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High Fidelity Computer Codes 

• Simulations are an integral part 
of modern scientific research

• Monte Carlo N-Particle 
Transport Code (MCNP)
o LANL developed over 60 years 
o Simulates the movement and 

interactions of particles
o User specified geometry and 

material cross-sections
o Used to study reactor designs  
o Slow but accurate

• How can we use these slow  
codes to study a process? 

By Rama (Own work) [CC BY-SA 2.0 fr (http://creativecommons.org/licenses/by-sa/2.0/fr/deed.en)], via Wikimedia Commons
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High Fidelity (HiFi) to Low Fidelity (LoFi) Calibration

• LoFi Mathematical Model: 
o ,    control variables
o ,   calibration parameters 

• Calibration involves finding 𝜽	so 𝒅𝒍	matches observations 
• Here the observation are from HiFi code 
• Problem: Calibrate LoFi while minimizing HiFi evaluations

• Challenge: Optimal experimental design exploits the mathematical 
structure of the statistical model being fit or calibrated

d̃n|{z}
high-fidelity observation

= dl(✓, ⇠n)| {z }
low-fidelity model

+ �(⇠n)| {z }
systematic bias

+ ✏̃n(⇠n)| {z }
random error

dl(✓, ⇠)
⇠ 2 ⌅
✓ 2 ⇥
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High-to-Low Calibration with Mutual Information (MI)

• Lewis et al. 2016 proposed sequentially optimizing MI between 
parameters and data,

• MI is the expected Kullback–Leibler divergence between prior and 
posterior distributions of 𝜽 if dn is collected at 𝜉&

• Measures expected reduction in uncertainty (entropy) in parameters 
• Special cases: maximum entropy sampling and D-optimality

• Requires integrating a known joint density (difficult)
• Lewis et al. estimated MI using samples instead

⇠⇤n = argmax

⇠n2⌅
I(✓; dn|Dn�1, ⇠n)

I(✓; dn|Dn�1, ⇠n) =

Z

D

Z

⌦
p(✓, dn|Dn�1, ⇠n) log

p(✓, dn|Dn�1, ⇠n)

p(✓|Dn�1)p(dn|Dn�1, ⇠n)
d✓ddn



Los Alamos National Laboratory

8/28/17 |   5

Estimating Mutual Information

• kNN Pros:
o Require fewer samples than brute force methods
o Faster than KDE 

• kNN Cons:
o Asymptotic theory is not fully developed
o Better at estimating independence than dependence 

Method Assumptions
Monte Carlo, MLE, Parametric Known joint density
Binning, KDE Small dimension  
Kth Nearest Neighbor (kNN) Locally uniform joint density

(O(n log n) vs. O(n2
))
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Estimating Shannon Entropy 

MI can be decomposed into marginal and 
joint entropies:

where

Kozachenko-Leonenko entropy (KLE) 
estimator, let 𝝐𝒙(𝒊)/𝟐 be the distance to 
kth nearest neighbor of point 𝒊,

where 𝝍 is the digamma function, 𝒅𝒙 is 
the dimension of 𝑿, and 𝒄𝒅𝒙is the volume 
of  max-norm unit ball in ℝ𝒅𝒙

I(X,Y ) = H(X) +H(Y )�H(X,Y )

H(X) = �
Z

f(x) log(f(x))dx

i

ˆH(X) = � (k) +  (N) + log c
d

x

+

d
x

N

NX

i=1

log ✏
x

(i)

𝑘 = 5E.g.
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Kraskov et al. 2004 - Mutual Information Estimation

• Naive mutual information estimator

• Problem: Biases in each estimate are unlikely to cancel
• Solution: Force                                       and varying 𝒌 in the marginal 

estimates   

Î(X,Y ) = Ĥ(X) + Ĥ(Y )� Ĥ(X,Y )

✏
xy

(i) = ✏
x

(i) = ✏
y

(i)

= � (k) +  (N) +

d
x

N

NX

i=1

log ✏
x

(i) +
d
y

N

NX

i=1

log ✏
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(i)� d
x

+ d
y

N

NX

i=1

log ✏
xy
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Kraskov et al. 2004 - Algorithm 1

1. For each point                    , find 
its  kth nearest neighbor      in 
the joint space 

2. Define: 

3. Compute: 

KSG1(X,Y ) =  (N) +  (k)� 1

N

NX

i=1

 (n
x

(i) + 1)� 1

N

NX

i=1

 (n
y

(i) + 1)

zki

zi = (xi, yi)

✏(i)

2
= ||zki � zi||1

n

x

(i) =
X

j 6=i

I

✓
||x

j

� x

i

||1 <

✏(i)

2

◆

n

y

(i) =
X

j 6=i

I

✓
||y

j

� y

i

||1 <
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◆
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Kraskov et al. 2004 - Algorithm 1

Consider the linear model:
where 
• Dependence between X and Y is 

govern by 𝝈𝟐 and 𝜷𝟏
• Problem 1: 

• Maximum estimable information

yi = �0 + �1xi + ⌘i

xi
iid⇠ U(0, 1) and ⌘i

iid⇠ N (0,�2)

�2 ! 0 ) n
x

(i) ! k

n
y

(i) ! k

KSG1(X,Y ) ⇡  (N)�  (k)
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Kraskov et al. 2004 - Algorithm 1

• Problem 2: 

• This can be “fixed” by rescaling 
both variables by their standard 
deviations, giving:

�1 ! 1 )
✏
i

! 1
n
x

(i) ! N
n
y

(i) ! k

KSG1(X,Y ) ⇡ 0

KSG1(X/�X , Y/�Y ) ⇡  (N)�  (k)
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Kraskov et al. 2004 - Algorithm 2

1. Let      be the jth nearest 
neighbor of                   in the 
joint space  

2. Define: 

3. Compute: 

KSG2(X,Y ) =  (N) +  (k)� 1

N

NX
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Simple Linear Scaling 

• Consider the linear model:

• Estimating 𝑰(𝜷, 𝒀) from 1000 
samples

• KSG2 and Scaled KSG1 perform 
similarly 

• Unscaled KSG1 initially 
increases and then decays to 
zero 

yi = �xi + ⌘i, � ⇠ U [0, 1], ⌘i ⇠ N (0, 1)
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Reciprocal: X~unif(0,1), U~unif(-𝝐/2, 𝝐/2), 𝒀 = 𝟏
𝐗
+ 𝑼

• Nonlinear relationships 
remain after scaling

• KSG1 performs worse after 
scaling than without

• KSG2 adapts locally to 
nonlinearities 
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KSG1 and KSG2 Summary
• Most documentation does not specify used method
• Both are limited to a maximum estimable MI (≈ 𝒍𝒐𝒈 𝑵 )
• Both are best at estimating near zero MI (independence)
• Assumptions:
o Independent Samples
o Continuous variables
o Locally uniform joint density 

• KSG1

o More common version found in software
o Bias if variables have disparate scales
o Scaling problem is fixed if the variables can be standardized (globally)

• KSG2

o Scaling issue is avoided by handling each variable separately



Los Alamos National Laboratory

8/28/17 |   15

Improving KSG Estimators

Plausibly Uniform Not Uniform

• Locally uniform joint density over the nearest neighbor rectangle
• Non-Uniformity indicates high MI

o Option 1: Increase sample size exponentially
o Option 2: Modify the estimator for non-uniformity
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Local Non-Uniformity Corrected KSG (LNC)

• Developed by Gao et al. 2015
• kNN neighborhood may not be 

uniform, perhaps some volume 
within it is?

• Use PCA to uncover this volume
• Same as KSG2 with adjustments 

for non-uniformity
• - kNN neighborhood volume
• - PCA aligned volume
• - correction threshold
• 𝑑 - dimension of joint space −0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

−1
0

1
2

3
X

Y

εx

εy

LNC(X,Y ) = KSG2(X,Y )� 1

N

NX

i=1

I

✓
¯V (i)

V (i)
< ↵k,d

◆
log

¯V (i)

V (i)

V̄ (i)
V (i)

↵k,d
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Selecting 𝜶 for LNC

• If the correction is positive
• If  the correction is negative
• 𝜶 defines a threshold for applying the correction
• Optimal 𝜶	is selected using Monte Carlo algorithm:

1. Sample 𝒌 points from multidimensional uniform distribution 𝑵 times
2. Compute 
3. Set 𝜶 to be 𝑝th sample quantile (𝑝 = 0.005)

• Under the assumption of local uniformity, using the 𝜶 defined above 
will cause the correction to be applied 0.005 of the time 

• 𝑵 and 𝑝 can be varied
• Low 𝜶 filters out moderately dependent relationships 
• High 𝜶 inflates estimates 

V̄ (i) < V (i)

V̄ (i) > V (i)

V̄ (i)/V (i)
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Linear: X~unif(0,1), U~unif(-𝝐/2, 𝝐/2), 𝒀 = 𝑿 + 𝑼
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Quadratic: X~unif(0,1), U~unif(-𝝐/2, 𝝐/2), 𝒀 = 𝟓𝑿𝟐 + 𝑼
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Periodic: X~unif(0,1), U~unif(-𝝐/2, 𝝐/2), 𝒀 = 𝐬𝐢𝐧	(𝟒𝝅𝑿) + 𝑼
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Simple Linear Scaling
• Consider the linear model:

• Estimating 𝑰(𝜷, 𝒀) from 1000 
samples

• LNC reproduces the analytic 
mutual information over the 
entire range of 𝑿

• LNC is not limited to the same 
maximum mutual information 
as KSG

• LNC’s performance is better for 
more extreme scalings (>1e5)

yi = �xi + ⌘i, � ⇠ U [0, 1], ⌘i ⇠ N (0, 1)
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Generalization to Multivariate Mutual Information

• Kraskov et al. generalized their estimators to compute high 
dimensional redundancy 

• For high-to-low calibration we need information gain

I(x1;x2;x3;x4) =

Z Z Z Z
f(x1, x2, x3, x4) log

f(x1, x2, x3, x4)

f(x1)f(x2)f(x3)f(x4)
dx1dx2dx3dx4

I((x1, x2); (x3, x4)) =

Z Z Z Z
f(x1, x2, x3, x4) log

f(x1, x2, x3, x4)

f(x1, x2)f(x3, x4)
dx1dx2dx3dx4
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Improved Local Non-Uniformity Corrected KSG (iLNC) 

• Correlated parameters cause LNC to over correct
• Correction applied to the joint space, even when activated by 

dependence in the marginal spaces
• We modified LNC to correct for correlations within the parameter and 

predictive distributions:

• Typically ℓ = 2 for high-to-low calibration
• 𝜶 terms are selected using the same algorithm as described for LNC

iLNC(X1, ..., X`) = LNC(X1, ..., X`)+
1

n

X̀

j=1

nX

i=1

I

✓
¯Vj(i)

Vj(i)
< ↵k,dXj

◆
log

✓
¯Vj(i)

Vj(i)

◆
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Multivariate Normal Simulation Study

• 25 dimensional calibration parameter vector
o Normally distributed vector
o 5 blocks of 5 parameters each
o Block-compound symmetric covariance structure  
o intra-block correlation 𝜌intra and inter-block correlation set to 𝜌inter

• 5 dimensional prediction vector
o 𝑌 = 𝑇𝑋 + 	𝜖, where 𝜖~𝑁 0, 𝜎^𝐼
o 𝐸[𝑦c] = 100(𝑥c)
o 𝐸[𝑦^] = 100(𝑥g + 𝑥h)
o 𝐸[𝑦i] = 100(𝑥cc + 𝑥c^ + 𝑥ci)
o 𝐸[𝑦j] = 100(𝑥cg + 𝑥ch + 𝑥ck + 𝑥cl)
o 𝐸[𝑦m] = 100(𝑥^c + 𝑥^^ + 𝑥^i + 𝑥^j + 𝑥^m)
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Multivariate Normal Simulation Study

𝜌intra= 0.99 𝜌intra= 0.999
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Steady-State Heat Model (Lewis et al. 2016)

• 70 cm metal bar heated at endpoint
• Model equilibrium heat distribution 

using steady-state heat equation

• HiFi:  
• LoFi:
• Design Space: [10,66]

T

s

(x;�) = c1(�)e
��x + c2(�)e

�x + T

amb

c1(�) = � �

K�


e

�L(h+K�)

e

��L(h+K�) + e

�L(h+K�)

�

c2(�) =
�

K�

+ c1(�)

y = Ax

2 +Bx+ C

d̃n = Ts(xn;�) + ✏̃(xn)
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Steady-State Heat Model

• Initial Data at 𝒙 = 𝟏𝟎, 𝟑𝟖, 𝟔𝟔, 𝟔𝟔
• Posteriors simulated using DRAM 
• 1000 parameter samples used
• MI computed over design space
• Analytic mutual information 

criterion is the same as D-optimal 
criterion because LoFi is linear 
model with normal errors 

• Maximizing mutual information tries 
to move design towards a balanced 
three-point design

• iLNC provides more fidelity of MI 
criterion than KSG
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Steady-State Heat Model

• Design points selected with replacement
• Mutual information optimization performed with GADGET (GP 

optimization) 

• iLNC produces design similar to D-optimal design as expected
• iLNC used 1000 sample points, larger samples should improve 

performance 

Stage 0 1 2 3 4 5 6
D-Optim 10,38,66 10 38 66 10 38 66
MI (iLNC) 10,38,66 10 42 10 66 38 10



Los Alamos National Laboratory

8/28/17 |   29

Conclusions  
• KSG2 is superior to KSG1 because it scales locally automatically 
• KSG estimators are limited to a maximum MI due to sample size
• LNC extends the capability of KSG without onerous assumptions 
• iLNC allows LNC to estimate information gain

Recommendations:
1. Jitter the sample points to break possible ties (magnitude: 1e-10)
2. Center and scale each variable independently
3. Replace KSG1 with KSG2 
4. Incorporate iLNC and 𝜶 estimator
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Future Work

• Develop selection method for optimal k for LNC and iLNC
• Simulation study of high dimensional nonlinear relationships
• Sensitivity to approximate nearest neighbor (ANN) algorithm
• Sensitivity to independence assumption
• Manifold learning methods for estimating MI  
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Conditional Entropy Estimator (conEnt) 

• Mutual information can be decomposed as

• Entropy of Y can estimated easily using KLE, but conditional entropy 
is more difficult for small samples 

• Inspired by Manifold Learning, we estimate conditional entropy using 
linear models fit to kNN defined neighborhoods 

• Assuming normally distributed residuals: 

where       is the MSE for the model fit locally around point 𝒊

I(X,Y ) = H(Y )�H(Y |X)

�̂2
i

ˆI
conEnt

(X,Y ) =

ˆH(Y )� 1

N

NX

i=1

log(2⇡e�̂2
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