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Introduction )

= Multi-lab Deep Dive on Silicon Anodes — Sandia investigates
abuse performance
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= Background & Motivation
= Safety issues of Li-ion batteries
= Silicon containing anodes

= Thermal studies of nSi + graphite anodes
= DSC and ARC analysis of anode materials

= Effects of silicon content, electrolyte additives, particle size, etc.




Background on Lithium-ion Batteries

= Energy storage needs are constantly
driving for greater gravimetric and
volumetric energy density

= High voltage of Li-ion system enables
high energy density — necessitates the
use of flammable organic electrolytes
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Issues of Battery Safety ) .

Samsung Galaxy S7 Recall
= Thermal runaway primarily caused by cathode

and electrolyte reactions at high temperatures

= Anode degradation begins at lower
temperatures and can lead to self sustaining
temperature rise eventually causing thermal

runaway
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Silicon as Anode Background )i

A. Manthiram, J. Phys. Chem. LettiI 2, 176-184 (2011).

= Meets the need for greater energy Lo om :LL‘;‘:’:;‘
density with order of magnitude i
capacity increase over graphite (~3500 e ELrero,
mAh/g vs 372 mAh/g) g | Cathodes 5
= Alloying reaction with lithium %’ 2-1 !

‘ Li,Ti,O,,
14

Si+xLi - Li,Si+ (3.75 — x)Li — Lis5Si
= Cycle life issues

Anodes Alloys
= Volume change during 01 Graphite
lithiation/delithiation of >300%
: : : —f— :
= Lack of surface passivation, exacerbated 0 100 e T e

Capacity (mAh/g)

by changing particle size

SIS

Silicon

Safety of silicon anodes and
contribution to cell runaway are
not well known but must be
considered in any effort to
develop new electrodes

*Y.Wang, J. Dahn. ECS Solid State Lett. 9, A340-A343 (2006).
*Y.S. Park, S.M. Lee. Bull. Korean Chem. Soc. 32, 145-148 (2011).
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Silicon Material Studied L

Sandia
National
Laboratories

Mixture of nSi (Nanostructured & Amorphous Materials, Inc) + graphite
(Hitachi MAG-E), LiPAA binder (MW= ~400,000), carbon black (Timcal C45)

= 88% active (nSi + graphite): 10% LiPAA: 2% CB

Varied Electrode Properties
= 0%, 5%, 10%, 15% nSi content

= nSinominal particle sizes of 30-50nm, 50-70nm, 70-130nm
= Baseline electrolyte of 3:7 EC:EMC w/ 1.2M LiPF, baseline electrolyte + 10% FEC

15% nSi

10% nSi

5% nSi

0% nSi




Electrochemical Performance of ) i
nSi/G Materials

= Performance trends with increasing nSi
content

0% nSi 330
* Increasing capacity with increasing content .
. . o . 5% nSi 430
= Decreasing cycle life with increasing content
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ARC Study of Binders and Active

Materials
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Gas generation of individual electrode components

combined with electrolyte

= Effect of shift to LIPAA from baseline PVDF
= Effect of inclusion of nSi in place of graphite

| 250 mg
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DSC of nSi Electrodes )

Cells undergo 4 formation cycles from 3.0-4.1V at
C/10 followed by topoff or discharge to desired SOC,

testing performed with 1:1 mass ratio of active
material to electrolyte

= Similar peak locations, higher heat
generation and significant exotherm present 3 T T
in silicon containing anodes at 100% SOC — | wnor e
3800 J/g vs. 2300 J/g

= Large exotherm is only present at full SOC —
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*Y.S. Park, S.M. Lee. Bull. Korean Chem. Soc. 32, 145-148 (2011). 5
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Extreme Exothermic Reaction
Observed

S o

= Testing of CAMP produced electrodes with higher loading and
smaller particle sizes resulted in dramatic exothermic peaks,
very high kinetics in 100% SOC electrodes

= Surpassed equipment capability to accurately record heat flow with no
observable leakage

= Smaller particle size lowers initiation temperature of large
exotherm

No observed
pan leakage
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Trending of Heat Generation with Siggs
Content

= Large exotherms are repeatable and trend

. with silicon content
A 250 — 15% nSi .
! 200 0% msi = Greater peak heating rate
Em - Y%nsi * Lower exotherm onset temperature
X — 0% nSi
2 cno .
300 = Exotherm can be mitigated by reducing
5% electrolyte ratio

0
- = Trends hold in this case but reaction peaks are
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Exotherm values aren’t true but qualitative
comparison shows trending with silicon content Testingwith reduced electrolyte ratio
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Effect of nSi Particle Size .

= Electrolyte clearly participates in highly exothermic reaction, suggests that greater surface
area (ie. Smaller particle size) will lead to greater reaction rates
= Anticipated trends of greater peak heating rate / lower reaction onset with smaller particle size

Observed Trends
= High loading CAMP electrodes do not follow trends

= Extreme exotherms may be associated with greater material loading

= Inlower loading electrodes smaller particles show:
= Stronger SEl peak, lower temperature peak onset, minimal change to peak heating rate and total heat generation
= Conclusions are tentative due to limited data points, limited characterization of nSi particles
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Effect of FEC on Electrode ) i,
Laboratories
Discharge ASI vs DoD (%)
ol
at o
= FECis widely demonstrated to improve g’ [N S—
. . . v\*——ﬁ._.‘—_*
capacity and cycle life of Si electrodes .
* Formed SEl is more passivating / robust R
*N.S. Choi, K.-H. Yew, K.Y. Lee, M. Sung, H. Kim, S.S. Voltage, (V)
Kim. J. Power Sources 161, 1254-1259 (2006). HPPC shows higher ASI — more
resistive SEI
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Addition of 10% FEC to electrolyte more than doubles cycle life
at a given capacity
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Effect of FEC on Thermal Performanée

Testing after cycling with and in the presence of 10% FEC shows thermal
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performance is not significantly affected by FEC addition

Extreme exotherms still present and still trend with nSi content
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Scale Up to Larger Format Testing .

= Purpose of materials level study is to correlate observations
with full scale testing (18650 full cells)
= Accurate thermal abuse performance requires larger cell capacities
= ARC, thermal abuse testing, electrical abuse testing, etc.

= As discussed in previous presentation, observed issues with
thermal reactivity of nSi translate to full scale performance
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Conclusions

= Silicon is an appealing substitute for graphite as an anode in

lithium ion batteries
= Challenges include limited cycle life and difficulty in achieving high
silicon loading
= This materials thermal performance study suggest that
thermal instability is another issue that needs to be addressed

before silicon becomes a viable substitute

= These conclusions agree with full cell study observations
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TO EXTRA SLIDES

= Silicon shows good performance in
mixtures, in nano-architecture, and with
low loadings
= Difficulty in achieving practical areal
energy density while maintaining high
specific capacity and/or cycle life
= Proper binder and electrolyte selection
are crucial for optimized silicon
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#Moles gas/#Moles LC

=—iiMoles gas/#Moles EMC

Electrolyte ARC Data

= Trend is independent of mass tested (250mg v 500mg)

EC:EMC (3:7) 1.2M LiPF6

EC:EMC|3:7 1.2M LifF6 502mg
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Additional DSC Curves ) i,

= 0% SOC comparison of graphite and nSi/graphite
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= Graphite DSC comparison of SNL-130nm to CAMP-50-70nm
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Additional DSC Curves ) i,

= All SOC comparison of 130nm and 30-50nm nSi
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