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EXECUTIVE SUMMARY

The FY17Q4 milestone of the ECP/VTK-m project includes the completion of a key-reduce scheduling
mechanism, a spatial division algorithm, an algorithm for basic particle advection, and the computation of
smoothed surface normals. With the completion of this milestone, we are able to, respectively, more
easily group like elements (a common visualization algorithm operation), provide the fundamentals for
geometric search structures, provide the fundamentals for many flow visualization algorithms, and
provide more realistic rendering of surfaces approximated with facets.
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1. INTRODUCTION

This report documents the completion of the milestone “FY17Q4 [MS-17/03-06] Key Reduce / Spatial
Division / Basic Advect / Normals” (listed as epic STDA05-4 in JIRA) for the ECP/VTK-m project. The
overarching goal of the ECP/VTK-m project is to enable scientific visualization on the emerging
processors required for the latest generation of petascale computers and the extreme scale computers of
the future.

One of the biggest recent changes in high-performance computing is the increasing use of accelerators.
Accelerators contain processing cores that independently are inferior to a core in a typical CPU, but these
cores are replicated and grouped such that their aggregate execution provides a very high computation
rate at a much lower power. Current and future CPU processors also require much more explicit
parallelism. Each successive version of the hardware packs more cores into each processor, and
technologies like hyperthreading and vector operations require even more parallel processing to leverage
each core’s full potential.

VTK-m is a toolkit of scientific visualization algorithms for emerging processor architectures. VTK-m
supports the fine-grained concurrency for data analysis and visualization algorithms required to drive
extreme scale computing by providing abstract models for data and execution that can be applied to a
variety of algorithms across many different processor architectures.

Although there will be some time spent in the VTK-m project building up the infrastructure, the majority
of the work is in redeveloping, implementing, and supporting necessary visualization algorithms in the
new system. We plan to leverage a significant amount of visualization software for the exascale, but there
is still a large base of complex, computationally intensive algorithms built over the last two decades that
need to be redesigned for advanced architectures. Although VTK-m simplifies the design, development,
and implementation of such algorithms, updating the many critical scientific visualization algorithms in
use today requires significant investment. And, of course, all this new software needs to be hardened for
production, which adds a significant overhead to development.

Our proposed effort will in turn impact key scientific visualization tools. Up until now, these tools —
ParaView, Vislt, and their in situ forms — have been underpinned by the Visualization ToolKit (VTK)
library. VTK-m builds on the VTK effort, with the “-m” referring to many-core capability. The VTK-m
name was selected to evoke what VTK has delivered: a high-quality library with rich functionality and
production software engineering practices, enabling impact for many diverse user communities. Further,
VTK-m is being developed by some of the same people who built VTK, including Kitware, Inc., which is
the home to VTK (and other product lines). Developers of ParaView and Vislt are in the process of
integrating VTK-m, using funding coming from ASCR and ASC. However, while VTK-m has made great
strides in recent years, it is missing myriad algorithms needed to be successful within the ECP.
Developing those algorithms is the focus of this ECP proposal.

2. MILESTONE OVERVIEW

The “FY17Q4 [MS-17/03-06] Key Reduce / Spatial Division / Basic Advect / Normals” comprises the
completion of 4 VTK-m activities, captured as stories in JIRA. These are “[MS-17/03] Key Reduce
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Worklet” (STDAO05-7), “[MS-17/04] Spatial Division” (STDAO05-8), “[MS-17/05] Advect Steady State”
(STDAO05-9), and “[MS-17/06] Smooth Surface Normals” (STDA05-10).

[MS-17/03] KEY REDUCE WORKLET

Milestone Description: A reduce-by-key pattern is a helpful tool for resolving dependencies of data
computed in parallel. The idea is that when a thread needs to produce results that might be affected by
other threads it instead writes out an intermediate result along with a uniquely identifying key. Then a
reduce-by-key operation (provided by this milestone) collects all identical keys and runs a function with
all the data associated with the values associated with that key. Typically, there are many unique keys and
all reductions can be run in parallel.

Milestone Execution Responsibility: Kenneth Moreland

Milestone Execution Plan: Implementing a reduce-by-key operation is well understood. The basic idea
is to sort the keys so that they are adjacent in an array, which makes them easy to identify in parallel. This
work codifies the implementation in a worklet. The execution goes as follows.

e Implement the classes required to manage keys and provide variable length groups of keys to

worklets.

e Add the necessary transport and fetch operations for worklet execution.

e Implement worklet and dispatcher classes.

e Updated and simplify existing worklets to the new feature where relevant.

Milestone Linkage: No prior milestone completion required. Several milestones can benefit from this
building block including [MS-18/05], [MS-19/03], [MS-19/05], [MS-20/03], [MS-20/06], and likely
many others.

Milestone Completion Criteria:

e Implementation of the new worklet, dispatcher, and related components are merged to the master
branch of the central VTK-m repository.

e Documentation of the key-reduce worklet is added to the VTK-m User’s Guide working document
(including examples).

[MS-17/04] SPATIAL DIVISION

Milestone Description: Spatial division algorithms create a partitioning in space and identify the location
of points in that partitioning. Examples include k-d trees and OBB (oriented bounding box) trees.
Typically, the spatial partitioning is designed to evenly divide the points at each level of a recursive
partitioning. Many search algorithms use spatial division to rapidly locate or intersect elements.

Milestone Execution Responsibility: David Rogers
Milestone Execution Plan:

e Investigate the effectiveness of a select group of spatial partitions in organizing and finding
geometric data. Candidates include k-d trees, uniform binning, and 2-level grids.
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e Implement the structures necessary to represent the best search structures and reference the data they
come from.

e Implement the ability to build the best search structures. These build algorithms should use the
parallel algorithm features of VTK-m for fast parallel execution.

Milestone Linkage: No prior milestone completion required. Needed for [MS-18/06], locate point, and
[MS-18/07], locate cell.

Milestone Completion Criteria:

e Implementation of the algorithms to build spatial division structures are merged to the master branch
of the central VTK-m repository.

e Documentation of the spatial division structures, how to build them, and their use are added to the
VTK-m User’s Guide working document. (Note that the implementation of this milestone is mostly
in support of implementing milestones [MS-18/06] and [MS-18/07], so the interface and
documentation at this point might be sparse with complete documentation for these later milestones.)

[MS-17/05] ADVECT STEADY STATE

Milestone Description: This includes the ability to advect many particles in 2D and 3D flows where the
flow direction is not changing over time. We will support multiple integration methods and multiple mesh
structures.

The initial implementation of steady state advection will work only on uniform grids where cells are easy
to locate. Follow on milestones will generalize the ability to other grid types as cell location gets
implemented.

Milestone Execution Responsibility: David Pugmire, Hank Childs

Milestone Execution Plan:

e Design a simple framework for particle advection that allows you to specify the integration method
and the output method for each step.

e Implement the framework with some basic integration methods (such as Runge-Kutta) and output
methods (such as trace of particles).

e  Wrap the functionality in one or more filter classes.

Milestone Linkage: No prior milestone completion required. Needed for [MS-19/07], advect time
varying fields. [MS-18/07] will add the ability to advect through different cell topologies (by providing
the necessary search structures). [MS-19/04] might improve functionality for multi-block data sets.

Milestone Completion Criteria:
e Implementation is merged to the master branch of the central VTK-m repository.
e Documentation is added to the VTK-m User’s Guide working document.
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[MS-17/06] SMOOTH SURFACE NORMALS

Milestone Description: This milestone improves on the faceted surface normals by averaging the
normals to each point in the mesh. These normals on points can then be interpolated by the rendering
system to estimate the lighting on a smooth surface.

Milestone Execution Responsibility: Berk Geveci

Milestone Execution Plan:

e Implement a cell to point worklet that takes normals defined for each polygon and average them out.
This implementation could either compute the normals on the fly (saving on memory) or use an array
of normals for each cell (saving on computation). Only one such implementation needs to be created.

e Update the associated filter.

Milestone Linkage: Requires [MS-17/02], faceted surface normals. Needed for [MS-20/03], feature-
sensitive surface normals.

Milestone Completion Criteria:
e Implementation is merged to the master branch of the central VTK-m repository.
e Documentation is added to the VTK-m User’s Guide working document.

3. TECHNICAL WORK SCOPE, APPROACH, RESULTS

[MS-17/03] KEY REDUCE WORKLET

This activity has the following completion criteria:
e Implementation of the new worklet, dispatcher, and related components are merged to the master
branch of the central VTK-m repository.
e Documentation of the key-reduce worklet is added to the VTK-m User’s Guide working document
(including examples).

Merge into VTK-m repository

The VTK-m project uses “merge requests” as its mechanism for adding code to the master VTK-m
repository. The gitlab repository manages the review process and saves the information for it. The
following completed merge requests were used to add the code for this activity.

e MR 1645, Reduce by Key Worklet Type, https:/gitlab.kitware.com/vtk/vtk-m/merge requests/645

e MR 1662, Make external faces more generic, https://gitlab.kitware.com/vtk/vtk-
m/merge_requests/662

e MR 1903, Expand usage of AverageByKey, https://gitlab.kitware.com/vtk/vtk-m/merge_requests/903

Documentation

The following excerpt from the user’s guide document this new functionality.

6
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14.5.3 Reduce by Key

A worklet deriving vtkm: :worklet: :WorkletReduceByKey operates on an array of keys and one or more asso-
ciated arrays of values. When a reduce by key worklet is invoked, all identical keys are collected and the worklet
is called once for each unique key. Each worklet invocation is given a Vec-like containing all values associated

with the unique key. Reduce by key worklets are very useful for combining like items such as shared topology
elements or coincident points.
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Figure 14.2: The collection of values for a reduce by key worklet.

Figure 14.2 show a pictorial representation of how VTK-m collects data for a reduce by key worklet. All calls to
a reduce by key worklet has exactly one array of keys. The key array in this example has 4 unique keys: 0, 1,

Chapter 14. Worklets 159
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14.5. Worklet Type Reference

2, 4. These 4 unique keys will result in 4 calls to the worklet function. This example also has 2 arrays of values
associated with the keys. (A reduce by keys worklet can have any number of values arrays.)

Within the dispatch of the worklet, all these common keys will be collected with their associated values. The
parenthesis operator of the worklet will be called once per each unique key. The worklet call will be given a
Vec-like containing all values that have the key.

A WorkletReduceByKey subclass is invoked with a vtkm: :worklet: :DispatcherReduceByKey. This dispatcher
has two template arguments. The first argument is the type of the worklet subclass. The second argument,
which is optional, is a device adapter tag.

A reduce by key worklet supports the following tags in the parameters of its ControlSignature.

KeysIn This tag represents the input keys. A KeysIn argument expects a vtkm: :worklet: :Keys object in the
associated parameter of the dispatcher’s Invoke. The Keys object, which wraps around an ArrayHandle
containing the keys and manages the auxiliary structures for collecting like keys, is described later in this
section.

Each invocation of the worklet gets a single unique key.

A WorkletReduceByKey object must have exactly one KeysIn parameter in its ControlSignature, and
the InputDomain must point to the KeysIn parameter.

ValuesIn This tag represents a set of input values that are associated with the keys. A ValuesIn argument
expects an ArrayHandle or a DynamicArrayHandle in the associated parameter of the dispatcher’s Invoke.
The number of values in this array must be equal to the size of the array used with the KeysIn argument.
Each invocation of the worklet gets a Vec-like object containing all the values associated with the unique
key.
ValuesIn has a single template parameter that specifies what data types are acceptable for the array. The
type tags are described in Section 14.4.1 starting on page 143.

ValuesInOut This tag behaves the same as ValuesIn except that the worklet may write values back into the Vec-
like object, and these values will be placed back in their original locations in the array. Use of ValuesInOut
is rare.

ValuesOut This tag behaves the same as ValuesInOut except that the array is resized appropriately and no
input values are passed to the worklet. As with ValuesInOut, values the worklet writes to its Vec-like
object get placed in the location of the original arrays. Use of ValuesOut is rare.

ReducedValuesOut This tag represents the resulting reduced values. A ReducedValuesOut argument expects
an ArrayHandle or a DynamicArrayHandle in the associated parameter of the dispatcher’s Invoke. The
array is resized before scheduling begins, and each invocation of the worklet sets a single value in the array.

ReducedValuesOut has a single template parameter that specifies what data types are acceptable for the
array. The type tags are described in Section 14.4.1 starting on page 143.

ReducedValuesIn This tag represents input values that come from (typically) from a previous invocation of a
reduce by key. A ReducedValuesOut argument expects an ArrayHandle or a DynamicArrayHandle in the
associated parameter of the dispatcher’s Invoke. The number of values in the array must equal the number
of unique keys.

ReducedValuesIn has a single template parameter that specifies what data types are acceptable for the
array. The type tags are described in Section 14.4.1 starting on page 143.

A ReducedValuesIn argument is usually used to pass reduced values from one invocation of a reduce by
key worklet to another invocation of a reduced by key worklet such as in an algorithm that requires iterative
steps.

160 Chapter 14. Worklets
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14.5. Worklet Type Reference

A reduce by key worklet supports the following tags in the parameters of its ExecutionSignature.

_1, _2,... These reference the corresponding parameter in the ControlSignature.

ValueCount This tag produces a vtkm::IdComponent that is equal to the number of times the key associated
with this call to the worklet occurs in the input. This is the same size as the Vec-like objects provided by
ValuesIn arguments.

WorkIndex This tag produces a vtkm::Id that uniquely identifies the invocation of the worklet.

VisitIndex This tag produces a vtkm: : IdComponent that uniquely identifies when multiple worklet invocations
operate on the same input item, which can happen when defining a worklet with scatter (as described in
Section 14.10).

InputIndex This tag produces a vtkm: :Id that identifies the index of the input element, which can differ from
the WorkIndex in a worklet with a scatter (as described in Section 14.10).

OutputIndex This tag produces a vtkm::Id that identifies the index of the output element. (This is generally
the same as WorkIndex.)

ThreadIndices This tag produces an internal object that manages indices and other metadata of the current
thread. Thread indices objects are described in Section 24.2, but most users can get the information they
need through other signature tags.

As stated earlier, the reduce by key worklet is useful for collected like values. To demonstrate the reduce by key
worklet, we will create a simple mechanism to generate a histogram in parallel. (VTK-m comes with its own
histogram implementation, but we create our own version here for a simple example.) The way we can use the
reduce by key worklet to compute a histogram is to first identify which bin of the histogram each value is in,
and then use the bin identifiers as the keys to collect the information. To help with this example, we will first
create a helper class named BinScalars that helps us manage the bins.

Example 14.10: A helper class to manage histogram bins.

1 | class BinScalars

2 1 {

3 | public:

4 VTKM_EXEC_CONT

5 BinScalars (const vtkm::Range& range, vtkm::Id numBins)

6 Range (range), NumBins(numBins)

7 {

8

9 VTKM_EXEC_CONT

10 BinScalars (const vtkm::Range& range, vtkm::Float64 tolerance)
11 : Range (range)

12 {

13 this->NumBins = vtkm::Id(this->Range.Length()/tolerance) + 1;
14 3

15

16 VTKM_EXEC_CONT

17 vtkm::Id GetBin(vtkm::Float64 value) const

18 {

19 vtkm::Float64 ratio = (value - this->Range.Min)/this->Range.Length();
20 vtkm::Id bin = vtkm::Id(ratio * this->NumBins);

21 bin = vtkm::Max(bin, vtkm::Id(0));

22 bin = vtkm::Min(bin, this->NumBins-1);

23 return bin;

24 3

25

26 | private:

Chapter 14. Worklets 161
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27 vtkm::Range Range;
28 vtkm::Id NumBins;
29 | };

Using this helper class, we can easily create a simple map worklet that takes values, identifies a bin, and writes
that result out to an array that can be used as keys.

Example 14.11: A simple map worklet to identify histogram bins, which will be used as keys.

1 struct IdentifyBins : vtkm::worklet::WorkletMapField
2 {

3 typedef void ControlSignature(FieldIn<Scalar> data,
4 FieldOut <IdType> bins);
5 typedef _2 ExecutionSignature(_1);

6 using InputDomain = _1;

7

8 BinScalars Bins;

9

10 VTKM_CONT

11 IdentifyBins(const BinScalars& bins)

12 : Bins (bins)

13 {

14

15 VTKM_EXEC

16 vtkm::Id operator()(vtkm::Float64 value) const

17 {

18 return Bins.GetBin(value);

19 }

20 53

Once you generate an array to be used as keys, you need to make a vtkm: :worklet: :Keys object. The Keys
object is what will be passed to the invoke of the reduce by keys dispatcher. This of course happens in the
control environment after calling the dispatcher for our worklet for generating the keys.

Example 14.12: Creating a vtkm: :worklet: :Keys object.
vtkm::cont::ArrayHandle<vtkm::Id> binlIds;
vtkm::worklet::DispatcherMapField<IdentifyBins, DeviceAdapterTag>

identifyDispatcher (bins);
identifyDispatcher.Invoke(valuesArray, binIds);

SO W =

vtkm::worklet::Keys<vtkm::Id> keys(binIds, DeviceAdapterTag());

Now that we have our keys, we are finally ready for our reduce by key worklet. A histogram is simply a count
of the number of elements in a bin. In this case, we do not really need any values for the keys. We just need the
size of the bin, which can be identified with the internally calculated ValueCount.

A complication we run into with this histogram filter is that it is possible for a bin to be empty. If a bin is empty,
there will be no key associated with that bin, and the reduce by key dispatcher will not call the worklet for that
bin/key. To manage this case, we have to initialize an array with 0’s and then fill in the non-zero entities with
our reduce by key worklet. We can find the appropriate entry into the array by using the key, which is actually
the bin identifier, which doubles as an index into the histogram. The following example gives the implementation
for the reduce by key worklet that fills in positive values of the histogram.

Example 14.13: A reduce by key worklet to write histogram bin counts.
struct CountBins : vtkm::worklet::WorkletReduceByKey
{
typedef void ControlSignature(KeysIn keys, WholeArrayOut<> binCounts);
typedef void ExecutionSignature(_1, ValueCount, _2);
using InputDomain = _1;

SO WN =

162 Chapter 14. Worklets
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14.5. Worklet Type Reference

7 template <typename BinCountsPortalType>

8 VTKM_EXEC

9 void operator () (vtkm::Id binld,

10 vtkm:: IdComponent numValuesInBin,

11 BinCountsPortalType& binCounts) const
12 {

13 binCounts.Set(binId, numValuesInBin);

14 }

15 s

The previous example demonstrates the basic usage of the reduce by key worklet to count common keys. A more
common use case is to collect values associated with those keys, do an operation on those values, and provide
a “reduced” value for each unique key. The following example demonstrates such an operation by providing a
worklet that finds the average of all values in a particular bin rather than counting them.

Example 14.14: A worklet that averages all values with a common key.

1 struct BinAverage : vtkm::worklet::WorkletReduceByKey

2 {

3 typedef void ControlSignature(KeysIn keys,

4 ValuesIn<> originalValues,
5 ReducedValuesOut <> averages);
6 typedef _3 ExecutionSignature(_2);

7 using InputDomain = _1;

8

9 template <typename OriginalValuesVecType>

10 VTKM_EXEC

11 typename OriginalValuesVecType::ComponentType

12 operator () (const OriginalValuesVecType& originalValues) const
13

14 typename OriginalValuesVecType::ComponentType sum = 0;
15 for (vtkm::IdComponent index = O;

16 index < originalValues.GetNumberOfComponents ();
17 index++)

18 {

19 sum = sum + originalValues[index];

20 }

21 return sum/originalValues.GetNumberOfComponents ();

22 }

23 &3

To complete the code required to average all values that fall into the same bin, the following example shows the
full code required to invoke such a worklet. Note that this example repeats much of the previous examples, but
shows it in a more complete context.

Example 14.15: Using a reduce by key worklet to average values falling into the same bin.

1 | struct CombineSimilarValues
2 {
3 struct IdentifyBins : vtkm::worklet::WorkletMapField
4 {
5 typedef void ControlSignature(FieldIn<Scalar> data,
6 FieldOut <IdType> bins);
7 typedef _2 ExecutionSignature(_1);
8 using InputDomain = _1;
9
10 BinScalars Bins;
11
12 VTKM_CONT
13 IdentifyBins(const BinScalars& bins)
14 : Bins (bins)
15 { 1}
16
17 VTKM_EXEC
Chapter 14. Worklets 163
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18 vtkm::Id operator()(vtkm::Float64 value) const
19 {
20 return Bins.GetBin(value);
21 }
22 3
23
24 struct BinAverage : vtkm::worklet::WorkletReduceByKey
25 {
26 typedef void ControlSignature(KeysIn keys,
27 ValuesIn<> originalValues,
28 ReducedValuesOut <> averages);
29 typedef _3 ExecutionSignature(_2);
30 using InputDomain = _1;
31
32 template <typename OriginalValuesVecType>
33 VTKM_EXEC
34 typename OriginalValuesVecType::ComponentType
35 operator () (const OriginalValuesVecType& originalValues) const
36
37 typename OriginalValuesVecType::ComponentType sum = O;
38 for (vtkm::IdComponent index = O;
39 index < originalValues.GetNumberOfComponents ();
40 index++)
41 {
42 sum = sum + originalValues[index];
43 +
44 return sum/originalValues.GetNumberOfComponents ();
45 }
46 B
47
48 template <typename InArrayHandleType, typename DeviceAdapterTag>
49 VTKM_CONT
50 static
51 vtkm::cont::ArrayHandle<typename InArrayHandleType::ValueType>
52 Run(const InArrayHandleType &valuesArray, vtkm::Id numBins, DeviceAdapterTag)
53 {
54 VTKM_IS_ARRAY_HANDLE (InArrayHandleType);
55
56 using ValueType = typename InArrayHandleType::ValueType;
57
58 vtkm::Range range =
59 vtkm::cont::ArrayRangeCompute (valuesArray).GetPortalConstControl ().Get (0);
60 BinScalars bins(range, numBins);
61
62 vtkm::cont::ArrayHandle<vtkm::Id> binlIds;
63 vtkm::worklet::DispatcherMapField<IdentifyBins, DeviceAdapterTag>
64 identifyDispatcher (bins);
65 identifyDispatcher.Invoke(valuesArray, binlIds);
66
67 vtkm::worklet::Keys<vtkm::Id> keys(binIds, DeviceAdapterTag());
68
69 vtkm::cont::ArrayHandle<ValueType> combinedValues;
70
71 vtkm::worklet::DispatcherReduceByKey<BinAverage, DeviceAdapterTag>
72 averageDispatcher;
73 averageDispatcher.Invoke(keys, valuesArray, combinedValues);
74
75 return combinedValues;
76 }
771}
164 Chapter 14. Worklets
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17.2  Combining Like Elements

Our motivating example in Section 17.1 created a cell set with a line element representing each edge in some
input data set. However, on close inspection there is a problem with our algorithm: it is generating a lot of
duplicate elements. The cells in a typical mesh are connected to each other. As such, they share edges with
each other. That is, the edge of one cell is likely to also be part of one or more other cells. When multiple cells
contain the same edge, the algorithm we created in Section 17.1 will create multiple overlapping lines, one for
each cell using the edge, as demonstrated in Figure 17.1. What we really want is to have one line for every edge
in the mesh rather than many overlapping lines.

Figure 17.1: Duplicate lines from extracted edges. Consider the small mesh at the left comprising a square and
a triangle. If we count the edges in this mesh, we would expect to get 6. However, our naive implementation in
Section 17.1 generates 7 because the shared edge (highlighted in red in the wireframe in the middle) is duplicated.
As seen in the exploded view at right, one line is created for the square and one for the triangle.

In this section we will re-implement the algorithm to generate a wireframe by creating a line for each edge,
but this time we will merge duplicate edges together. Our first step is the same as before. We need to count
the number of edges in each input cell and use those counts to create a vtkm: :worklet: :ScatterCounting for
subsequent worklets. Counting the edges is a simple worklet.

Example 17.5: A simple worklet to count the number of edges on each cell.

1 struct CountEdges : vtkm::worklet::WorkletMapPointToCell

2 {

3 typedef void ControlSignature(CellSetIn cellSet, FieldOut<> numEdges);
4 typedef _2 ExecutionSignature(CellShape, PointCount);

5 using InputDomain = _1;

6

7 template <typename CellShapeTag>

8 VTKM_EXEC_CONT

9 vtkm::IdComponent operator ()(CellShapeTag shape,

10 vtkm::IdComponent numPoints) const

11 {

12 return vtkm::exec::CellEdgeNumberOfEdges (nunPoints, shape, #*this);
13 +

14 };

In our previous version, we used the count to directly write out the lines. However, before we do that, we want
to identify all the unique edges and identify which cells share this edge. This grouping is exactly the function
that the reduce by key worklet type (described in Section 14.5.3 is designed to accomplish. The principal idea is
to write a “key” that uniquely identifies the edge. The reduce by key worklet can then group the edges by the
key and allow you to combine the data for the edge.

Thus, our goal of finding duplicate edges hinges on producing a key where two keys are identical if and only if
the edges are the same. One straightforward key is to use the coordinates in 3D space by, say, computing the
midpoint of the edge. The main problem with using point coordinates approach is that a computer can hold a
point coordinate only with floating point numbers of limited precision. Computer floating point computations
are notorious for providing slightly different answers when the results should be the same. For example, if an
edge as endpoints at p; and py and two different cells compute the midpoint as (p1 +p2)/2 and (pa +p1)/2,
respectively, the answer is likely to be slightly different. When this happens, the keys will not be the same and
we will still produce 2 edges in the output.

200 Chapter 17. Generating Cell Sets
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17.2. Combining Like Elements

Fortunately, there is a better choice for keys based on the observation that in the original cell set each edge
is specified by endpoints that each have unique indices. We can combine these 2 point indices to form a
“canonical” descriptor of an edge (correcting for ordelr).1 VTK-m comes with a helper function, vtkm: :exec:: -
CellEdgeCanonicalld, defined in vtkm/exec/CellEdge.h to produce these unique edge keys as vtkm: : Id2s. Our
second worklet produces these canonical edge identifiers.

Example 17.6: Worklet generating canonical edge identifiers.

1 class EdgeIds : public vtkm::worklet::WorkletMapPointToCell
2 {

3 public:

4 typedef void ControlSignature(CellSetIn cellSet,

5 FieldOut <> canonicallds);

6 typedef void ExecutionSignature(CellShape shape,

7 PointIndices globalPointIndices,
8 VisitIndex localEdgeIndex,
9 _2 canonicalldOut);

10 using InputDomain = _1;

11

12 using ScatterType = vtkm::worklet::ScatterCounting;

13

14 VTKM_CONT

15 ScatterType GetScatter() const { return this->Scatter; }
16

17 VTKM_CONT

18 explicit Edgelds(const ScatterType& scatter)

19 : Scatter(scatter)

20 {7

21

22 template <typename CellShapeTag, typename PointIndexVecType>
23 VTKM_EXEC

24 void operator ()(CellShapeTag shape,

25 const PointIndexVecType& pointIndices,

26 vtkm:: IdComponent localEdgeIndex,

27 vtkm::Id2& canonicalldOut) const

28 {

29 canonicalIdOut =

30 vtkm::exec::CellEdgeCanonicalId(pointIndices.GetNumber0OfComponents (),
31 localEdgelIndex,

32 shape,

33 pointIndices,

34 *this);

35 }

36

37 private:

38 ScatterType Scatter;

39 };

Our third and final worklet generates the line cells by outputting the indices of each edge. As hinted at earlier,
this worklet is a reduce by key worklet (inheriting from vtkm::worklet::WorkletReduceByKey). The reduce
by key dispatcher will collect the unique keys and call the worklet once for each unique edge. Because there is
no longer a consistent mapping from the generated lines to the elements of the input cell set, we need pairs of
indices identifying the cells/edges from which the edge information comes. We use these indices along with a
connectivity structure produced by a WholeCellSetIn to find the information about the edge. As shown later,
these indices of cells and edges can be extracted from the ScatterCounting used to executed the worklet back
in Example 17.6.

As we did in Section 17.1, this worklet writes out the edge information in a vtkm: : Vec<vtkm: :Id,2> (which in
some following code will be created with an ArrayHandleGroupVec).

1 Using indices to find common mesh elements is described by Miller et al. in “Finely-Threaded History-Based Topology Compu-
tation” (in Eurographics Symposium on Parallel Graphics and Visualization, June 2014).
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17.2. Combining Like Elements

Example 17.7: A worklet to generate indices for line cells from combined edges.

1 class EdgeIndices : public vtkm::worklet::WorkletReduceByKey
2 {

3 public:

4 typedef void ControlSignature(KeysIn keys,

5 WholeCellSetIn<> inputCells,
6 ValuesIn<> originCells,

7 ValuesIn<> originEdges,

8 ReducedValuesOut <> connectivityOut);
9 typedef void ExecutionSignature(_2 inputCells,

10 _3 originCell,

11 _4 originEdge,

12 _5 connectivityOut);

13 using InputDomain = _1;

14

15 template <typename CellSetType,

16 typename OriginCellsType,

17 typename OriginEdgesType>

18 VTKM_EXEC

19 void operator()(const CellSetType& cellSet,

20 const OriginCellsType& originCells,

21 const OriginEdgesType& originEdges,

22 vtkm::Id2& connectivityOut) const

23 {

24 // Regardless of how many cells/edges are in the input, we know they are
25 // all the same, so just pick the first one.

26 vtkm::Vec<vtkm::IdComponent, 2> localEdgelndices =

27 vtkm::exec::CellEdgeLocalIndices(

28 cellSet.GetNumberOfIndices (originCells[0]),

29 originEdges [0],

30 cellSet.GetCellShape (originCells [0]),

31 *this);

32 auto pointIndices = cellSet.GetIndices(originCells[0]);
33 connectivityOut [0] = pointIndices[localEdgeIndices [0]];
34 connectivityOut [1] = pointIndices[localEdgeIndices[1]1];
35 }

36 s

It so happens that the vtkm: : Id2s generated by CellEdgeCanonicalld contain the point indices of the two
endpoints, which is enough information to create the edge. Thus, in this example it would be possible to
forgo the steps of looking up indices through the cell set. That said, this is more often not the case, so for
the purposes of this example we show how to construct cells without depending on the structure of the keys.

With these 3 worklets, it is now possible to generate all the information we need to fill a vtkm::cont::-
CellSetSingleType object. A CellSetSingleType requires 4 items: the number of points, the constant cell
shape, the constant number of points in each cell, and an array of connection indices. The first 3 items are
trivial. The number of points can be taken from the input cell set as they are the same. The cell shape and
number of points are predetermined to be line and 2, respectively.

The last item, the array of connection indices, is what we are creating with the worklet in Example 17.7. The
connectivity array for CellSetSingleType is expected to be a flat array of vtkm::Id indices, but the worklet
needs to provide groups of indices for each cell (in this case as a Vec object). To reconcile what the worklet
provides and what the connectivity array must look like, we use the vtkm: :cont: : ArrayHandleGroupVec fancy
array handle (described in Section 10.2.11) to make a flat array of indices look like an array of Vec objects. The
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17.2. Combining Like Elements

following example shows a Run method in a worklet helper class. Note the use of make_ArrayHandleGroupVec
when calling the Invoke method to make this conversion.

Example 17.8: Invoking worklets to extract unique edges from a cell set.

1 template<typename CellSetType, typename Device>

2 VTKM_CONT

3 vtkm::cont::CellSetSingleType <> Run(const CellSetType& inCellSet, Device)
4 {

5 VITKM_IS_DYNAMIC_OR_STATIC_CELL_SET (CellSetType);

6

7 // First, count the edges in each cell.

8 vtkm::cont::ArrayHandle<vtkm::IdComponent> edgeCounts;

9 vtkm::worklet::DispatcherMapTopology<CountEdges , Device> countEdgeDispatcher;
10 countEdgeDispatcher.Invoke(inCellSet, edgeCounts);

11

12 vtkm::worklet::ScatterCounting scatter (edgeCounts, Device());

13 this->0utputToInputCellMap =

14 scatter.GetOutputToInputMap(inCellSet.GetNumber0£fCells ());

15 vtkm::worklet::ScatterCounting::VisitArrayType outputToInputEdgeMap =
16 scatter.GetVisitArray(inCellSet.GetNumber0fCells ());

17

18 // Second, for each edge, extract a canonical id.

19 vtkm::cont::ArrayHandle<vtkm::Id2> canonicallds;

20

21 vtkm::worklet::DispatcherMapTopology <Edgelds, Device>

22 edgeIdsDispatcher ((Edgelds(scatter)));

23 edgeIdsDispatcher.Invoke(inCellSet, canonicallds);

24

25 // Third, use a Keys object to combine all like edge ids.

26 this->CellToEdgeKeys = vtkm::worklet::Keys<vtkm::Id2>(canonicallds, Device());
27

28 // Fourth, use a reduce-by-key to extract indices for each unique edge.
29 vtkm::cont::ArrayHandle<vtkm::Id> connectivityArray;

30 vtkm::worklet::DispatcherReduceByKey<EdgeIndices, Device> edgelIndicesDispatcher;
31 edgeIndicesDispatcher.Invoke(

32 this->CellToEdgeKeys ,

33 inCellSet,

34 this->0utputToInputCellMap,

35 outputToInputEdgeMap,

36 vtkm::cont::make_ArrayHandleGroupVec <2>(connectivityArray));

37

38 // Fifth, use the created connectivity array to build a cell set.

39 vtkm::cont::CellSetSingleType<> outCellSet(inCellSet.GetName ());

40 outCellSet.Fill(inCellSet.GetNumberOfPoints (),

41 vtkm:: CELL_SHAPE_LINE,

42 2y

43 connectivityArray);

44

45 return outCellSet;

46 X

Another feature to note in Example 17.8 is that the method calls GetOutputToInputMap on the Scatter object
it creates and squirrels it away for later use. It also saves the vtkm: :worklet: :Keys object created for later user.
The reason for this behavior is to implement mapping fields that are attached to the input cells to the indices of
the output. In practice, these worklet are going to be called on DataSet objects to create new DataSet objects.
The method in Example 17.8 creates a new CellSet, but we also need a method to transform the Fields on the
data set. The saved OutputToInputCellMap array and Keys object allow us to transform input fields to output
fields.

The following example shows another convenience method that takes these saved objects and converts an array
from an input cell field to an output cell field array. Because in general there are several cells that contribute to
each edge/line in the output, we need a method to combine all these cell values to one. The most appropriate
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17.3. Faster Combining Like Elements with Hashes

combination is likely an average of all the values. Because this is a common operation, VITK-m provides the
vtkm: :worklet: : AverageByKey to help perform exactly this operation. AverageByKey provides a Run method
that takes a Keys object, an array of in values, and a device adapter tag and produces and array of values
averaged by key.

Example 17.9: Converting cell fields that average collected values.

1 template <typename ValueType, typename Storage, typename Device>

2 VTKM_CONT

3 vtkm::cont::ArrayHandle <ValueType> ProcessCellField(

4 const vtkm::cont::ArrayHandle<ValueType, Storage>& inCellField,
5 Device) const

6 {

7 return vtkm::worklet::AverageByKey::Run(

8 this->CellToEdgeKeys ,

9 vtkm::cont::make_ArrayHandlePermutation(this->OutputToInputCellMap,
10 inCellField),

11 Device());

12 }

[MS-17/04] SPATIAL DIVISION

This activity has the following completion criteria:

Implementation of the algorithms to build spatial division structures are merged to the master branch
of the central VTK-m repository.

Documentation of the spatial division structures, how to build them, and their use are added to the
VTK-m User’s Guide working document. (Note that the implementation of this milestone is mostly
in support of implementing milestones [MS-18/06] and [MS-18/07], so the interface and
documentation at this point might be sparse with complete documentation for these later milestones.)

Merge into VTK-m repository

The VTK-m project uses “merge requests” as its mechanism for adding code to the master VTK-m
repository. The gitlab repository manages the review process and saves the information for it. The
following completed merge requests were used to add the code for this activity.

Scan by Key: The following merge requests was based on the work of Reduce by Key and
extended VTK-m to perform segmented scan operations, both inclusive and exclusive scan are
available.
o MR 1746, ScanbyKey, https://gitlab.kitware.com/vtk/vtk-m/merge requests/746
o MR 1754, Documentation on ScanByKey, https://gitlab.kitware.com/vtk/vtk-
m/merge_requests/754
ArrayHandleReverse: The following merge requests added a new kind of Fancy Array Handle
that reverses the order of traversal of the underlying Array Handle.
o MR 763, Added ArrayHandleReverse, https://gitlab.kitware.com/vtk/vtk-
m/merge_requests/763
o MR 1764, Documentation on ArrayHandleReverse, https://gitlab.kitware.com/vtk/vtk-
m/merge_requests/764

17
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o MR 1783, Enable writing to ArrayHandleReverse, https://gitlab.kitware.com/vtk/vtk-
m/merge_requests/783
e KD-Tree: The following merge request added implementation of the construction of KD-Tree and
nearest neighbor search, based on Chris Sewell et.al. LDAV 13 paper.
o MR 1797, Add 3d Kdtree and nearest neighbor search. https://gitlab.kitware.com/vtk/vtk-
m/merge_requests/797

Documentation

Currently documentation of the implemented features are in the form of Doxygen comments and unit
tests. The following is an excerpt of the Doxygen created for the KdTree3D class.
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VTK-m: vtkm::worklet::KdTree3D Class Reference file:///C:/Users/kmorel/src/builds/vtk-m/Debug/docs/doxy gen/html/class...

vtkm::worklet::KdTree3D Class Reference

#include <KdTree3D.h>

Public Member Functions
KdTree3D ()=default

template<typename CoordType , typename CoordStorageTag , typename DeviceAdapter >

void Build (const vtkm::cont::ArrayHandle< vtkm::Vec< CoordType, 3 >, CoordStorageTag > &coords, DeviceAdapter device)
Construct a 3D KD-tree for 3D point positions. More

template<typename CoordType , typename CoordStorageTag1 , typename CoordStorageTag? , typename DeviceAdapter >

void Run (const vtkm::cont::ArrayHandle< vtkm::Vec< CoordType, 3 >, CoordStorageTag1 > &coords, const vtkm::cont::ArrayHandle<
vtkm::Vec< CoordType, 3 >, CoordStorageTag2 > &queryPoints, vtkm::cont::ArrayHandle< vtkm::Id > &nearestNeighborlds,
vtkm::cont::ArrayHandle< CoordType > &distances, DeviceAdapter device)
Nearest neighbor search using KD-Tree. More...

Private Attributes

vtkm::cont::ArrayHandle< vtkm::ld > Pointlds

vtkm::cont::ArrayHandle< vtkm::ld > Splitlds

Constructor & Destructor Documentation

+KdTree3D()
vtkm::worklet:KdTree3D::KdTree3D ( ) [ default
Member Function Documentation
+ Build()
template<typename CoordType , typename CoordStorageTag , typename DeviceAdapter >
void vtkm::worklet::KdTree3D::Build ( const vtkm::cont::ArrayHandle< vtkm::Vec< CoordType, 3 >, CoordStorageTag > & coords,
DeviceAdapter device
) inline

Construct a 3D KD-tree for 3D point positions.

Template Parameters

CoordType type of the x, y, z component of the point coordinates.
CoordStorageTag
DeviceAdapter

Parameters
coords An ArrayHandle of X, y, z coordinates of input points.

device Tag for selecting device adapter.

+Run()

1of2 9/21/2017 5:17 PM
19



_
\ EXASCALE
) COMPUTING
\ PROJECT
.

VTK-m: vtkm::worklet::KdTree3D Class Reference file:///C:/Users/kmorel/src/builds/vtk-m/Debug/docs/doxy gen/html/class...

template<typename CoordType , typename CoordStorageTag? , typename CoordStorageTag2 , typename DeviceAdapter >

void

vtkm::worklet::KdTree3D::Run ( const vtkm::cont::ArrayHandle< vtkm::Vec< CoordType, 3 >, CoordStorageTag1 > & coords,
const vtkm::cont::ArrayHandle< vtkm::Vec< CoordType, 3 >, CoordStorageTag2 > & queryPoints,

vtkm::cont::ArrayHandle< vtkm::ld > & nearestNeighborlds,
vtkm::cont::ArrayHandle< CoordType > & distances,
DeviceAdapter device

Nearest neighbor search using KD-Tree.

Parallel search of nearest neighbor for each point in the queryPoints in the the set of coords. Returns nearest neighbor in nearestNeighborId
and distance to nearest neighbor in distances.

Template Parameters
CoordType
CoordStorageTag1
CoordStorageTag2
DeviceAdapter

Parameters
coords Point coordinates for training data set (haystack)
queryPoints Point coordinates to query for nearest neighbor (needles).
nearestNeighborlds Nearest neighbor in the traning data set for each points in the testing set
distances Distances between query points and their nearest neighbors.

device Tag for selecting device adapter.

Member Data Documentation

+ Pointlds

vtkm::cont::ArrayHandle<vikm::ld> vikm::worklet::KdTree3D::Pointlds [private
+ Splitlds

vtkm::cont::ArrayHandle<vtkm::Id> vikm::worklet::KdTree3D::Splitlds [private

The documentation for this class was generated from the following file:

* KdTree3D.h

Generated by djgxyA &) 1813

20f2 9/21/2017 5:17 PM
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[MS-17/05] ADVECT STEADY STATE

This activity has the following completion criteria:
e Implementation is merged to the master branch of the central VTK-m repository.
e Documentation is added to the VTK-m User’s Guide working document.

Merge into VTK-m repository

The VTK-m project uses “merge requests” as its mechanism for adding code to the master VTK-m
repository. The gitlab repository manages the review process and saves the information for it. The
following completed merge requests were used to add the code for this activity.

https://gitlab.kitware.com/vtk/vtk-m/merge requests/930
https://gitlab.kitware.com/vtk/vtk-m/merge requests/922
https://gitlab.kitware.com/vtk/vtk-m/merge requests/877
https://gitlab.kitware.com/vtk/vtk-m/merge requests/852
https://gitlab.kitware.com/vtk/vtk-m/merge requests/845
https://gitlab.kitware.com/vtk/vtk-m/merge requests/843
https://gitlab.kitware.com/vtk/vtk-m/merge requests/828
https://gitlab.kitware.com/vtk/vtk-m/merge requests/949

Documentation

The following excerpt from the user’s guide document this new functionality.
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4.4.3 Streamlines

Streamlines are a powerful technique for the visualization of flow fields. A streamline is a curve that is parallel
to the velocity vector of the How field. Individual streamlines are computed from an initial point location (seed)
using a numerical method to integrate the point through the flow field.

In addition to the standard Execute method, Streamline provides the following methods.

SetSeeds Set the seed locations for the streamlines.

SetStepSize Set the step size used for the numerical integrator (4'"

the seed locations through the flow field.

order Runge-Kutta method) to integrate

SetNumber0fSteps Set the number of integration steps to be performed on each streamline.

Example 4.4; Using Streamlines, which is a data set with field filter.

1 vtkm::filter::Streamlines streamlines;

2

3 // 8Bpecify the seeds.

4 std::vector<vtkm::Vec<vtkm::FloatDefault ,3>> seeds (2);

5 seeds [0] = vtkm::Vec<vtkm::FloatDefault ,3>(0,0,0);

6 seeds [1] = vtkm::Vec<vtkm::FloatDefault ,3>(1,1,1);

=

7

® vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::FloatDefault ,3>> seedldrray;
9 seedArray = vtkm::cont::make_ArrayHandle(seeds);

10

11 streamlines.SetStepSize (0.1);
12 streamlines.SetNunber0fSteps (100);
13 streamlines.SetSeeds(seeddrray);
14
15 vtkm::filter:: Result result = streamlines.Execute(inData, "vectorvar");
16

7 if (!result.IsDataSetValid())
18 {
19 throw vtkm::cont::ErrorBadValue{"Failed to rumn Streamlines.");
20 }
21
22 vtkm::cont::DataSet streamlineCurves = result.GetDataSet ();

[MS-17/06] SMOOTH SURFACE NORMALS

This activity has the following completion criteria:

Implementation is merged to the master branch of the central VTK-m repository.
Documentation is added to the VTK-m User’s Guide working document.

Merge into VTK-m repository

The VTK-m project uses “merge requests” as its mechanism for adding code to the master VTK-m
repository. The gitlab repository manages the review process and saves the information for it. The
following completed merge requests were used to add the code for this activity.

MR !798, Add SmoothSurfaceNormals worklet, https://gitlab.kitware.com/vtk/vtk-
m/merge_requests/798
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Documentation

The following excerpt from the user’s guide document this new functionality.

4.2.4 Surface Normals

vtkm: :filter::SurfaceNormals computes the surface normals of a polygonal data set at its points and/or cells.
The filter takes a data set as input and by default, uses the active coordinate system to compute the normals.
Optionally, a coordinate system or a point field of 3d vectors can be explicitly provided to the Execute method.
The cell normals are computed based on each cell’s winding order using vector cross-product. For non-polygonal
cells, a zeroed vector is assigned. The point normals are computed by averaging the cell normals of the incident
cells of each point.

The default name for the output fields is “Normals”, but that can be overriden using the SetCellNormalsName
and SetPointNormalsName methods.

In addition to the standard field filters methods, SurfaceNormals provides the following methods.

SetGenerateCellNormals/GetGenerateCellNormals These methods can be used to set/get the flag to specify
if the cell normals should be generated.

SetGeneratePointNormals/GetGeneratePointNormals These methods can be used to set/get the flag to spec-
ify if the point normals should be generated.

SetCellNormalsName/GetCellNormalsName These methods can be used to set/get the output cell normals field
name.

SetPointNormalsName/GetPointNormalsName These methods can be used to set/get the output point normals
field name.

4. CONCLUSIONS AND FUTURE WORK

The 4 activities associated with this milestone were all completed on time according to their completion
criteria. The following diagram shows our current progress with the overall project.
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[MS-17/01] Better Dynamic Types Dasign
[MS-17/02] Faceted Surface Normals

Behind Schedule

[MS-17/03] Key Reduce Worklet
[MS-17:04] Spatial Division

[MS-17/05] Advect Steady State
[M&-17/08] Smoocth Surlace Normals
[MS-18/01] Multiblock Data

[M5-18/02) Gradients

[MS-18/03] VTi-m Release 1

[M5-18/04] Precefined Function Evaluation
[MS-18/05] Extarnal Surlace

[MS-18/06] Locate Point

[MS-18/07] Locate Cell

[MS~18/08] Point Movement

[M5~18/09] Better Dynamic Types Impl
[M5-18/10] Aendering Topalogical Entites
[MS-13/01] VTK-m Release 2

[MS-18/02] Producticnize zfp compression
MS-18/03] Clip

[MS-18/04] Grost Cells

[M5~13/05] Merge Points

[MS-19/06] Gannected Gomponents
[MS-18/07] Advect Time Varying

[MS-18/08] Surtace Metrics

[MS-18/09] Patn Gecmetry

[MS-20/01] Lightwelght Cell Library
[M5-20/02) Specialzed Data Models
[M5-20/03] Feature-Sensitive Surface Norm
[MS-20/04] VTK-m Release 3

[MS-20/05] Call Metrics

[MS-20/06] Contouring

[MS-20/07] Advanced Flow Algorithms
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