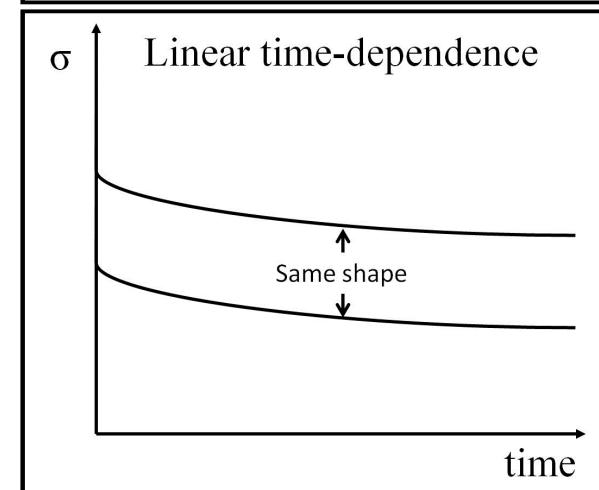
- Generalization of linear viscoelasticity

- Widespread use

- Relatively simple mathematical interpretation
- Easily incorporated into finite element software

- Assumptions:

- Relaxation modulus is independent of the applied strain level (**linear viscous assumption**)

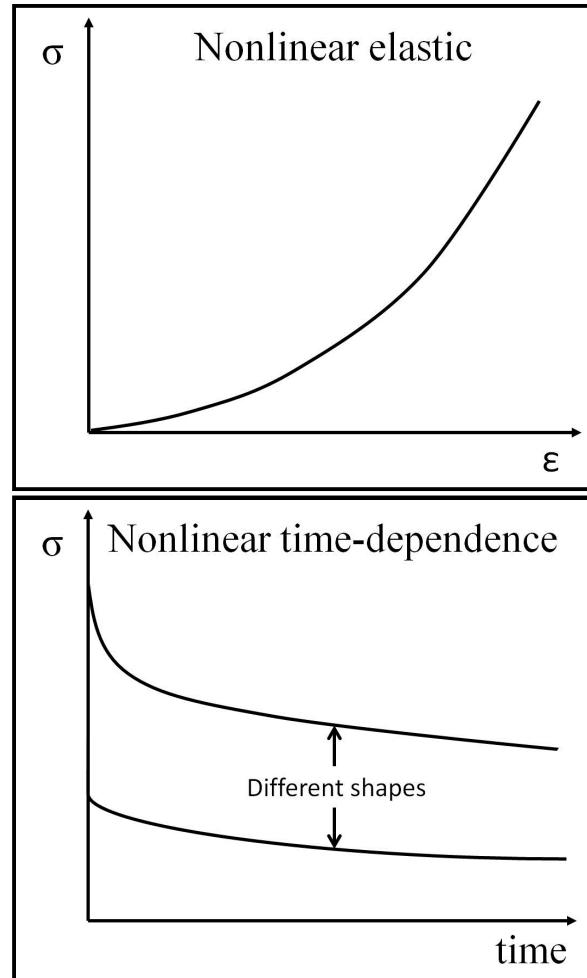


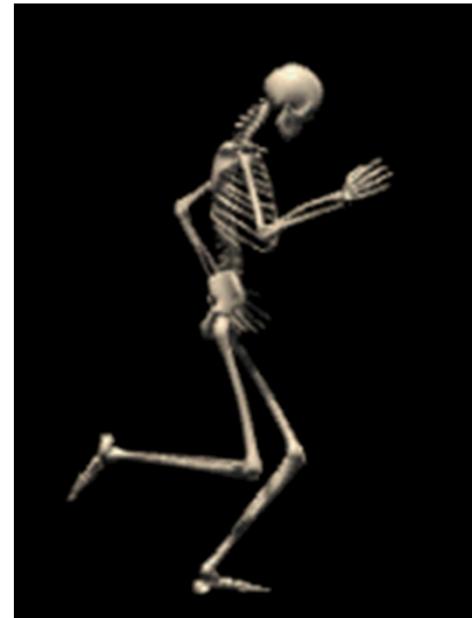
Types of Viscoelasticity

- Nonlinear viscoelasticity

$$\sigma(t, \varepsilon) = \int_0^t E(\varepsilon, t - \tau) \frac{d\varepsilon}{d\tau} d\tau$$

- No assumptions with regard to material linearity
- Non-separable relaxation modulus
 - Simultaneously describe **elastic** and **viscous** nonlinearities
- Overall objectives of this research:
 - Develop a robust viscoelastic characterization technique to capture nonlinear viscoelasticity
 - Implement this behavior into FE software



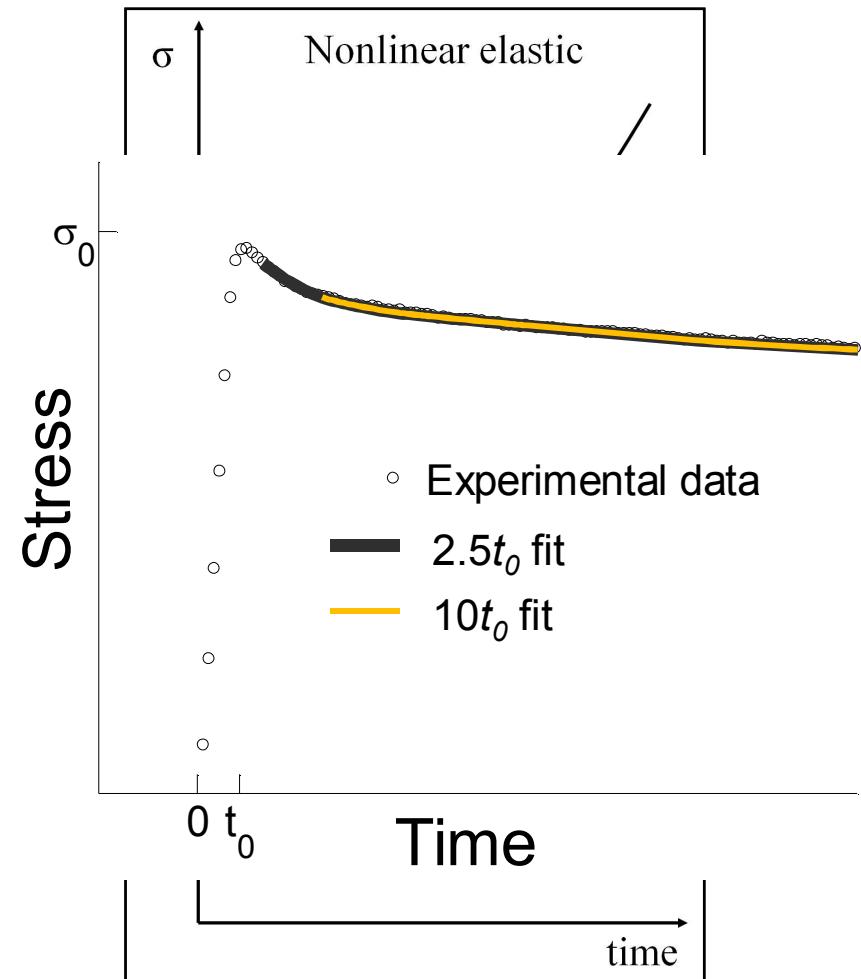


Nonlinear Viscoelasticity of Tendon

APPLICATIONS IN BIOMECHANICS

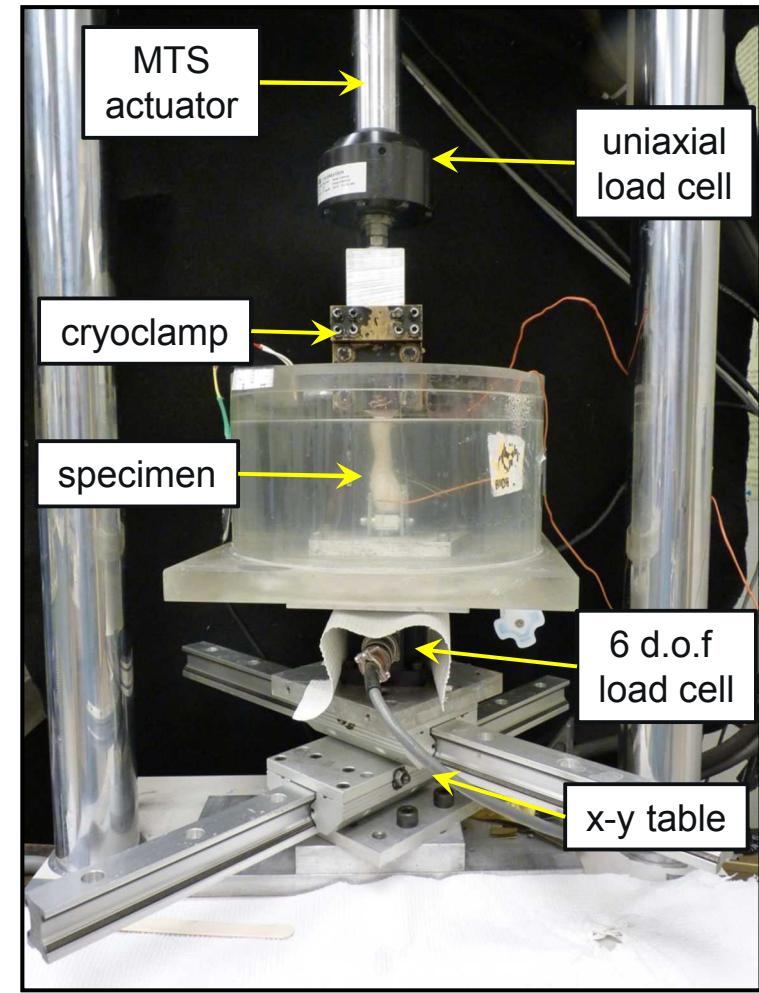
Motivation

- QLV popularity
 - Relatively straight-forward mathematical interpretation
 - Easily incorporated into FE software packages
- Limitations of QLV
 - *In vivo* tissues are subjected to varying loading conditions
 - Cannot capture deformation-dependent properties¹⁻⁷
- Current nonlinear viscoelastic characterization techniques
 - May affect the predictive accuracy of the FE model
- Goals for Experiment 2:
 1. Develop a FE nonlinear viscoelastic formulation
 2. Validate predictive accuracy of the FE model



Methods: Experimental Setup

- Ovine Achilles tendon (n=7)
 - Selected for: relatively large size and constant cross section
- Dissection and potting:
 - Carefully removed muscle belly
 - Potted calcaneous in PMMA bone cement
 - Frozen (-20 ° C)
- Testing protocol
 - **Preconditioning:** 7% strain, 0.5 Hz (50 cycles), 1 Hz (50 cycles)
 - **Stress relaxation** (ramp rate: 10 mm/s):
 - Strain magnitudes 1% to 6%
 - Hold: 100 s
 - **Dynamic:**
 - Strain amplitudes: 3% and 6%
 - Frequencies: 1 Hz and 10 Hz



Methods: Finite Element Formulation

- Total stress:

$$\sigma^t(\varepsilon^t, t) = E_\infty(\varepsilon^t) \cdot \varepsilon^t + \sum_{i=1}^4 \frac{1}{1 + \Delta t/\tau_i + \Delta t/2\tau_i} \left[E_i(\varepsilon^t) \cdot \Delta \varepsilon + \left(1 + \frac{\Delta t}{2\tau_i}\right) \sigma^{i-1} \right] + \sigma_0$$

- Tangent stiffness:

$$C^t = E_\infty(\varepsilon^t) + \sum_{i=1}^4 \left[\frac{1}{1 + \Delta t/2\tau_i} \right] E_i(\varepsilon^t)$$

- Tension-only FE model

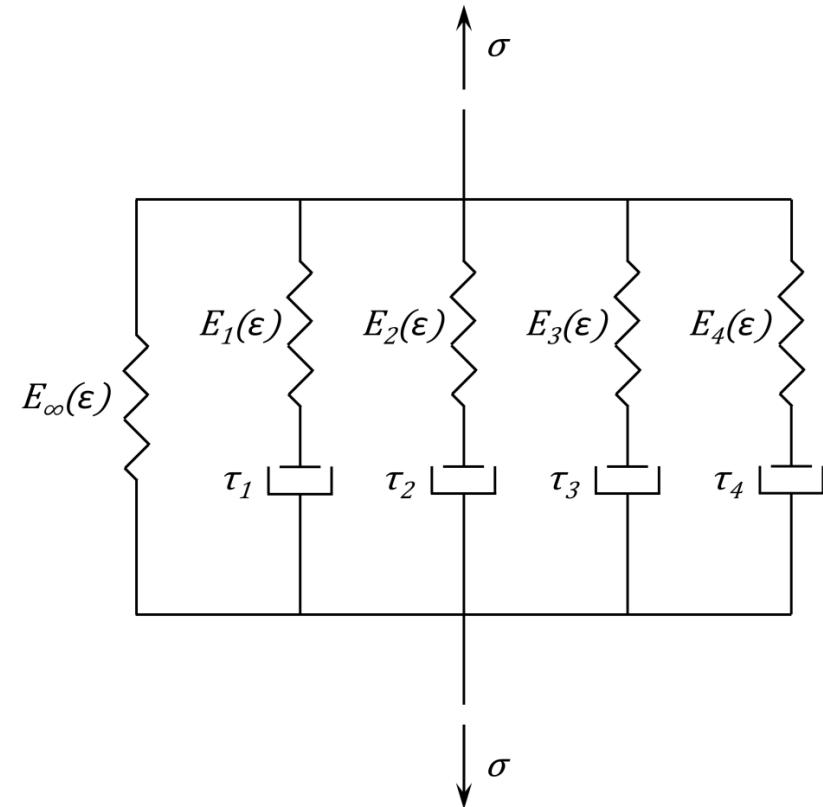
- Linear truss element (T3D2)
 - Model geometry: initial length and area definitions obtained experimentally

- FE model used to predict stress relaxation and dynamic behavior

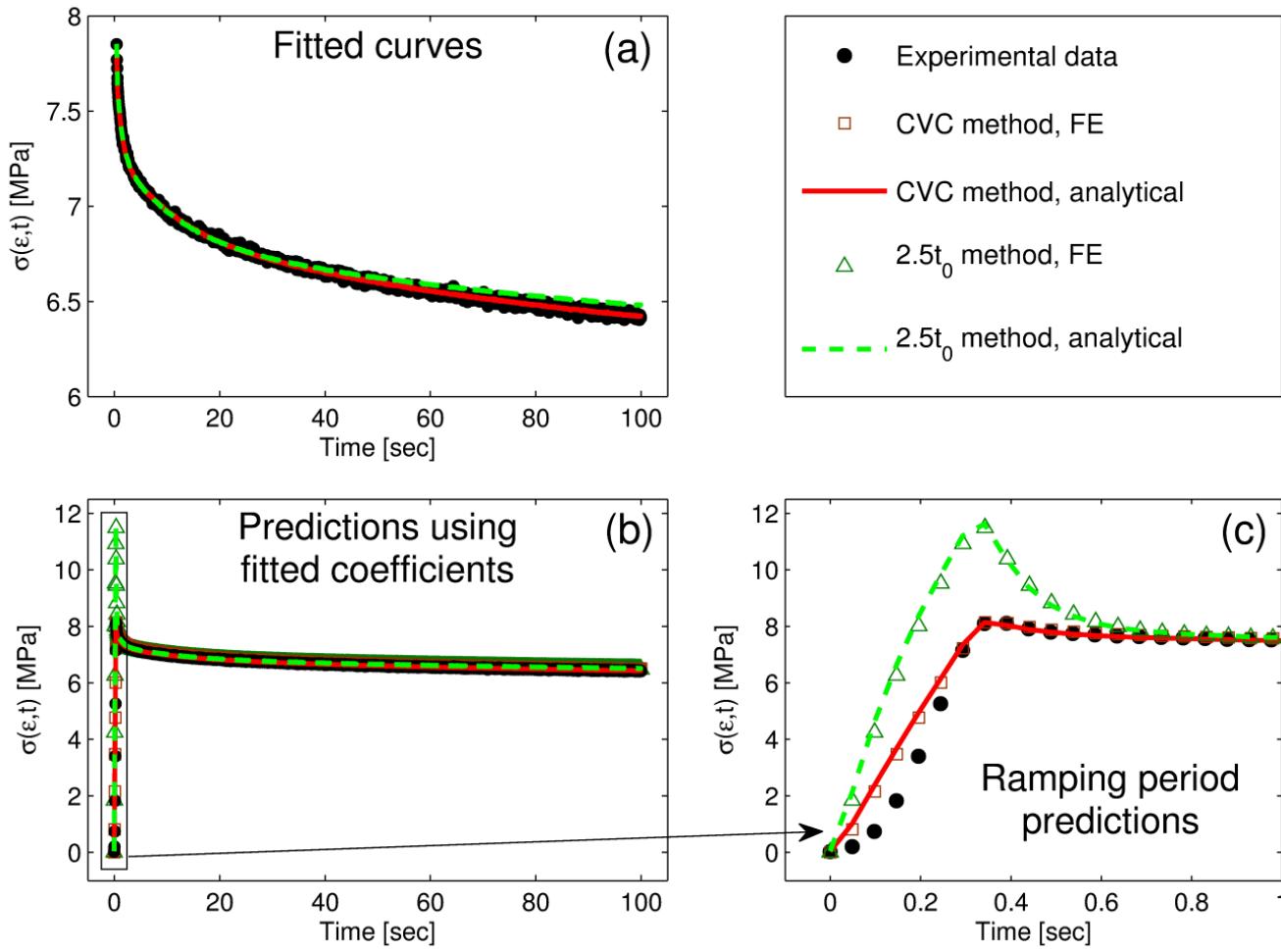
- Comparisons

- Non-weighted RMSE
 - Percent error (Kruskal-Wallis, *post hoc*: Wilcoxon rank-sum test with Bonferroni adjustment ($p < 0.005$)

Five –component mechanical model

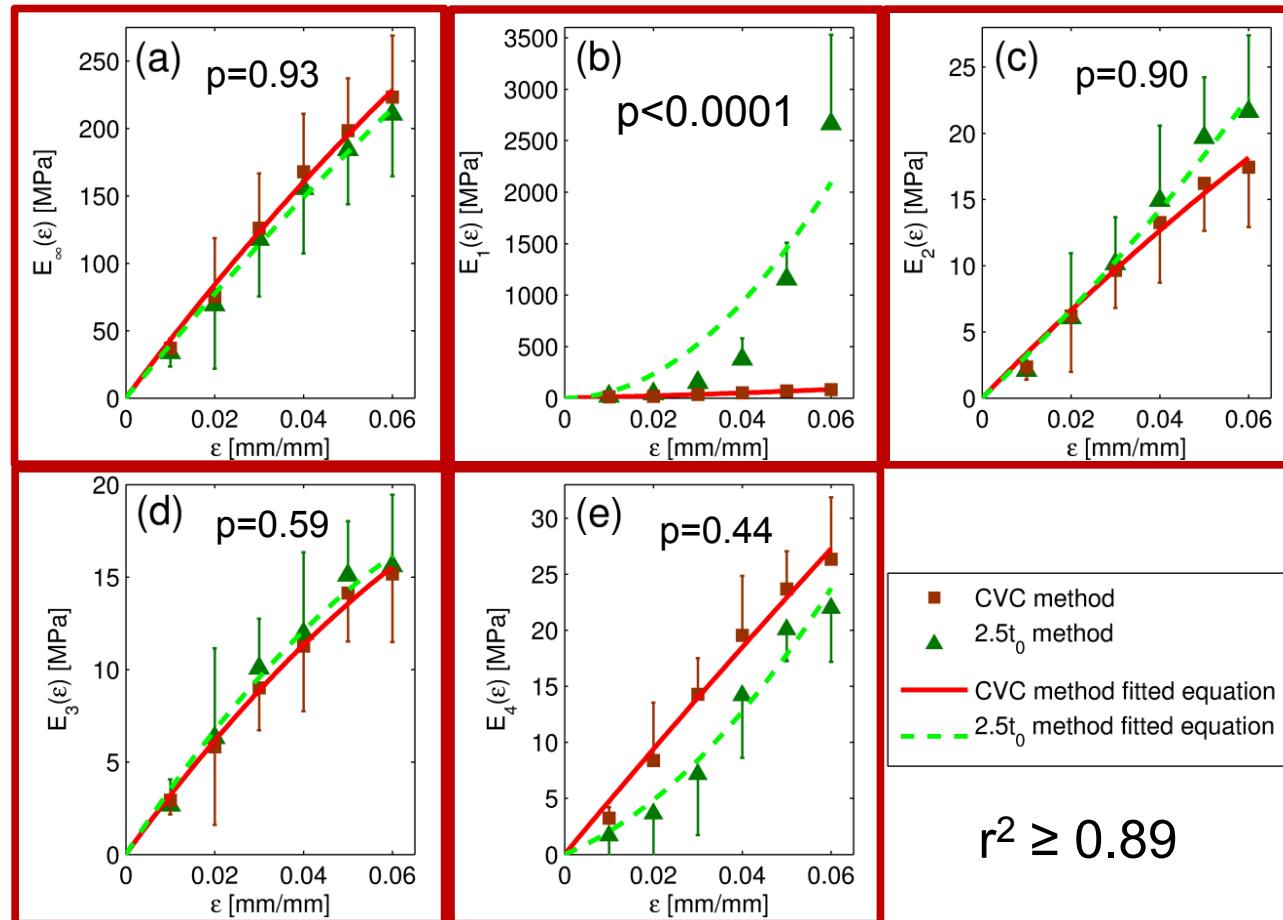


Results: Stress Relaxation

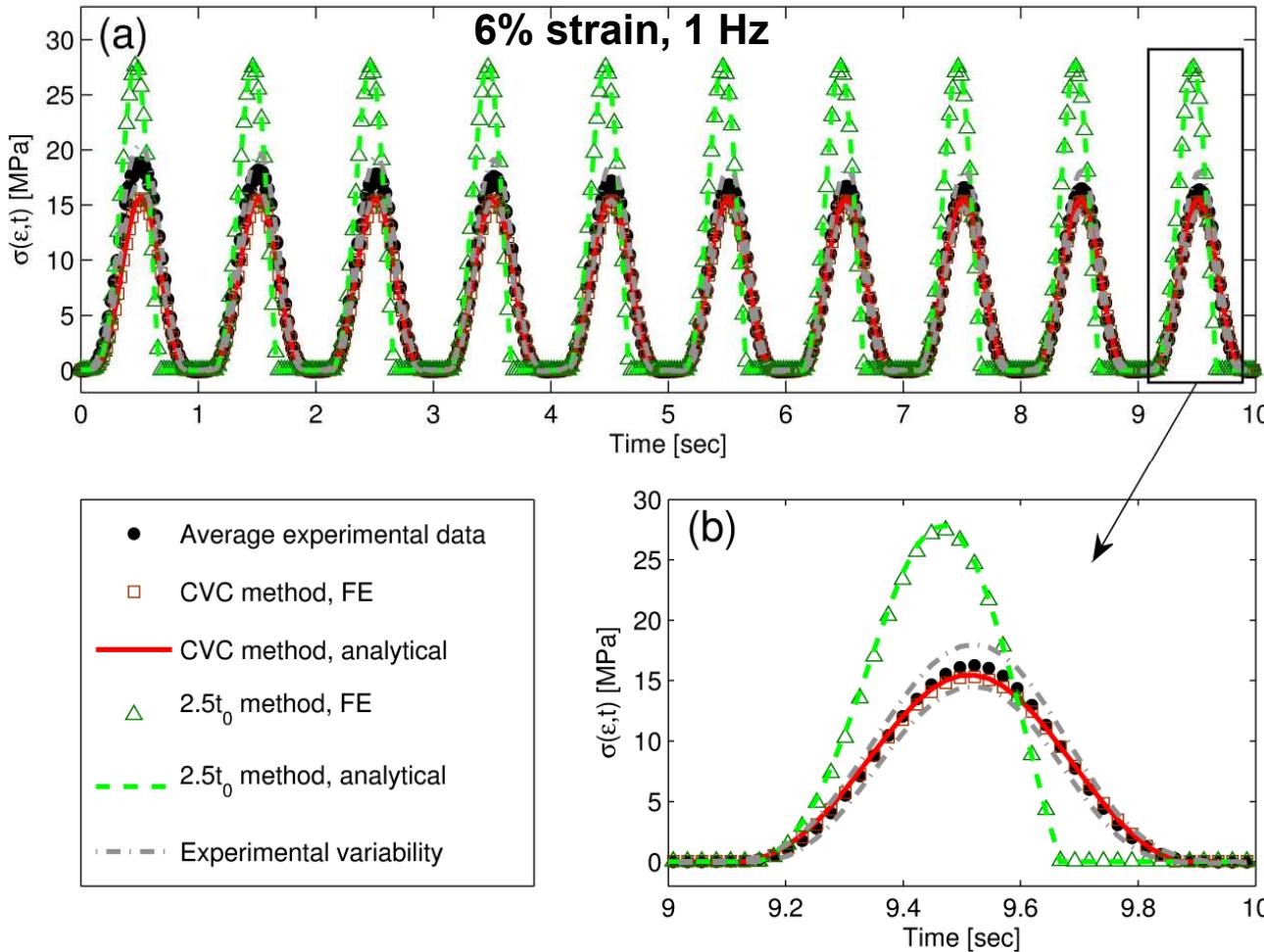


Results: Relaxation Moduli

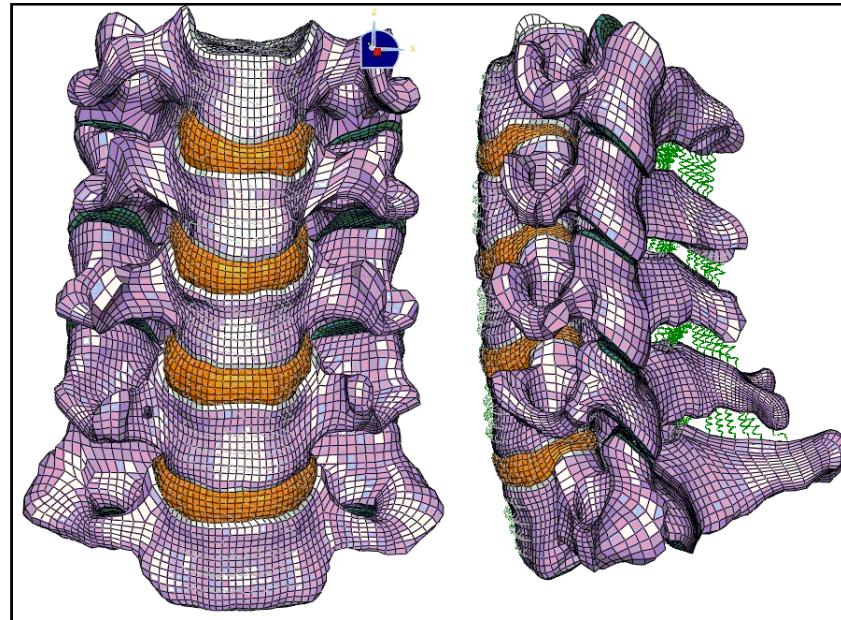
$$E(\varepsilon, t) = E_\infty(\varepsilon) + E_1(\varepsilon)e^{-t/0.1} + E_2(\varepsilon)e^{-t/1} + E_3(\varepsilon)e^{-t/10} + E_4(\varepsilon)e^{-t/100}$$



Results: Cyclic Predictions



Adapted from Womack, 2009

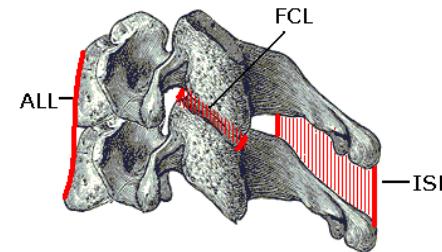
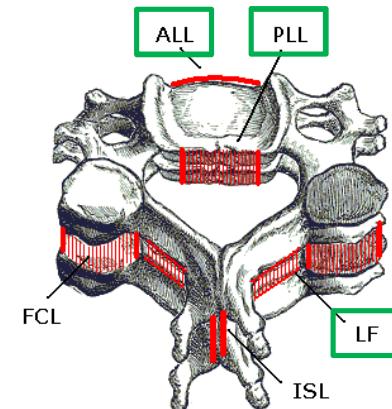


Nonlinear Viscoelasticity of Spinal Ligaments

APPLICATIONS IN BIOMECHANICS

Motivation

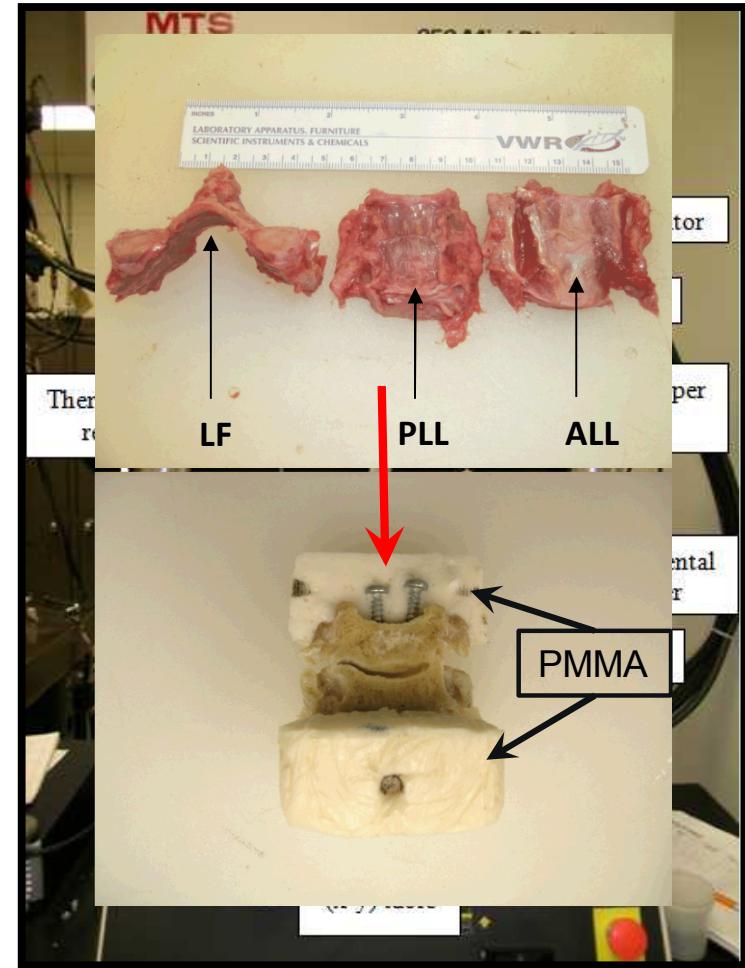
- Role of spinal ligaments:
 - Facilitate 3D physiologic motion patterns
 - Maintain static vertebral postures
 - Limit excessive motion
 - Absorb additional energy during traumatic loading events
- Requires consideration of viscoelastic behavior
- Few studies have explicitly characterized the viscoelastic behavior
 - QLV theory^{1,2}
 - Over-simplified nonlinear models³⁻⁵
 - Affect the predictive accuracy of the model
- Goals of experiment:
 1. Characterize the nonlinear viscoelastic constitutive behavior of ALL, PLL, LF
 2. Validate this constitutive relationship via cyclic predictions



Adapted from Womack, 2009

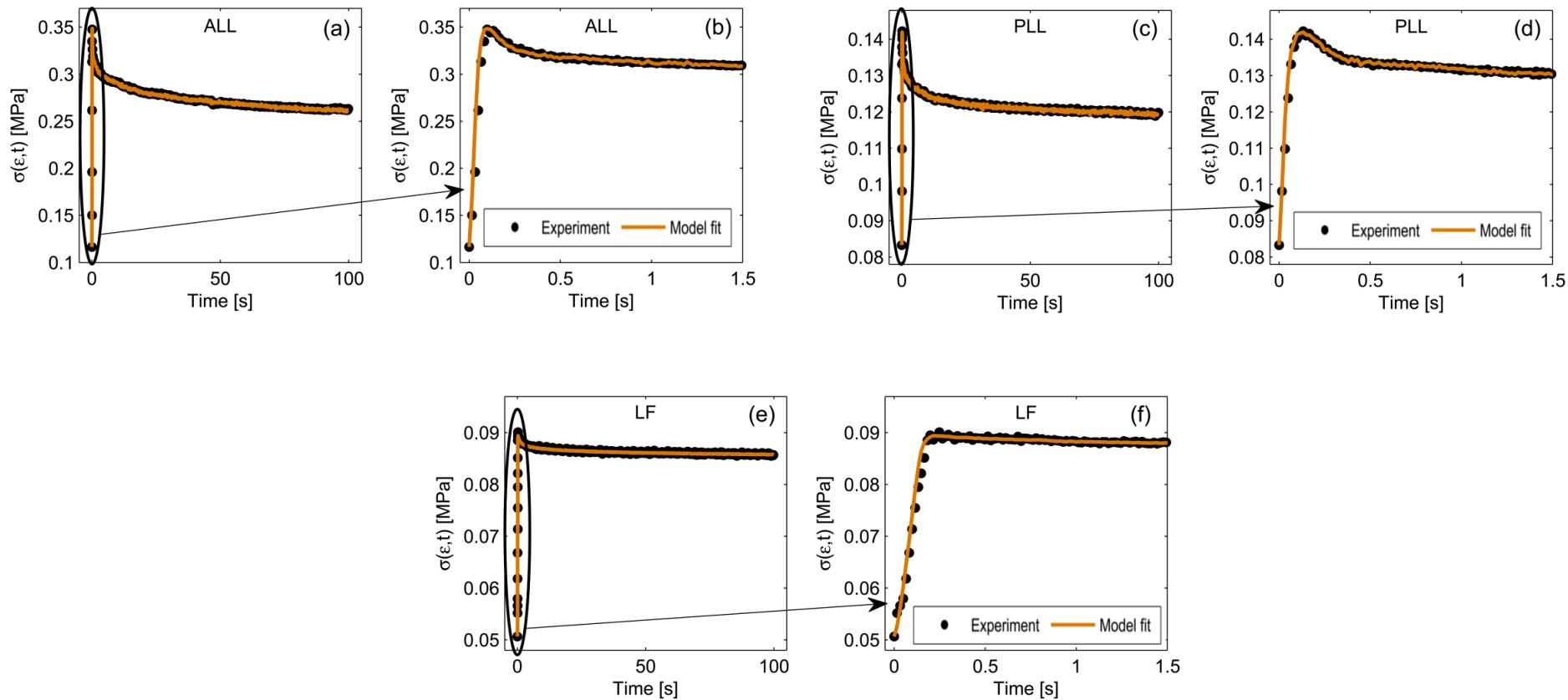
Experimental Methods

- Experimental data subset of a larger study¹
 - Three cervical spinal ligaments:
 1. Anterior longitudinal ligament (ALL; n=8)
 2. Posterior longitudinal ligament (PLL; n=8)
 3. Ligamentum flavum (LF; n=6)
- Dissection and potting
 - Isolated via removal of non-osteoligamentous tissue
 - Potted in polymethylmethacrylate for attachment to the testing device (858 Mini Bionix II; MTS)
- Experimental setup
 - Environmental chamber (isotonic saline, 37 C)
 - Translation (x-y) table
- Validation data acquisition: Cyclic behavior
 - Cyclic frequency sweep: 0.001 Hz to 1 Hz
 - Strain amplitudes: 10% and 15% (peak-to-peak)
- Fitted data acquisition: Relaxation behavior
 - Incremental strain magnitudes: 4%-25% strain²
 - Ramp: <0.3 s, hold: 100 s, recover: 600 s



Results

- Constitutive equation fit both the long-term and short-term relaxation data well



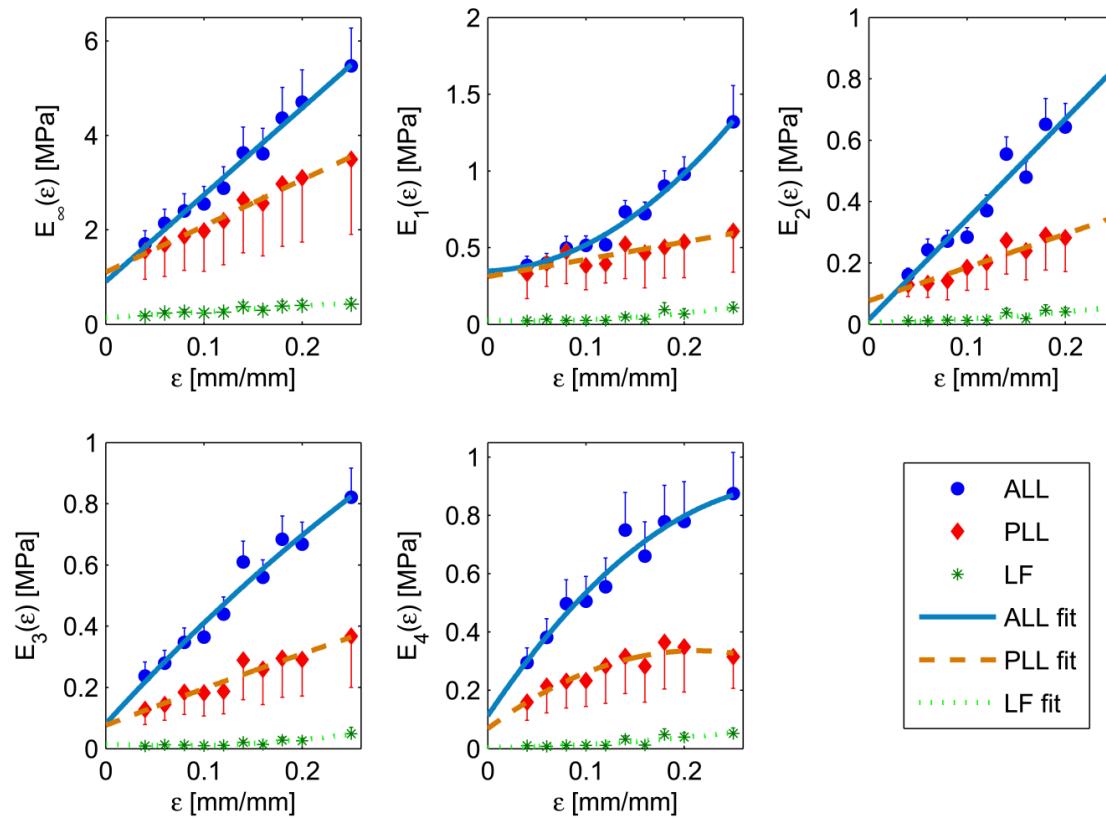
Results

- The strain-dependent moduli for each ligament type was unique ($p \leq 0.0376$ for all comparisons)

- ALL and PLL \rightarrow dominated by **long-term** and **short-term** moduli

$$E(\varepsilon, t) \xrightarrow{\text{LF}} E_{\infty}(\varepsilon) + E_1(\varepsilon) e^{-t/0.1} + E_2(\varepsilon) e^{-t/1} + E_3(\varepsilon) e^{-t/10} + E_4(\varepsilon) e^{-t/100}$$

- LF \rightarrow reduced with respect to the longitudinal ligaments



Reduced Order Models of Structures with Linear Viscoelastic Materials

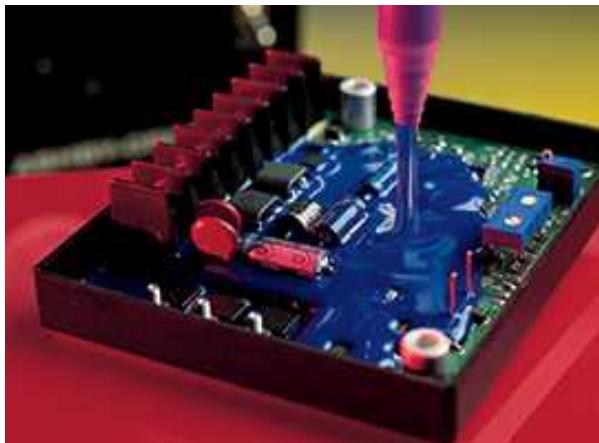
APPLICATIONS IN AEROSPACE ENGINEERING

What is our goal?

- Develop reduced order models (ROMs) of finite element models with linear viscoelastic material behavior for **time domain** structural dynamic simulations
- Reduce computational burden of repetitive numerical solutions while preserving the accuracy of the full order model
- Incorporate non-viscous damping into ROMs via material property data

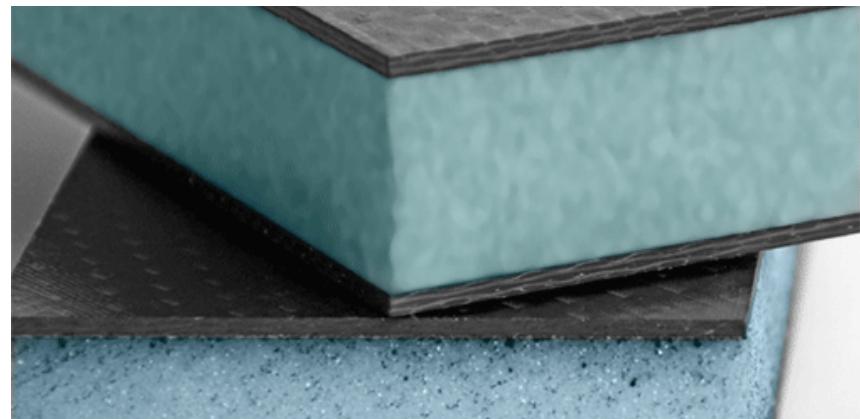
Applications with Linear Viscoelastic Behavior

Encapsulation



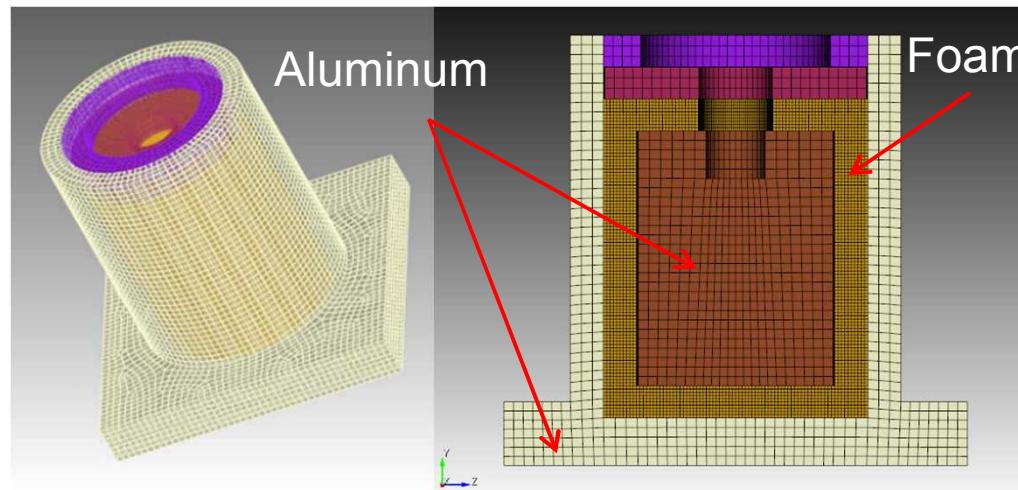
(<http://www.epoxies.com/blog/try-our-new-flame-resistant-potting-compounds/>)

Sandwich Structured Composites



(<http://altairenlighten.com/2012/07/sandwich-structures/>)

Ministack

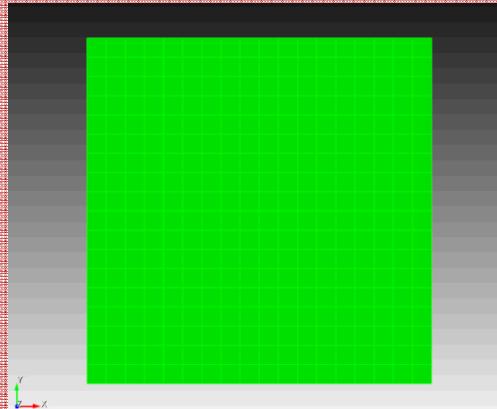


(Jacobs, 2016)

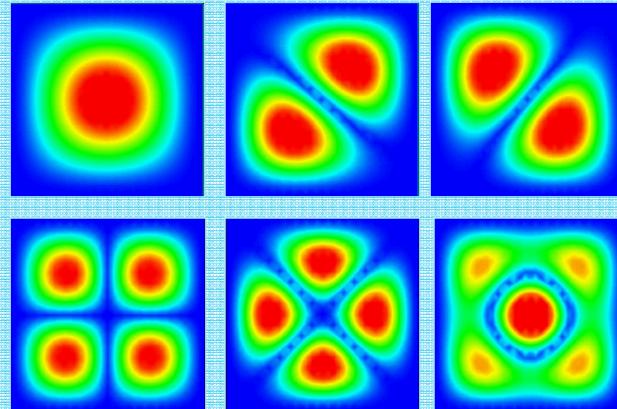
Reduced Order Modeling

FE mesh in physical coordinates

$$\mathbf{M} \ddot{\mathbf{x}} + \mathbf{K} \mathbf{x} + \mathbf{f}_{matl}(\mathbf{x}, \dot{\mathbf{x}}) = \mathbf{f}(t)$$



Determine appropriate basis, or shape vectors based on the physical equations of motion



Solve reduced equations

$$\hat{\mathbf{M}} \ddot{\mathbf{q}} + \hat{\mathbf{K}} \mathbf{q} + \mathbf{f}_{matl}(\mathbf{q}, \dot{\mathbf{q}}) = \hat{\mathbf{f}}(t)$$

Project full equations of motion onto a small set of basis vectors

Related by transformation:
 $\mathbf{x}(t) = \mathbf{T} \mathbf{q}(t)$

$$* \mathbf{q}(t) \ll \mathbf{x}(t)$$

Linear Viscoelasticity with Prony Series

- **Stress dependent upon time**

$$\sigma(t) = \int_0^t E(t - \tau) \frac{d\varepsilon}{d\tau} d\tau$$

- **Prony series**

$$E(t) = E_\infty + (E_g - E_\infty) \zeta(t)$$

$$\zeta(t) = \sum_{i=1}^N E_i e^{-t/\tau_i}$$

Relaxation modulus: describes time- and history-dependent behavior!

(skipping detailed mathematics)

- **FEA equations of motion**

$$\mathbf{M}\ddot{\mathbf{x}} + \mathbf{K}_{v,K} \int_0^t \zeta_K(t - \tau) \dot{\mathbf{x}}(\tau) d\tau + \mathbf{K}_{v,G} \int_0^t \zeta_G(t - \tau) \dot{\mathbf{x}}(\tau) d\tau + \mathbf{K}_e \mathbf{x} = \mathbf{f}(t)$$

*Typically have many degrees-of-freedom!

Linearized Complex Eigenmode Basis

$$\mathbf{M}\ddot{\mathbf{x}} + \mathbf{K}_{v,K} \int_0^t \zeta_K(t-\tau) \dot{\mathbf{x}}(\tau) d\tau + \mathbf{K}_{v,G} \int_0^t \zeta_G(t-\tau) \dot{\mathbf{x}}(\tau) d\tau + \mathbf{K}_e \mathbf{x} = \mathbf{f}(t)$$

■ Linearized Complex Eigenmodes

- Iterative approach that uses linearized quadratic eigensolver in Sierra/SD

Linearized quadratic eigenvalue problem: for each mode, iterate until $\text{Im}(\lambda_r) = \omega_0$

$$\left(\lambda_r^2 \mathbf{M} + \lambda_r \mathbf{K}_{v,K} \sum_{i=1}^{N_K} \frac{K_{coeff,i}}{\lambda_0 + 1/\tau_{K,i}} + \lambda_r \mathbf{K}_{v,G} \sum_{i=1}^{N_G} \frac{G_{coeff,i}}{\lambda_0 + 1/\tau_{G,i}} + \mathbf{K}_e \right) \mathbf{u}_r(\lambda_0) = \mathbf{0} \quad \text{with } \lambda_0 = i\omega_0$$

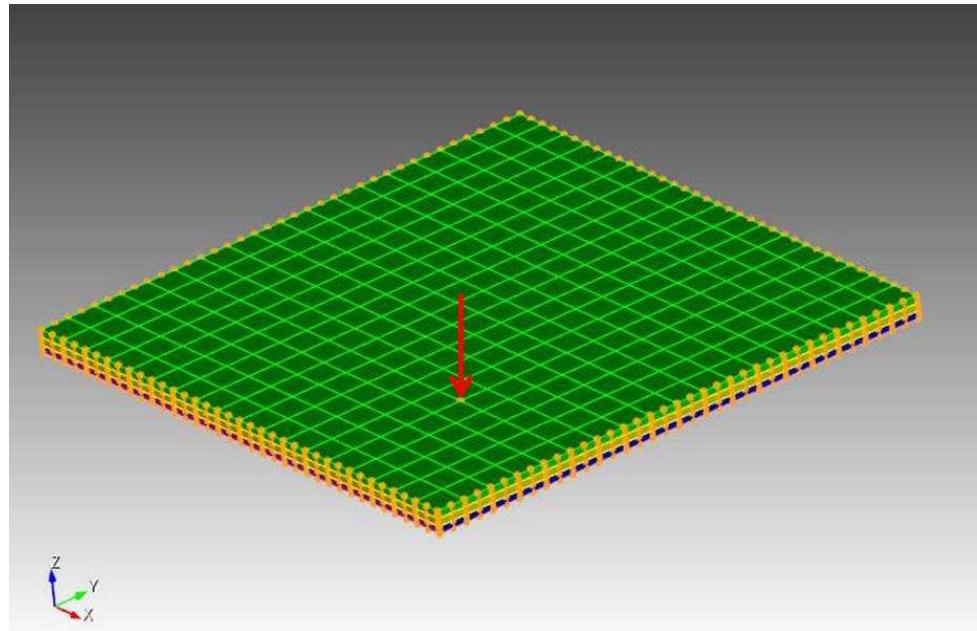
Quasi-static Correction

$$\mathbf{R}_{qs} = \left(i\omega \mathbf{K}_{v,K} \sum_{i=1}^{N_K} \frac{K_{coeff,i}}{i\omega + 1/\tau_{K,i}} + i\omega \mathbf{K}_{v,G} \sum_{i=1}^{N_G} \frac{G_{coeff,i}}{i\omega + 1/\tau_{G,i}} + \mathbf{K}_e \right)^{-1} \mathbf{b} \quad \text{with } \omega \gg 0$$

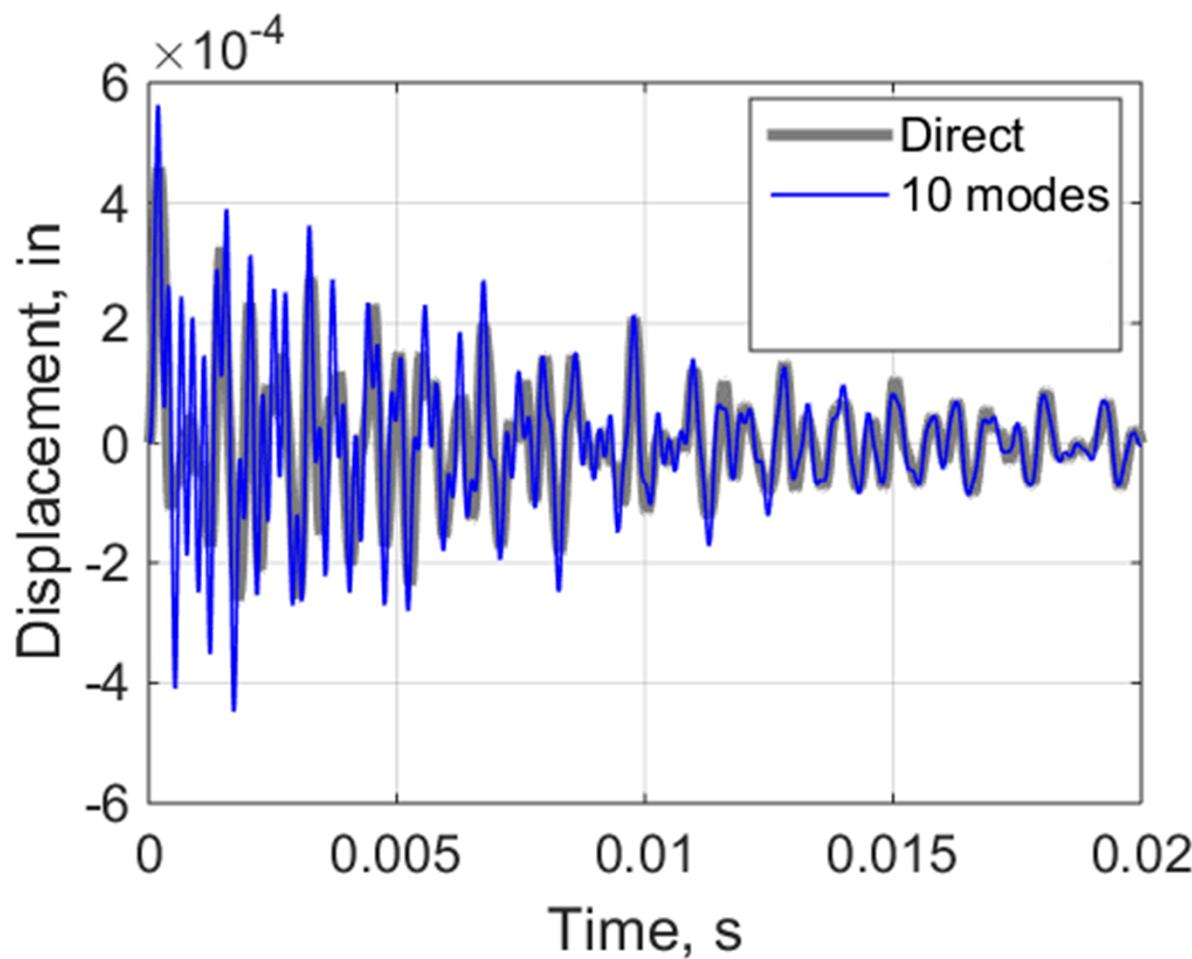
→ $\mathbf{T} = [\text{Re}(\mathbf{u}_1 \quad \mathbf{u}_2 \quad \dots \quad \mathbf{u}_{N_R} \quad \mathbf{R}_{qs}) \quad \text{Im}(\mathbf{u}_1 \quad \mathbf{u}_2 \quad \dots \quad \mathbf{u}_{N_R} \quad \mathbf{R}_{qs})]$

- **Viscoelastic Sandwich Plates**

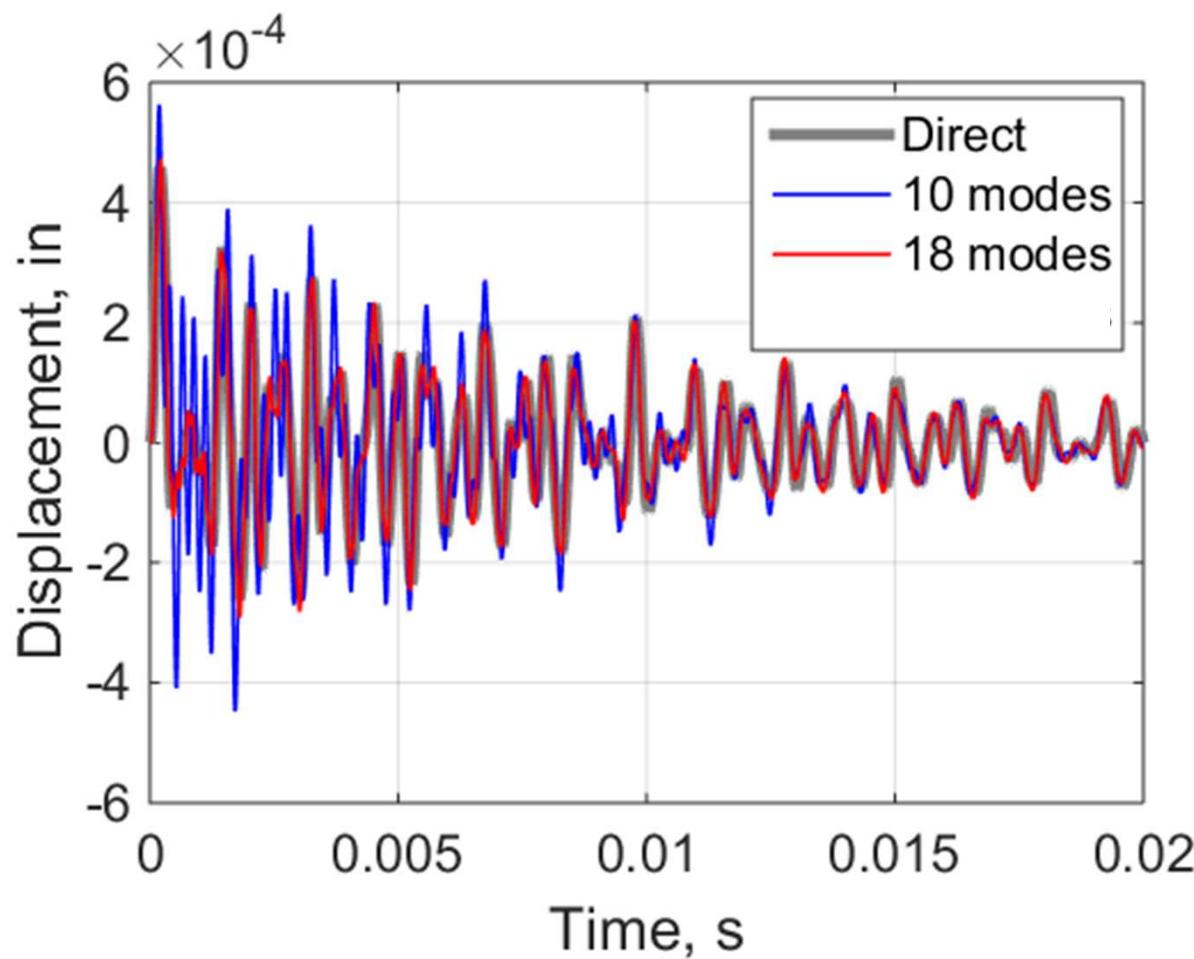
- Aluminum 6061-T6 (linear elastic)
- PMDI 22 foam (linear viscoelastic)



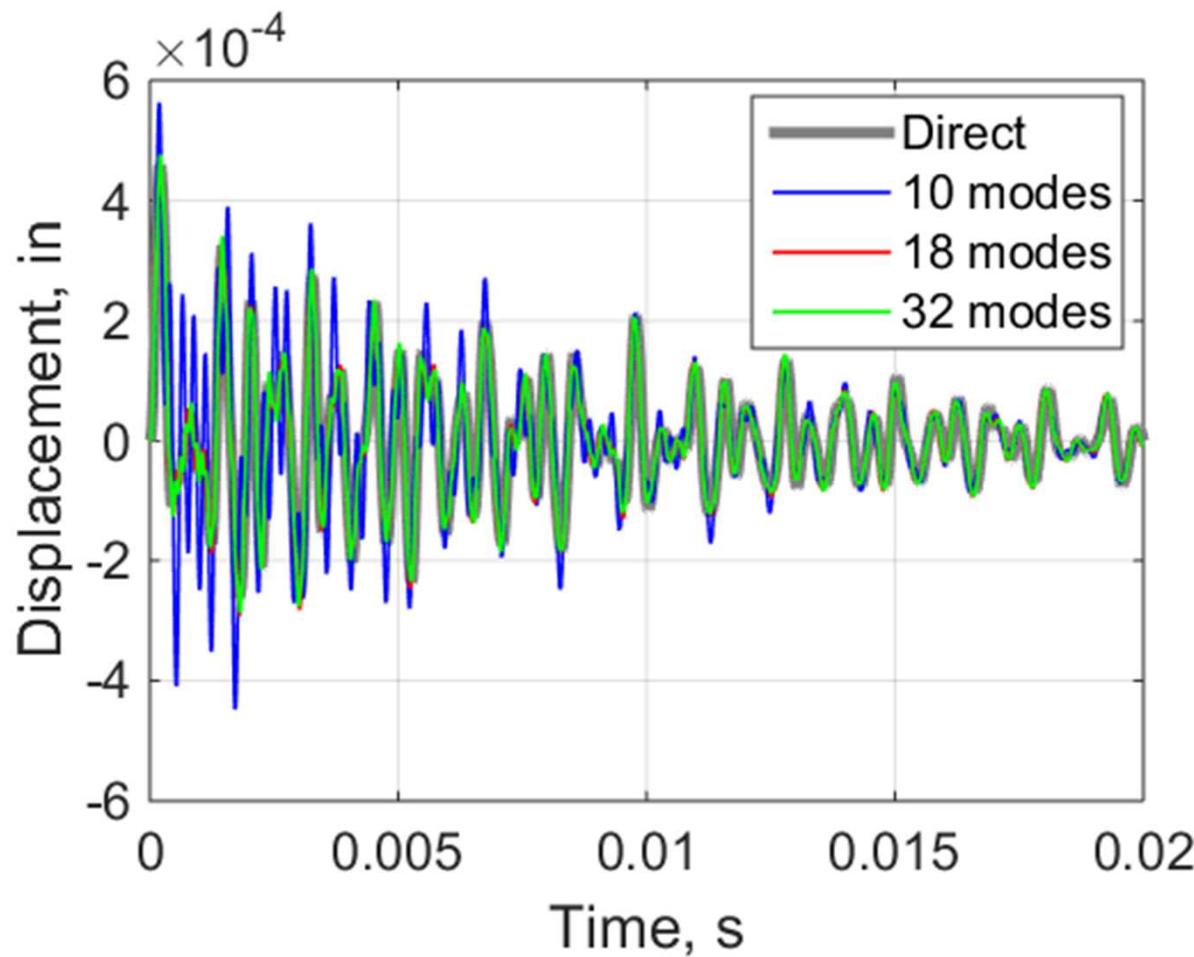
Viscoelastic Sandwich Plate with Linearized Complex Modes



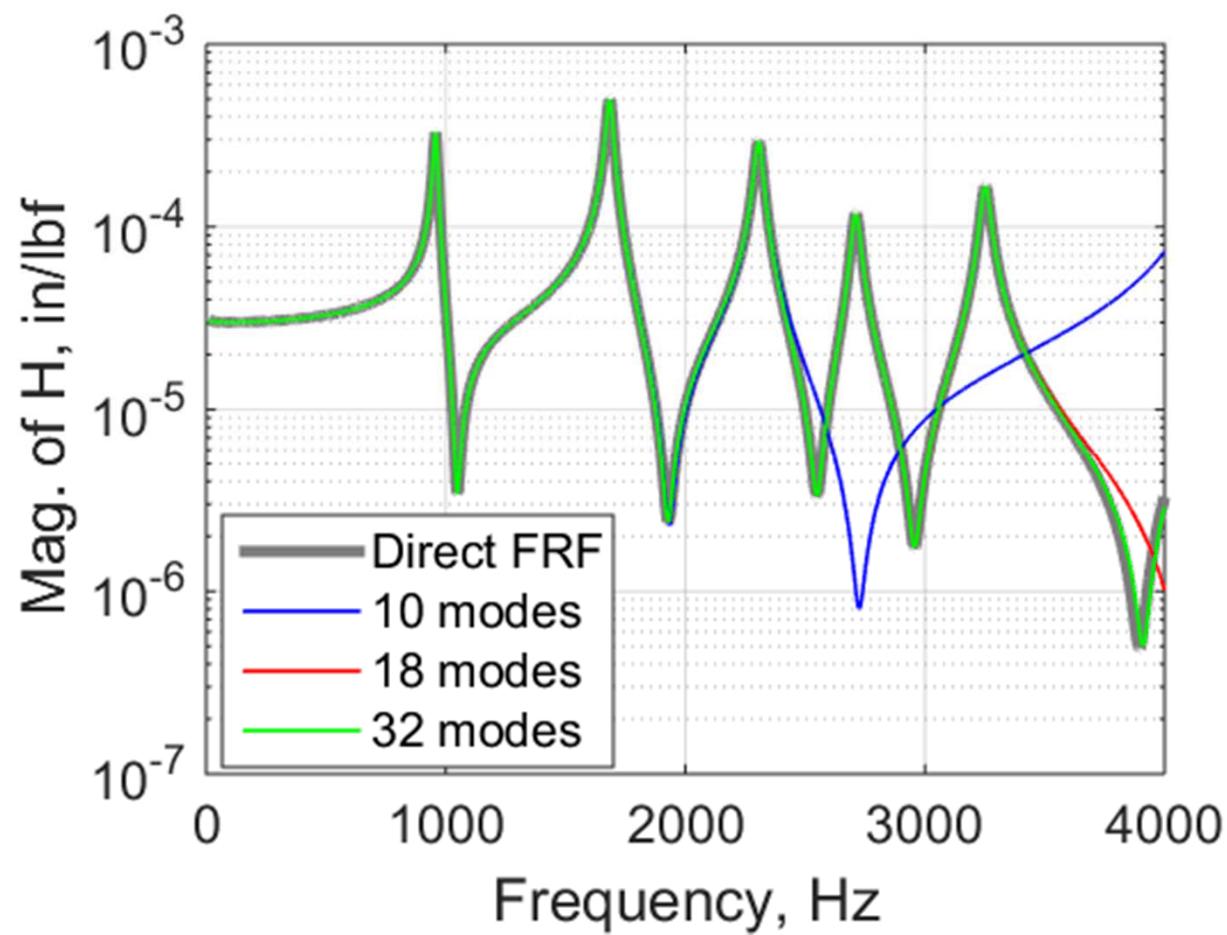
Viscoelastic Sandwich Plate with Linearized Complex Modes



Viscoelastic Sandwich Plate with Linearized Complex Modes



Viscoelastic Sandwich Plate with Linearized Complex Modes



Viscoelastic Sandwich Plate with Linearized Complex Modes

Transient Solutions of Sandwich Plate

Model	Eigensolution	Solution Time	Total Cost
Full FEA model	n/a	~10 days* ($dt = 1e-7$)	~864,000 seconds (~14,400 min)
1501 mode ROM with real modes	229 seconds	2571 seconds ($dt = 1e-6$)	2800 seconds (~47 min)
32 mode ROM with linearized complex modes	4923 seconds	4.2 seconds ($dt = 5e-6$)	4927 seconds (~82 min)

*Estimate based on integration in Matlab on single processor

Acknowledgements

Biomechanics work

- Funded by Colorado State University
- Work performed at Orthopaedic Bioengineering Research Laboratory

Reduced order modeling work

- Supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.