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Required Engineering Choices
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Example System for Demonstration
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Maximum Entropy Approach

Combines random matrices, maximum entropy to
select distribution, and maximum likelihood estimate
for the distribution

Introduced by Soize in 2000

Assumes semi-positive definite matrices in current
Implementation

Apply to system EOM
[M]X + [K]X = Fcos(wt)
Other EOM can be used, but require more attention
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MEA Cont.

= Since semi-positive definite, can Cholesky
decomposition
= K] = [LK]T[LK]
= |nsert random germ
= [K] = [Lg]"[6(6:0)][Lk]
= E|G] =1
= Var|G] < &g
= 2 possible uses
= Calibrate dispersion to known data
= Apply dispersion value to accommodate unknown error
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Calibration of Dispersion Parameter

Like any calibration, can be computationally
expensive

Truth data can be any selected output

= Used natural frequencies in this analysis

Can be thought of in two ways

= Use mean and variance of truth data: unbiased estimate

» Use instances from the distribution, assume model
matches mean output: bias estimate

= Doesn’t affect analysis, just explanation
6°Pt = argmax Pr (Truth|6) = arg max L(Truth, §)
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Process Flow Chart
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Sampling Methods

Monte-Carlo (MC)

= Simplest sampling method

» Pick values at random from
distribution

= All values are independent
= Easy to program
» Adjusted quasi-random numbers
= |s easy to scale
= Easy to parallelize
= Computationally expensive
= ~10,000 for convergence

Latin Hypercube (LHC)

Stratification of MC

Split distribution into equal probable
sections

= Value chosen randomly from section
= Or midpoint for repeatability
Massive reduction in points

= ~100 for convergence

Must pre-generate evaluation points

= Memory issues for large sample
numbers or large matrices

Can also be parallelized

Some numerical issues for unbounded
distributions
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Reduced Order Models

Fixed-Interface (CB) Free-Interface (CC)
= Uses fixed-interface modal DOF and = Uses free-interface modal DOF and
physical interface displacement DOF interfacial force DOF
= Primal formulation of Craig-Bampton = Doesn’t automatically ensure linear
= Ensure linear independence of DOF Independence If rigid body
: L information
= When synthesized, maintain interface o
DOE = Similar to Dual CB, but no Lagrange
multipliers

= Good for flexible bodies with rigid

connections = When synthesized, no interface

information is maintained
= Good for large interfaces

UNIVERSITY OF WISCONSIN



Likelihood Function

Log-likelihood Empirical log-likelihood
= Simplifies joint distribution to = Perform probability measure multiple
summation since independence of times
modes = Take highest probability of individual
» Each frequency can be determined evaluations
independently = Computational statistics tool
future research in optimization

routine = Allows for higher repeatability

= |Less subject to MC randomness

= Can give some confidence intervals on
results
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Likelihood Cont.

System B System D

Optimal Dispersion Value [%)]

02 1 1 1 1 1 1 02 1 1 1 1 1 1

13 14 15 16 17 18 19 20 13 14 15 16 17 18 19 20
Number of Fixed-Interface Modes Number of Fixed-Interface Modes

UNIVERSITY OF WISCONSIN



Probability Measure

Histogram

= Simple

= Requires engineering judgment

= Specify bounds
= Number of bins
» Size of bins

» Chosen as percentage of true value
= Count instances within tolerance as

proportion to probability

= Optimal percentage changes with

dispersion

Gaussian Kernel

= Applies a kernel estimator to generate
density function

= Evaluate exact probability at truth
value

Assuming Gaussian smoothing

No additional input from engineer

“ksdensity.m”

Since large amount of samples, less
assumptions than histogram

» Used as truth data
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Demonstration System

= 2 Systems- “B” Left, “D” Right
= Use first 11 elastic Free-Free natural frequencies
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Fixed-Interface Reduction Results
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Fixed-Interface Reduction Results
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Free-Interface Reduction Results
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Free-Interface Reduction Results
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Remarks/ Future Research

Using MC sampling is typically more conservative

Using a histogram has discontinuity and requires
more engineering decisions

System B shows less variability
At 10K/200, no observed conservative trend

Uncertainty bounds on dispersion parameter
Optimization routine for optimal parameter
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Conclusions

Use MEA to quatify model-form error for ROM
Implemented MEA to two systems

Numerical investigation of engineering choices
= Sampling methods

= ROMs

= Likelihood function

= Probability measure

With no optimization methods, recommend
= Gaussian kernel estimator

= Monte-Carlo sampling

= Empirical likelihood

Choice of ROM is problem dependent
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Special Thanks

= Advisor: Dan Kammer (Wisconsin)
= Matt Brake (Rice/Sandia*)
= Marc Mignolet (ASU)

= Audience

= Questions?

*Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy under contract DE-AC04-94AL85000.
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