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High Fidelity Computer Codes

« Simulations are an integral part
of modern scientific research 7 e

* Monte Carlo N-Particle A8
Transport Code (MCNP)

LANL developed over 60 years
Simulates the movement and SEHE  HaRRE A
interactions of particles ,; | SHHE R \
o User specified geometry and |
material cross-sections

Used to study reactor designs , " )
Slow but accurate P
° H OW c a n W e u S e th e S e S I OW By Rama (Own work) [CC BY-SA 2.0 fr (http://creativecommons.org/licenses/by-sa/2.0/fr/deed.en)], via Wikimedia Commons

codes to study a process?
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High Fidelity (HiFi) to Low Fidelity (LoFi) Calibration

 LoFi Mathematical Model: dl(H, f)
o & € 2, control variables
o @ € O, calibration parameters
« Calibration involves finding 6 so d; matches observations
* Here the observation are from HiFi code
* Problem: Calibrate LoFi while minimizing HiFi evaluations

dn — d (97 fn) + 5(57@) + & (Sn)
~—~— —— —— N——
high-fidelity observation low-fidelity model systematic bias random error

« Challenge: Optimal experimental design exploits the mathematical
structure of the statistical model being fit or calibrated
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High-to-Low Calibration with Mutual Information (Ml)

» Lewis et al. 2016 proposed sequentially optimizing Ml between

parameters and data,
07dn D?’L— I8N
10:40Da160) = [ [ (0.0,1D,01.60)10g — DS Dite )
DJQ p

(0’Dn—1)p(dn‘Dn—17 gn)

¢ =argmax I(0;d,|Dyn—1,&)
En€EE
« Ml is the expected Kullback—Leibler divergence between prior and
posterior distributions of @ if d,, is collected at &,

« Measures expected reduction in uncertainty (entropy) in parameters
« Special cases: maximum entropy sampling and D-optimality

* Requires integrating a known joint density (difficult)

 Lewis et al. estimated MI using samples instead
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Estimating Mutual Information

Monte Carlo, MLE, Parametric Known joint density
Binning, KDE Small dimension
Kth Nearest Neighbor (kNN) Locally uniform joint density

* kNN Pros:
o Require fewer samples than brute force methods
o Faster than KDE (O(nlogn) vs. O(n?))
kNN Cons:
o Asymptotic theory is not fully developed
o Better at estimating independence than dependence
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Estimating Shannon Entropy

MI can be decomposed into marginal and
joint entropies:

I(X,Y)=HX)+HY)- H(X,Y) Eg k=5
where

H(X) = - / F () log(f () )da

- - o oo *— @9
Kozachenko-Leonenko entropy (KLE)
estimator, let €,.(i)/2 be the distance to
kth nearest neighbor of point i,
dy o -
H(X) = —(k) + $(N) +logeq, + 52 3 loges i) (i)

1=1

where v is the digamma function, d, is
the dimension of X, and c,_is the volume

of max-norm unit ball in R%
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Kraskov et al. 2004 - Mutual Information Estimation

 Naive mutual information estimator

I(X,)Y)=H(X)+HY)-H(X,Y)

1 XN 4 & dy + dy &
= —9(k) + (V) + 7 D logeu(d) + 37 ) logey(i) = == > log sy (1)
=1 1=1

1=1
 Problem: Biases in each estimate are unlikely to cancel

- Solution: Force €;,(¢) = €,(i) = €,(¢) and varying k in the marginal
estimates
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Kraskov et al. 2004 - Algorithm 1

N
KSGL(X,Y) = (V) + ¥(k) = 1 D00 (0) +1) = 1>l i)+ 1)

1=1

1. For each point 2 = (zi,¥:), find Eg k=5
its kth nearest neighbor =/ in
the joint space

. €(2 O OO:I .',. O
2. Define: (@) = ||2F — 2|0 RPN
2 o O _ ;
3 G . I O S A
. Compute: N e(i)
K'Y .
| @) 0 oo b
02 = 31 (Il ~ il < ) ST
2= —
. e(4) L)
(i) =301 Iy = will < <)

J#i
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Kraskov et al. 2004 - Algorithm 1

Consider the linear model: ¥; = 8o + Bix; + ;i
where =z “4(0,1) and 5, ¥ N(0,0?)

« Dependence between Xand Y is
govern by ¢ and 8,

 Problem 1: K

0t = 0= n“”(z,) """"""""""""" A K
ny(z) —k I D

KSG1(X,Y) ~ ¢(N) — (k)

« Maximum estimable information
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Kraskov et al. 2004 - Algorithm 1

* Problem 2:

B1 — 00 = ng(i) > N B

...........................................

KSG1(X,Y)=0
- This can be “fixed” by rescaling : :
both variables by their standard .

deviations, giving:

KSGl(X/Ux,Y/Oy) ~ w(N) — w(k)
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Kraskov et al. 2004 - Algorithm 2
1 & 1

N
KSGo(X,Y) = p(N) + (k) = 1 Y 0(ma(i)) - 3l 0) —

1=1

1. Let 2] be the jt" nearest

neighbor of zi = (z:,¥i) in the Lo
joint space La ol
Em(z) _ j ) : . . . .Oo o] ?
2. Define: o (o[l —aille oL
ey(i) - 7 . © o _é ’
2 1I£Ja§kuyi Yillo ’ ., .........
3. Compute: e . &
. €.(1 I e I
nx(z):ZIO]ajj—ﬂ?iHooS 332()) o
jFi X '
, €, (1)
ny(i) =) I (Ilyj — Yillo < 5 )
J#t
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Simple Linear Scaling

« Consider the linear model: y; = Sx; +n;, 8~ U[0,1],n; ~ N(0,1)

« Estimating I(,Y) from 1000

samples
 KSG, and Scaled KSG, perform | oo :
similarly s
* Unscaled KSG,; initially S —
increases and then decays to —— KSGT
o -4 @ ThA—A—AAA—Aa —»— Scaled KSG1
Zero —— KSG2
---- KSG Max
T I T I
0 100 200 300 400
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Reciprocal: X~unif(0,1), U~unif(-€/2, €/2), ¥ = - + U

« Nonlinear relationships

remain after scaling —— Analytic
< A KSG1
—— Scaled KSG1
o = KSG2
KSC?1 perform§ worse after oot KSG2
scaling than without o |
>
« KSG, adapts locally to X
nonlinearities ]
o |

T T T T
1e-07 1e-05 1e-03 1e-01 1e+01

Error Magnitude

8/28/17 | 13



KSG, and KSG, Summary

 Most documentation does not specify used method
« Both are limited to a maximum estimable MI (= log(N))
- Both are best at estimating near zero Ml (independence)
 Assumptions:

o Independent Samples

o Continuous variables

o Locally uniform joint density
+ KSG,

o More common version found in software

o Bias if variables have disparate scales

o Scaling problem is fixed if the variables can be standardized (globally)
+ KSG,

o Scaling issue is avoided by handling each variable separately
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Improving KSG Estimators

* Locally uniform joint density over the nearest neighbor rectangle
* Non-Uniformity indicates high Ml

o Option 1: Increase sample size exponentially

o Option 2: Modify the estimator for non-uniformity

______________ S T T —
veooor S T C ;@?;-t;oés.’!é -----------------
Plausibly Uniform Not Uniform

8/28/17 | 15



Local Non-Uniformity Corrected KSG (LNC)

LNC(X,Y)=KSGy(X,Y) - — ZI (KE; k,d) log “;8
 Developed by Gao et al. 2015
kNN neighborhood may not be ] e
uniform, perhaps some volume : L& o
within it is? o °
« Use PCA to uncover this volume
« Same as KSG, with adjustments >
for non-uniformity :
« V(i) - KNN neighborhood volume ol o T T
- V(i) - PCA aligned volume % %"
- Qg d - correction threshold - '
¢ d - dimenSion ijOint Space —6.2 OTO 0!2 0!4 0!6 0?8 1!0 1!2

8/28/17 | 16



Selecting a for LNC

 If V(i) < V(i) the correction is positive

« If V(i) > V(i) the correction is negative

* a defines a threshold for applying the correction

« Optimal «a is selected using Monte Carlo algorithm:
1. Sample k points from multidimensional uniform distribution N times
2. Compute V(4)/V (4)
3. Set a to be pt" sample quantile (p = 0.005)

* Under the assumption of local uniformity, using the a defined above
will cause the correction to be applied 0.005 of the time

N and p can be varied
« Low « filters out moderately dependent relationships
* High «a inflates estimates
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Linear: X~unif(0,1), U~unif(-€/2, €/2), Y = X+ U

— Analytic
0 —A— KSG2
—+— LNC
o
N
— w
>_ b
X
— o
LD - A A
o —

1e-12 1e-09 1e-06 1e-03 1e+00

Error Magnitude
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Quadratic: X~unif(0,1), U~unif(-€/2, €/2), Y = 5X2 + U

— Analytic
10 —A— KSG2
—+— LNC
[
N
— w -
>_ b
X
= o |
U') - A A A A e A A A A . A
o —
l T 1 l
1e-12 1e-09 1e-06 1e-03 1e+00

Error Magnitude
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Periodic: X~unif(0,1), U~unif(-€/2, €/2), Y = sin(4nX) + U

— Analytic
10 —A— KSG2
—+— LNC
o
N
—_ w -
>_ -
X
= o |
m —
o —

1e-12 1e-09 1e-06 1e-03 1e+00

Error Magnitude

8/28/17 | 20



Simple Linear Scaling

Consider the linear model: y; = Bx; +n;, 8~ U[0,1],n; ~ N(0,1)

Estimating I(B,Y) from 1000
samples

LNC reproduces the analytic
mutual information over the - -
entire range of X z

LNC is not limited to the same

—— Analytic
maximum mutual information © v
---- KSG Max
as KSG T I : |
0 100 200 300 400

LNC’s performance is better for
more extreme scalings (>1e5)
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Generalization to Multivariate Mutual Information

* Kraskov et al. generalized their estimators to compute high
dimensional redundancy

I(w1; 22535 74) Z////f(th,xs,m)log f(xfgﬁ’xji}f;;;j;zm)dwldmd%dm

* For high-to-low calibration we need information gain

T1,To, T3, T
I((z1,22); (23, 24)) ////f T1, T2, %3, T4)log f{illxgjf(zg ;i)diﬂldﬂ?zdiﬂsdm
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Improved Local Non-Uniformity Corrected KSG (iLNC)

« Correlated parameters cause LNC to over correct

« Correction applied to the joint space, even when activated by
dependence in the marginal spaces

 We modified LNC to correct for correlations within the parameter and
predictive distributions:

iLNC(X1,...,X;) = LNC(X1, ...,Xg)—l—% ZZI (“?8 < Oék,dxj> log (1@8)

N

» Typically ¢ = 2 for high-to-low calibration
* a terms are selected using the same algorithm as described for LNC
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Multivariate Normal Simulation Study

« 25 dimensional calibration parameter vector
o Normally distributed vector
o 5 blocks of 5 parameters each
o Block-compound symmetric covariance structure
o intra-block correlation pjhrq @nd inter-block correlation set to pjnter
« 5 dimensional prediction vector
oY =TX+ €, where e~N(0,5?])
Elyi] = 100(xy)
Ely,] = 100(x¢ + x7)
Elys] = 100(x11 + x12 + X13)
Elys] = 100(x16 + x17 + X158 + X19)
Elys] = 100(x21 + X232 + X33 + X34 + X35)
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Multivariate Normal Simulation Study

Pintra= 0.99 Pintra= 0.999
o o
SH —e— Analytic 2 7 —e— Analytic
—+— KSG2 —+— KSG2
—=— |LNC —=— |LNC
8 —— JLNC 8 —— jLNC
o o
—_ o —_ [{e}
> >
X X
- o _| - o _|
<t <t
N N
o ——t—t—e o 0
T T T T 1 T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Inter-block Correlation Inter-block Correlation
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Steady-State Heat Model (Lewis et al. 2016)

« 70 cm metal bar heated at endpoint

 Model equilibrium heat distribution
using steady-state heat equation 5

80

Ts (.’L‘; ¢) - Cl(¢)€—7w + CQ(¢)€’WC + Tamb

(6) = o e’ (h + K7)
YT TRy [e (v Ky) + oL (h+ K7)

ea(¢) = %m«b)
o HiFi: dn=T.(2n;0) + é(xy,)
e LoFi: y=Axz*+ Bz +C

« Design Space: [10,66] [ I l ] l ! l

10 20 30 40 50 60 70

70
|

Temperature (F)
40 50 60
| \

30
L

Location (cm)
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Steady-State Heat Model

« Initial Data at x = 10,38, 66, 66

0 = Analytic
=== KSG1

* Posteriors simulated using DRAM — Kscz

== iLNC

« 1000 parameter samples used -
Ml computed over design space

* Analytic mutual information
criterion is the same as D-optimal
criterion because LoFi is linear
model with normal errors

* Maximizing mutual information tries =
to move design towards a balanced
three-point design S
« iLNC provides more fidelity of Mi ° 20 0 %0
criterion than KSG

Mutual Information
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Steady-State Heat Model

* Design points selected with replacement

* Mutual information optimization performed with GADGET (GP
optimization)

D-Optim 10,38,66 10
MI (iLNC)  10,38,66 10 42 10 66 38 10

* iLNC produces design similar to D-optimal design as expected

* iLNC used 1000 sample points, larger samples should improve
performance

8/28/17 | 28



Los Alamos National Laboratory

Conclusions

+ KSG, is superior to KSG, because it scales locally automatically
« KSG estimators are limited to a maximum MI due to sample size
 LNC extends the capability of KSG without onerous assumptions
* iLNC allows LNC to estimate information gain

Recommendations:

1. Jitter the sample points to break possible ties (magnitude: 1e-10)
2. Center and scale each variable independently

3. Replace KSG, with KSG,

4. Incorporate iLNC and a estimator
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Future Work

Develop selection method for optimal k for LNC and iLNC
Simulation study of high dimensional nonlinear relationships
Sensitivity to approximate nearest neighbor (ANN) algorithm
Sensitivity to independence assumption

Manifold learning methods for estimating Mi
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Conditional Entropy Estimator (conEnt)

Mutual information can be decomposed as
I(X,Y)=H(Y)-HY|X)

Entropy of Y can estimated easily using KLE, but conditional entropy
is more difficult for small samples

Inspired by Manifold Learning, we estimate conditional entropy using
linear models fit to kNN defined neighborhoods

Assuming normally distributed residuals:

N A2

. A 1 log(2med;
IconEnt(X7 Y) — H(Y) — N Z g( 9 Z)
1=1

is the MSE for the model fit locally around point i

2

1
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