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Abstract

Bayesian networks have been used extensively to model and discover dependency
relationships among sets of random variables. We learn Bayesian network structure
with a combination of human knowledge about the partial ordering of variables and
statistical inference of conditional dependencies from observed data. Our approach
leverages complementary information from human knowledge and inference from ob-
served data; to produce networks that reflect human beliefs about the system as well
as fitting observed data. Applying prior beliefs about partial orderings of variables
is a distinctly different approach from existing methods that incorporate prior beliefs
about direct dependencies (or edges) in a Bayesian network. We provide an efficient
implementation of the partial-order prior in a Bayesian structure discovery learning
algorithm, as well as an edge prior, showing that both priors meet the local modular-
ity requirement necessary for an efficient Bayesian discovery algorithm. In benchmark
studies, the partial-order prior improves the accuracy of Bayesian network structure
learning as well as the edge prior, even though order priors are more general. Our
primary motivation is in characterizing the evolution of families of malware, to aid
cybersecurity analysts. For the problem of malware phylogeny discovery, we find that
our algorithm, compared to existing malware phylogeny algorithms, more accurately
discovers true dependencies that are missed by other algorithms.
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1 Introduction

Bayesian networks have emerged as a natural model for combining human knowledge and

statistical data [1, 2]. The discovery of structural features in Bayesian networks [3, 4], as

learned from data, is of great interest in domains such as cyber-security, bioinformatics

and neuroscience. The learned structures give insight into the evolutionary development

of malware, the networking of gene interaction pathways or functional brain networks; as

just a few examples [5, 6, 7]. The structure (the edges) of a Bayesian network represents

conditional dependencies, and are often of particular interest to domain scientists.

A key goal of the malware phylogeny problem is to understand local relationships be-

tween different versions of the malware. If insights into the likely ordering or sequence of

development of these codes can be quantified, then it is helpful for the software reverse

engineer as they consider the adversary’s strategy in trying different approaches. By un-

derstanding likely sequences of attempts to compromise a network or account, there is an

improved opportunity to anticipate future directions and threats. In these applications

there are often potentially informative supplementary information, such as first observed

occurrences of malware, that are helpful but not foolproof. Leveraging this knowledge

and other subject matter expertise in characterizing the evolution of the code can provide

insights that should be included in the phylogeny summary.

Yet, several Bayesian network structures may represent the data nearly equally well;

therefore, inferring a single structure from data alone often produces a learned model that

is confusing to a human domain expert when another structure that is more intuitive may

explain the data equally well. One way to address this problem is to use a Bayesian

discovery algorithm to estimate the expectation of the presence of each potential edge in

the Bayesian network thereby giving a summary of all likely structures [3, 4]. The term

Bayesian discovery means that local edges are estimated by taking a Bayesian average

over all full structure models, to discover dependency relationship patterns when the true

underlying structure is not known. We take a different approach building on the advantages

of Bayesian discovery and further focusing the solution space on structures that reflect

prior beliefs of the user. In particular, the ordering of variables, which determines edge

direction, can be difficult or impossible to discern from data, yet this information may be
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readily available from a human expert.
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Figure 1: Learning a Bayesian network from observed data and expert knowledge about

the partial ordering of variables.

We introduce Bayesian network discovery with order priors, an approach to combine

human knowledge about the ordering of variables into a statistical learning algorithm for

Bayesian structure discovery. Previous approaches to include human knowledge in Bayesian

network structure learning use prior beliefs on edges, rather than orders [8, 7]. Yet, the

information in an edge prior is often overly restrictive given the knowledge that the person

can provide, and the more general order prior would be more appropriate. Take for example

the problem in Fig. 1. In this case, we would like to include the knowledge that symptoms

depend on disease and disease depends on risk factors. If edge priors were the only option

for imposing beliefs, then the prior would take a form such as “smoking is a likely predictor

of cancer”. However, that is not a prior that we want to use because we should not impose a

prior bias toward the dependency between smoking and cancer. Instead, the prior we want

is that if the evidence indicates a statistical dependency between smoking and cancer, then

we believe smoking is a risk factor (not a symptom), and therefore the preferred direction

of the dependency is that cancer is conditionally dependent on smoking.

We incorporate our informative prior into a Bayesian network structure discovery algo-

rithm, which calculates the expectation of structural features. Our primary contribution

is a partial-order prior that is specified as a collection of orderings on pairs of variables.

We show that our prior has the property of local modularity and therefore can be incor-

porated into a Bayesian structure discovery algorithm efficiently. For comparison, we also

demonstrate a prior on edges (rather than orders) with local modularity. Benchmark re-
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sults indicate that the partial-order prior helps to identify true edges in the network with

less data compared to uninformative priors, and reduces false-positive edge identification

compared to edge priors even though order priors are more general than edge priors.

We apply our approach to the problem of learning the evolution of malware programs.

Cybersecurity analysts and software reverse-engineers need to understand the function of

malware in order to evaluate new threats. Malware is typically developed the same way as

any software: it is evolved by modifying and combining existing malware [9, 10]. We take

a collection of related malware and benign programs and construct a Bayesian network to

model the phylogeny of the programs. Experts provide knowledge about the believed order

in which these programs were developed, providing a prior on the partial-order of variables;

while features extracted from the programs themselves are the observed data from which

we discover conditional dependencies. Importantly, we find that including beliefs about

variable order as a prior, rather than post-hoc, helps to discover correct edges that are

otherwise missed entirely. In other words, the order prior does more than just fix edge

directions, it also improves the accuracy of edge detection for the whole Bayesian network.

The malware phylogeny application provides a helpful illustration of the new methods and

how they can be applied to a complex process to provide clearer insights and understanding

of likely evolutionary paths. Unlike other software development phylogeny problems, the

adversary developing different instances of the code may seek to obscure the development

evolution and there may be less reliable information about the timeline of development.

2 Related Work

Methods for combining human expertise and statistical data in the context of learning

Bayesian networks have been proposed that start with a human-engineered Bayesian net-

work and then use observed data to refine the model [1, 11]. However, these methods

first require the labor-intensive process of knowledge engineering to produce a prior model.

The candidate parents algorithm [12] which imposes a constraint on potential parents for

each variable in a Bayesian network could be used to incorporate knowledge about partial

orders, but it is a hard constraint rather than a Bayesian prior. Verma and Pearl [13]

show theoretically that edge direction can be inferred from data alone, but only for certain
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structures. Empirically we see that inferring edge direction is usually difficult, leading to

methods of inferring partially directed acyclic graphs [14], though these learned models

may be difficult to interpret by humans. Others have considered Bayesian network dis-

covery algorithms with priors over edges obtained from domain knowledge [8, 7]. These

approaches set a specific prior on the statistical dependencies represented by the edge.

Eaton and Murphy [15] consider a hybrid approach of structure-space MCMC using order-

space solutions in the proposal distribution. While these methods explore structure priors,

none make use of order priors. To our knowledge, using a prior on the partial ordering of

variables is novel.

For the discovery of malware phylogeny, most existing techniques rely on bifurcating

tree-based approaches [10, 16]. These methods do not identify ancestral relationships in

the data, but do give similarity relationships. However, it is more informative to know

the set of parents from which a given sample’s functionality is derived [9]. Most similar to

this paper is the method of [17] using the graphical lasso, an undirected graphical model,

with post-hoc assignment of edge direction by a domain expert. We instead use a Bayesian

network learning approach because it naturally models the parent-child relationships that

we are interested in as a directed acyclic graph. Empirical results indicate that our method

provides more accurate learned structures using human knowledge as a prior rather than

post-hoc modification of the learned structure.

3 Preliminaries

This section provides necessary background on Bayesian networks and key model assump-

tions in Bayesian network structure discovery algorithms.

3.1 Bayesian Networks

A Bayesian network is a directed acyclic graph (DAG) with nodes to represent random

variables and edges to represent direct influences or dependencies between variables. Stem-

ming from the hierarchical structure of a directed graph, nodes are often referred to in

familial terms of parents, children, and descendants. Nodes of a Bayesian network satisfy a
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local Markov property where each node is conditionally independent of its non-descendants

given its parents.

The edges or influences represent relationships between the nodes. The strengths of

these influences are expressed by conditional probabilities (the probability of the states

of a child node given the states of the parent(s) node). In particular, to specify the dis-

tribution for a network, the prior probabilities for all of the root nodes (nodes without a

predecessor) must be specified as well as the conditional probabilities of all non-root nodes

given all possible combinations of their direct predecessors. The network encodes a set of

conditional independencies and conditional dependencies amongst the variables. This dis-

tinction enables the factorization of the calculation of the joint distribution into products

of marginal distributions as follows [18, 1]. A Bayesian network B = {G, θ} describes the

joint probability distribution over p random variables X = [X1, X2, . . . , Xp], where G is a

directed acyclic graph (DAG). An edge (Xj, Xi) in G means that the child Xi is condition-

ally independent of all non-descendants given its parents π(Xi) where Xj ∈ π(Xi). Given

the DAG structure, the joint probability distribution P (X) factors into the product of the

conditional probability distributions for each child given its parents as parameterized by θ:

P (X) =

p∏
i=1

P (Xi|πi, θi). (1)

We often use the shorthand notation πi to mean π(Xi), the set of variables that are parents

of variable i.

Bayesian networks provide a way of representing the relationships between variables

and allow for the factoring of conditional independencies between variables. This factor-

ization provides a computationally feasible mechanism to calculate marginal probabilities

based on the dependency relationship without having to calculate the full joint probability

distribution. This is at the crux of the message passing algorithms where probabilistic

inference can be achieved without the necessity of enumerating all possible variable states

[2].

The joint probability distribution, P (X), in Equation 1 holds under different configu-

rations of the network. So the different versions of the Bayesian network can represent the

same joint distribution. The difference between the two networks involves the specifics of

the conditional probabilities and the semantics of the network. It is possible to transform
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one network to another via the joint distribution and Bayes rule. A transformation may

require additional edges [19, 20].

The structure, or set of edges, of the network, G, is of particular interest in many

domains as it is easy to interpret and gives valuable information about the interaction of

variables. The structure of a Bayesian network can be estimated from observed data D,

a matrix of p× n dimension with n samples, by selecting the network that maximizes the

posterior probability P (G|D),

P (G|D) =
P (G)P (D|G)

P (D)
∝ P (G)P (D|G), (2)

where P (G) is a prior on the structure, P (D|G) =
∏n

s=1 P (X = Ds) is the data likelihood,

and P (D) is a normalization constant that need not be calculated; and estimating the

parameters, θi of the conditional probabilities to maximize:

P (θi|D) ∝ P (θi)
n∏
s=1

P (Xi = Di,s|Xπi = Dπi,s, θi), (3)

where the form of P (Xi|πi, θi) is typically a multinomial distribution for discrete data.

3.2 Bayesian Discovery of Bayesian Networks

Finding the optimal network structure is NP-Hard, therefore instead of finding a single

high-scoring network, we use the method of Bayesian structure discovery, as described

here. Given a large number of candidate networks and a limited amount of data, the

posterior probability of any network may be quite small. However, summary statistics

regarding structural features of networks may have high posterior even with limited data

[3]. Structural features (such as an edge) can be described by an indicator function f

such that for f(G) = 1 the feature exists in graph G, otherwise f(G) = 0. The posterior

probability of the feature given observed data, D, is equivalent to the expectation of its

indicator:

EDAG(f |D) =
1

P (D)

∑
G

P (G)P (D|G)f(G). (4)

However, this sum can be intractable, as the number of DAGs is super-exponential in the

number of variables.
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An important insight to making the expectation tractable is that we could fix the

order of the variables. An order, ≺, is a permutation on the indices of the variables

X≺(1), X≺(2), . . . , X≺(p) such that parents must precede children in the order, i.e. Xj cannot

be a parent of Xi if ≺ (j) ≥ ≺ (i). Given an order, learning optimal parents for each

child factors into local calculations, and summing over DAGs consistent with the order is

tractable [11, 21]. Taking this one step further, we can condition on a node order, and then

obtain the unconditional posterior by summing over orders [3]:

Eord(f |D) =
1

P (D)

∑
≺

P (≺)
∑
G⊆≺

P (G|≺)P (D|G)f(G). (5)

Importantly, these two formulations for E(f |D) are not the same, as most DAGs, G, will

be consistent with multiple orders, ≺. Typically, the formulation of Eq. (5) produces an

acceptable bias in favor of simpler structures.

Koivisto and Sood [4] give an efficient dynamic programming method for calculating

Eq. 5. The approach is rather involved, so we summarize only the key points here. All

efficient Bayesian network algorithms require that calculations are modular meaning that

they factor into local calculations. We describe the modularity assumptions which are

critical for determining which priors we can use:

1. Parameter modularity: Modularity of the Bayesian network parameters must hold,

P (θ|G) =
∏p

i=1 P (θi|πi) and

P (X = x|G) =
∏p

i=1 P (xi|xπi , θi).

2. Structure prior modularity: The network model prior, P (G,≺), is the product of

a prior on the order, P (≺), and a prior on the structure, P (G|≺). The model prior

must be modular so that P (G,≺) = c
∏p

i=1 qi(Ui)q
′
i(πi), where Ui is the set of variables

precedingXi in the order≺ (potential parents ofXi) and c is a normalization constant.

qi(Ui) is a local prior on the set of variables preceding Xi in the order; and q′i(πi) is

a local prior on the parent set of Xi. These model priors are typically uninformative

(uniform) or favor small parent-set sizes.

3. Feature modularity: The features must be modular, f(G) =
∏p

i=1 fi(π(Xi)) where

π(Xi) is the parent set of variable i. fi is a local feature, defined such that if the parent
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set of Xi is inconsistent with feature f , then fi(π(Xi)) = 0; otherwise, fi(π(Xi)) = 1.

Therefore, feature f is modular if the product of local features fi gives f(G) = 1 if

the graph has feature f and f(G) = 0 otherwise.

The most common feature to look for is a directed edge u → v s.t. f = 1 if Xu ∈ πv,

which is clearly modular. If these modularity assumptions hold, then the likelihood over

order space factors into local calculations as shown in Eq. 6 [4]:

E(f |D) =
∑
≺

p∏
i=1

qi(Ui)

[∑
πi⊆Ui

q′i(πi)P (xi|πi)fi(πi)

]
, (6)

where πi = π(Xi) is the parent set of variable i.

The unconditional posterior for the features is obtained by summing over orders, using

the following steps:

1. Calculate family scores: βi(πi) = q′i(πi)P (xi|πi)fi(πi) for each node i and potential

set of parents πi.

2. Calculate local contribution of each subset U ⊆ X − {i} of potential parents of i:

αi(U) =
∑

πi⊆U βi(πi), where X is the set of scalar variables that make up the data

vector X = [X1, X2, . . . , Xp].

3. Sum over the subset lattice of the various Ui to obtain the sum over orders ≺.

The maximum number of parents allowed for any child is typically fixed to a small

natural number, r. The computational complexity for calculating the exact expectations

of all features is O(p2p + Knp
r+1), where Kn is the cost of calculating each family score

from n observed samples. For large networks, roughly p > 30, the exponential term is

intractable. In these cases, MCMC simulations give an approximation to the expectations,

so that E(f |D) ≈ 1
T

∑T
t=1 P (≺t)P (f |D,≺t) for≺t sampled from order space [3] or partial

orders [22].

4 Bayesian Discovery with Informative Priors

We propose two methods for incorporating prior knowledge into order-space Bayesian dis-

covery algorithms. The first method is to place a prior on individual child-parent rela-
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tionships (or edges), as has been explored in structure-space algorithms previously. The

second, preferred, method is to place a prior on pairwise order relationships (partial or-

ders). Partial order priors have not been previously studied, yet there are three advantages.

Partial order priors are easy to implement in the efficient order-space discovery algorithm;

and such a prior allows a person to give the kind of prior knowledge that can be difficult

to discover from the data; and cannot be captured directly by structure priors.

4.1 Structure Priors

Following Werhli and Husmeier [7] we consider a prior on structures based on expert knowl-

edge about the parents of a particular variable:

q′i(πi) =
1

Z ′i
e−λ

′(
∑p

j=1|I(j∈πi)−B(fij)|) , (7)

where λ′ ≥ 0 is a hyper-parameter, often called the temperature, that determines the

strength of the prior. As λ′ → 0, the prior distribution in the equation becomes flat

and uninformative on the structure of the network. As λ′ → ∞ the network structure

increasingly favors the expert knowledge-based prior information. Z ′i is the normalization

term as described below. B(fij) ∈ [0, 1] represents prior knowledge about interactions

between nodes through a directed edge i→ j, where:

B(fij) < 0.5, if i is believed to not be a parent of j;

B(fij) = 0.5, if no prior information available; and,

B(fij) > 0.5, if i is believed to be a parent of j.

(8)

The normalization term Z ′i, also known as the partition function, is calculated by summing

over all possible parent sets for a given variable i,

Z ′i =
∑

π⊆X−{i}

e−λ
′(
∑p

j=1|I(j∈πi)−B(fij)|). (9)

This structure prior is clearly modular and therefore can be efficiently calculated as part

of a Bayesian discovery algorithm. A similar prior was previously used within a structure-

space Bayesian discovery algorithm [7]; and we are showing here how to incorporate this

prior into an order-space Bayesian discovery algorithm. The computational complexity of
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this sum is on the order of
(
p
r

)
= O(pr), where r is a user-specified maximum number of

parents allowed per child, typically a small integer like 4.

Incorporating this structure prior into the order-space dynamic programming algorithm,

happens during the calculation of the family scores:

βi(πi) = q′i(πi)p(xi|xπi)fi(πi)

=
1

Z ′i
p(xi|xπi)fi(πi)e

−λ′(
∑p

j=1|I(j∈πi)−B(fij)|),
(10)

as shown in Algorithm 1. There are pr+1 of these β family scores to calculate. Each of

these scores takes some constant time to calculate that depends on the number of observed

samples of data, which we call Kn; plus the calculation of the normalization term, O(pr).

Note that calculating the family scores is the first step of Bayesian network learning, with

or without prior feature beliefs. Therefore, the overall computational complexity of these

β family scores is O((r + Kn)pr+2), as opposed to O(Knp
r+1) without the structure prior,

representing a minor increase in computational complexity.

4.2 Partial Order Priors

In Bayesian network learning, if the variables are constrained to a fixed ordering, ≺, then

the parents of a node i must precede i in the order, ≺ (πi) < ≺ (i). Order-space Bayesian

discovery algorithms take advantage of the efficient computation over fixed orders by cal-

culating summary statistics over order-space. Instead of placing a prior over parents them-

selves or constraining structures to adhere to a full ordering, we prefer to place a prior

on pairwise order relationships. This translates into a prior over partial orders, that is,

identifying which variables are likely to precede a particular child in the order. Partial-

order priors only put a preference on the direction of the relationship, not on whether the

relationship exists. In contrast to a structure prior that assigns a prior to a specific parent

child relationship, the partial order prior takes advantage of weaker information and allows

for priors on more distant relationships between variables, but it also allows the prior to

be “ignored” if no statistical dependency exists between two variables.

Pairwise order relationships are used as a prior because it is manageable for a human

to specify and the prior is modular. Specifically, the pairwise order prior knowledge is

captured through, B(uij), are specified as follows:
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Algorithm 1 Bayesian Network Family Scores with Optional Edge Priors

1: procedure BNFamilyEdgePrior(D,B(f), λ′) . Calculate family scores βi(πi)

2: for all i ∈ 1, 2, . . . , p do . Loop over variables

3: if B(f) given then . Calculate family priors from edge prior beliefs

4: for all πi ⊆ X − {i} s.t. |πi| ≤ r do . Loop over potential parent sets

5: q ← e−λ
′(
∑p

j=1 |I(j∈πi)−B(fij)|) . Unnormalized edge priors

6: Z ′i ← Z ′i + q . Running sum of partition function

7: end for

8: for all πi ⊆ X − {i} s.t. |πi| ≤ r do

9: q′i(πi)← q/Z ′i . Normalized edge priors

10: βi(πi)← q′i(πi)P (xi|πi)fi(πi) . Family scores with edge priors

11: end for

12: else . No edge beliefs given

13: for all πi ⊆ X − {i} s.t. |πi| ≤ r do

14: q′i(πi)← (
∑r

r′=0

(
p−1
r′

)
)−1 . Uninformative edge priors

15: βi(πi)← q′i(πi)P (xi|πi)fi(πi) . Family scores

16: end for

17: end if

18: end for

19: return β . The family scores are β which are the input to Algorithm 2

20: end procedure
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B(uij) < 0.5, if i is believed not to precede j;

B(uij) = 0.5, if no prior information available; and,

B(uij) > 0.5, if i is believed to precede j.

(11)

Using the same style of energy potential function as used previously, we assign this

partial-order prior:

qi(Ui) =
1

Zi
e−λ(

∑p
j=1 |I(j∈Ui)−B(uij)|), (12)

where λ ≥ 0 is a hyper-parameter which determines the strength of the prior; Ui is the set

of variables that precede i (including parents and more distant relationships); |Ui| is the

number of elements in set Ui; and the normalization term is

Zi =
∑

U⊆X−{i}

e−λ(Ci+|U |−2
∑

j∈U B(uij)). (13)

This prior is modular and therefore can be readily incorporated into the dynamic program-

ming method, as detailed in Algorithm 2. The Bayesian discovery algorithm (Algorithm 2)

takes as input the family scores previously computed using Algorithm 1.

The partition function, Zi, must calculate a sum over
∑p−1

j=0

(
p−1
j

)
= O(2p−1) possible

sets of ancestors. The overall computational complexity including this partial order prior is

O(p22p+Knp
r+22p−1). Compared with the complexity without the prior, O(p2p+Knp

r+1),

the feature expectations are significantly more expensive to calculate, but the overall com-

plexity remains exponential in p. Note that this is still significantly less computationally

expensive than the structure-space calculation.

5 Experiments on Benchmark Data

Experiments on data generated from known networks show that partial-order priors provide

valuable information to the network discovery algorithm that is different from using edge

prior information. Using data generated from known benchmark networks, we compare four

approaches; 1) informative priors on structure using order-space expectation, as described

in the section “Structure Priors”; 2) informative priors on structure using structure-space
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Algorithm 2 Bayesian Network Discovery with Optional Order Priors

1: procedure BNDiscoveryOrderPrior(β,B(U), λ) . Calculate E(f |D)

2: for all i ∈ 1, 2, . . . , p do . Loop over variables

3: for all Ui ⊆ X − {i} do . Calculate αi(Ui) functions

4: αi(Ui)←
∑

πi⊆Ui
βi(πi) . Sum contributions of parents to partial order Ui

5: end for

6: if B(U) given then . Calculate order priors from order prior beliefs

7: for all Ui ⊆ X − {i} do . Loop over potential partial orders

8: q ← e−λ(
∑p

j=1 |I(j∈Ui)−B(uij)|) . Unnormalized partial order priors

9: Zi ← Zi + q . Running sum of partition function

10: end for

11: for all Ui ⊆ X − {i} do

12: qi(Ui)← q/Zi . Normalized partial order priors

13: end for

14: else . No order beliefs given

15: for all Ui ⊆ X − {i} do

16: qi(Ui)← 2−(p−1) . Uninformative partial order priors

17: end for

18: end if

19: end for

20: for all ≺ = permutation of (1, 2, . . . , p) do . Loop over full orders (or MCMC)

21: s(≺)←
∏p

i=1 qi(Ui)αi(Ui) . Combine order priors and family scores

22: E(f |D)← E(f |D) + s(≺) . Running sum over full orders

23: end for

24: return E(f |D) . The expectation of structure features are E(f |D)

25: end procedure
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expectation, a competing algorithm; 3) informative priors on partial orders, as described

in the section “Partial Order Priors”; and 4) uninformative priors, a baseline method

using the typical uninformative uniform prior. For all order-space expectations, we use

the BeanDisco C++ implementation [22]1. The code has been modified to implement the

informative priors as described above. For comparison, the same prior information was

given to the structure-space MCMC algorithm as implemented in the Matlab/C package

BDAGL2 for structure-space expectations. We impose a limit on the size of parent sets,

as described for each data set. In all presented results on the Benchmark data, we use

λ = λ′ = 1, but other values could be chosen to enforce a stronger or weaker prior.

5.1 Benchmark Data

We use benchmark data generated from known networks so that we can evaluate how well

the ground truth structure is recovered. To test the effectiveness of prior knowledge, we

create prior knowledge matrices: B(f) for structure priors and B(U) for order priors. The

Asia network has 8 discrete variables, from which we generate data samples. We provide

one type of domain knowledge that is relevant to the Asia data. The variables in this

dataset can be split into three sets (as shown in Fig. 1), representing risk factors, R =

{Smoking, VisitToAsia}; diseases, D = {LungCancer, Tuberculosis, Bronchitis, Either};

and symptoms, S = {Dyspnoea, Xray}. We provide prior information that risk factors are

likely ancestors of diseases by setting BRD = 1 for all variables in R and D; diseases are

likely ancestors of symptoms by setting BDS = 1 for all variables in D and S; risk factors

are unlikely to have any ancestors by setting BiR = 0 for all variables i; and symptoms are

unlikely ancestors of anything by setting BSi = 0 for all variables i.

For the Asia network, we use a domain prior in which domain knowledge is used as

described above. The other type of prior knowledge is called the oracle prior because it

is based on the true structure (note that it is not realistic to expect to have such prior

knowledge in real applications, but we use it for comparing algorithms). We start by

setting every element of the prior matrix to 0.5, representing “no prior information” about

1http://www.cs.helsinki.fi/u/tzniinim/BEANDisco
2http://www.cs.ubc.ca/∼murphyk/Software/BDAGL
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Figure 2: Learning curves for Asia from order-space expectation using different priors.

the feature or partial order. For each ordered pair of variables, we randomly select some

fraction, {0%, 10%, 25%, 50%, 75%, 100%}, of features, f , and set B(fij) = 1 if the edge

eij exists in the true network; and B(fij) = 0 if the edge eij does not exist in the true

network; for that same pair, if the edge exists, we set B(uij) = 1 and B(uji) = 0. When

setting the partial-order priors, if the ordered pair represents a non-edge in the true network

(neither eij nor eji exists), then no prior knowledge is included for that pair. Thus the order

priors provide less information than the structure priors. For each ground truth network

and each fraction of prior knowledge, we repeat the random selection of prior knowledge

and the sampling of data 5 times to produce 5 different trials of observed data with prior

knowledge.

5.2 Benchmark Results

We first look at results from the small benchmark network Asia [23]. Fig. 2 shows the

E(e) learning curves for each ordered pair (i, j) on 8 variables. In the first of the plots, we
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see the learning curve using order-space exact calculation of the edge expectation without

any prior knowledge. As the amount of data increases, the expectations of true edges

(blue circles) tend to go toward 1 while the expectations of non-edges (red exes) tend

to go toward 0. We also indicate “reverse” edges (black triangles) which are non-edges

(and therefore the expectation should go toward 0) that have the same end points as

a true edge, but in the wrong order. The algorithm clearly improves as the amount of

data increases. It is interesting to note that some of the probabilistic dependencies are

so subtle that it would take tens of thousands of samples to identify them. In the Asia

benchmark, P (Tuberculosis = true|VisitToAsia = true) < 0.0001. In Fig. 2 Tuberculosis

→ VisitToAsia is the edge that is a false-negative in all of the plots. We know from

experimentation that it takes about 30,000 samples to identify that particular edge (not

shown in Fig. 2). The other false-negative in many of the plots of Fig. 2, is the mirror-edge

of the false-positive “reverse” edge which happens to be Smoking → LungCancer. Edges

like this one that are higher in the parental structure are more likely to be identified in

reverse than edges lower in the structure because it is easier to flip the direction on edges

that do not have a lot of ancestry above. This is because if an edge is flipped, many of the

edges in its ancestry may also need to be reversed according to Bayes’ rule to represent the

same joint distribution; yet flipping an edge does not affect the (original) descendants.

If we add prior knowledge about known edges and non-edges, we see that the learning

curves improve in Fig. 2(b) and (c); it takes less data to correctly identify true edges and

non-edges with oracle prior knowledge on 25% of the potential edges or all of the potential

edges. Interestingly, when using edge priors, the data can overwhelm the prior and in this

case identify one of the true edges in reverse of the correct direction. The addition of

domain prior knowledge about the partial orders of risk factors, diseases, and symptoms

improves the learning curve as shown in Fig. 2(d). This domain knowledge effectively fixes

the problem of learning high expectations for reverse edges. We also show the oracle prior

knowledge on 25% and 100% of ordered-pairs as a partial-order prior. Note that the oracle

partial-order prior gives no prior information about pairs of variables that have no true

edge between them, and so there is less information than given by the domain order prior.

Comparing the oracle order prior to the oracle edge prior, we see that at small amounts
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Figure 3: Learning curves for Asia using structure-space MCMC.

of data, the edge priors can help to boost the expectation of true edges. Yet, at larger

sample sizes, the order prior is actually more effective than the edge prior at reducing the

expectation of some reverse edges. Other values for the fraction of prior knowledge were

investigated and show similar trends.

For comparison with the structure-space expectation, we use MCMC over structure

space with a burn-in of 1000 steps, collected 1000 MCMC samples sub-sampled at 100-step

intervals. At these settings, each MCMC chain took approximately 108 seconds compared

with 3.2 seconds on average for the exact calculation over order space. This is an ap-

proximation to the true expectation over structure-space, as the exact calculation is not

practical beyond p = 5. Fig. 3 shows the results of structure-space MCMC. The estimates

are clearly more variable than those obtained from the exact computation over order-space.

The expectations calculated over structure space do not separate the true edges from false

edges as quickly as the order-space calculation does. Prior information can increase the

estimated expectation of true edges, but it appears to require more prior information to

have a positive effect on the estimate.

Our goal is to be able to distinguish true edges from non-edges, and so for direct

comparison of the methods, we look at how well the various algorithms and priors can

identify true edges. To quantify this, we calculate the true positive (TP) edges identified and

the false positive (FP) non-edges and reverse-edges identified under the various algorithms
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Figure 4: Comparison of edge identification learning curves for Asia with various priors.

Top row shows true positives out of 7 true edges (up is good). Bottom row shows false

positives (down is good). In these plots, the MCMC algorithm with oracle edge priors is

labeled as the “struct prior”. In both the left and right plots, we include the uniform prior

as a baseline, and we include the domain order prior as our recommended approach.
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and priors:

TP =
∑

e∈{etrue}

I(E(e) ≥ 0.5)

FP =
∑

e∈{enon∪erev}

I(E(e) ≥ 0.5),
(14)

where I is an indicator function such that I(pred) = 1 if pred is true and 0 otherwise.

The true positive learning curves are shown in the top row of Fig. 4. There are too many

algorithms to display in a single plot, and so the results are split into two plots, with the

left plot including the oracle priors at 25% and the right plot including the oracle priors

at 100%. The true positive learning curves confirm our observation that prior knowledge

enables the algorithms to identify significantly more true edges with less data than possible

without the prior. Generally, the more prior knowledge, the more true edges are identified at

small training set sizes. In particular, we can see that the domain order prior is particularly

effective across all training set sizes, even though it avoids placing a bias directly on edge

estimation. In contrast, the edge priors are stronger assertions that make it possible to

identify true edges with less data, but this type of prior knowledge may not always be

available. True positives should always be evaluated in the context of the corresponding

false positives. We see that the false positive learning curves are relatively flat, but can

get worse with increasing amounts of data due to the data overwhelming the priors. The

domain order prior and the oracle order prior at 100% of pairs specified are the most

effective priors at reducing false positives. This is due to the ability of order priors to

eliminate the identification of reverse edges, as we can see in the edge estimation curves of

Fig. 2.

We next look at results from a larger benchmark, the alarm network with p = 37

variables [24]. This network is too large for the structure-space BDAGL software which is

limited to data with p ≤ 20. To calculate the order-space expectation, we use MCMC over

partial-orders as implemented in BeanDisco with 1000 burn-in steps, 100 MCMC samples

collected at 10-step intervals. We set maximum parent set size r = 4 and bucket size to 10.

Fig. 5 shows the summary learning curves of true positives and false positives calculated

according to Eq. 14. The true positives plot (Fig. 5(a)) indicates that using the prior

information as an edge prior enables the learning algorithm to identify true edges with less
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Figure 5: Comparison of learning curves on Alarm for various priors. True positives (left)

are out of 46 true edges.
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Figure 6: Learning curves for alarm from order-space expectation.
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data, and that this is also true for prior information about the partial order, although the

improvement is less dramatic. The false positive plot (Fig. 5(b)) shows that when using

edge priors, the data can overwhelm the prior and in this case incorrectly identify non-

edges as edges. The learning curves for the estimation E(e) of each ordered pair (i, j) on

37 variables in Fig. 6 confirm that non-edges (not just reverse edges) are falsely identified

as edges when using edge priors but that these same non-edges are not falsely identified

using order priors. Overall, we see that, like in the Asia benchmark, at small amounts of

data the edge priors can boost the identification of true edges. Yet, at all sample sizes, the

order prior is more effective than the edge prior at reducing false positives. Other values

for the fraction of prior knowledge were investigated and show similar trends.

Overall, these empirical results on benchmark data demonstrate that partial order pri-

ors improve the identification of true edges in a Bayesian network. Edge priors are stronger,

and therefore should be used when available; however, a prior belief on variable order is of-

ten the only type of prior information available, rather than a prior belief about edges. We

have demonstrated how to leverage such prior information about variable order in Bayesian

network structure learning. Additionally, order information appears to be complementary

to observed data in a way that edge priors are not. Large amounts of data can overwhelm

edge priors, so that incorrect edges are learned despite correct edge priors. If prior infor-

mation about edges and partial orders are both available, then these results suggest that

combining the two types of priors could provide complementary information in addition to

observed data to further improve results.

6 Application to Malware Characterization

Advanced persistent threats (APT) are a serious problem for many corporations and gov-

ernment agencies, in addition to malware aimed at a more general audience. APT is

characterized as malware that has been tailored to accomplish a specific goal against a

specific target. During the life cycle of APT malware, the authors generally follow stan-

dard software engineering principles which naturally leads to a phylogenetic graph, a graph

demonstrating the evolutionary relationships among the different software versions [10, 9].

When beginning the process of understanding a new, previously unseen sample of mal-

22



mytob.a

mytob.ar mytob.aux

mytob.aw

mytob.b

mytob.bf

mytob.bi

mytob.c

mytob.ef

mytob.eg

mytob.ej

mytob.f

mytob.j

mytob.ja

mytob.jb

mytob.jd

mytob.n

mytob.t

mytob.v

mytob.x

Figure 7: Desired output from a malware phylogeny learner.

ware, it is advantageous to leverage information gained from reverse engineering previously

seen members of that instance’s family because techniques learned from related instances

can often be applied to a new program instance. A malware family is a group of related

malware instances which share a common codebase and exhibit similar functionality (e.g.

different branches in a software repository). We focus on extracting a more detailed pic-

ture about the relationships among the malware instances within a given family. Fig. 7

exhibits the proposed output of the ideal phylogenetic algorithm. This figure clearly shows

the evolution of the mytob worm as a directed graph. The information present in Fig. 7

is invaluable for a reverse engineer tasked with understanding specific instances within a

malware family as well as the general evolution of the family.

Experts use several sources of information to come up with a graph depicting the evolu-

tion of malware, such as the time the malware was first seen in the wild, the compile-time

timestamp, the functionality of the sample, and the obfuscation methods employed in the

sample. We investigate the combination of expert knowledge about the order in which pro-

grams appeared, along with using the programs themselves as data to infer the ancestry of

the programs.
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6.1 Data Views and Markov Chain Data Representation

We take advantage of three different types of data with the aim of covering the most

popular data views used for malware analysis in the literature. The first data view is the

control flow graph of the disassembled binary, which is a static data view (meaning the

executable is not run) [25]. The other two views are dynamic data views (meaning the

data is collected while the program is being executed). These dynamic data views are the

dynamic instruction trace [26] and the dynamic system call trace [27]. We give a brief

explanation of how these views are translated into data, but a more in-depth description

of the views used is found in Anderson et al. [28].

We transform each data view into a Markov chain representing a summary of the se-

quential transitions in the program. As an illustrative example, we focus on the dynamic

trace data, although this representation is suitable for any sequence-based data view. The

dynamic trace data are the instructions the program executes, typically in a virtual ma-

chine to reduce the risk of contamination. Given an instruction trace P , we are interested

in finding a new representation, P ′, such that we can make unified comparisons in graph

space while still capturing the sequential nature of the data. We achieved this by trans-

forming the dynamic trace data into a Markov chain which is represented as a weighted,

directed graph. A graph, g = 〈V,E〉, is composed of two sets, V and E. The elements of V

are called vertices and the elements of E are called edges. In this representation, the edge

weight, wij, between vertices i and j corresponds to the transition probability from state

i to state j in the Markov chain, hence, the edge weights for edges originating at vi are

required to sum to 1,
∑

i→j wij = 1. We use an m×m adjacency matrix, A, to represent

the graph (where m = |V |), where each entry in the matrix, aij = wij [29].

The nodes of the graph are the instructions the program executes. To find the edges of

the graph, we first scan the instruction trace, keeping counts for each pair of successive in-

structions. After filling in the adjacency matrix with these values, we normalize the matrix

such that all of the non-zero rows sum to one. This process of estimating the transition

probabilities ensures a well-formed Markov chain. The constructed graphs approximate

the pathways of execution of the program, which we exploit as data samples.

The Markov chain graph can be summarized as g = 〈V,E〉; where V is the vertex
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set composed of unique instructions; and, E is the weighted edge set where the weights

correspond to the transition probabilities and are estimated from the data.

The transition matrices, A, are typically sparse, meaning that many of the values are

zero. Therefore, to ease the Bayesian network learning, we binarize the matrices, so that

any non-zero probabilities are treated as a possible path, and represented with 1. The

matrices are then vectorized to treat each value as an observed sample of the data.

6.2 Learning Graphs with Order Priors

We apply our Bayesian network discovery algorithm to families of malware programs along

with expert information about the likely order in which these programs were developed.

We investigate three malicious program families: Bagle [30], Koobface [31], and Mytob [32];

using the data features described above. Because the ground truth for malware development

is not available, we also investigate two families of benign (non-malware) program families:

NetworkMiner [33] and Mineserver [34]. For the benign programs, we have the ground truth

phylogenetic graph as reported in their respective open-source repositories. For the malware

programs, as a gold-standard best network, we use phylogenetic graphs constructed by

domain experts.

The variables of the Bayesian network represent programs and the observed samples are

the discretized transition matrix values. We incorporate domain knowledge about the order

in which programs may have been developed. For a family with p programs, we construct

the p× p prior matrix, B(U), such that if program Xi is believed to precede program Xj,

then B(uij) = 1 and B(uji) = 0; otherwise B(uij) = 0.5 (an uninformative prior).

With informative priors, network discovery should be able to better identify true edges

and non-edges than is possible without this knowledge. We compare informative priors on

partial orders, and uninformative uniform priors where B(uij) = 1 ∀ i, j. We impose a limit

on the size of parent sets to be at most 4. In all presented results on malware phylogeny,

we use λ = 1000. The relatively high value of λ was selected to give greater weight to the

perceived value of the domain knowledge captured in the prior and was found through a

trial and error process. We perform a 10-fold cross validation to get posterior estimates of

the expectations of edges with standard error [35].
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Figure 8: Comparison of edge expectations learned with and without the partial-order prior

knowledge. Above-the-line indicates that the estimates benefit from the order prior for the

true edges in the top row; while below-the-line indicates that the estimates benefit from the

order prior for the reverse and non-edges of the bottom row. For a threshold value of 0.5,

the pale green shade shows edges that are incorrectly identified by the plain BN discovery

algorithm, but correctly identified when prior information is added; while the gray shade

(upper left on non-edge plots) shows edges that are correct with plain BN discovery but

incorrect when prior information added (assuming a threshold value of 0.5). In the bottom

row, reverse edges are plotted as black squares, while all other non-edges are red Xs.

6.3 Phylogeny Learning Results

We investigate whether prior knowledge about pairwise-ordering of some nodes improves

the edge expectation calculated by a Bayesian network discovery algorithm. Then we

quantitatively compare our algorithm against competing algorithms on benign and malware

families of programs.
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Figure 9: Mineserver phylogenetic graphs (a) learned without prior information; (b) gold

standard (true network) from repository logs (displayed in the center for ease of comparison

to learned networks); and (c) learned with order prior information.

6.3.1 Effect of Prior Knowledge

We first look at results comparing the edge expectation E(e) learned with prior information

and without prior information. We split the results into three different categories: learning

the true edges, reverse edges and non-edges, as in the benchmark experiments. Ideally, the

expectations of true edges should be close to 1. Non-edges are edges that do not exist in

the ground-truth network, and so the expectations of non-edges should ideally be close to

0. Reverse edges are non-edges that have the same end points as a true edge, but in the

wrong direction, and so the expectations of reverse edges should again be close to 0. We

separate out the reverse edges because they can be particularly difficult to infer from data

alone.
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Fig. 8 shows the edge expectations (averaged over 10 cross-folds) estimated with the

partial-order prior versus those estimated with an uninformative uniform prior, for each

of the three families of malware. In the top row, we see that the estimates for the true

edges are generally higher (above the dashed diagonal line) using the prior information

than without, indicating that the prior information makes it easier to learn true-positive

dependencies. Reverse edges should have low expectation, and the bottom row of the

figure indicates that the order prior usually produces lower expectation for reverse edges

(black squares). For the non-edges (red Xs in the bottom row), the edge expectations are

sometimes improved (below the dashed diagonal line) and sometimes they are worse. It is

difficult to see in these plots, but overall there are more non-edges with improved estimation

than vice-versa. We quantify these accuracy gains in the next section.

From the learned edge expectations, we produce a phylogenetic graph by selecting a

threshold value, t, such that if E(eij) ≥ t then eij is an edge in the graph. Fig. 9 shows

the learned phylogenetic graphs for t = 0.5 with and without prior information, as well as

the ground truth evolution of the Mineserver family of programs. The Mineserver family

is particularly interesting because it includes branches and merges of programs. It is clear

that Bayesian network discovery can recover many of the dependencies among programs.

However, without expert knowledge about the ordering of the programs, many of the edges

learned are incorrect (Fig. 9a). With ordering information on some pairs of programs,

many more of the inferred edges are correct (Fig. 9c). Most importantly, order information

that is included as a prior — rather than as a post-hoc fix as has been done previously —

improves the detection of edges that are completely missed without the prior information

(such as between the bottom two nodes, d908 and 3761, of the graph in Fig. 9).

6.3.2 Comparison with Competing Algorithms

We compare against other algorithms that have been used for learning malware phylogeny.

The algorithms that we compare against are: MKLGC [17] which uses a graphical lasso

with multiple kernel learning plus clustering of malware programs; Gupta [9], a graph prun-

ing algorithm; and the minimum spanning tree as a naive baseline. These three algorithms

each produce a single network as output, instead of an expectation on each edge as our
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Bayesian network discovery algorithm produces. Although we do not generally recommend

translating the results of the Bayesian discovery algorithm into a single network, for com-

parison to these competing algorithms, it is necessary. To generate a single network for

comparison from our edge expectations, we threshold edges at t = 0.5 and only consider

those with E(e) ≥ 0.5 to be learned positive edges in the learned network. We calculate

the precision and recall of the number of true edges identified by each algorithm. Precision

is the number of true positive edges learned divided by the total number of positive edges

identified. Recall is the number of true positive edges learned divided by the total number

of true edges in the ground truth network. Precision and recall are good metrics to use

when the true events of interest (in this case, true edges) are rare in comparison to the total

number of events (in this case, all possible edges, the number of which is quadratically larger

than the number of true edges) [36]. We also combine precision and recall into a single F1

score. The F1 score is the harmonic mean of precision and recall: F1 = 2 · precision·recall
precision+recall

.

Table 1 gives the results comparing precision, recall and F1 score for all of the algorithms

including our Bayesian network discovery with prior information, BNPrior; and without

prior information, BN. As the table shows in bold, our BNPrior algorithm outperforms the

other algorithms for most metrics of the program families. BNPrior outperforms the other

algorithms in overall accuracy, as represented by the F1 score. Precision and recall should

be evaluated as a pair. We see that BNPrior always has either the best precision or recall,

and sometimes both. Note that with BN and BNPrior, we can trade-off precision and recall

by adjusting the threshold value, t, whereas Table 1 shows only the results at t = 0.5. For

Mineserver and Koobface, BNPrior gives much better recall than any algorithm, but at a

somewhat lower precision than one or two algorithms. For Mytob, BNPrior gives much

better precision than any other algorithm but at a lower recall than what MKLGC gives.

Mytob is a difficult learning problem for all of the algorithms. BNPrior demonstrates

the most impressive performance improvement on Bagle, while the performance gain on

NetworkMiner is also substantial.

Our results indicate that software, including malware, phylogeny can be inferred using

Bayesian discovery and the accuracy of the ancestry relationships is improved with prior

knowledge about the ordering of the programs. Bayesian networks with order information
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Table 1: Phylogenetic graph reconstruction results in terms of precision of true edges, recall

of true edges, and F1 score.

Dataset Method Precision Recall F1 score

Network- BNPrior 0.5128 1.0000 0.6780
Miner BN 0.2632 0.5000 0.3448

MKLGC 0.4857 0.8500 0.6182
Gupta 0.3810 0.4000 0.3903
MST 0.3500 0.7000 0.4667

Mine- BNPrior 0.6818 0.9375 0.7895
server BN 0.0667 0.0625 0.0645

MKLGC 0.7222 0.8125 0.7647
Gupta 0.8462 0.3438 0.4889
MST 0.0000 0.0000 0.0000

Bagle BNPrior 0.5263 0.8333 0.6452
BN 0.1026 0.1667 0.1270
MKLGC 0.2000 0.3333 0.2500
Gupta 0.1200 0.0120 0.1224
MST 0.0208 0.0417 0.0278

Mytob BNPrior 0.2059 0.3684 0.2642
BN 0.0833 0.1579 0.1091
MKLGC 0.1563 0.5263 0.2410
Gupta 0.0500 0.0526 0.0513
MST 0.0526 0.1053 0.0702

Koobface BNPrior 0.4516 0.7778 0.5714
BN 0.1923 0.2778 0.2273
MKLGC 0.5812 0.5000 0.5376
Gupta 0.3158 0.3333 0.3243
MST 0.0278 0.0556 0.0371

prove to be a good model for software phylogeny. Most importantly, including order in-

formation about the variables in the network helps to learn more accurate dependencies

overall.

7 Conclusions

Bayesian network learning benefits from combining expert knowledge and statistical data.

These two distinct sources provide different types of information and are subject to differ-

ent types of uncertainty. Our partial-order prior leverages the type of information most

30



accessible to humans, while maintaining the strength of statistical dependencies to be cal-

culated directly from data. Our empirical study on benchmark data demonstrates that

edge priors should be used when such information is available because edge priors are most

effective at increasing the number of true positive edges identified at small training set

sizes. Prior beliefs about variable order is often the only type prior information available,

and our empirical results show that a prior on variable order can perform almost as well as

a prior on edges. Furthermore, order priors appear to provide complementary information

to observed data that allows correct edges to be identified even at large training set sizes

when the data could overwhelm edge priors. The proposed pairwise order prior is efficient

to implement. While the primary reason given for avoiding order-space expectation is the

bias present in the calculation, we show that this bias in practice is not detrimental to iden-

tifying the edges present in the network. Furthermore, our order-space method scales to

larger network sizes, while being able to leverage prior knowledge to improve the accuracy

of learning for datasets with limited number of observed samples.

Bayesian network structure learning with an order prior is an effective method for

reconstructing the evolution of software and malware development. We show that our

approach is able to identify the correct direction of edges and also identifies edges missed

by other graphical model learning methods, including an undirected model. The order

prior is necessary in improving the performance of the Bayesian network learner above the

performance results of competing methods.

Improving the structure of learned Bayesian networks is important in analysis domains

that have both data and expert knowledge, as we discussed in this paper. As future work,

we plan to look into combining human knowledge with observed data in risk analysis and

decision-making systems. We envision an interactive approach of generating networks based

on expert knowledge, refining the network with evidentiary data, and further modifying

the network by experts to produce systems that both match the data and represent human

beliefs. The efficient algorithm presented in this paper is an important first step in a

knowledge-rich and data-responsive Bayesian network structure learning system that can

provide beneficial information for software reverse engineers to aid their understanding of

the evolution of malware and help to indicate potential future directions.
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