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Water-Energy Systems Analysis ) .

= Water-Energy: Problem Definition and Significance
= Systems Analysis
= Example Projects — Highlight Capabilities

= GT-Mod: A simulation and analysis tool for geothermal performance
assessment

= HydroSCOPE: Reservoir operations model for optimizing power
production and environmental performance
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Water-Energy Systems )

= Water for Energy
= Cooling: ~89% of US Energy Production is Thermoelectric
= Extraction (oil, gas, coal, uranium: mining, drilling, fracking)
= Other (refining, slurry transport, cleaning)
= Energy for Water
= Pumping, treatment and distribution, end uses (e.g., heating)
= 4-13% of U.S. Electricity Generation
= 30-40% of Municipality’s Energy Bill
= |ssues
= Scarcity and sustainability
= Quality (contamination and thermal)
= Environmental
= Human health
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Systems Analysis ) .

= System Dynamics (SD) Modeling
= Finite difference modeling approach applied at a systems level
= Solve a system of PDE’s using stocks and flows

Item FD SD
Systems Single Multiple
Domain Grid Non-grid
Flows Gradient Gradient or function
Emphasis Internal spatial dynamics External temporal dynamics
Commodities Single Multiple
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Systems Analysis ) .

= System Dynamics

= Finite difference modeling approach applied at a systems level
= Solve a system of PDE’s using stocks and flows

Item FD SD

Systems Single Multiple

Domain Grid Non-grid

Flows Gradient Gradient or function
Emphasis Internal spatial dynamics External temporal dynamics
Commodities Single Multiple
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System Dynamics ) o,

= Provides a framework
for integrating over a
broad range of
systems and factors

eéfeation R
= Scalable to multiple
spatial and temporal

SCad |€S Agriculture

= Fast execution
= Easily deployable

Environmental
Health




GT-Mod Example Project iL

= GT-Mod: A simulation and analysis tool for geothermal
physical and economic performance assessment

= SD model of hydraulics, thermodynamics, power generation,
and economics

= Example — Enhanced Geothermal System (EGS) fﬁ

= Probabilistic modeling

= Quantitative risk assessment o) s 1o 18 8
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GT-Mod SD Model ) o,
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Uncertainties in Geothermal Energy @

= Physical setting
= Temperature at depth, rock type, stress field, etc.
= Can be reduced through site exploration (SS)

= System performance
= Hydraulic and thermal drawdown, water losses, pumping, etc.
= Enhanced through stimulation, understood through exploration (SS)

= Plant performance dl

= Conversion of heat to electricity

@] (@ [w] [® (@

= Most certain of the inputs

= Economic and regulatory future

= Material & labor costs, discount rate, market incen
environmental constraints, etc.

= Cannot be reduced




Probabilistic Modeling

/ Uncertainties
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GT-Mod Example Results

= 19% that ending production temperature < minimum
= 29 % LCOE < Base Case (default values, 18.831 ¢/kW-hr)
= Plant and well capital costs: 58% - 66% of LCOE
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HydroSCOPE Example Project ) .

= HydroSCOPE: Reservoir operations model for optimizing
power production and environmental performance

= Multi-laboratory effort (ANL, PNNL, SNL)

= Reservoir and river routing SD model Hydrologic
Forecasting
= Multi-objective optimization w/ DAKOTA
Seasonal Hydro
= Example Systems Analysis

= Use of ensemble forecasts
= Minimizing ‘regret’ o onmenta!

Day Ahead
Scheduling /
Real-Time
Operations




HydroSCOPE Example Project ) .

= HydroSCOPE: Reservoir operations model for optimizing
power production and environmental performance
Solar radiation

= Multi-laboratory effort (ANL, PNNL, SNL)
= Reservoir and river routing SD model Windspeed

Air temperature

= Multi-objective optimization w/ DAKOTA  Humidity / Dew Point

Rainfall

Withdrawals
l l l Surface mixjhg

Discharges
T, Q

= Example

= Use of ensemble forecasts

= Minimizing operational risk
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Ensemble Forecasts )

= One reservoir and river reach system
Big Inflow

= One environmental assessment point
= 50, 6-month forecasts Big Reservoir

= Maximize revenue and environmental score
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Laboratories

Ensemble Mean

= Typical approach optimizes on the ensemble mean
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Minimizing Regret

= |s the ensemble mean the ‘best’ forecast to use?

= Any forecast we use will be wrong so we want to minimize
the consequence of being wrong (i.e., minimize regret)

= Given an ensemble of ‘n’ forecasts, what is the risk of assuming
forecast ‘j’ and realizing forecast ‘i’?

= Similar to the classic definition of risk (R = P*C) but the
consequence is expressed as missed opportunity




Probability

Minimizing Regret

= Convert forecasts to 0
inflow volumes
= Optimize each forecast
and choose optimum
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Compare the
performance of each
optimum operation
schedule to the other
49 and calculate regret

Sum regret scores
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HydroSCOPE Ensemble Results ) s,
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Summary )

= Water-Energy Systems Analysis Science

= Examines the intersection between water and energy to try and
understand the complex dynamics that control the reliability and
sustainability of each

= Supports decision making and risk management approaches
= Provides insight into future needs and priorities

= System Dynamics Capabilities

= Model complex systems of systems with multiple stakeholders and
objectives

= Scalable
= Fast execution
= Stochastic modeling for uncertainty and risk assessment

= Data analysis
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