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Outline 
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 Results 
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 Free-Interface 
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Maximum Entropy Approach 
 Combines random matrices, maximum entropy to 

select distribution, and maximum likelihood estimate 
for the distribution 

 Introduced by Soize in 2000 
 Assumes semi-positive definite matrices in current 

implementation 
 Apply to system EOM 
 𝑀𝑀 𝑋̈𝑋 + 𝐾𝐾 𝑋𝑋 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝜔𝜔𝜔𝜔) 
 Other EOM can be used, but require more attention 
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MEA Cont. 
 Since semi-positive definite, can Cholesky 

decomposition 
 𝐾𝐾 = 𝐿𝐿𝐾𝐾 𝑇𝑇[𝐿𝐿𝐾𝐾] 

 Insert random germ 
 𝑲𝑲 = 𝐿𝐿𝐾𝐾 𝑇𝑇 𝑮𝑮 𝛿𝛿𝐾𝐾 [𝐿𝐿𝐾𝐾] 
 𝔼𝔼 𝑮𝑮 = 𝐼𝐼 
 𝑉𝑉𝑉𝑉𝑉𝑉 𝑮𝑮 ∝ 𝛿𝛿𝐾𝐾 

 2 possible uses 
 Calibrate dispersion to known data 
 Apply dispersion value to accommodate unknown error 

 

UNIVERSITY OF WISCONSIN 4 



Calibration of Dispersion Parameter 
 Like any calibration, can be computationally 

expensive 
 Truth data can be any selected output  
 Used natural frequencies in this analysis 

 Can be thought of in two ways 
 Use mean and variance of truth data: unbiased estimate 
 Use instances from the distribution, assume model 

matches mean output: bias estimate 
 Doesn’t affect analysis, just explanation 

 𝛿𝛿𝑜𝑜𝑜𝑜𝑜𝑜 = arg max Pr (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|𝛿𝛿) = arg maxℒ(Truth, 𝛿𝛿)  
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Process Flow Chart 
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Sampling Methods 
Monte-Carlo (MC) 

 Simplest sampling method 

 Pick values at random from 
distribution 
 All values are independent 

 Easy to program 
 Adjusted quasi-random numbers 

 Is easy to scale 

 Easy to parallelize 

 Computationally expensive 
 ~10,000  for convergence 

 

Latin Hypercube (LHC) 

 Stratification of MC 

 Split distribution into equal probable 
sections 
 Value chosen randomly from section 

 Or midpoint for repeatability 

 Massive reduction in points 
 ~100 for convergence 

 Must pre-generate evaluation points 
 Memory issues for large sample 

numbers or large matrices 

 Can also be parallelized  

 Some numerical issues for unbounded 
distributions 
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Reduced Order Models 
Fixed-Interface (CB) 

 Uses fixed-interface modal DOF and 
physical interface displacement DOF 

 Primal formulation of Craig-Bampton 

 Ensure linear independence of DOF 

 When synthesized, maintain interface 
DOF 

 Good for flexible bodies with rigid 
connections 

 

 

Free-Interface (CC) 

 Uses free-interface modal DOF and 
interfacial force DOF 

 Doesn’t automatically ensure linear 
independence if rigid body 
information 

 Similar to Dual CB, but no Lagrange 
multipliers 

 When synthesized, no interface 
information is maintained 

 Good for large interfaces 
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Likelihood Function 
Log-likelihood 

 Simplifies joint distribution to 
summation since independence of 
modes 
 Each frequency can be determined 

independently 

 Negative log-likelihood used for 
future research in optimization 
routine 

 

Empirical log-likelihood 

 Perform probability measure multiple 
times 
 Take highest probability of individual 

evaluations 

 Computational statistics tool 

 More computationally expensive 
 Allows for higher repeatability 

 Less subject to MC randomness 

 Can give some confidence intervals on 
results 
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Likelihood Cont. 
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Probability Measure 
Histogram 

 Simple 

 Requires engineering judgment 
 Specify bounds 
 Number of bins  

 Size of bins 

 Chosen as percentage of true value 

 Count instances within tolerance as 
proportion to probability 

 Optimal percentage changes with 
dispersion 

 

Gaussian Kernel 

 Applies a kernel estimator to generate 
density function 
 Evaluate exact probability at truth 

value 

 Assuming Gaussian smoothing 

 No additional input from engineer 

 “ksdensity.m” 

 Since large amount of samples, less 
assumptions than histogram 
 Used as truth data 
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Demonstration System 
 2 Systems- “B” Left, “D” Right 
 Use first 11 elastic Free-Free natural frequencies 
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Fixed-Interface Reduction Results 
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Fixed-Interface Reduction Results 
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Free-Interface Reduction Results 
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System B 
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Free-Interface Reduction Results 
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System D 
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Remarks/ Future Research  
 Using MC sampling is typically more conservative 
 Using a histogram has discontinuity and requires 

more engineering decisions 
 System B shows less variability 
 At 10K/200, no observed conservative trend  

 
 Uncertainty bounds on dispersion parameter 
 Optimization routine for optimal parameter 
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Conclusions 
 Use MEA to quatify model-form error for ROM 
 Implemented MEA to two systems 
 Numerical investigation of engineering choices 
 Sampling methods 
 ROMs 
 Likelihood function 
 Probability measure 

 With no optimization methods, recommend 
 Gaussian kernel estimator 
 Monte-Carlo sampling 
 Empirical likelihood 

 Choice of ROM is problem dependent 
 

UNIVERSITY OF WISCONSIN 18 



Special Thanks 
 Advisor: Dan Kammer (Wisconsin) 
 Matt Brake (Rice/Sandia*) 
 Marc Mignolet (ASU) 
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 Questions? 
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*Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United 
States Department of Energy under contract DE-AC04-94AL85000. 
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