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Abstract: A method for finding a global optimum to the on-off minimum-time control problem with
limited fuel usage is presented. Each control can take on only three possible values: maximum, zero, or
minimum. The simplex method for linear systems naturally yields such a solution for the re-formulation
+ presented herein because it always produces an extreme point solution to the linear program. Numerical
examples for the benchmark linear flexible system are presented.

1. Introduction

The prol;lem of generating minimum-time control for linear dynamic systems has been studied
fairly extensively. The work in [Bashein, G.], [Keerthi, S. and Gilbert, E.], [Kim, M.], [Rasmy, M. and
Hamza, M.], [Ryan, E.}, [Torng, H.], [De Vlieger, J., et al], [Zadegh, L. and Whalen, B.], and [Chia-Ju,
W.] used a fixed-size time step. Starting with one time-step and increasing to 2, 3, 4, efc. time steps until
a phase I linear programming algorithm detected that the resulting linear program was feasible, they
thereby obtained the minimum-time to within roughly the size of the time step A¢z. In [Kim, M. and
Engell, S.], however, a binary search on the final time was used to allow the algorithm to bisect or zero in
on the minimum time moré efficiently.

The on-off control problem (see [Singhose, et al, 1999]) presents a twist to solving the minimum-
time problem, as does the limited fuel constraint. Instead of the usual point-to-point minimum-time
problem with input bounds, we have an input that can take on only one of three discrete values: its
maximum value, zero, and its minimum value. The limited fuel usage (;onstraint (see [Singhose, et al,
1999]) involves the sum of the absolute values of inputs, which is itself a non-differentiable constraint.

However, by making a change of variables, one can bring the problerh to a linear program (a set of linear

equations and inequalities) whose extreme points are essentially an on-off input history. The simplex
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method of linear programming, by its very nature, always produces such extreme points and is therefore
very well-suited to this on-off control problem. From the resulting solution, the switches and switching
times can be easily obtained.
2. Problem Statement

We are given a linear time-invariant dynamic system:

i=Ax+Bu M
For simplicity, we will assume a single input, i.e., u € R', although all of the theory and methodology
herein is trivially extendible to multi-input problems. There is a given initial state:

x(0)=x, ' )
and a specified terminal state that must be reached at the unknown final time ¢,:

() =%, 4, | 3
The input is constrained to be one of the following three values:

we{-u,,0u,.} )
In other words, the input history is an "on-off" one, with a finite number of switches. An additional
constraint is that the total fuel used is liniited, as given by the following equation (see [Singhose, et al,
19991)

iy

J|u|dt U 5)

° v
The objective is.to find u(t) that satisfies (1)-(5) and minimizes the total trajectory execution time #,.

3. Method of Solution
‘We will first bring the problem to a discrete-time form:

xk+] = Axk +Buk, (k—_—l,,N) (6)

where N is the number of time-steps and where u(t) has been discretized with a stair-step time history and

where the A and B matrices depend upon the sampling period 2=¢,/N. We still have the given initial
State:
X =X, ¢))

and the required final state:




&

Xnet = X des

and the input constraint (4) becomes

u, e{—umax,O,umx} YV k 9

and the fuel-usage constraint (5) becomes:
N
Y Hu|sU (10)
k=1

The problem can be re-formulated for linear programming as follows. Let

=V, +w, | | an
where

cu<v <0 12)
and

0<w,<u,, , : (13)

so that the fuel usage constraint can be written in a differentiable form as:

N N
—2 hv, + Zhwk U _ (14)
k=1 k=1

The state equation (6) becomes
Xy = Ax, + [B,B](rv" ) (15)
k

For a fixed final time ¢,, determination of the feasibility of (11)-(15)/(7)-(8) is a phase I linear

programming problem (see [Chvatal]). Moreover, since the simplex method of linear programming
always finds an extreme-point solution, we are guaranteed that at least N —n—1, where 7 is the number

of states or the length of x(tf), of the v, and w, will be at one of its bounds. Therefore, at least N—n—1

of the u, = v, +w, will be either u_, , 0, or —u,_, , which is exactly what constraint (9) specifies. Finally,

max * ‘max >

a simple binary search on ¢, (i.e., a bisection algorithm with repeated calls to the simplex method) can be
used to test feasibility/infeasibility of a given final time ¢,. From a practical point of view, since N >>n,
the u, sequence found by the simplex method will be essentially bang-coast-bang and the switching times

will be easy to identify.

It must be emphasized that, so long as the terminal state x, ,,; is maintainable by the system, the

above approach is guaranteed to produce a globally optimal solution to the minimum-time control




problem, within the accuracy of the discrete-time approximation (9) and the tolerance set on ¢, in the

bisection outer loop of the method.
4. Numerical Examples

The numerical examples presented in this section will be based upon the benchmark problem
given in [Liu and Wie, 1992], [Wie and Bernstein, 1992], {Wie and Liu, 1992}, [Singh and Vadali, 1994],

[Pao, 1996], [Singhose, et al, 1996b], and [Singhose, et al, 1999], which is illustrated below in Figure 1.
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Figure 1. Schematic of Example Problem

The parameter values used are m; =m, =1, k=1, and u_,, =1. The maximum fuel usage U=1, 2, and 5.
Letting the state vector x =(q,,4,,4,,4,)" the initial state is x(0)=(0,0,0,0)” and the desired final state
is x, 4, =(5,5,0,0)".

The input force histories for maximum fuel usages of U=1, U=2, and U=5, are shown in Figures

2, 3, and 4 below, respectively.
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Figure 2. Input force (N) versus time (s), maximum fuel usage U=1
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Figure 3. Input force (N) versus time (s), maximum fuel usage U=5

The respective t, values are 21.99 seconds, 12.71 seconds, and 6.680 seconds. These t, values

are consistent with Figure 4 of [Singhose, et al, 1999]. The value of N used was 500 and the bisection
tolerance on f, was set to 5x10™. Although the method was coded in MATLAB, rather than a
compilable language like C or Fortran, we report that the CPU run times were 40 seconds, 35 seconds,
and 21 seconds,v respectively, on a Sun Ultra-2 Workstation. We can use Figures 2-4 to ascertain the
switching times, which is facilitated using MATLAB's "zoom" feature for zooming or windowing in on
the switches.
5. Conclusion

We presented and demonstrated a method for ﬁnding a global optimum to the problem of on-off
minimum-time control with limited fuel usage. The method is guaranteed to find a global optimum ‘and
utilizes the simplex method of linear programming which naturally yields solutions that are "on-off,"” thus
providing a unified and rigorous approach to the problem. The method was demonstrated on a

benchmark flexible system problem.
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