

LA-UR-17-27781

Approved for public release; distribution is unlimited.

Title: Estimating Mutual Information for High-to-Low Calibration

Author(s): Michaud, Isaac James
Williams, Brian J.
Weaver, Brian Phillip

Intended for: Report

Issued: 2017-10-05 (rev.1)

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Estimating Mutual Information for High-to-Low Calibration

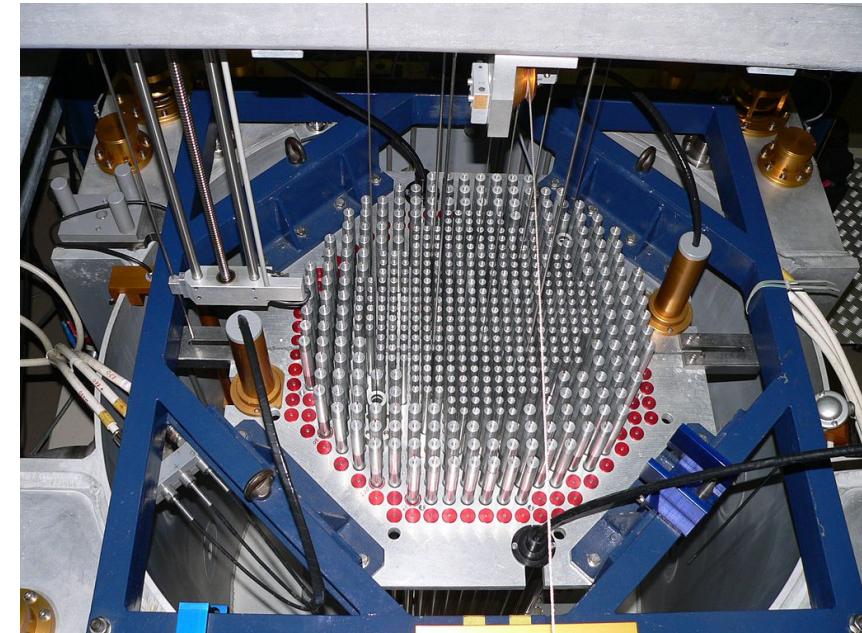
Isaac J. Michaud

Brian J. Williams

Brian P. Weaver

High Fidelity Computer Codes

- **Simulations are an integral part of modern scientific research**
- **Monte Carlo N-Particle Transport Code (MCNP)**
 - LANL developed over 60 years
 - Simulates the movement and interactions of particles
 - User specified geometry and material cross-sections
 - Used to study reactor designs
 - Slow but accurate
- **How can we use these slow codes to study a process?**



By Rama (Own work) [CC BY-SA 2.0 fr (<http://creativecommons.org/licenses/by-sa/2.0/fr/deed.en>)], via Wikimedia Commons

High Fidelity (HiFi) to Low Fidelity (LoFi) Calibration

- **LoFi Mathematical Model:** $d_l(\theta, \xi)$
 - $\xi \in \Xi$, control variables
 - $\theta \in \Theta$, calibration parameters
- **Calibration involves finding θ so d_l matches observations**
- **Here the observation are from HiFi code**
- **Problem: Calibrate LoFi while minimizing HiFi evaluations**

$$\underbrace{\hat{d}_n}_{\text{high-fidelity observation}} = \underbrace{d_l(\theta, \xi_n)}_{\text{low-fidelity model}} + \underbrace{\delta(\xi_n)}_{\text{systematic bias}} + \underbrace{\tilde{\epsilon}_n(\xi_n)}_{\text{random error}}$$

- **Challenge: Optimal experimental design exploits the mathematical structure of the statistical model being fit or calibrated**

High-to-Low Calibration with Mutual Information (MI)

- Lewis et al. 2016 proposed sequentially optimizing MI between parameters and data,

$$I(\theta; d_n | D_{n-1}, \xi_n) = \int_{\mathcal{D}} \int_{\Omega} p(\theta, d_n | D_{n-1}, \xi_n) \log \frac{p(\theta, d_n | D_{n-1}, \xi_n)}{p(\theta | D_{n-1}) p(d_n | D_{n-1}, \xi_n)} d\theta dd_n$$

$$\xi_n^* = \arg \max_{\xi_n \in \Xi} I(\theta; d_n | D_{n-1}, \xi_n)$$

- MI is the expected Kullback–Leibler divergence between prior and posterior distributions of θ if d_n is collected at ξ_n
- Measures expected reduction in uncertainty (entropy) in parameters
- Special cases: maximum entropy sampling and D-optimality
- **Requires integrating a known joint density (difficult)**
- **Lewis et al. estimated MI using samples instead**

Estimating Mutual Information

Method	Assumptions
Monte Carlo, MLE, Parametric	Known joint density
Binning, KDE	Small dimension
K^{th} Nearest Neighbor (kNN)	Locally uniform joint density

- **kNN Pros:**
 - Require fewer samples than brute force methods
 - Faster than KDE ($\mathcal{O}(n \log n)$ vs. $\mathcal{O}(n^2)$)
- **kNN Cons:**
 - Asymptotic theory is not fully developed
 - Better at estimating independence than dependence

Estimating Shannon Entropy

MI can be decomposed into marginal and joint entropies:

$$I(X, Y) = H(X) + H(Y) - H(X, Y)$$

where

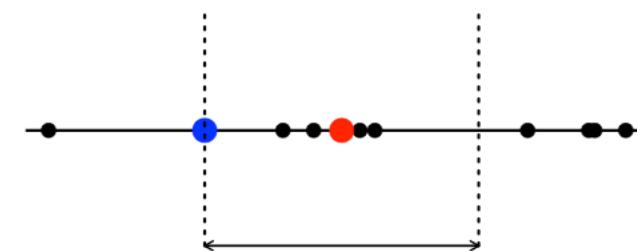
$$H(X) = - \int f(x) \log(f(x)) dx$$

Kozachenko-Leonenko entropy (KLE) estimator, let $\epsilon_x(i)/2$ be the distance to k^{th} nearest neighbor of point i ,

$$\hat{H}(X) = -\psi(k) + \psi(N) + \log c_{d_x} + \frac{d_x}{N} \sum_{i=1}^N \log \epsilon_x(i)$$

where ψ is the digamma function, d_x is the dimension of X , and c_{d_x} is the volume of max-norm unit ball in \mathbb{R}^{d_x}

E.g. $k = 5$



$$\epsilon_x(i)$$

Kraskov et al. 2004 - Mutual Information Estimation

- **Naive mutual information estimator**

$$\hat{I}(X, Y) = \hat{H}(X) + \hat{H}(Y) - \hat{H}(X, Y)$$

$$= -\psi(k) + \psi(N) + \frac{d_x}{N} \sum_{i=1}^N \log \epsilon_x(i) + \frac{d_y}{N} \sum_{i=1}^N \log \epsilon_y(i) - \frac{d_x + d_y}{N} \sum_{i=1}^N \log \epsilon_{xy}(i)$$

- **Problem: Biases in each estimate are unlikely to cancel**
- **Solution: Force $\epsilon_{xy}(i) = \epsilon_x(i) = \epsilon_y(i)$ and varying k in the marginal estimates**

Kraskov et al. 2004 - Algorithm 1

$$KSG_1(X, Y) = \psi(N) + \psi(k) - \frac{1}{N} \sum_{i=1}^N \psi(n_x(i) + 1) - \frac{1}{N} \sum_{i=1}^N \psi(n_y(i) + 1)$$

1. **For each point** $z_i = (x_i, y_i)$, **find** its k^{th} **nearest neighbor** z_i^k **in** the joint space

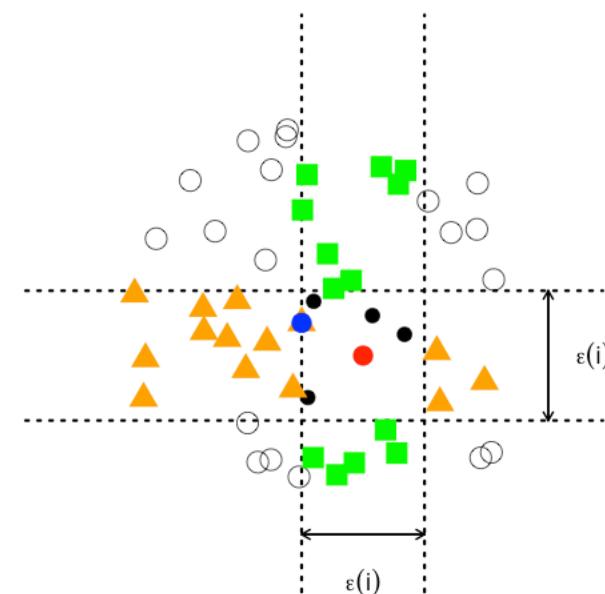
E.g. $k = 5$

2. **Define:** $\frac{\epsilon(i)}{2} = \|z_i^k - z_i\|_\infty$

3. **Compute:**

$$n_x(i) = \sum_{j \neq i} I \left(\|x_j - x_i\|_\infty < \frac{\epsilon(i)}{2} \right)$$

$$n_y(i) = \sum_{j \neq i} I \left(\|y_j - y_i\|_\infty < \frac{\epsilon(i)}{2} \right)$$



Kraskov et al. 2004 - Algorithm 1

Consider the linear model: $y_i = \beta_0 + \beta_1 x_i + \eta_i$

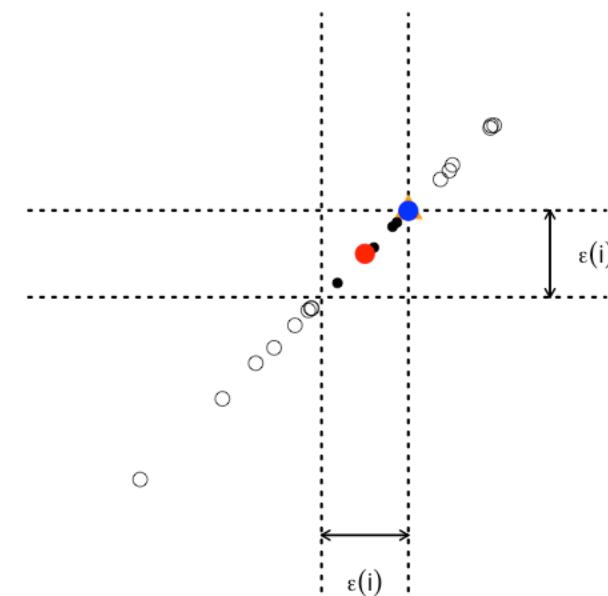
where $x_i \stackrel{iid}{\sim} \mathcal{U}(0, 1)$ and $\eta_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$

- **Dependence between X and Y is governed by σ^2 and β_1**
- **Problem 1:**

$$\sigma^2 \rightarrow 0 \Rightarrow \begin{aligned} n_x(i) &\rightarrow k \\ n_y(i) &\rightarrow k \end{aligned}$$

$$KSG_1(X, Y) \approx \psi(N) - \psi(k)$$

- **Maximum estimable information**



Kraskov et al. 2004 - Algorithm 1

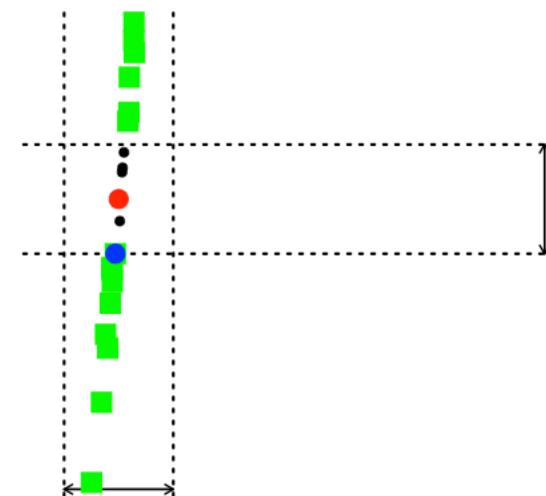
- **Problem 2:**

$$\begin{aligned}\beta_1 \rightarrow \infty \Rightarrow \quad n_x(i) \rightarrow N \\ n_y(i) \rightarrow k\end{aligned}$$

$$KSG_1(X, Y) \approx 0$$

- **This can be “fixed” by rescaling both variables by their standard deviations, giving:**

$$KSG_1(X/\sigma_X, Y/\sigma_Y) \approx \psi(N) - \psi(k)$$



Kraskov et al. 2004 - Algorithm 2

$$KSG_2(X, Y) = \psi(N) + \psi(k) - \frac{1}{N} \sum_{i=1}^N \psi(n_x(i)) - \frac{1}{N} \sum_{i=1}^N \psi(n_y(i)) - \frac{1}{k}$$

1. Let z_i^j be the j^{th} nearest neighbor of $z_i = (x_i, y_i)$ in the joint space

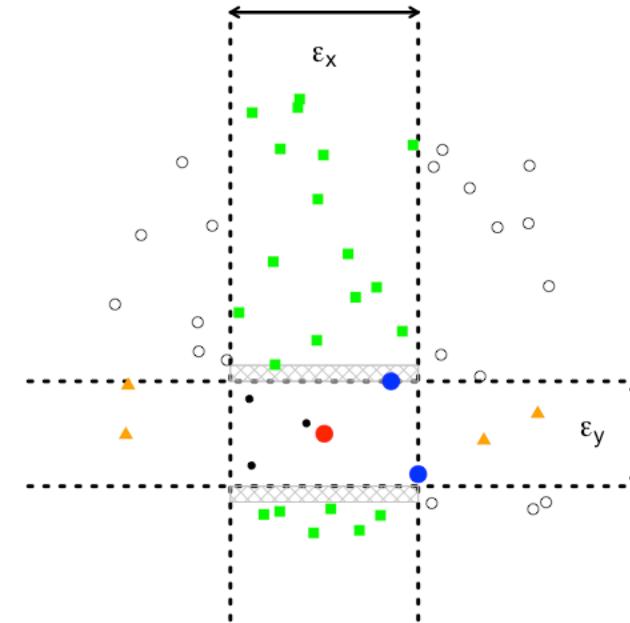
$$2. \text{ Define: } \frac{\epsilon_x(i)}{2} = \max_{1 \leq j \leq k} \|x_i^j - x_i\|_\infty$$

$$\frac{\epsilon_y(i)}{2} = \max_{1 \leq j \leq k} \|y_i^j - y_i\|_\infty$$

3. Compute:

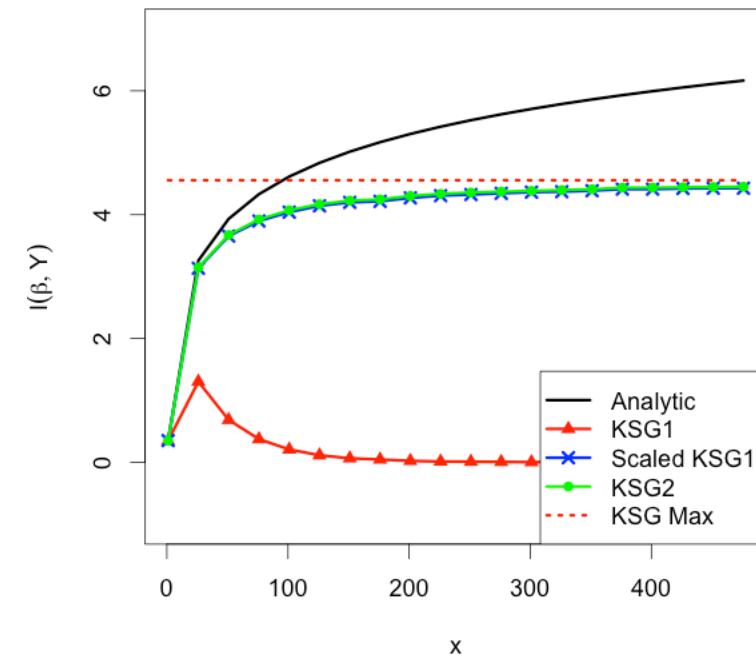
$$n_x(i) = \sum_{j \neq i} I \left(\|x_j - x_i\|_\infty \leq \frac{\epsilon_x(i)}{2} \right)$$

$$n_y(i) = \sum_{j \neq i} I \left(\|y_j - y_i\|_\infty \leq \frac{\epsilon_y(i)}{2} \right)$$



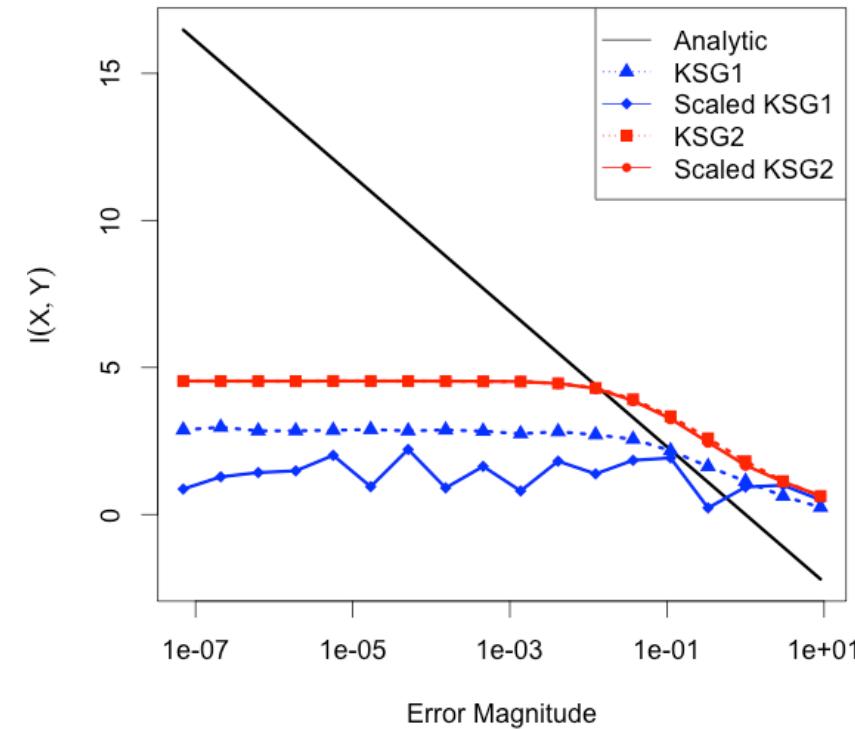
Simple Linear Scaling

- Consider the linear model: $y_i = \beta x_i + \eta_i$, $\beta \sim \mathcal{U}[0, 1]$, $\eta_i \sim \mathcal{N}(0, 1)$
- Estimating $I(\beta, Y)$ from 1000 samples
- KSG_2 and Scaled KSG_1 perform similarly
- Unscaled KSG_1 initially increases and then decays to zero



Reciprocal: $X \sim \text{unif}(0,1)$, $U \sim \text{unif}(-\epsilon/2, \epsilon/2)$, $Y = \frac{1}{X} + U$

- Nonlinear relationships remain after scaling
- KSG_1 performs worse after scaling than without
- KSG_2 adapts locally to nonlinearities

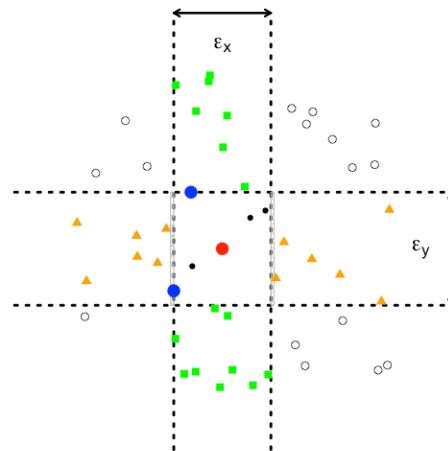


KSG₁ and KSG₂ Summary

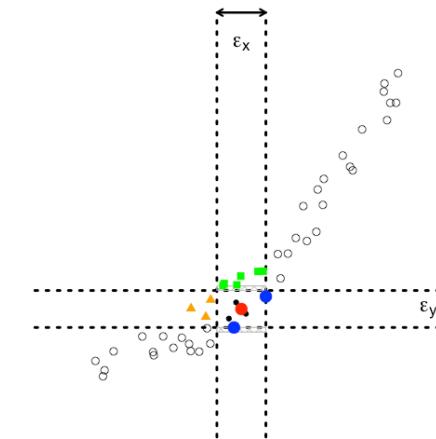
- Most documentation does not specify used method
- Both are limited to a maximum estimable MI ($\approx \log(N)$)
- Both are best at estimating near zero MI (independence)
- Assumptions:
 - Independent Samples
 - Continuous variables
 - Locally uniform joint density
- KSG₁
 - More common version found in software
 - Bias if variables have disparate scales
 - Scaling problem is fixed if the variables can be standardized (globally)
- KSG₂
 - Scaling issue is avoided by handling each variable separately

Improving KSG Estimators

- Locally uniform joint density over the nearest neighbor rectangle
- Non-Uniformity indicates high MI
 - Option 1: Increase sample size exponentially
 - Option 2: Modify the estimator for non-uniformity



Plausibly Uniform

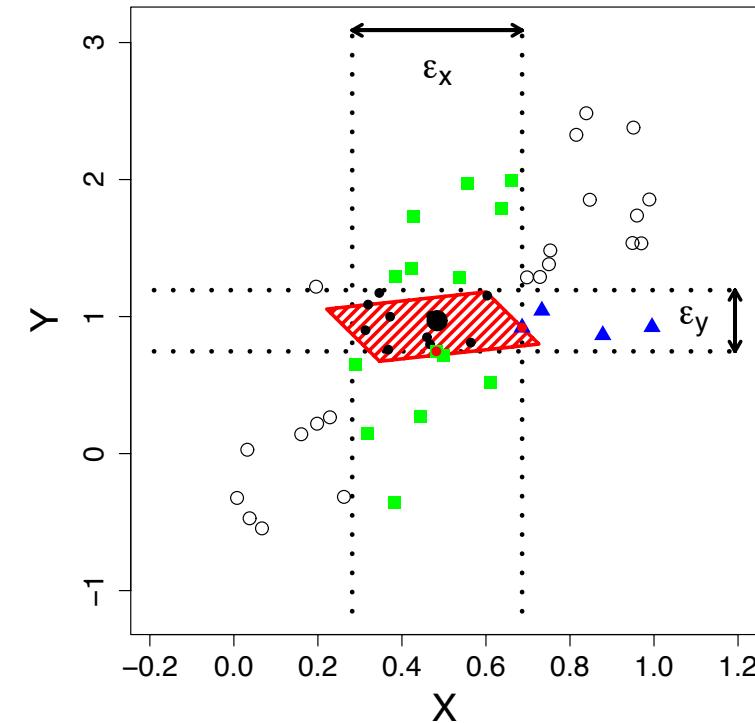


Not Uniform

Local Non-Uniformity Corrected KSG (LNC)

$$LNC(X, Y) = KSG_2(X, Y) - \frac{1}{N} \sum_{i=1}^N I \left(\frac{\bar{V}(i)}{V(i)} < \alpha_{k,d} \right) \log \frac{\bar{V}(i)}{V(i)}$$

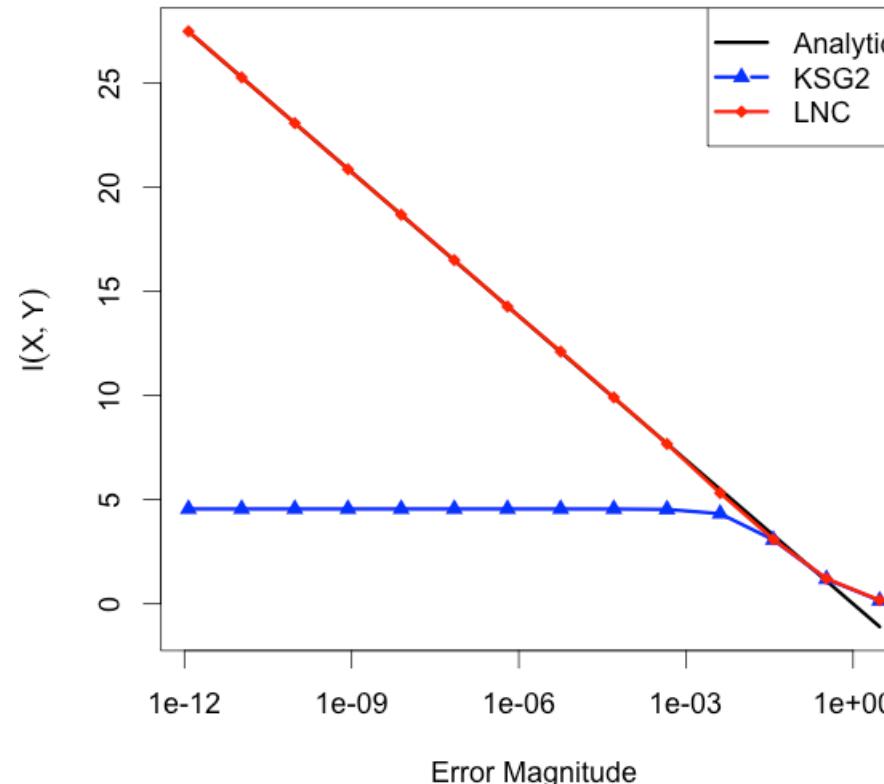
- Developed by Gao et al. 2015
- kNN neighborhood may not be uniform, perhaps some volume within it is?
- Use PCA to uncover this volume
- Same as KSG_2 with adjustments for non-uniformity
- $V(i)$ - kNN neighborhood volume
- $\bar{V}(i)$ - PCA aligned volume
- $\alpha_{k,d}$ - correction threshold
- d - dimension of joint space



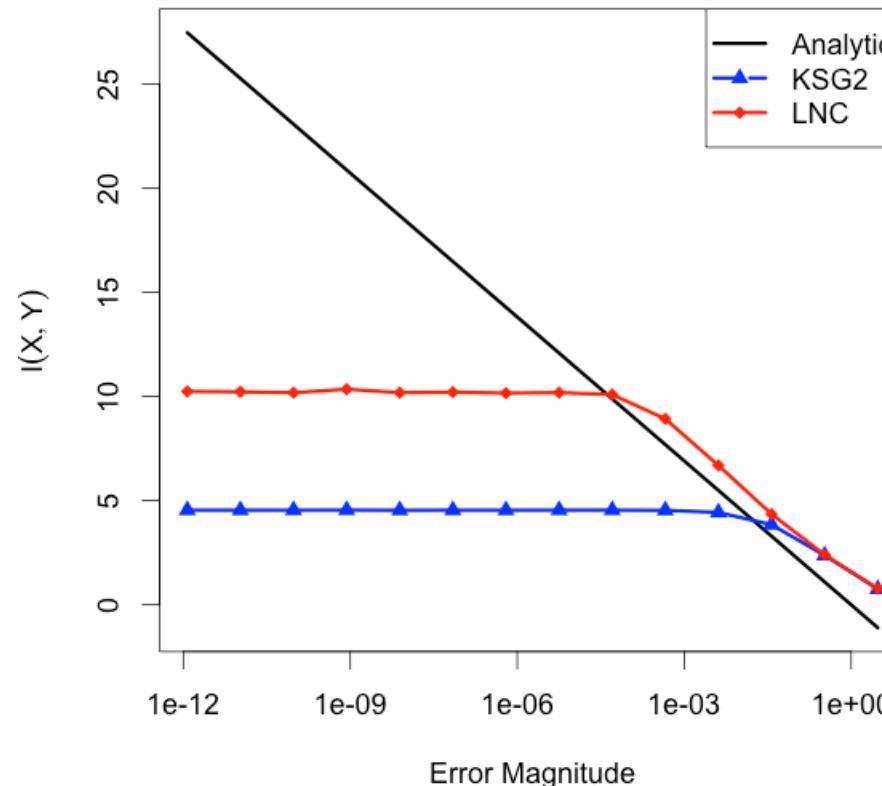
Selecting α for LNC

- If $\bar{V}(i) < V(i)$ the correction is positive
- If $\bar{V}(i) > V(i)$ the correction is negative
- α defines a threshold for applying the correction
- Optimal α is selected using Monte Carlo algorithm:
 1. Sample k points from multidimensional uniform distribution N times
 2. Compute $\bar{V}(i)/V(i)$
 3. Set α to be p^{th} sample quantile ($p = 0.005$)
- Under the assumption of local uniformity, using the α defined above will cause the correction to be applied 0.005 of the time
- N and p can be varied
- Low α filters out moderately dependent relationships
- High α inflates estimates

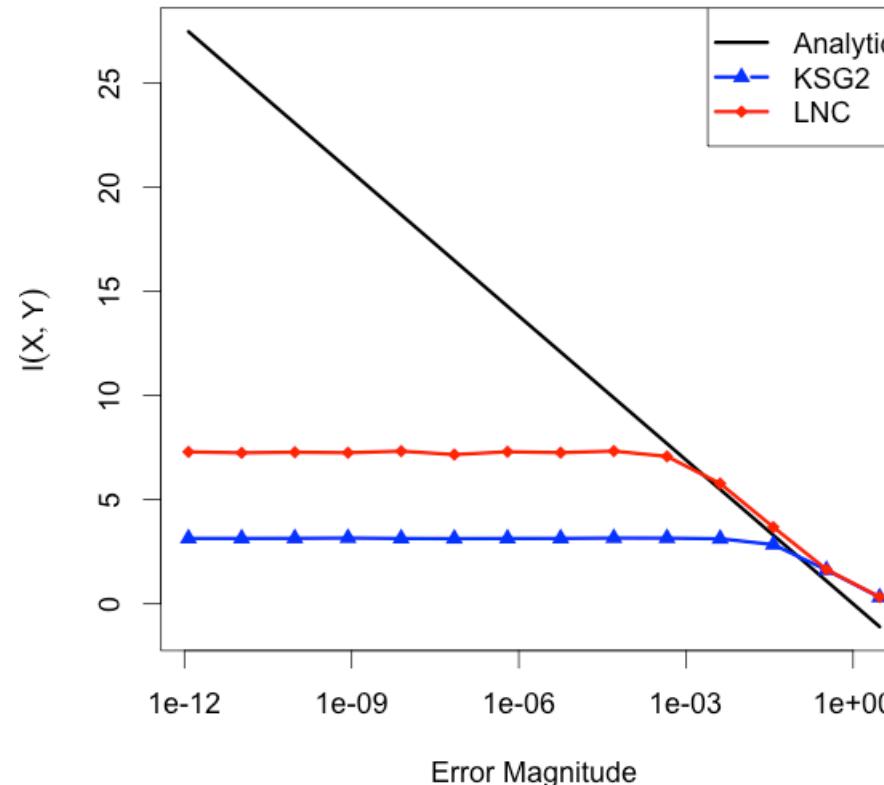
Linear: $X \sim \text{unif}(0,1)$, $U \sim \text{unif}(-\epsilon/2, \epsilon/2)$, $Y = X + U$



Quadratic: $X \sim \text{unif}(0,1)$, $U \sim \text{unif}(-\epsilon/2, \epsilon/2)$, $Y = 5X^2 + U$

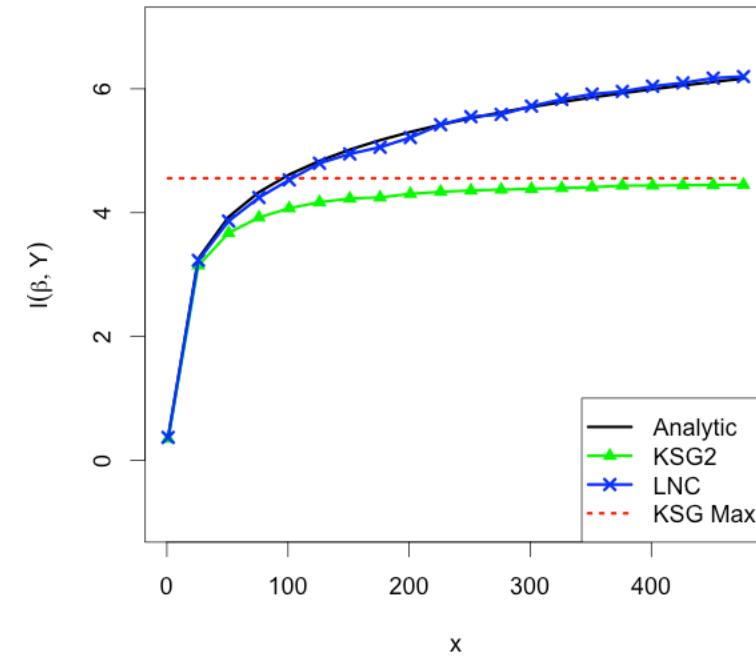


Periodic: $X \sim \text{unif}(0,1)$, $U \sim \text{unif}(-\epsilon/2, \epsilon/2)$, $Y = \sin(4\pi X) + U$



Simple Linear Scaling

- Consider the linear model: $y_i = \beta x_i + \eta_i$, $\beta \sim \mathcal{U}[0, 1]$, $\eta_i \sim \mathcal{N}(0, 1)$
- Estimating $I(\beta, Y)$ from 1000 samples
- LNC reproduces the analytic mutual information over the entire range of X
- LNC is not limited to the same maximum mutual information as KSG
- LNC's performance is better for more extreme scalings ($>1e5$)



Generalization to Multivariate Mutual Information

- Kraskov et al. generalized their estimators to compute high dimensional redundancy

$$I(x_1; x_2; x_3; x_4) = \int \int \int \int f(x_1, x_2, x_3, x_4) \log \frac{f(x_1, x_2, x_3, x_4)}{f(x_1)f(x_2)f(x_3)f(x_4)} dx_1 dx_2 dx_3 dx_4$$

- For high-to-low calibration we need information gain

$$I((x_1, x_2); (x_3, x_4)) = \int \int \int \int f(x_1, x_2, x_3, x_4) \log \frac{f(x_1, x_2, x_3, x_4)}{f(x_1, x_2)f(x_3, x_4)} dx_1 dx_2 dx_3 dx_4$$

Improved Local Non-Uniformity Corrected KSG (iLNC)

- Correlated parameters cause LNC to over correct
- Correction applied to the joint space, even when activated by dependence in the marginal spaces
- We modified LNC to correct for correlations within the parameter and predictive distributions:

$$iLNC(X_1, \dots, X_\ell) = LNC(X_1, \dots, X_\ell) + \frac{1}{n} \sum_{j=1}^{\ell} \sum_{i=1}^n I\left(\frac{\bar{V}_j(i)}{V_j(i)} < \alpha_{k,d_{X_j}}\right) \log\left(\frac{\bar{V}_j(i)}{V_j(i)}\right)$$

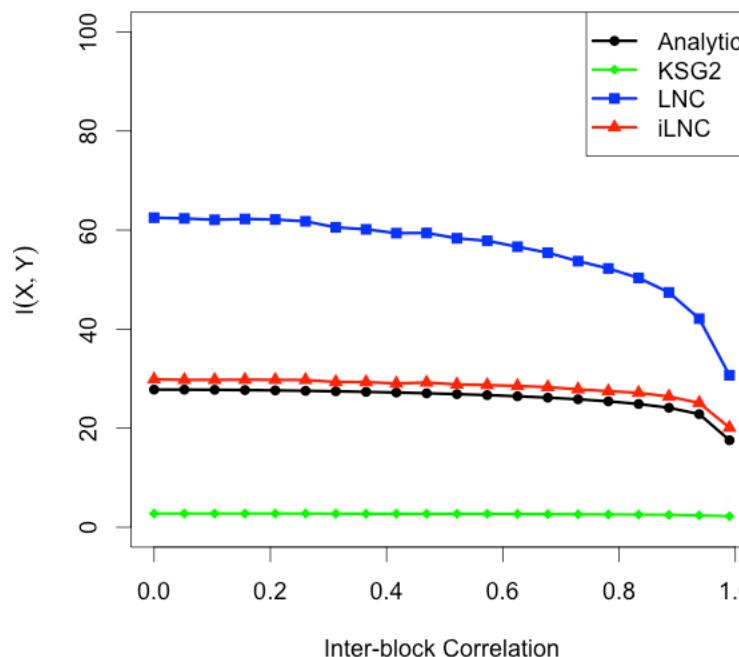
- Typically $\ell = 2$ for high-to-low calibration
- α terms are selected using the same algorithm as described for LNC

Multivariate Normal Simulation Study

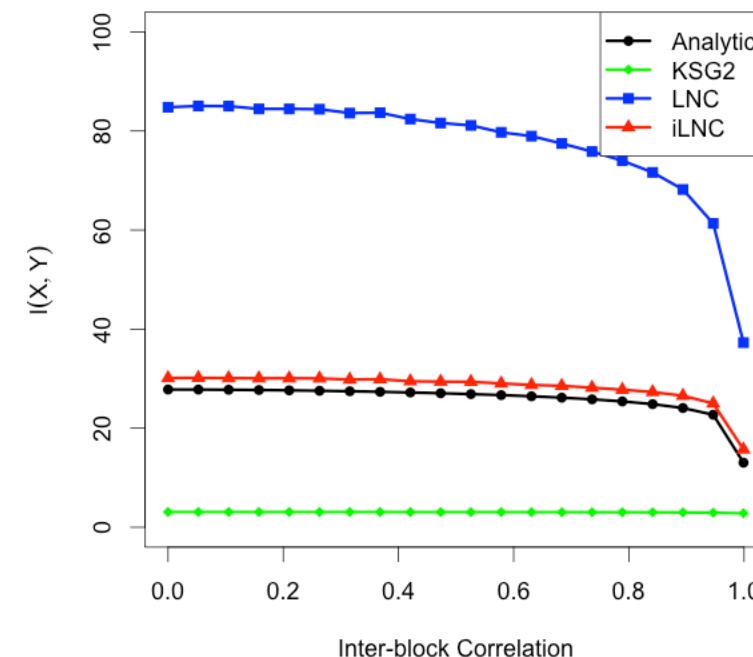
- **25 dimensional calibration parameter vector**
 - Normally distributed vector
 - 5 blocks of 5 parameters each
 - Block-compound symmetric covariance structure
 - intra-block correlation ρ_{intra} and inter-block correlation set to ρ_{inter}
- **5 dimensional prediction vector**
 - $Y = TX + \epsilon$, where $\epsilon \sim N(0, \sigma^2 I)$
 - $E[y_1] = 100(x_1)$
 - $E[y_2] = 100(x_6 + x_7)$
 - $E[y_3] = 100(x_{11} + x_{12} + x_{13})$
 - $E[y_4] = 100(x_{16} + x_{17} + x_{18} + x_{19})$
 - $E[y_5] = 100(x_{21} + x_{22} + x_{23} + x_{24} + x_{25})$

Multivariate Normal Simulation Study

$$\rho_{\text{intra}} = 0.99$$



$$\rho_{\text{intra}} = 0.999$$



Steady-State Heat Model (Lewis et al. 2016)

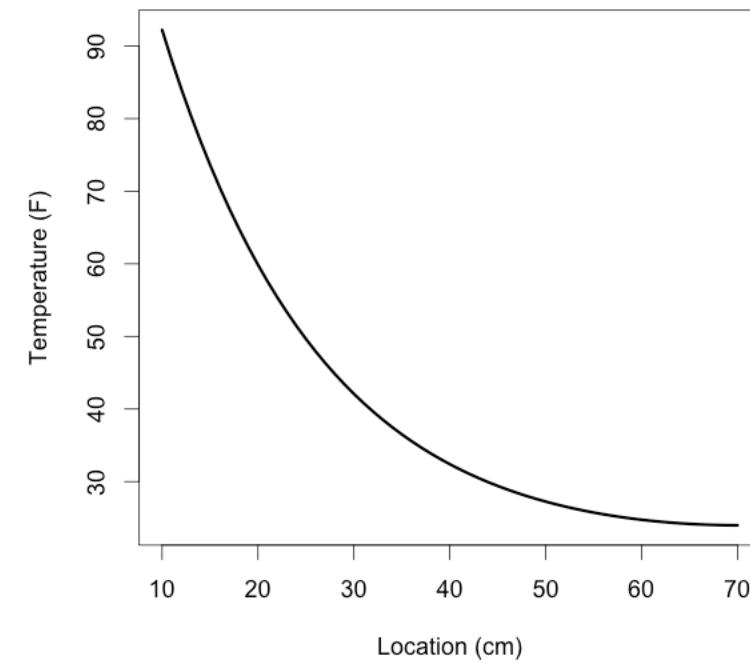
- 70 cm metal bar heated at endpoint
- Model equilibrium heat distribution using steady-state heat equation

$$T_s(x; \phi) = c_1(\phi)e^{-\gamma x} + c_2(\phi)e^{\gamma x} + T_{amb}$$

$$c_1(\phi) = -\frac{\Phi}{K\gamma} \left[\frac{e^{\gamma L}(h + K\gamma)}{e^{-\gamma L}(h + K\gamma) + e^{\gamma L}(h + K\gamma)} \right]$$

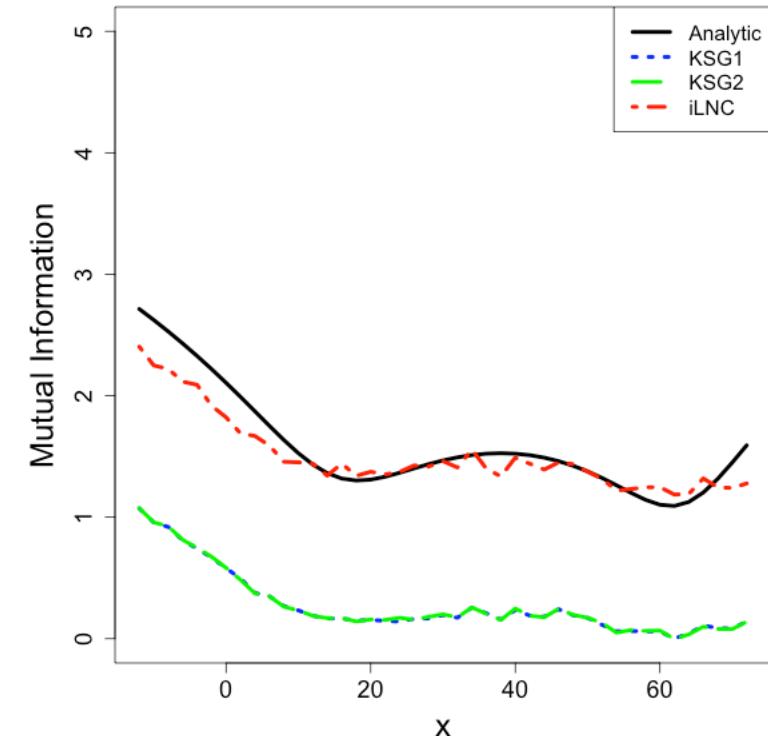
$$c_2(\phi) = \frac{\Phi}{K\gamma} + c_1(\phi)$$

- **HiFi:** $\tilde{d}_n = T_s(x_n; \phi) + \tilde{\epsilon}(x_n)$
- **LoFi:** $y = Ax^2 + Bx + C$
- **Design Space:** [10, 66]



Steady-State Heat Model

- Initial Data at $x = 10, 38, 66, 66$
- Posteriors simulated using DRAM
- 1000 parameter samples used
- MI computed over design space
- Analytic mutual information criterion is the same as D-optimal criterion because LoFi is linear model with normal errors
- Maximizing mutual information tries to move design towards a balanced three-point design
- iLNC provides more fidelity of MI criterion than KSG



Steady-State Heat Model

- Design points selected with replacement
- Mutual information optimization performed with GADGET (GP optimization)

Stage	0	1	2	3	4	5	6
D-Optim	10,38,66	10	38	66	10	38	66
MI (iLNC)	10,38,66	10	42	10	66	38	10

- iLNC produces design similar to D-optimal design as expected
- iLNC used 1000 sample points, larger samples should improve performance

Conclusions

- **KSG₂ is superior to KSG₁ because it scales locally automatically**
- **KSG estimators are limited to a maximum MI due to sample size**
- **LNC extends the capability of KSG without onerous assumptions**
- **iLNC allows LNC to estimate information gain**

Recommendations:

1. **Jitter the sample points to break possible ties (magnitude: 1e-10)**
2. **Center and scale each variable independently**
3. **Replace KSG₁ with KSG₂**
4. **Incorporate iLNC and α estimator**

Future Work

- Develop selection method for optimal k for LNC and iLNC
- Simulation study of high dimensional nonlinear relationships
- Sensitivity to approximate nearest neighbor (ANN) algorithm
- Sensitivity to independence assumption
- Manifold learning methods for estimating MI

References:

Gao, Shuyang, Greg Ver Steeg, and Aram Galstyan. "Efficient estimation of mutual information for strongly dependent variables." *Artificial Intelligence and Statistics*. 2015.

Kraskov, Alexander, Harald Stögbauer, and Peter Grassberger. "Estimating mutual information." *Physical review E* 69.6 (2004): 066138.

Lewis, Allison, et al. "An information theoretic approach to use high-fidelity codes to calibrate low-fidelity codes." *Journal of Computational Physics* 324 (2016): 24-43.

Singh, Harshinder, et al. "Nearest neighbor estimates of entropy." *American journal of mathematical and management sciences* 23.3-4 (2003): 301-321.

Conditional Entropy Estimator (conEnt)

- Mutual information can be decomposed as

$$I(X, Y) = H(Y) - H(Y|X)$$

- Entropy of Y can be estimated easily using KLE, but conditional entropy is more difficult for small samples
- Inspired by Manifold Learning, we estimate conditional entropy using linear models fit to kNN defined neighborhoods
- Assuming normally distributed residuals:

$$\hat{I}_{\text{conEnt}}(X, Y) = \hat{H}(Y) - \frac{1}{N} \sum_{i=1}^N \frac{\log(2\pi e \hat{\sigma}_i^2)}{2}$$

where $\hat{\sigma}_i^2$ is the MSE for the model fit locally around point i