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CASL	Dakota	Capabilities	Summary	
Brian	M.	Adams,	Chris	Simmons,	Brian	J.	Williams,	September	22,	2017	

Dakota	Background	

	

The	Dakota	software	project	serves	the	mission	of	Sandia	National	Laboratories	and	supports	a	
worldwide	user	community	by	delivering	state-of-the-art	research	and	robust,	usable	software	for	
optimization	and	uncertainty	quantification.	These	capabilities	enable	advanced	exploration	and	risk-
informed	prediction	with	a	wide	range	of	computational	science	and	engineering	models	[1].		Dakota	is	
the	verification	and	validation	(V&V)	/	uncertainty	quantification	(UQ)	software	delivery	vehicle	for	CASL,	
allowing	analysts	across	focus	areas	to	apply	these	capabilities	to	myriad	nuclear	engineering	analyses.	

In	its	simplest	mode,	Dakota	automates	iterative	analysis	using	a	general-	purpose	interface	to	a	
computational	model,	as	shown	in	Figure	1.	Its	fundamental	strength	is	a	broad	suite	of	algorithmic	
techniques	facilitating	parameter	exploration,	global	sensitivity	analysis,	design	optimization,	model	
calibration,	uncertainty	quantification,	and	statistical	inference.	These	core	algorithms	provide	a	
foundation	for	more	advanced,	multicomponent	solution	approaches,	including	hybrid	optimization,	
surrogate-based	optimization,	multi-fidelity	uncertainty	quantification	and	optimization,	mixed	aleatory-
epistemic	uncertainty	analyses,	and	optimization	under	uncertainty.	By	integrating	these	capabilities	
within	a	single	software	tool,	users	can	easily	transition	between	different	types	of	studies	when	
exploring	a	computational	model	–	from	identifying	to	calibrating	influential	parameters	and	from	
characterizing	the	effect	of	uncertainties	to	performing	design	optimization	in	their	presence.	
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Figure	1.	Interaction	between	Dakota	and	a	parameterized	simulation 

Dakota’s	development	activities	span	a	spectrum	from	algorithm	research	and	prototyping	to	
production	application	deployment,	with	the	goal	of	delivering	exploration	and	prediction	capabilities	
for	all	kinds	of	computational	models.	Efficient	computing	is	also	a	central	goal,	with	support	ranging	
from	desktops	to	the	latest	supercomputers.	The	overall	goal	of	CASL-funded	Dakota	work	is	to	develop	
advanced	methods	for	calibration	and	UQ,	and	deploy	them	through	Dakota	and	VERA,	to	ultimately	
have	impact	on	CASL	challenge	and	other	problems.	

Since	CASL’s	inception	in	2010,	there	have	been	eleven	major	Dakota	releases	with	new	capabilities,	
bug	fixes,	and	robustness/usability	improvements.		Since	2014,	Dakota	has	been	released	twice	yearly	in	
May	and	November.		CASL/Dakota	capabilities	have	been	stewarded	and	developed	by	these	principal	
contributors:	

• Sandia	National	Laboratories:	Brian	Adams,	Russell	Hooper,	Chris	Jones,	Kathryn	Maupin,	Vince	
Mousseau,	Jim	Stewart,	and	Laura	Swiler	

• Los	Alamos	National	Laboratory:	Brian	Williams	
• The	University	of	Texas	at	Austin:	Damon	McDougall,	Chris	Simmons,	and	Roy	Stogner	
• North	Carolina	State	University:	Research	group	of	Ralph	Smith	(including	students)	

Dakota	Capabilities	Emphasized	by	CASL	
Since	2010,	CASL	has	largely	focused	its	Dakota	investment	on	capabilities	for	forward	uncertainty	
quantification,	inverse	uncertainty	quantification	(inference),	surrogate	(response	surface)	models,	and	
parameter	subspace	identification.		In	addition,	it	has	supported	software	deployment	through	VERA,	
application	to	various	CASL	challenge	problems	and	fundamental	physics	studies,	and	
outreach/education.	The	discussion	here	focuses	primarily	on	Dakota	developments	in	the	past	3—4	
years.		It	is	by	no	means	exhaustive;	we	aim	to	be	representative.	
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Forward	UQ	Methods	
Dakota	algorithms	for	forward	propagation	of	parametric	uncertainties	include	sampling	(Monte	Carlo,	
Latin	hypercube,	and	other	variants),	stochastic	expansions	(polynomial	chaos	and	variants),	reliability	
methods,	and	interval/evidence-based	approaches.		CASL	largely	relies	on	Dakota’s	historical	
investments	in	these	methods,	as	they	are	production-ready	for	application	use.	One	UQ	feature	
specifically	chartered	and	funded	by	CASL	is	a	new	implementation	of	Wilks’	sampling,	an	NRC-typical	
Monte	Carlo	analysis.	A	user	can	specify	the	index	of	an	order	statistic	and	confidence	level.		Dakota	will	
determine	the	requisite	number	of	UQ	samples,	run	the	computational	model	and	compute	statistics	on	
model	outputs,	including	Wilks’	tolerance	intervals/bounds.	

Leveraged	Dakota	forward	UQ	capabilities	developed	in	the	past	few	years	include	the	following.	

• Sampling-based	UQ:	New	sampling	options	for	D-optimal	design	selection	and	batch	sampling	
and	greater	support	for	discrete	variables	in	incremental	LHS,	all	of	which	permit	iterative	
design	of	computational	experiments.		More	accurate	and	numerically	stable	correlation	
calculations	and	higher	quality	design	generation	with	discrete	variables.		

• Multi-fidelity/multilevel	UQ	methods:	With	both	sampling-based	and	polynomial	chaos	
variants,	these	rigorous	UQ	methods,	such	as	multi-level	and	control	variate	approaches,	make	
UQ	practical	for	costly	models	by	leveraging	lower	fidelity	calculations	when	available.		They	
orchestrate	the	simultaneous	execution	of	models	of	differing	fidelity	and/or	numerical	
accuracy	(Figure	2),	to	perform	a	UQ	calculation.	

	

	
Figure	2.	Multi-model	UQ	methods	can	use	models	of	different	forms	and	numerical	accuracy.	

• PCE/SC:	Numerous	improvements	to	polynomial	chaos	expansion	and	stochastic	collocation	
methods	for	accuracy,	robustness,	and	usability.	New	algorithm	for	adaptive	basis	selection	for	
compressed	sensing	using	expanding	front.			

• Reliability	methods:	New	reliability	method	POFDarts	works	with	any	of	Dakota's	surrogate	
model	types;	adaptive	importance	sampling	(including	Gaussian	process-based)	improvements.	
	

Model	Calibration	
Model	calibration,	also	known	as	parameter	estimation	or	inference,	seeks	to	maximize	agreement	
between	a	simulation	model	and	a	data	source	(whether	experimental	data	or	output	from	another	
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computational	model).		CASL	has	emphasized	Dakota’s	Bayesian	calibration	methods	in	order	to	make	
uncertainty-aware	calibration/prediction	practical	for	CASL	applications.		For	example,	these	methods	
allow	an	analyst	to	estimate	joint	distributions	of	parameters	consistent	with	data,	as	shown	in	Figure	3.	

	

	

QUESO	for	Bayesian	Calibration	
The	Parallel	C++	Statistical	Library	Quantification	of	Uncertainty	for	Estimation,	Simulation	and	
Optimization	(QUESO)	software	library	provides	Dakota’s	principal	Bayesian	inference	methods.	
Designed	and	primarily	developed	at	The	University	of	Texas	at	Austin,	QUESO	is	a	collection	of	
statistical	algorithms	and	programming	constructs	supporting	research	into	the	uncertainty	
quantification	(UQ)	of	models	and	their	predictions.	It	has	been	designed	with	three	objectives	in	mind:	
(a)	to	be	sufficiently	abstract	in	order	to	handle	a	large	spectrum	of	large-scale	computationally	
intensive	models;	(b)	to	be	extensible,	allowing	easy	creation	of	custom-defined	objects;	and	(c)	
leverage	parallel	computing	through	use	of	high-performance	vector	and	matrix	libraries.	Such	
objectives	demand	a	combination	of	an	object-oriented	design	with	robust	software	engineering	
practices.	QUESO	is	written	in	C++,	uses	MPI,	and	utilizes	libraries	already	available	to	the	scientific	
community.	

CASL	funding	has	supported	new	capability	development	in	QUESO	and	helped	make	it	a	robust,	usable	
engine	for	Dakota	integration.	The	process	for	integrating	QUESO	into	Dakota	has	been	streamlined,	and	
Dakota’s	own	interfaces	improved	to	make	Bayesian	inference	more	practical	for	users.		Dakota/QUESO	
improvements	include:	

• Support	for	DRAM,	DR,	AM,	MH,	and	multi-level	algorithms,	with	various	options.	
• Support	for	general	prior	distributions	using	any	of	Dakota’s	twelve	continuous	uncertain	

variables	types,	with	no	special	syntax	required.		
• Scaling	options:	Users	can	scale	parameters	in	Bayesian	calibration	problems	using	Dakota’s	

standard	probability	transformations	that	map	to	well-scaled	standard	distributions.		(This	is	

Figure	3.	Bayesian	inference	methods	allow	estimation	of	joint	parameter	
distributions	consistent	with	experimental	(or	high-fidelity	model)	data.	
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enabled	by	default	when	using	certain	kinds	of	surrogate	models	such	as	PCE	or	SC.)		Likelihood	
scaling,	which	could	be	misleading,	is	now	off	by	default.	

• Basic	user	options	through	Dakota	input	can	now	be	augmented	by	power	user	options	for	
advanced	users.	

QUESO/GPMSA	
Over	the	course	of	the	last	several	years,	with	the	help	of	CASL	funding,	QUESO	has	been	extended	to	
include	the	Gaussian	Process	Models	for	Simulation	Analysis	(GPMSA)	framework	developed	by	Brian	
Williams,	Jim	Gattiker,	Dave	Higdon,	et	al.,	at	LANL.	While	originally	written	in	Matlab,	the	GPMSA	
functionality	has	been	re-implemented	in	C++	and	is	now	part	of	QUESO.	Owing	to	previous	QUESO	
integration	with	Dakota,	this	new	GPMSA	functionality	is	now	also	available	to	Dakota	users.	With	the	
help	of	CASL	funding,	the	GPMSA	functionality	in	QUESO	continues	to	be	extended	and	now	provides	
Dakota	users	a	high-performance	alternative	for	their	GPMSA	needs.	The	remainder	of	this	section	
discusses	the	extensions	to	the	GPMSA	implementation	in	QUESO	with	CASL	funding.	

Scalar	and	Multivariate	Use	Case:	Overall,	the	quality	and	reliability	of	the	GPMSA	code	in	QUESO	has	
improved	greatly.		For	the	scalar	case,	a	suite	of	regression	tests	has	been	added	to	assert	consistency	
with	the	Matlab	implementation.		These	led	to	correcting	several	indexing	bugs	as	well	as	improving	the	
efficiency	of	some	of	the	initial	calculations.		It's	also	allowed	us	to	add	defensive	techniques	such	as	
asserting	that	user-provided	covariance	matrices	are	symmetric	and	positive	definite	and	utilizing	newer	
and	safer	memory	management	techniques	for	large	matrices.		Most	of	these	implementation	
improvements	carry	over	automatically,	and	have	aided	in	the	ongoing	verification	efforts,	for	the	
multivariate	case.	

Input	options	have	been	extended	to	allow	the	user	more	fine-grained	control	over	problem	setup	for	
both	the	scalar	and	multivariate	cases,	including	situations	where	the	user	may	want	to	calibrate	(or	
exclude)	certain	parameters	from	the	problem.		Users	are	now	no	longer	responsible	for	normalizing	the	
simulation/experiment	output	and	scaling	the	calibration	parameters.		Functions	for	scaling	and	
normalizing	this	data	have	been	added	to	QUESO	and	we	use	these	to	sanity-check	the	users'	input.		This	
improves	the	usability	and	barrier	to	entry	for	users	to	leverage	QUESO/GPMSA.	

Functional	Use	Case:	The	QUESO	GPMSA	code	has	been	extended,	in	a	development	branch,	to	handle	
mixtures	of	multivariate	data	(where	each	simulation	and	experiment	output	is	an	independent	scalar)	
and	functional	data	(where	simulation	output	includes	discretized	field	data	and	experiment	outputs	
include	values	from	those	fields	at	particular	space/time	points.	

A	SimulationOutputMesh	abstract	base	class	allows	us	to	extend	to	more	complex	discretizations	in	the	
future,	and	a	TensorProductMesh	allows	us	to	support	first-order	interpolation	for	functions	of	up	to	4	
coordinates,	on	meshes	which	are	rectilinear	(but	not	necessarily	equi-spaced)	in	the	desired	coordinate	
space.		Multiple	functional	output	variables,	on	independent	grids,	can	be	used	as	data	to	inform	the	
same	inverse	problem.		Experiment	data	can	now	vary	from	experiment	to	experiment,	with	each	
experiment	specifying	data	variable	index, and	data	point	location	in	the	case	of	functional	data,	for	an	
independent	number	of	experiment	outputs.	
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Auto-scaling	is	now	handled	correctly	for	groups	of	discretized	coefficients	corresponding	to	functional	
variables.	Auto-generation	of	Gaussian	discrepancy	bases	is	available,	with	a	few	input	options	to	
control	kernel	width	and	spacing,	and	with	auto-normalization	for	kernel	magnitude.	

Multi-fidelity	Model	Calibration	(“Hi2Lo”)	
Kathryn	Maupin	led	development	of	an	information	theory-guided	Hi2Lo	calibration	approach	in	Dakota	
based	on	[2].	As	depicted	in	Figure	4,	Dakota	will	generate	“data”	by	running	a	high	fidelity	model	across	
scenarios	of	interest	and	perform	Bayesian	calibration	of	a	low	fidelity	model	to	best	match	the	data.		
This	process	is	iterated,	using	a	mutual	information	criterion	to	add	additional	high	fidelity	runs	until	the	
estimated	parameter	distributions	converge.	The	process	can	be	executed	in	an	online	mode,	where	
Dakota	executes	both	models	during	the	course	of	calibration,	or	an	offline	mode,	where	the	user	runs	
the	high	fidelity	model	manually	at	each	proposed	experiment	design	point.	

	

Figure	4.	Mutual	information-based	design	of	experiments	to	calibrate	a	low-fidelity	model	to	high-fidelity	model	output.	

The	Hi2Lo	capability	required	adding	information	theoretic	metrics,	specifically	approximate	k-nearest	
neighbor-based	algorithms	for	estimating	mutual	information	and	Kullback-Leibler	discrepancy.		These	
measure	information	gain	between	a	Bayesian	calibration	prior	and	posterior	and	are	used	to	select	
points	at	which	to	run	additional	high	fidelity	calculations	in	the	Hi2Lo	workflow.	
	
General	Calibration	Method	Enhancements	

• Bayesian	inference:	Robustness	and	usability	improvements	made	to	Bayesian	methods,	
including	adaptive	surrogate-based	approaches.		Features	include	ability	to	conduct	forward	UQ	
from	a	posterior	chain,	full	support	for	Gaussian	Process,	PCE,	and	SC	emulators,	and	reporting	
of	final	results	(acceptance	chain)	in	the	original	user-specified	problem	space.		Users	can	opt	to	
return	simulation	responses	separately	from	experimental	data	or	return	computed	residuals	
(model	minus	data)	to	Dakota.	
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• Bayesian	results	output:	Ability	to	discard	chain	burn-in	and	subsample	the	posterior	chain;	
compute	additional	statistics	including	information	gain	from	prior	to	posterior;	more	consistent	
file	input	and	output,	including	for	coupling	Bayesian	inference	to	forward	prediction.	

• Credible	and	prediction	intervals:	To	aid	in	forward	uncertainty	quantification,	Bayesian	
methods	produce	credible	and	prediction	bounds/intervals	for	quantities	of	interest.	

• Bayesian	proposal	covariance:	Dakota	now	has	three	options	for	specifying	the	covariance	of	
the	proposal	(jumping)	distribution	used	in	QUESO-based	Bayesian	inference:	(1)	default	based	
on	variance	of	the	prior	distribution,	(2)	user-provided	either	in	Dakota	input	file	or	from	
separate	files,	and	(3)	adaptive	based	on	gradient	and/or	Hessian	information.		

• Experiment	configuration	variables:	Model	calibration	(including	Bayesian	inference)	methods	
can	now	directly	incorporate	data	from	multiple	experimental	configurations/scenarios,	
reducing	burden	on	users.		Both	deterministic	and	Bayesian	calibration	methods	will	evaluate	
the	model	at	each	of	the	scenarios	in	the	course	of	calibrating	its	parameters.		Scenarios	can	be	
specified	through	the	calibration	data	file	using	continuous	or	discrete	values.	

• Measurement	(observational	error)	covariance:	For	each	response	in	a	Dakota	study,	a	user	can	
now	specify	no	variance,	a	single	scalar	variance	for	all	observations	of	the	response,	or	a	
diagonal	or	full	covariance	matrix	compatible	with	the	size	of	the	response.		This	information	
will	be	incorporated	into	calibration	formulations	and	its	magnitude	can	be	calibrated	as	a	
hyper-parameter.	

Surrogate	Models	
Parameterized	response	surface	(surrogate)	models	can	serve	as	stand-in	replacements	for	
computationally	costly	models,	when	performing	any	kind	of	Dakota	analysis.		Some	specialized	Dakota	
methods	can	also	use	them	in	concert	with	actual	simulation	models	to	accelerate	convergence	to	
statistics	or	optimized	designs.	

CASL	funding	is	being	leveraged	with	other	Dakota	funding	to	refactor	the	surrogate	modelling	capability	
to	be	able	to	more	easily	add	new	features,	improve	user	interfaces	/	usability,	and	improve	testing	and	
software	quality.		For	example,	a	user	will	be	able	to	(1)	use	an	orthogonal	polynomial	(PCE)	surrogate	in	
other	contexts	as	easily	as	a	monomial	or	Gaussian	process,	or	(2)	be	able	to	export	a	Dakota	surrogate	
and	then	query	the	cheap	replacement	model	through	a	Python	interface	or	efficiently	reuse	it	in	other	
Dakota	studies.	As	a	practical	CASL	example,	this	capability	would	drastically	reduce	the	per-iteration	
computation	time	in	Hi2Lo	calibration	studies	such	as	those	currently	being	conducted	with	COBRA-TF	
and	Star-CCM+.	

Progress:	As	of	this	writing,	considerable	progress	has	been	made	to	unify	Dakota’s	surrogate	models	
(from	Dakota,	Surfpack,	and	Pecos	libraries)	and	a	working	prototype	is	available.		Foundational	utilities	
have	been	modularized	and	new	surrogate	model	APIs	designed,	including	Python	interfaces	to	C++	
model	components	for	accessibility	by	power	users.	A	Jupyter-based	interactive	Python	tutorial	
(depicted	in	Figure	5)	demonstrates	more	usable	coordination	of	model	components	with	Python,	and	
that	a	tutorial	can	link	to	working	C++	code	for	training	purposes.				
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Figure	5.	Jupyter-based	interactive	Python	tutorial	demonstrates	new	surrogate	model	capabilities	(graphic	truncated,	for	
illustration	purposes	only).	

The	Dakota	surrogate	refactor	will	make	it	easier	(in	FY18)	to	include	CASL-requested	features	such	as	
user-selectable	polynomial	terms,	new	stepwise	regression	schemes,	and	information	theoretic	quality	
diagnostics	(AIC,	BIC).		In	addition,	the	following	surrogate	model	features	have	been	developed	over	
the	past	few	years,	in	part	with	CASL	funding:	

• Iteratively	refined	surrogates:	New	capability	to	incrementally	refine	a	surrogate	model	by	
gathering	more	training	data	from	a	simulation	(truth)	model.	

• Composite	surrogates:	Improvements	to	Voronoi	Piecewise	Surrogates	allow	users	to	
automatically	build	response	surface	models	for	expensive	simulations,	including	for	
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discontinuous	simulation	quantities	of	interest	(Figure	6).	

	
• Miscellaneous:	Extended	derivative	support	in	PCE	and	Dakota	GP	emulators;	enabled	

automatic	basis	selection	in	neural	network	models;	surrogates	can	be	output	to	binary	or	
algebraic	files,	so	users	can	use	in	another	context.	

	
Active	Subspace	Methods	
For	models	with	many	input	parameters,	active	subspace	methods	automatically	identify	reduced	
parameter	spaces	to	make	UQ	and	optimization	more	tractable.		CASL	has	primarily	conducted	research	
in	gradient-free	active	subspace	methods	and	has	leveraged	other	Dakota	investments	in	derivative-
based	approaches.	

• Gradient-based	methods:	Substantial	algorithm	and	usability	improvements	were	made	to	
gradient-based	active	subspace	methods,	including	options	for	a	number	of	subspace	
identification	metrics	and	automated	bootstrap	validation.		Subspaces	can	now	be	used	in	a	
number	of	UQ	methods.	

• Gradient-free	methods	will	be	improved	in	FY18	using	lessons	learned	from	the	research	
programs	of	Smith,	Constantine,	and	Williams/Khuwaileh.	

	
Verification	and	Validation	
For	simulations	that	expose	numerical	solution	parameters,	Dakota	can	assist	in	conducting	verification	
studies.		For	example,	Dakota	could	be	used	to	conduct	parametric	studies	to	assess	the	effect	of		

• Linear/nonlinear	solver	tolerances;	
• Time	step	or	time	step	control	parameters;	
• Discretization,	given	a	knob	controlling	uniform	or	adaptive	refinement	or	a	discrete	parameter	

to	select	from	pre-generated	grids;	and	
• Solution	algorithm/solver	choices.	

Basic	Dakota	parameter	studies	assess	the	effect	of	varying	any	of	these	controls,	while	its	sensitivity	
analysis	methods	can	identify	which	solution	control	parameters	most	affect	quantities	of	interest	and	
therefore	should	be	considered	more	carefully	in	formal	verification	studies.			

Figure	6.	Voronoi	Piecewise	Surrogates	can	model	local	(in	parameter	space)	response	discontinuities.	
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Dakota’s	simple	Richardson	Extrapolation	method	allows	a	user	to	specify	initial	values	of	solution	
controls,	e.g.,	mesh	quality,	along	with	a	refinement	rate,	e.g.,	1.5.		Dakota	will	then	evaluate	the	
computational	model	with	a	sequence	of	meshes	and	either	(1)	estimate	the	order	of	convergence	from	
three	grids,	(2)	refine	until	the	convergence	order	estimate	stabilizes,	or	(3)	refine	until	the	response	QoI	
converges.		FY18	work	will	make	more	advanced	verification	metrics	such	as	Rider’s	Robust	Method	of	
Regression	to	CASL	studies.	

Dakota’s	primary	role	in	validation	is	in	enabling	uncertainty-aware	validation,	or	statistical	
comparisons	to	experimental	data.	Both	forward	and	inverse	UQ	methods	can	be	used	to	generate	
predictive	distributions	accounting	for	parametric	uncertainties	as	well	as	observation	error.		Dakota	
parametric	studies	can	further	support	validation	by	assessing	the	effect	of	model	closure	laws,	model	
form	choices	and	associated	parameters,	or	even	discrete	selection	of	alternative	models.	All	together,	
these	can	help	an	analyst	assess	the	validity	of	a	simulation	for	a	particular	application,	accounting	for	
various	source	of	uncertainty.	

Deployment	
Throughout	CASL	the	Dakota	team	has	worked	to	deploy	Dakota	and	ensure	it	has	impact.		Some	
notable	accomplishments	include:	

• VERA	Integration:	Dakota	is	deployed	with	VERA	through	the	“DakotaExt”	adapter	to	the	full	
open	source	Dakota	distribution.	Examples	are	included	in	the	VERA	repository	for	using	Dakota	
to	study	parameters	of	VERA	simulations.	

• Milestones:	A	number	of	sensitivity	analysis,	calibration,	and	UQ	milestones	in	which	Dakota	
was	involved	are	included	as	tests	and	examples	in	the	VERA	repository.		These	demonstrate	the	
use	of	Dakota	for	various	challenge	problem-relevant	analyses	on	various	HPC	resources.	

• Best	Practice	Manual:	An	extensive	(180	page)	CASL/Dakota	manual	“User	Guidelines	and	Best	
Practices	for	CASL	VUQ	Analysis	Using	Dakota”	summarizes	best	practices	for	Dakota	use	in	CASL	
applications	[3].		Also	significant	improvements	have	been	made	to	the	Dakota	users’	and	
reference	manuals.	

• Platform	support:	Using	both	CASL	and	leveraged	funding,	we	have	extended	Dakota	support	to	
newer	compiler,	C++11,	and	MPI	versions	including	Jenkins-automated	build/test	on	wider	array	
of	platforms,	including	Windows.		Deploying	to	CASL	and	external	partner	sites	revealed	
additional	issues	that	were	resolved.	

	

Education	and	Outreach	
Partially	developed	in	CASL,	Dakota	now	has	extensive	training	presentations,	videos,	and	exercises	as	
well	as	an	interactive	training	virtual	environment,	available	on	the	Dakota	website:	
https://dakota.sandia.gov/training/dakota-training-materials.		The	materials	were	used	as	the	basis	of	a	
number	of	Dakota	training	sessions:	

• CASL	Summer	Student	Workshops	/	Institutes	(2015,	2016,	2017),	
including	development	of	hands-on	exercises	
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• March	2015:	AREVA	Training	(1	day)	
• Aug	2015,	ORNL:	Joint	NEAMS/CASL	training	(3	days)	
• Dec	2015:	Westinghouse	training	(3	days)	

Other	Dakota	Capabilities	Benefitting	CASL	
CASL’s	investment	in	Dakota	is	leveraged	with	funding	from	DOE/NNSA/ASC,	DOD/DARPA,	DOE/SC,	
NEAMS,	SNL	LDRD,	and	CRADA	funding.		While	not	specifically	chartered/funded	by	CASL,	the	following	
additional	major	capabilities	and	enhancements	also	benefit	CASL	Dakota	analysts.	
	

Algorithms	and	Architecture	
• Multi-fidelity	methods:	New	multi-level,	multi-fidelity	approaches	make	UQ	and	optimization	

analyses	more	practical	for	expensive	high-fidelity	computational	models	by	leveraging	lower	
fidelity	calculations	when	available.		These	include	multi-level	and	control	variate	Monte	Carlo	
approaches	for	UQ	and	generalizing	Dakota’s	existing	multi-fidelity	optimization	to	multiple	
levels/forms.	

• Mixed-integer	optimization:	Enabled	a	new	branch	and	bound	method,	useful	for	
optimization/calibration	of	mixed	continuous/discrete	variables.	Extended	support	for	discrete	
categorical	and	string-values	variables	to	additional	solvers.		Added	NOMAD	mesh	adaptive	
search	optimization	solver.	

• Random	fields:	New	support	for	field-valued	(functional)	simulation	responses	and	
experimental	data,	together	with	field	identification	and	propagation	methods	that	enable	field-
valued	UQ,	e.g.,	propagation	of	time-	or	space-varying	model	inputs.	

• Parallel	concurrency:	Support	for	increased	algorithm	parallel	concurrency.		
	

Usability	and	Deployment	
• GUI:	New	Dakota	GUI,	including	integration	in	Sandia	Analysis	Workbench	(SAW),	helps	users	

create,	run,	and	analyze	Dakota	studies.		It	includes	features	such	as	input	file	creation/editing,	
building	interfaces	to	simulations,	and	visualizing	results.	

• Capability	maturity	assessment:	A	new	taxonomy	of	Dakota	concept	together	with	updated	
capability	maturity	matrices	and	query	tools	allow	analysts	to	determine	Dakota	algorithm	and	
architecture	maturity	for	a	given	problem.	An	example	and	test	file	browser	helps	links	
taxonomy	terms	(domain	concepts)	to	Dakota	unit,	verification,	and	regression	tests.	These	
Dakota	resources	can	be	used	by	an	analyst	in	support	of	a	Predictive	Capability	Maturity	Model	
(PCMM)	assessment	of	their	overall	V&V/UQ	application.	

• Concurrent	research	and	production:	Implemented	software	development	processes	and	
workflows	to	better	support	concurrent	research	and	production	deployment	to	ensure	Dakota	
remains	leading	edge	while	better	meeting	user	needs.	

• Simulation	interfacing:	Deployed	new	Python-based	interfacing	and	parallel	job	management	
helpers	and	made	Dakota-to-simulation	interfaces	including	system/fork	and	working	
directories	more	robust.	

• User	web	portal:	All	new	http://dakota.sandia.gov	with	Dakota	resources.	
• Testing:	Improved	unit	and	system-level	regression	tests,	and	documented	a	sanctioned	process	

for	user	acceptance	testing.	
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• File	I/O:	Improved	error	handling	and	messages,	consistency	of	tabular	I/O	formats,	whitespace	
control,	console	output	redirection,	and	working	directories	for	concurrent	methods.	

• Misc.:	Numerous	other	small	features	added	and	bugs	fixed.	

FY18	Plans	
FY18	work	will	continue	to	refine	these	Dakota	(and	related)	capabilities	and	make	them	increasingly	
ready	for	production	work.		Specific	proposed	activities	include:	

• Improve	Hi2Lo	Bayesian	calibration	algorithms,	integrate	QUESO/GPMSA,	and	generally	make	
Bayesian	inference	more	accessible	and	user-friendly.	

• Extend	active	subspace	methods	to	include	additional	gradient-free	variants	and	be	
interoperable	with	more	calibration	and	UQ	methods.	

• Complete	initial	surrogate	model	re-architecting	and	add	new	features.	
• Deploy	tools	for	verification,	such	as	Rider’s	RMR	method,	and	validation	metrics.	
• Make	basic	Dakota	study	types	accessible	to	VERA	users	through	simplified	VERA	input	syntax	

and	improved	distribution	of	Dakota	with	VERA,	including	CASL-relevant	examples.	
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