
1

Milestone Completion Report

WBS 1.3.5.05 ECP/VTK-m
FY17Q4 [MS-17/03-06] Key Reduce / Spatial Division / Basic 

Advect / Normals, STDA05-4

Kenneth Moreland
Sandia National Laboratories

September 30, 2017

SAND2017-10565R



2

EXECUTIVE SUMMARY

The FY17Q4 milestone of the ECP/VTK-m project includes the completion of a key-reduce scheduling 
mechanism, a spatial division algorithm, an algorithm for basic particle advection, and the computation of 
smoothed surface normals. With the completion of this milestone, we are able to, respectively, more 
easily group like elements (a common visualization algorithm operation), provide the fundamentals for 
geometric search structures, provide the fundamentals for many flow visualization algorithms, and 
provide more realistic rendering of surfaces approximated with facets.



3

1. INTRODUCTION

This report documents the completion of the milestone “FY17Q4 [MS-17/03-06] Key Reduce / Spatial 
Division / Basic Advect / Normals” (listed as epic STDA05-4 in JIRA) for the ECP/VTK-m project. The 
overarching goal of the ECP/VTK-m project is to enable scientific visualization on the emerging 
processors required for the latest generation of petascale computers and the extreme scale computers of 
the future.

One of the biggest recent changes in high-performance computing is the increasing use of accelerators. 
Accelerators contain processing cores that independently are inferior to a core in a typical CPU, but these 
cores are replicated and grouped such that their aggregate execution provides a very high computation 
rate at a much lower power. Current and future CPU processors also require much more explicit 
parallelism. Each successive version of the hardware packs more cores into each processor, and 
technologies like hyperthreading and vector operations require even more parallel processing to leverage 
each core’s full potential.

VTK-m is a toolkit of scientific visualization algorithms for emerging processor architectures. VTK-m 
supports the fine-grained concurrency for data analysis and visualization algorithms required to drive 
extreme scale computing by providing abstract models for data and execution that can be applied to a 
variety of algorithms across many different processor architectures.

Although there will be some time spent in the VTK-m project building up the infrastructure, the majority 
of the work is in redeveloping, implementing, and supporting necessary visualization algorithms in the 
new system. We plan to leverage a significant amount of visualization software for the exascale, but there 
is still a large base of complex, computationally intensive algorithms built over the last two decades that 
need to be redesigned for advanced architectures. Although VTK-m simplifies the design, development, 
and implementation of such algorithms, updating the many critical scientific visualization algorithms in 
use today requires significant investment. And, of course, all this new software needs to be hardened for 
production, which adds a significant overhead to development.

Our proposed effort will in turn impact key scientific visualization tools. Up until now, these tools —
ParaView, VisIt, and their in situ forms — have been underpinned by the Visualization ToolKit (VTK) 
library. VTK-m builds on the VTK effort, with the “-m” referring to many-core capability. The VTK-m 
name was selected to evoke what VTK has delivered: a high-quality library with rich functionality and 
production software engineering practices, enabling impact for many diverse user communities. Further, 
VTK-m is being developed by some of the same people who built VTK, including Kitware, Inc., which is 
the home to VTK (and other product lines). Developers of ParaView and VisIt are in the process of 
integrating VTK-m, using funding coming from ASCR and ASC. However, while VTK-m has made great 
strides in recent years, it is missing myriad algorithms needed to be successful within the ECP. 
Developing those algorithms is the focus of this ECP proposal.

2. MILESTONE OVERVIEW

The “FY17Q4 [MS-17/03-06] Key Reduce / Spatial Division / Basic Advect / Normals” comprises the 
completion of 4 VTK-m activities, captured as stories in JIRA. These are “[MS-17/03] Key Reduce 



4

Worklet” (STDA05-7), “[MS-17/04] Spatial Division” (STDA05-8), “[MS-17/05] Advect Steady State” 
(STDA05-9), and “[MS-17/06] Smooth Surface Normals” (STDA05-10).

[MS-17/03] KEY REDUCE WORKLET

Milestone Description: A reduce-by-key pattern is a helpful tool for resolving dependencies of data 
computed in parallel. The idea is that when a thread needs to produce results that might be affected by 
other threads it instead writes out an intermediate result along with a uniquely identifying key. Then a 
reduce-by-key operation (provided by this milestone) collects all identical keys and runs a function with 
all the data associated with the values associated with that key. Typically, there are many unique keys and 
all reductions can be run in parallel.

Milestone Execution Responsibility: Kenneth Moreland

Milestone Execution Plan: Implementing a reduce-by-key operation is well understood. The basic idea 
is to sort the keys so that they are adjacent in an array, which makes them easy to identify in parallel. This 
work codifies the implementation in a worklet. The execution goes as follows.
 Implement the classes required to manage keys and provide variable length groups of keys to 

worklets.
 Add the necessary transport and fetch operations for worklet execution.
 Implement worklet and dispatcher classes.
 Updated and simplify existing worklets to the new feature where relevant.

Milestone Linkage: No prior milestone completion required. Several milestones can benefit from this 
building block including [MS-18/05], [MS-19/03], [MS-19/05], [MS-20/03], [MS-20/06], and likely 
many others.

Milestone Completion Criteria:
 Implementation of the new worklet, dispatcher, and related components are merged to the master 

branch of the central VTK-m repository.
 Documentation of the key-reduce worklet is added to the VTK-m User’s Guide working document 

(including examples).

[MS-17/04] SPATIAL DIVISION

Milestone Description: Spatial division algorithms create a partitioning in space and identify the location 
of points in that partitioning. Examples include k-d trees and OBB (oriented bounding box) trees. 
Typically, the spatial partitioning is designed to evenly divide the points at each level of a recursive 
partitioning. Many search algorithms use spatial division to rapidly locate or intersect elements.

Milestone Execution Responsibility: David Rogers

Milestone Execution Plan:
 Investigate the effectiveness of a select group of spatial partitions in organizing and finding 

geometric data. Candidates include k-d trees, uniform binning, and 2-level grids.



5

 Implement the structures necessary to represent the best search structures and reference the data they 
come from.

 Implement the ability to build the best search structures. These build algorithms should use the 
parallel algorithm features of VTK-m for fast parallel execution.

Milestone Linkage: No prior milestone completion required. Needed for [MS-18/06], locate point, and 
[MS-18/07], locate cell.

Milestone Completion Criteria:
 Implementation of the algorithms to build spatial division structures are merged to the master branch 

of the central VTK-m repository.
 Documentation of the spatial division structures, how to build them, and their use are added to the 

VTK-m User’s Guide working document. (Note that the implementation of this milestone is mostly 
in support of implementing milestones [MS-18/06] and [MS-18/07], so the interface and 
documentation at this point might be sparse with complete documentation for these later milestones.)

[MS-17/05] ADVECT STEADY STATE

Milestone Description: This includes the ability to advect many particles in 2D and 3D flows where the 
flow direction is not changing over time. We will support multiple integration methods and multiple mesh 
structures.

The initial implementation of steady state advection will work only on uniform grids where cells are easy 
to locate. Follow on milestones will generalize the ability to other grid types as cell location gets 
implemented.

Milestone Execution Responsibility: David Pugmire, Hank Childs

Milestone Execution Plan:
 Design a simple framework for particle advection that allows you to specify the integration method 

and the output method for each step.
 Implement the framework with some basic integration methods (such as Runge-Kutta) and output 

methods (such as trace of particles).
 Wrap the functionality in one or more filter classes.

Milestone Linkage: No prior milestone completion required. Needed for [MS-19/07], advect time 
varying fields. [MS-18/07] will add the ability to advect through different cell topologies (by providing 
the necessary search structures). [MS-19/04] might improve functionality for multi-block data sets.

Milestone Completion Criteria:
 Implementation is merged to the master branch of the central VTK-m repository.
 Documentation is added to the VTK-m User’s Guide working document.



6

[MS-17/06] SMOOTH SURFACE NORMALS

Milestone Description: This milestone improves on the faceted surface normals by averaging the 
normals to each point in the mesh. These normals on points can then be interpolated by the rendering 
system to estimate the lighting on a smooth surface.

Milestone Execution Responsibility: Berk Geveci

Milestone Execution Plan:
 Implement a cell to point worklet that takes normals defined for each polygon and average them out. 

This implementation could either compute the normals on the fly (saving on memory) or use an array 
of normals for each cell (saving on computation). Only one such implementation needs to be created.

 Update the associated filter.

Milestone Linkage: Requires [MS-17/02], faceted surface normals. Needed for [MS-20/03], feature-
sensitive surface normals.

Milestone Completion Criteria:
 Implementation is merged to the master branch of the central VTK-m repository.
 Documentation is added to the VTK-m User’s Guide working document.

3. TECHNICAL WORK SCOPE, APPROACH, RESULTS

[MS-17/03] KEY REDUCE WORKLET

This activity has the following completion criteria:
 Implementation of the new worklet, dispatcher, and related components are merged to the master 

branch of the central VTK-m repository.
 Documentation of the key-reduce worklet is added to the VTK-m User’s Guide working document 

(including examples).

Merge into VTK-m repository

The VTK-m project uses “merge requests” as its mechanism for adding code to the master VTK-m 
repository. The gitlab repository manages the review process and saves the information for it. The 
following completed merge requests were used to add the code for this activity.

 MR !645, Reduce by Key Worklet Type, https://gitlab.kitware.com/vtk/vtk-m/merge_requests/645
 MR !662, Make external faces more generic, https://gitlab.kitware.com/vtk/vtk-

m/merge_requests/662
 MR !903, Expand usage of AverageByKey, https://gitlab.kitware.com/vtk/vtk-m/merge_requests/903

Documentation

The following excerpt from the user’s guide document this new functionality.



7



8



9



10



11



12



13



14



15



16



17

[MS-17/04] SPATIAL DIVISION

This activity has the following completion criteria:
 Implementation of the algorithms to build spatial division structures are merged to the master branch 

of the central VTK-m repository.
 Documentation of the spatial division structures, how to build them, and their use are added to the 

VTK-m User’s Guide working document. (Note that the implementation of this milestone is mostly 
in support of implementing milestones [MS-18/06] and [MS-18/07], so the interface and 
documentation at this point might be sparse with complete documentation for these later milestones.)

Merge into VTK-m repository

The VTK-m project uses “merge requests” as its mechanism for adding code to the master VTK-m 
repository. The gitlab repository manages the review process and saves the information for it. The 
following completed merge requests were used to add the code for this activity.

 Scan by Key: The following merge requests was based on the work of Reduce by Key and 
extended VTK-m to perform segmented scan operations, both inclusive and exclusive scan are 
available.

o MR !746, ScanbyKey, https://gitlab.kitware.com/vtk/vtk-m/merge_requests/746
o MR !754, Documentation on ScanByKey, https://gitlab.kitware.com/vtk/vtk-

m/merge_requests/754
 ArrayHandleReverse: The following merge requests added a new kind of Fancy Array Handle 

that reverses the order of traversal of the underlying Array Handle.
o MR !763, Added ArrayHandleReverse, https://gitlab.kitware.com/vtk/vtk-

m/merge_requests/763
o MR !764, Documentation on ArrayHandleReverse, https://gitlab.kitware.com/vtk/vtk-

m/merge_requests/764



18

o MR !783, Enable writing to ArrayHandleReverse, https://gitlab.kitware.com/vtk/vtk-
m/merge_requests/783

 KD-Tree: The following merge request added implementation of the construction of KD-Tree and 
nearest neighbor search, based on Chris Sewell et.al. LDAV 13 paper.

o MR !797, Add 3d Kdtree and nearest neighbor search. https://gitlab.kitware.com/vtk/vtk-
m/merge_requests/797

Documentation

Currently documentation of the implemented features are in the form of Doxygen comments and unit 
tests. The following is an excerpt of the Doxygen created for the KdTree3D class.



19



20



21

[MS-17/05] ADVECT STEADY STATE

This activity has the following completion criteria:
 Implementation is merged to the master branch of the central VTK-m repository.
 Documentation is added to the VTK-m User’s Guide working document.

Merge into VTK-m repository

The VTK-m project uses “merge requests” as its mechanism for adding code to the master VTK-m 
repository. The gitlab repository manages the review process and saves the information for it. The 
following completed merge requests were used to add the code for this activity.

 https://gitlab.kitware.com/vtk/vtk-m/merge_requests/930
 https://gitlab.kitware.com/vtk/vtk-m/merge_requests/922
 https://gitlab.kitware.com/vtk/vtk-m/merge_requests/877
 https://gitlab.kitware.com/vtk/vtk-m/merge_requests/852
 https://gitlab.kitware.com/vtk/vtk-m/merge_requests/845
 https://gitlab.kitware.com/vtk/vtk-m/merge_requests/843
 https://gitlab.kitware.com/vtk/vtk-m/merge_requests/828
 https://gitlab.kitware.com/vtk/vtk-m/merge_requests/949

Documentation

The following excerpt from the user’s guide document this new functionality.



22

[MS-17/06] SMOOTH SURFACE NORMALS

This activity has the following completion criteria:
 Implementation is merged to the master branch of the central VTK-m repository.
 Documentation is added to the VTK-m User’s Guide working document.

Merge into VTK-m repository

The VTK-m project uses “merge requests” as its mechanism for adding code to the master VTK-m 
repository. The gitlab repository manages the review process and saves the information for it. The 
following completed merge requests were used to add the code for this activity.

 MR !798, Add SmoothSurfaceNormals worklet, https://gitlab.kitware.com/vtk/vtk-
m/merge_requests/798



23

Documentation

The following excerpt from the user’s guide document this new functionality.

4. CONCLUSIONS AND FUTURE WORK

The 4 activities associated with this milestone were all completed on time according to their completion 
criteria. The following diagram shows our current progress with the overall project.



24

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of 
the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology 
and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for 
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-
NA0003525.


