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e Wide bandgap AlGaN alloys for power electronics

e PN diodes Al,;Ga,-N
— Growth of thick, N- drift layers

— Breakdown voltage and forward ON resistance

e Al-rich Al,Ga,,N (x> 0.7) heterostructures for HEMTs
— 2DEG formation (growth conditions, doping & structure)

— Initial transistor characteristics

e Summary




Ultra-wide-bandgap semiconductors (UWBS, >4eV)
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Breakdown voltage of drift layer: doping and thickness @ Ng?ioﬁal
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Punch-Through Non-Punch-Through
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« Drift layer is thicker than

* N, is lower than optimal )
optimal

» Thickness determines V,,

» N, determines V,,
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Prior AIGaN PIN diode results (Nishikawa, NTT, 2007) @ National

Laboratories
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®» Breakdown voltage increases with larger bandgap

®» Critical electric field scales as Egz'7




Control of N-type doping of drift region (Al, ;Ga, ;N)

®» Si incorporation is linear in SiH, flow but...

Electron concentration (hall)
vs. SiH, flow (30%AlGaN)
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Electron concentration (hall)
vs. growth temperature (30%AlGaN)
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» ... electron concentration is highly dependent on
growth condition (i.e. the density of compensating defects)
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Relaxation and TDD reduction in Al, ;Ga, ;N on AIN @ National
' ' Laboratories

In-situ Reflectance and AFM Cross-section TEM
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Growth Time (sec) * Threading dislocations “bundie” into

- Surface roughens (3D growth) and then triangular features

planarization (2D growth) [

» 2D to 3D to 2D growth relieves
+ Al,;Ga, ;N layer is >80% relaxed, strain & lowers TDD

TDD ~ 2-4x10° cm-3




Reduce cracking and bow by using 3x thicker sapphire

Optical Image of Al, ;Ga, ; N surface

0.4 mm thick sapphir

Crack free
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» 3x thicker sapphire reduces cracking & wafer bow




Sandia '
Al, ;Ga, ;N “Quasi-Vertical” PN diode on sapphire @ N%%o'ﬁm

(Drift Layer)
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n+ Al, ;Ga, ;N

1.3mm sapphire

Quasi-Vertical PN diode structure
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AIMGaOJN PN diode design & fabrication

Implanted junction edge termination
Mesa / p-metal: 150/ 50 um

Drift Layer: 4.3, 5.5, 7.5, 9, 11 and 15.5 um
Crack-free (except 15.5 um drift layer)

Total epi thickness: 7 — 18, 22 um

Drift layer doping: mid 10'5 — mid 107 cm-3
Mobility: 150 cm?/Vs

Sheet resistance: 40-80 Q/sqr.

Threading dislocation density: 1-3 x 10° cm-2
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Al, ;Ga, ;N “Quasi-Vertical” PN diode on sapphire @ N%%o'ﬁm
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P Contact
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Al, ;Ga, ;N “Quasi-Vertical” PN diode - thicker drift layers @ National
Laboratories
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» Breakdown voltages ~ 3000V (Drift: 9 &11um)

» V,, increases with drift layer thickness for N,
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Breakdown voltages reported for llI-Nitride PN diodes @ NS%oﬁ‘a|
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/ll-N PN diodes with > 3 kV breakdown voltage
P-GaN
GaN diode Brea(lll((\(;)o """ No (cm-3) Ejrrlnf; Material Group Ref
(vertical) - 4.7 2/9/16e15 33 GaN Hosei Univ.  EDL 36p1180_2015
N+ GaN Substrate 4.0 2-5e15 40 GaN Avogy EDL 36p1073_2015
N-contact 3.9 3e15 30 GaN Sandia EL 52p1170_2016
P Contact 3.7 5e15 >30 GaN Avogy EDL 35p247_2014
AlGaN diode
o it 3.48 1/3/12e15 32 GaN Hosei Univ. IEDM15-237_2015
(Quasi-vertical)
L - >3 0.8-3e16 11  30%-AGaN Sandia This work
Dasedt 3.0 0.8-3e16 9 30%-AGaN Sandia This work
N+ 30%AIGaN (Contact)
AN 3.0 1/10e15 20 GaN Hitachi S0 so0r 2013

Sapphire

Advantaqges of wide-bandgap IlI-Nitride

GaN Al, ,Ga, ;N
N -3 low e15 low e16
o ) ]4- Larger E, (larger E,)
Drift (um) 20-30 ~10
TDD (cm-2) < 1eb low 1e9 @ ?7?
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Al-rich AGaN heterostructures and 2DEG formation @ Ng?ioﬁal
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Typical heterostructure Sheet Resistance vs.
' Dislocation Densit
X%-AlGaN esmBarrier Yy

&= 2DEG Hashimoto (1)PSSC 2010, (2)PSSA 2012, (3)PSSC 2012

Y7%-AlGaN | ¢ Channel e

AN (buffer) L (or AIN substrate)

Sapphire

© 49%/29% HEMT (1)
e AIN/51% HEMT (2)
© 89%/51% HEMT (2) )
® 56%/20% HEMT (3) O

~N
[3,]
(=3
(=

Al-rich AlGaN Heterostructures
« Ng: 0.2-2.5x10" cm™
Mobility: 140-170 (259, X,=0.2) cm?/Vs

ol
o
=]
=)

AIN substrate

2,500 {—1—\ 0

Sheet Resistance (ohm/sqr.)

« No 2DEG reported for channel X_,> 0.6 .o
« Ohmic contacts are difficult 0

0 200 400 600 800 1000 1200 1400
« Low threading dislocation density (102) XRD FWHM of AIN (arc. sec.)

(TDD) is critical

- AIN Substrates are expensive & small [Q: Is there an alternative to ]

AIN substrates?
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Why higher Al compositions for AlIGaN heterostructures? @ National
Laboratories

Calculated Electron Mobility vs. Breakdown voltage of
AlGaN Channel Composition AlGaN HEMTs vs. G-D spacing
2000 T T T T T I T I T ﬁnm Nanjo, IDEM 2007
1- Nango, TED 2014) B ! . : -
@ 1500 5 Hashimoto, PSSC 204 S 1600l
.. - Hashimoto, 1
P Bajaj APL 2014. 4- Hashimoto, PSSA 201 ;,lbﬂ{ :
“‘E i 5-Taniusa, APL 2006 o
< 1000 < % 200%
2 . >
= -5 Alloy scattering / g 200 E
S 500 L limits mobility 8 |
= | Ld i g o) o
0 0—0—-0OF o A . - ==
ob— v 1 BT 1 357 vit, e etV etV IPVOPRTIRY VOOV
00 02 04 06 o8l 10 0 2 1 3 &1 12
Al Mole Fraction :‘ Gate-Drain Spacing (pm)

Higher Al compositions: Higher Al compositions:

» higher mobility is predicted » higher breakdown voltages
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SNL AlGaN overgrowth of patterned AlGaN templates @ National
Laboratories

Mesa is 385nm at top!

AlGaN Growth on Patterned Templates

Trenches formed by etching

AlGaN with reduced dislocations

@ 5 : L <00,
i AlGaN
I ! 3 & §43 i"_" ¥

SSZI0 -_EEEIEhl L EE=ssal o
Y iy iy N ase
@ AlGaN e
- Alignment
1.3 mm thick sapphire » Sub-micron features are key for
uniform reduction of dislocations
CﬂthOdOluminescence Allerman et. al., JCG 2014

fi'.dl

10-20X reduction 10-15x reductlon
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SNL AlGaN overgrowth of patterned AlGaN templates @ National
Laboratories

AIN overgrowth process (iierman, JjcG 2014 X-ray diffraction peak — width

Etched Pattern of AIN epilayers

AIN Overgrowth 400 | | |
N (5.6_l.fm) __Etched e 1x1 (mesa, trench, pm) —_ AIN o'\:er AIN on
L__f L___J Trenches . 45 g7 pm etch depth o trenches  sapphire
AIN (2um) ¢ 300 (2011)  — (<1100°C) ~ |
Sapphire | e Overgrowth @ 1100°C S " (2015)
s I % .J t Ay AA
= 200 | &= S nh
SNL overgrowth 1100°C T _g
-— < 7 R
5x5 yim? L 100 | = ° |
RMS: 0.7A § 1 i High Temperature
FWMH 273” =} H AIN (>1300°C)
~ 0 ' ——t—t—t—t—t—t+—t+—t—t+—t+—+—1
e 0 100 200 300 400 500 600 700 800
(10-11) FWHM (arc. sec.)
» SNL overgrowth @ 1100°C produces e AIN overgrowth: TDD ~3-5x10° cm2
AIN similar to HT-AIN
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Al-rich AlGaN HEMT heterostructures @ National
Laboratories

85% /70% AlGaN HEMT AIN / 85% AlGaN HEMT
(<100nm)| 85%AIGaN “
----------- = 2DEG sem——==—===o4m2DEG
(< 1um) | uid-70%AlGaN uid-85%AIGaN
Sapphire Sapphire

* Al,3Ga, ;N dopes N-type * AIN is hard to dope N-type

e Expect lower mobility with lower Al e Expect higher mobility with higher
compositions Al composition

e Structure could be grown e Well matched for pseudomorphic
pseudomorphic to AIN substrates growth on AIN substrates

15
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CV of 85% / 70% AlGaN heterostructure @ National

Laboratories
CV of 85% / 70%AlGaN MODFET Carrier Density Profile (CW
400A, (Sl)85% hSi-dOped 1.0E+20
~ (0.5um) Barrier =) CV: N, ~ 1.2 x10™ (cm?)
uid-70%AlGaN g 1.0E+19 *L ~ 146 (o
o , (cm?/Vs)
$ oevin 13 |
Sapphire s éﬁ ’* Hall: N ~ 1.0 x 103 (cm?)
TS?.'ETiE'}_ : - g 1.0E+17 __‘\ [ M 135 (cm?/Vs)
Rsheet ~ ﬂ“““ununnnn 8 ‘e
6.00E-10- unﬂ'“”nnm 1.0E+16 T
3500 ohm/sqr. = 'CI) * N
5.00E-10- o — o
o 1.0E+15 S~
4.00E-10- O S~ .
300E-10- 3 1.0E+14 ; | woze
. 0.0 0.2 04 0.6
e lnvplnch-off Depth (um)
1.00E-10- ~ 5'5V
» : ®* N, & pn are similar to HEMTs with
205 o alealalale slals slalala alala olalala slale ' ' _—
. 1000 800 600 400 200 0.60 lower Al channels

[ ®» Demonstration of 2DEG in Al,Ga, N channel for x > 0.6 ]




CV of AIN / 85% AlGaN heterostructure

CV of AIN / 85%AlGaN MODFET

100A Si-AIN
100A UID-AIN

uid-85%AlGaN

(Overgrowth)

4= \/p sensitive to
doping structure

sapphire llIIIIIlIII[IIIII

80 |- Rsheet ~ 81000 ohm/sqr.

60 -

C (pF)

40

Vpinch-off
~ 1.5V

2 |-

-2.0 -1.5 -1.0 0.5 0.0
V(v)

0.5

Charge Density (cm-3)
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Carrier Density Profile (CV)

1.0E+20

*

1.0E+19 ' f
T8 CVEN, ~ 3.2 X102 (em?)

L~ 278 (cm2Vs)

-
o
m
+
-
00

—
o
m
+
-
N
Ve

0.0 012 0.4 0.6
Depth (um)

* No indication of parasitic channel

e Mobility is notably higher

®» 2DEG can be formed over the full range of compositions




Sandia |

Si-doped and UlID-barrier of 85% / 70% AlGaN heterostructure @ National
Laboratories

V(pinch-off) with & without

Si doping of 85% Barrier 85% / 70% HEMT structure
1.5E+13 300, 400A, i
m Si-85% Barrier 85%AIGaN = Si-doped .&

1.3E+13 L e UID- barrier
7 < UID-85% Barrier (0.2um)
‘E 1.1E+13 - uid-70%AIGaN
§ With Si AN e
o 9.0E+12 T Sapphire
2 o
8 7.0E+12 o
o
% 5.0E+12 T . d . o
Q No Si » 2DEG formation by polarization fields
O 3.0E+12 © (No Si)

1 0E4qg | 2verarowth AIN \» Si adds charge to the channel y

200 300 400 500

Thickness 85%AIGaN (A)
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Si-doped and UlID-barrier of AIN / 85% AlGaN heterostructure @ National
Laboratories
Sheet Charge vs. Vpinch-off with & Si-doped AIN  UID-AIN
without Doping of AIN Barrier 100A Si-AIN 200A UID-AIN
100A UID-AIN
6.E+12 )
A UID-AIN Barrier uid-85%AlGaN uid-85%AIGaN
AIN (buffer) AIN (buffer)
@ Si-AlIN Barrier Sapphire Sapphire
E\? 5.E+12
£ ,
s A UID-AIN Barrier Si-doped vs. UID- AIN barrier
[+}]
2 4.E+12 - 2DEG formation is very sensitive to
e Si-doping of AIN barrier.
bt Si-AIN
§ 3 E+12 ® Barrier - Sheet charge is higher w/o Si-doping
7
« 2DEG formed by polarization fields
Overgrowth AIN (NO Si doping).
2.E+12
-2.5 -2.0 -1.5 -1.0 -0.5 « Formation of compensating defects
Vpinch-off (V) in Si-AIN reduce sheet charge.
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Pinch-off voltage and sheet charge with barrier thickness @ National
Laboratories
V(pinch-off) vs. Sheet Charge vs.
UID-AIN Barrier Thickness UID-AIN Barrier Thickness
:Z R + Si-85%/70%AlGaN 1AEH3 — .
s . =SHE5%T0%AIGaN sopsqy | Vid-AIN /85%AIGaN
° . A uid-AIN / 85%AIGaN ) A
o 3.0 £ 9.0E+12
"‘E -4.0 l 3
o o B8-0E+12
u>- -5.0 ¢ A 9 A
T 0 ", 8 T0EH2 A A
S 0 O 602
= [
o 80 ¢ 2 50E+12
9.0 A (7] A
100 4.0E+12
0 200 - 400 . 600 800 3 0E+12
Barrier Thickness (A) 0 200 400 600 800

* Pinch-off voltage can be controlled uid-AlN Barrier thickness (A)

with barrier thickness. * N, approaching 103 (cm-2)
* No 2DEG with 1000A barrier e Mobility: 157 — 289 (cm?/Vs)
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Pinch-off voltage and sheet charge of 85% / 70% AlGaN @ Sandia |

heterostructure vs. TDD

V(pinch-off) vs. TDD of AIN Sheet Resistance (R,) vs. TDD of AIN
0.0 10,000
® Hashimot
10  *400A Barrier aSmo™e
B —_ ©385% (300A)/70% pattern overgrowth
— O = 8,000 . .
S 20 m300A Barrier -4 ©385% (300A)/70% non-pattern P
[«}] [ | g P P
& 3.0 o 6,000 _
= QO ”
S 40 S o
S 50  AIN-Pattern P ¢ 5 4000 ,., - @
-Fé overgrowth  mp = o | 4
£ 6.0 - -
a l 2 * 0 2000 o -
-7.0 L 2 5 o ® AIN-Pattern overgrowth
-8.0 0
0 300 600 900 1200 0 200 400 600 800 1000 1200 1400
(10-11) XRD FWHM of AIN (arc. seconds) (10-11) XRD FWHM (arc. seconds)
[ ®» Pinch-off voltage and sheet resistance depend on dislocation density ]
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HEMT device from an AIN / 85%AlGaN heterostructure @ honda
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AIN / 85%HEMT structure CV Characterization
6.E-10 1.E+19
~ 12 3
5E-10 - :21 Eors 2 N ~ 6 x10%4 (cm?)
my Vv / S ’* n~ 250 (cm?/Vs)
g T pinch-off ¢ Diper b
o ‘ £ 1Es 3
§ 3E-10 ~ -4V *' S \o\
§ ' ' 0 1E+16 RN
W 2.E-10 " % -~ -
° ; 5 —
1.E-10 - . £ 1.E+15 S~oo
Sapphire substrate L (&) ~-
0.E+00 WW, I 1.E+14
100 -80 -60 -40 -20 00 00 04 02 03 04
Voltage (V) Depth (nm)

e uid-AIN (475 A) | 85%AIlGaN (0.4 um)
heterostructure

Sheet resistance: 4200 ohm/sqr.

Pinch-off voltage: -4V
® Gate-Drain spacing: 10 um

Sheet charge density: 6x10'2 cm-2
®* Regrown contacts (Si-GaN)

Inferred mobility: 250 cm?/Vs
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HEMT characteristics based on an AIN — Al, ;-:Ga, 45N @ Sandia '

FET Operation On/Off State Characteristics
2 ' ' ' 43V 10° Vp=10V | Drain Current
E
_ £
E 1.5 +2V T
E ‘E lon/lofe > 107
‘S 1 v 5 Subthreshold slope:
= 9 75 mV/decade
3 1o
= ov -
€05 1 C
(m] -1v c
£ . e
-2V g Gate Current
Or 3V L I
0 5 10 15 20 25 -10 -5 0 5
Drain Voltage (V) Gate Voltage (V)
®* Good pinch-off (-4.5V) * Low drain and gate leakage current
* Knee voltage linear with gate voltage ® Sub-threshold slope: 75mV/decade
® Low drain current ® lon/logr ratio > 107
® Contacts are not ohmic ® V,reakdown = 810 V (no field plate)
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e Quasi-vertical Al, ;Ga, ; N PIN diodes
— Breakdown voltage of > 3000V, (E. ~ 5.9 MV/cm, drift layer: 11um)
— Low reverse leakage current (few nA) with TDD ~ 1-2e9 cm-2

— High ON resistance (>20 mQ-cm?) due to poor lateral current spreading

e 2DEG formation in high Al (X, > 70%) AlGaN heterostructures
— With and without Si doping of barrier layer
— Mobility 150-300 cm?/Vs, N, ~ 1x10"3 cm-2

— Similar sheet resistances AIN and sapphire substrates

e Demonstrated AlGaN-based HEMT operation with largest bandgap
— Low drain & gate leakage, lo\/loe ratio > 107, V, = 810 V (no field plate)

— Low current due to rectifying contacts




