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Abstract
This project was inspired by two needs. The first is a need for tools to help scientists and 
engineers to design effective data visualizations for communicating information, whether to 
the user of a system, an analyst who must make decisions based on complex data, or in the 
context of a technical report or publication. Most scientists and engineers are not trained in 
visualization design, and they could benefit from simple metrics to assess how well their 
visualization’s design conveys the intended message. In other words, will the most important 
information draw the viewer’s attention?

The second is the need for cognition-based metrics for evaluating new types of visualizations 
created by researchers in the information visualization and visual analytics communities. 
Evaluating visualizations is difficult even for experts. However, all visualization methods 
and techniques are intended to exploit the properties of the human visual system to convey 
information efficiently to a viewer. Thus, developing evaluation methods that are rooted in 
the scientific knowledge of the human visual system could be a useful approach.

In this project, we conducted fundamental research on how humans make sense of abstract 
data visualizations, and how this process is influenced by their goals and prior experience. 
We then used that research to develop a new model, the Data Visualization Saliency Model, 
that can make accurate predictions about which features in an abstract visualization will draw 
a viewer’s attention. The model is an evaluation tool that can address both of the needs 
described above, supporting both visualization research and Sandia mission needs.
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EXECUTIVE SUMMARY

A key factor in designing effective algorithms and tools is presenting the data to the human user in a 
format that s/he can interpret and understand. Visualizations are a common way to present data to users 
because humans rely heavily on vision to navigate the world, and those same cognitive processes can be 
used to navigate through information space. However, as data sets and analyses become ever more 
complicated, presenting information to analysts in a way that they can comprehend becomes ever more 
challenging.

While there is a great deal of research devoted to data visualization methods and techniques, efforts to 
assess the effectiveness of the resulting visualizations for the end users remain rare. Prominent 
researchers have argued that “the creation of comprehensive models of human-computer cognitive 
processing should be a core component of the visual analytics effort, and is an essential prerequisite for 
success of visual analytics as a field” [1]. In this project, we addressed these needs by combining a 
bottom-up model of visual saliency (the Data Visualization Saliency, or DVS model) with top-down eye 
tracking studies of sensemaking in the context of abstract data visualizations. We supported the 
development of this model with a series of human subject experiments, tracking participants’ eye 
movements while they interacted with various types of visualizations under different goals. This novel 
combination of evaluation and modeling techniques drawn from the cognitive science and information 
visualization literatures helps lay the scientific foundation for evaluating data visualizations from a 
human cognitive perspective. Better understanding both what attracts a user’s attention and why places 
us on stronger footing for designing more effective visual representations.  With data complexity far 
outstripping the power of our representations, this ability constitutes a strategic advantage as well as a 
deep theoretical contribution.

This project built on Sandia’s unique combination of strengths in data science, cognitive science, and 
information visualization to address fundamental questions about comprehension of abstract data 
visualizations, while leveraging Academic Alliance funded collaborations with both the University of 
Illinois and Georgia Tech. These questions are critically important for advancing the field of visual 
analytics and for improving human performance in the numerous mission areas that rely upon 
visualizations to support analysis and decision making.
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1. PROJECT OVERVIEW  
Data visualizations are ubiquitous in research and national security domains, and professionals in a wide 
variety of fields rely on visualizations when making high-consequence decisions. However, very little is 
known about how to evaluate a visualization’s effectiveness for an end user. As data sets become larger 
and more disparate, it is becoming increasingly difficult to develop effective techniques for displaying 
complex, abstract data. For several years, prominent researchers in the field of information visualization 
have been calling for models informed by cognitive science to aid in the design and evaluation of data 
visualizations and visual analytics tools [1].

Despite the clear need for methods for evaluating data visualizations that are grounded in human 
cognition, at the start of this project, few researchers had addressed this issue. The few studies of how 
users navigate through data visualizations focused on fairly simple metrics, such as the order in which 
people view the axes on a graph [2; see also 3, 4, 5]. One reason for the lack of progress in this area was 
that few institutions have collaborations between cognitive scientists and visualization researchers, and 
even fewer have such collaborations in addition to access to the subject matter experts and analysts who 
are the intended end users of many visualizations. Sandia is uniquely positioned to address this issue 
because of our strongly interdisciplinary teams, access to subject matter experts, and our need for better 
methods in this area, both for applications within Sandia and in projects for external customers. Sandia 
has a strong history of visualization research, data science, and research on human cognition and 
decision making. We have a growing portfolio of visual cognition research that we leveraged to address 
these crucial questions about how people navigate through visual information when reasoning about the 
data and drawing conclusions.

We aimed to address the gaps identified above by conducting a series of studies that helped to lay the 
scientific foundation for evaluating visualizations from a human cognitive perspective. The project had 
two main goals. The first was to develop models for assessing the bottom-up visual saliency of data 
visualizations, and the second was to conduct eye tracking studies to develop models of the top-down 
sensemaking strategies employed by users of data visualizations. We utilized a novel combination of 
evaluation and modeling techniques drawn from both the cognitive science and information 
visualization literatures. This research is advancing the state of the art for evaluating the utility of data 
visualizations and has had a broad impact both within and outside of Sandia, benefiting numerous other 
projects.

1.1. Outline of Technical Work
Human visual processing is guided by two parallel processes: bottom-up and top-down visual attention, 
also known as stimulus-driven and goal-oriented attention [6]. Bottom-up visual attention is captured 
automatically by the physical properties of a stimulus (e.g. contrast, color, motion) while top-down 
visual attention is allocated voluntarily and is driven by the viewer’s goals and expectations (e.g. what 
information the person is looking for and past experience with where to find that information [7]). The 
cognitive processing underlying visual search is thought to have two main processes. In the first stage, 
which happens very rapidly when a person first sees an image, the visual cortex of the brain pre-
attentively filters the stimulus, identifying the most visually salient regions (the regions with high 
bottom-up salience). The information obtained at this stage of processing is then used to guide top-down 
visual attention, in which the viewer processes information serially by moving his or her eyes from one 
region of interest to another [8]. Regions with high bottom-up saliency may or may not be relevant to 
the viewer’s task and goals, so there is a constant interplay between the two neural systems that guide 
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visual attention and eye movements [9]. By focusing on both of the cognitive processes that guide 
humans’ interactions with the visual world, we aimed to advance the scientific theories of visual 
attention while also providing practical guidelines for visualization designers.

The neural processes underlying bottom-up and top-down visual attention are fairly well understood, but 
the vast majority of the work prior to this project focused exclusively on natural scenes, such as 
photographs [10]. There were existing bottom-up saliency models that can predict where a viewer will 
look in a photograph [11]. The first publication produced by this project drew on prior visual cognition 
research at Sandia [12, 13, 14] and showed how an existing saliency model, the Itti and Koch model [11] 
could be combined with eye tracking data to evaluate the utility of scene-like data visualizations 
(Matzen, Haass, Tran & McNamara [15], see Appendix A for full text).

Our next step was to apply the Itti model and other popular saliency models to abstract data 
visualizations, such as those that are commonly find in scientific reports, software and system user 
interfaces, and visual analytics tools. We found that the models that perform best for images of natural 
scenes tend to fail for abstract data visualizations (Haass, Wilson, Matzen & Divis [16], see Appendix B 
for full text). Through a detailed assessment of where and why the models failed for abstract 
visualizations, we began to develop the Data Visualization Saliency (DVS) model to enable more 
accurate predictions of where viewers will look in a visualization.

To support the development of the model, we conducted a series of eye tracking studies to assess how 
viewers navigate through abstract visualizations. Our goal was to incorporate new features into the 
model to account for the unique visual properties of abstract visualizations. These features needed to be 
realistic in terms of how the human visual cortex processes information (e.g., appropriate color maps), 
and they also needed to be structured so that the contents of visualizations could reliably be incorporated 
into the saliency model. A cross-validation approach in which the model’s saliency predictions were 
compared to recorded eye movements was used to determine the utility of each feature. The validity of 
this framework was tested using existing metrics that have been developed for assessing the match 
between predicted patterns of eye movements and actual user eye movements [17]. An initial study 
developed a new method for using scanpath data to infer a viewer’s high-level task (Haass, Matzen, 
Butler & Armenta [18], see Appendix C for full text). Our first study that focused specifically on top-
down influences on viewing of data visualizations found that viewers disproportionately attend to text in 
visualizations (Matzen, Haass, Divis & Stites [19], see Appendix D for full text). Two subsequent 
studies focused on the influence of high-level tasks and prior experience on comprehension of 
visualizations. A manuscript describing these studies is in preparation. See Appendix E for the 
preliminary results.

The results of the eye tracking studies informed the development of the DVS model, which is the first 
model of its kind to draw on both top-down and bottom-up characteristics in relation to data 
visualizations. The model expands the dimensionality of existing bottom-up saliency models and 
generates accurate saliency maps that can be used for evaluating abstract visualizations. The final, 
published version of the model significantly out-performs existing saliency models when applied to data 
visualizations, typically by a standard deviation or more (Matzen, Haass, Divis, Wang, & Wilson [20], 
see Appendix F for full text). The model is available for download at: 
https://github.com/mjhaass/DataVisSaliency.git

https://github.com/mjhaass/DataVisSaliency.git
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1.2. Summary
The lack of evaluation methods informed by models of human cognition was a crucial gap in the science 
of data visualization, both in terms of scientific understanding and in terms of mission needs, that this 
project has taken major steps toward addressing. Although some research had previously addressed this 
problem for natural scenes and for scene-like visualizations, many mission-critical visualizations are 
based on abstract or multidimensional data that cannot be tied to a natural physical representation. These 
are more difficult to design and evaluate, and they are also more difficult for an end user to interpret. 
When interpreting a photograph or a scene-like visualization, a user can draw on a lifetime of experience 
with navigating the physical world. Until this project, there had been very little research on how users 
navigate through abstract information spaces. This area carries a substantially higher level of technical 
risk because of the diversity of representations and applications for abstract data visualizations, as well 
as the absence of the constraints imposed by natural scenes on humans’ visual search and reasoning 
strategies.

We have made substantial process in addressing this gap by integrating information about how humans 
process abstract visualizations from the perspective of both bottom-up and top-down visual cognitive 
processing. The outcome of this line of work is a widely applicable tool that can be used by data 
scientists and visualization designers to assess the visual saliency of their data visualizations and to 
predict (and guide) the user’s allocation of attention. This in turn will support the end users of these 
visualizations, providing them with better tools that will enable faster and more accurate reasoning and 
decision making.
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APPENDIX A:  USING EYE TRACKING METRICS AND VISUAL SALIENCY MAPS TO 
ASSESS IMAGE UTILITY1

Abstract
In this study, eye tracking metrics and visual saliency maps were used to assess analysts’ interactions with synthetic aperture radar (SAR) 
imagery. Participants with varying levels of experience with SAR imagery completed a target detection task while their eye movements and 
behavioral responses were recorded. The resulting gaze maps were compared with maps of bottom-up visual saliency and with maps of 
automatically detected image features. The results showed striking differences between professional SAR analysts and novices in terms of 
how their visual search patterns related to the visual saliency of features in the imagery. They also revealed patterns that reflect the utility 
of various features in the images for the professional analysts. These findings have implications for system design and for the design and 
use of automatic feature classification algorithms.

1 Matzen, L. E., Haass, M. J., Tran, J., & McNamara, L. A. (2016). Using eye tracking metrics and 
visual saliency maps to assess image utility. Electronic Imaging, 2016 (16), 1-8.



Introduction
Human visual processing is guided by two parallel processes: 

bottom-up and top-down visual attention, also known as stimulus-
driven and goal-oriented attention [1]. Bottom-up visual attention 
is captured automatically by the physical properties of a stimulus 
(e.g. contrast, color, motion) while top-down visual attention is 
allocated voluntarily and is driven by the viewer’s goals and 
expectations (e.g. what information the person is looking for and 
past experience with where to find that information [2]). The 
cognitive processing underlying visual search is thought to have 
two main processes. In the first stage, which happens very rapidly 
when a person first sees an image, the visual cortex of the brain 
pre-attentively filters the stimulus, identifying the most visually 
salient regions (the regions with high bottom-up saliency). The 
information obtained at this stage of processing is then used to 
guide top-down visual attention, in which the viewer processes 
information serially by moving his or her eyes from one region of 
interest to another [3]. Regions with high bottom-up saliency may 
or may not be relevant to the viewer’s task and goals, so there is a 
constant interplay between the two neural systems that guide visual 
attention and eye movements [4].

Since the brain is so highly attuned to processing visual 
information, most human-computer interfaces rely heavily on the 
capabilities of the human visual system. A great deal of effort is 
devoted to finding ways to visualize information so that humans 
can understand and make sense of it. This is particularly 
challenging when the information is multidimensional, such as in 
visualizations with a temporal component. Once a visualization has 
been developed, assessing its utility for a human analyst can prove 
to be even more challenging than developing the visualization 
itself. Ideally, a visualization should draw the viewer’s attention to 
the information that is most useful to the viewer’s task. In other 
words, there should be overlap between the features that are 
visually salient and those that are most important from a top-down, 
goal-oriented perspective.

In this paper, we describe a study in which we assessed the 
utility of images by comparing viewers’ eye movements to maps of 
visual saliency and image features. The project focused on 
Synthetic Aperture Radar (SAR) and Coherent Change Detection 
(CCD) imagery. SAR is used in a variety of surveillance and 
mapping applications and the radar data is converted into a two-
dimensional image (see Figure 1) for use by human analysts [5]. 

 
Figure 1. Synthetic Aperture Radar (SAR) image of a baseball diamond. 
Image courtesy of Sandia National Laboratories, Airborne ISR.

CCD images (Figure 2) are created by co-registering SAR images 
of the same scene and measuring changes in coherence that can 
reveal changes that have taken place in the scene over time [6]. 

 
Figure 2. Coherent Change Detection (CCD) image highlighting several 
changes between images taken of the same scene at two different times.  
Image courtesy of Sandia National Laboratories, Airborne ISR.

Applied Studies of Imagery Analytic 
Workflows

The work described in this paper is part of an interdisciplinary 
family of research activities, in which Sandia National 
Laboratories researchers are examining how computational 
technologies influence the performance of professional imagery 
analysts. In this context, imagery analysis describes the perceptual 
and cognitive work of evaluating features of interest captured in 
two-dimensional images generated from remotely sensed data.  

Visual inspection of imagery is an important component of 
work in a wide range of domains, from medical diagnostics to 
tactical military planning. However, the technologies used in 
imagery analysis have changed dramatically over the past couple 
of decades.  Even as recently as the 1990s, “hardcopy” imagery 
and light tables comprised the major tools of imagery analysts.  
Importantly, the standards that express nominal thresholds for the 
detectability of feature classes in image products are rooted in 
psychophysical studies with imagery analysts using the hardcopy 
tool suite [7].  

These days, however, computational or “softcopy” platforms 
are the main tools of imagery analysis.  In many government 
workplaces, for example, light tables have disappeared as 
organizations have wholeheartedly embraced desktop computing 
systems and imagery analytic software.  In a complementary 
fashion, computers have facilitated the development of image 
processing algorithms that can highlight or emphasize different 
features in a scene; for example, by exploiting changes in 
waveform characteristics to reveal ground changes in a scene- 
something that CCD imagery does very well.   In short, the entire 
technological suite of imagery analysis has evolved dramatically 
over the past twenty years, with a wide array of electronic 
platforms and new image products available to support analytic 
workflows.  

The imagery analytic revolution has raised questions about 
the functional equivalence of hardcopy vs. softcopy imagery for 
human visual detection tasks. A related issue is assessing the 

http://www.sandia.gov/radar/imagery/index.html#modes9
http://www.sandia.gov/radar/imagery/index.html#modes9


degree to which emerging image products might be used to support 
particular analytic workflows or feature detection goals.   Finally, 
the rapid evolution of softcopy imagery also creates opportunities 
to examine how people interact with various types of image 
products as they are performing the visual cognitive work of 
professional imagery analysis.  Of particular importance is the 
acquisition of perceptual skills, as people learn to “read” different 
types of imagery.  We are particularly interested in understanding 
how imagery analysts learn to focus on the most valuable regions 
of an image product in relation to top-down analytic goals; and 
how these top down goals interact with bottom-up sensory and 
perceptual events driven by qualities of a given image product.  
Understanding these micro-processes is critical if we are to 
understand how people interact with imagery to establish a 
plausible narrative about the meaning of events captured in an 
image - for example, the import of footprints and tire tracks 
indicative of human activity in a rural area. 

Current Research
The objective of this project was to identify which features in 

SAR and CCD imagery drew the attention of experienced and 
novice analysts during a visual search and decision making task. 
Our aim was to inform system design by identifying differences in 
search patterns between groups with varying levels of experience 
and relating those patterns to features in the imagery and their 
visual saliency. 

SAR imagery is well-suited for this type of investigation for 
several reasons. First, SAR and CCD images are superficially 
similar to optical imagery, but extensive training is required for 
analysts to learn to interpret SAR phenomenology correctly. This 
creates unique advantages for studying the influence of experience 
and top-down visual attention on visual search behavior. 
Professional imagery analysts who work with SAR perform visual 
search tasks using SAR and CCD images on a daily basis, 
developing extensive expertise and efficient visual search and 
decision making strategies. At the same time, there are many true 
novices who have never seen SAR or CCD images, yet the 
similarity between SAR imagery and optical images enables 
novices to complete visual search tasks despite their lack of 
domain-specific experience. Second, several feature detection 
algorithms have been developed for SAR and CCD images. These 
algorithms can identify specific terrain features and image regions 
that are particularly useful (or not useful) to the visual search task. 
This allows us to map the participants’ gaze patterns against image 
features with high or low importance from the perspective of top-
down attention. Finally, prior research has shown that visual 
saliency maps designed for optical imagery, such as the tool 
developed by Itti and Koch [8], are also applicable to SAR and 
CCD images because of their scene-like properties [9]. This allows 
us to contrast the participants’ gaze maps with maps of the bottom-
up visual saliency of the images. All of these characteristics make 
SAR a particularly useful domain for studying differences in visual 
search between experienced and inexperienced viewers, and how 
those differences relate to properties of the images.

In the study, we collected behavioral and eye tracking data 
from three groups of participants with varying levels of experience 
with SAR imagery, ranging from true novices to professional SAR 
imagery analysts. The participants completed a visual search and 
decision making task in which they were asked to search SAR and 
CCD images for targets. The targets were specific types of changes 
within the scenes. The gaze maps collected from the three groups 
of participants were then contrasted with visual saliency maps and 

with maps of automatically segmented terrain features. We also 
conducted an exploratory analysis in which the gaze maps were 
compared to a metric of change susceptibility within the scenes, 
described in more detail below.

We hypothesized that in situations where the decision-
relevant information was not the most visually salient information, 
novice viewers would be more likely to get distracted. In contrast, 
experienced analysts are likely to have developed strategies to 
discount salient but irrelevant visual features. We predicted that the 
experienced analysts would focus on the most task-relevant regions 
of the images, regardless of their visual saliency. Comparing the 
performance and eye movements of groups with varying levels of 
experience allowed us to investigate the influence of top-down 
visual attention on task performance and to explore the interplay 
between expertise and image utility.

Eye Tracking Study
Method
Participants

Twenty-four participants completed a target detection task 
using SAR images while their eye movements were recorded at 60 
Hz using the FaceLab 5 Standard system and EyeWorks software. 
Eight of the participants were professional SAR analysts who 
conduct visual search tasks using SAR imagery on a daily basis. 
Eight were non-analysts who work with SAR images regularly, 
typically on a weekly basis. They had extensive knowledge of the 
domain, but do not typically engage in visual search tasks using the 
imagery. Most of the participants in this group were radar 
engineers who design and test SAR systems. We refer to this group 
as the “experienced non-analysts.” The remaining eight 
participants were novices with no prior exposure to SAR imagery. 
All participants gave their written informed consent before 
participating in the study.
Materials

Participants completed a target detection task using 20 pairs 
of images. Each pair consisted of a SAR image and a CCD image 
of the same scene. The CCD image was created by co-registering 
SAR images of the same scene over time and measuring changes 
in coherence that can reveal temporal changes [6]. Essentially, the 
SAR image provided viewers with contextual information about 
the scene and the CCD image provided viewers with information 
about the presence or absence of targets in the scene.

Half of the 20 image pairs contained a target and half did not. 
The targets were the same types of targets that the professional 
SAR analysts look for in their daily work. The experienced non-
analysts were also familiar with the nature of the targets and view 
them frequently, although not in the context of a visual search task. 
The novices were not familiar with the domain, so they were 
shown examples of targets before beginning the experiment. They 
received instructions about what to look for to determine whether 
or not a target was present in the scene.
Procedure

The participants completed a battery of general cognitive and 
visual search tasks in addition to the target detection task using 
SAR imagery [10]. In the target detection task, they were asked to 
stare at a fixation cross in the center of the computer screen. The 
cross remained on the screen for one second, and then one of the 
image pairs appeared on the screen. The SAR image was shown to 
the left of the fixation cross and the CCD image of the same scene 
was shown to the right of the fixation cross. 



Participants were instructed to search the images for targets 
and to use a 1-4 scale to record their assessment of whether or not 
each scene contained a target. A response of “1” indicated that they 
were sure that there was not a target in the scene. A response of 
“2” indicated that they thought there was no target, but they were 
unsure. A response of “3” indicated that they thought there was a 
target present, but were unsure. A response of “4” indicated that 
they were sure that there was a target present. The SAR and CCD 
images remained on the screen until the participants responded or 
until 45 seconds had elapsed. The participants did not receive 
feedback about their answers until after the experiment was 
completed.

Results
Behavioral Results

The behavioral results showed that the professional imagery 
analysts were able to detect the targets more accurately than the 
novices and faster than both the novices and the experienced non-
analysts. The analysts responded correctly to 74.4% of the trials, 
on average, with an average reaction time of 9.5 seconds. The 
experienced non-analysts responded correctly to 70.0% of the trials 
with an average reaction time of 14.5 seconds. The novice 
participants responded correctly to 56.9% of the trials with an 
average reaction time of 22.4 seconds.

One-way ANOVAs showed that the groups differed 
significantly in both their average accuracy (F(2,21) = 4.62, p < 
0.03) and their average reaction times (F(2,21) = 11.98, p < 0.001). 
Post-hoc t-tests showed that the analysts had significantly higher 
accuracy (t(14) = 2.95, p < 0.01) and faster reaction times (t(14) = 
4.34, p < 0.001) than the novices. The experienced non-analysts 
also had significantly higher accuracy (t(14) = 2.14, p < 0.03) and 
reaction times (t(14) = 2.57, p < 0.02) than the novices. The 
accuracy of the analysts and experienced non-analysts did not 
differ significantly (t(14) = 0.73), but the analysts had significantly 
faster reaction times (t(14) = 2.93, p < 0.01).
Eye Tracking Results

Two participants, one from the novice group and one from the 
experienced group, were excluded from the eye tracking data 
analysis due to noisy data. A region of interest (ROI) was 

 
Figure 3. Gaze maps for each of the three groups of participants with the ROI 
indicated in red.

demarcated around each target that contained the target itself plus a 
buffer intended to represent a person’s useful field of view 
(approximately 90 pixels on each side of the target).

The time to first fixation in the ROI was calculated for each 
trial in which a target was present. The average time to the first 
fixation in the ROI was 5.3 seconds for novices, 3.0 seconds for 
experienced non-analysts, and 2.1 seconds for analysts. The 
difference between groups was significant (F(2,19) = 9.21, p < 
0.01). Post-hoc t-tests showed that the experienced non-analysts 
and the analysts were both significantly faster than the novices 
(t(12) = 2.41, p < 0.02 and t(13) = 4.36, p < 0.001, respectively). 
However, the experienced non-analysts and the analysts did not 
differ significantly from one another (t(13) = 1.53, p = 0.08).



For each trial, we calculated the percentage of total fixations 
that occurred within the ROI. On average, 17.4% of the novice’s 
fixations were in the ROI, compared to 25.3% for the experienced 
non-analysts and 38.9% for the analysts. The difference between 
groups was significant (F(2, 19) = 8.08, p < 0.01). Post-hoc t-test 
showed that the experienced non-analysts had a significantly 
higher percentage of fixations in the ROI than the novices (t(12) = 
2.47, p < 0.02) and the analysts had a significantly higher 
percentage of fixations in the ROI than the experienced non-
analysts (t(13) = 2.13, p < 0.03). 

Discussion
Working within their domain of expertise, the SAR imagery 

analysts and experienced non-analysts were both more accurate in 
their responses than the novices, who had not viewed SAR 
imagery before taking part in the experiment. In addition to their 
high accuracy, the analysts were faster than experienced non-
analysts and novices, both in terms of overall task reaction time 
and in terms of the time to first fixation in the ROI. The analysts 
were highly efficient in their ability to identify the ROI, typically 
fixating in the ROI within two seconds of stimulus onset. They 
devoted a higher proportion of fixations to the ROI than either of 
the other groups.

The efficiency of the analysts indicates that their visual search 
performance is driven by top-down visual processing. The analysts 
were able to rapidly triage the information in the imagery, zeroing 
in on the task-relevant information in the ROIs. In the analyses 
described below, we contrasted the gaze maps of the analysts and 
novices with other information about the content of the scenes, 
including bottom-up visual saliency and automatically detected 
terrain features. These analyses allowed us to further tease apart 
the contributions of bottom-up and top-down visual processing to 
the participants’ visual search performance.

Comparison of Gaze Maps to Saliency Maps
In order to compare the visual search patterns of the 

participant groups to visual properties of the imagery, gaze maps 
were created for each stimulus using each group’s tracking data.  
Following the approach of Wooding [11], the gaze maps were 
constructed by pooling the raw eye tracker samples over all 
subjects in each group (i.e. analysts, experienced non-analysts and 
novices) and accumulating a two dimensional Gaussian function at 
each point. The standard deviation of the Gaussian function was 
defined to equal a two degree field of view (90 pixels) at the 
average viewing distance.

Visual saliency maps for each stimulus where created using 
the Itti and Koch model [12] as implemented in Harel’s Graph 
Based Visual Saliency Toolbox [13]. The Itti and Koch model 
decomposes images into three feature sets that are based on 
processes in the human visual cortex: color, orientation and 
intensity. These feature sets are constructed at multiple scales 
using Gaussian pyramids. Areas of the image with the greatest 
differences in features across scales are assigned larger saliency 
values while areas with smaller differences in features across 
scales are assigned lower saliency values. In this study, 
participants were viewing two images placed side by side on the 
screen. Because the two image products have different mean 
intensity levels, we calculated the saliency maps separately for 
each image product to avoid saliency artifacts at the image product 
boundary.

Figure 4. The top panel shows the saliency map for one of the CCD stimuli 
used in the study and the bottom panel shows the analysts’ gaze map for the 
same stimulus. The ROI is indicated in red.

Results
For each of the 10 stimuli in the eye tracking study that 

contained a target, we calculated the percentage of the overall 
visual saliency that fell within the ROI around the target. Then, for 
each group of participants, we calculated the percentage of gaze 
observations that fell within the ROI for that stimulus. For all of 
the target-containing stimuli, an average of 17% of the total visual 
saliency fell within the ROIs. For the professional analysts, an 
average of 57% of the gaze observations fell within the ROIs, 
consistent with the behavioral finding that the analysts were very 
efficient in identifying the ROIs. The experienced non-analysts and 
novices had lower percentages of gaze observations in the ROIs, 
with 42% for the experienced non-analysts and 27% for the 
novices.

Correlations were calculated between the percentage of visual 
saliency in the ROI and the percentage of gaze observations in the 
ROI for each stimulus within each group of participants. The 
results showed that the correlation was significant for the novices 
(R2 = 0.71, p < 0.01) and for the experienced non-analysts (R2 = 
0.52, p = 0.01). However, for the professional analysts, there was 



not a significant correlation between the percentage of saliency in 
the ROIs and the percentage of gaze observations in the ROIs (R2 = 
0.02).
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Figure 5.The percentage of gaze in the ROI versus the percentage of saliency 
in the ROI for each participant group for every stimulus that contained a 
target.

As discussed above, we hypothesized that professional 
analysts would rely on their past experience and on top-down 
visual attention to focus on the most task-relevant information, 
regardless of whether or not it was salient from a bottom-up 
perspective. The results of the eye tracking study and our 
comparisons between the gaze maps and saliency maps supported 
this hypothesis. To further explore the relationships between 
terrain features, visual saliency, and visual search, we compared 
the participants’ gaze maps to automatically generated maps of 
image features. We chose to investigate two specific types of 
terrain features: SAR shadows and regions categorized as 
supporting change detection through a method called Index for 
Surface Coherence (ISC). These analyses and the preliminary 
results are described in the sections below.

Comparison of Gaze Maps and Terrain 
Features

SAR imagery has unique properties that support a variety of 
methods for automatic feature detection. For example, specific 
terrain features can be detected and labeled by automated image 
processing algorithms such as superpixel segmentation and 
classification [14, 15]. Superpixel segmentation groups pixels by 
capturing image redundancy [16, 17]. A new method known as 
ISC extends this capability by identifying image regions in which 
the terrain features are more or less conducive to change detection 
[18].

We chose to focus our analyses on two types of automatically 
detected terrain features. First, we contrasted the gaze maps with 
maps of SAR shadows. The shadows in SAR images have 
relatively low importance in target detection tasks, but have high 
visual saliency. We predicted that experienced analysts would 
ignore shadow regions while novices would be more likely to be 
distracted by their high visual saliency. Second, in an exploratory 
analysis, we contrasted the gaze maps with ISC maps representing 
regions of the images that were most supportive of change 
detection. We predicted that the analysts would devote more 

attention to the regions that were most likely to support change 
detection, particularly since they were being asked to complete a 
target detection task in which the targets were changes to the 
scene. In contrast, we predicted that novices would not have the 
experience needed to determine which regions were most valuable 
to completing the task, making them less sensitive to this metric.

Modulating Saliency Maps Using Terrain Features
In order to test the analysts’ and novices’ ability to ignore the 

highly salient but low value shadows, we calculated the overlap 
between the participants’ gaze maps and the saliency maps with 
and without the shadows. First, algorithms were used to segment 
[14] the stimuli used in the eye tracking study into superpixels and 
to classify [15] the shadow superpixels.

Figure 6. The top panel shows a superpixel segmentation of a scene and the 
bottom panel shows superpixels classified as shadow regions in red.

Next, modified saliency maps were created in which the 
superpixels identified as shadow regions were masked out, as 
shown in Figure 7. 



Figure 7. The top panel shows the visual saliency map created from the SAR 
image in Figure 6. The bottom panel shows the masking of the superpixels 
classified as shadow regions.

 The gaze maps were compared to the original and masked 
saliency maps using the linear correlation coefficient (CC) metric. 
CC has been used in prior studies to measure performance of 
saliency estimation algorithms by comparing saliency maps to 
human gaze maps [19]. CC is a measure of the strength of a linear 
relationship between a gaze map (G) and a saliency map (S)

   . (1)
𝐶𝐶(𝐺,𝑆) =  

𝑐𝑜𝑣(𝐺,𝑆)
𝜎𝐺𝜎𝑆

When CC is close to ±1, there is almost a perfectly linear 
relationship between the human gaze map and the predicted 
saliency map.

A subset of the eye tracking data (three analysts and three 
novices) was used to test the effects of masking shadows out of the 
saliency maps.  For the analysts, masking the shadow regions 
improved CC agreement between saliency and gaze maps by a 
factor of 3.3 times. For the novices, masking the shadow regions 
reduced CC agreement by only 0.95 times.

These results provide further evidence to support our finding 
that professional analysts successfully relied on top-down visual 

attention, largely ignoring regions that were not relevant to the 
target detection task even if they were highly visually salient. The 
approach developed here could be applied for any other terrain 
features, allowing system designers to conduct a detailed analysis 
of how much experienced and novice users rely on each feature 
when completing a particular task. This could be a powerful 
method for assessing image quality by testing the relative 
contributions of each image feature to both the visual saliency of 
the scene and to the users’ task performance.

Comparing Gaze Maps to the Index of Surface 
Coherence

As discussed above, CCD images provide a method for 
observing changes in a scene that would otherwise be undetectable 
to the human eye [20].  By using multiple SAR collects, the 
magnitude and phase difference between each collect can be 
utilized to detect changes in a SAR image. However, the method 
used to calculate this change product is agnostic to the underlying 
terrain on which the calculation is made.  Some features (such as 
walls) are stationary and not susceptible to change, appearing as 
areas that cohere perfectly in the CCD images. Other features, such 
as vegetation, have low coherence due to their random geometries 
and continuously show up as changes in the CCD product. Both 
types of features can be distracting to an analyst or algorithm 
looking for changes of interest (i.e. areas of low coherence in the 
scene that typically have high coherence). Discerning changes of 
interest in natural scenes requires training for human analysts and a 
better understanding of the underlying terrain for algorithms.

A new method to address this issue creates maps of the Index 
of Surface Coherence (ISC) for SAR images. These maps can be 
used to mask a CCD product and eliminate the areas that do not 
support detection of changes of interest. To create these maps, a 
long-term observation of an area is utilized to acquire the 
underlying nature of the terrain.  With many observations of the 
same area over a period of time, a stack of images can be created.  
By registering all of the images and taking the median of each 
pixel in the stack, a stable representation of the area is observed. 
Using a median radar cross section (RCS) and median CCD 
product, the terrain in the area can be classified according to its 
coherence properties. The median RCS (MRCS) and median CCDs 
(MCCD) images are segmented into superpixels using the SLIC 
superpixel segmentation, which allows a user to define how 
compact the superpixel appears and the number of superpixels in 
the image. This allows a user to create a nearly uniform grid of 
pixel groups [14, 17].  A truly uniform segmentation would 
provide pixel groups and reduce the computing complexity, but the 
pixels in those groups would be visually and statistically very 
dissimilar.

After the median MRCS and median MCCD images are 
segmented, a training process is used in which terrain types that 
support change detection are identified and a subset of superpixels 
capturing each terrain type is chosen. In this study, approximately 
20 superpixels consisting of 500 pixels for each terrain type were 
selected.  For each data type, a distribution curve is generated for 
both the MRCS and MCCD products.  The distribution curve is 
generated by fitting common distribution types (Gamma, Beta, 
Log-Normal, Exponential, and Gaussian) to the each data type’s 
scaled histogram data. The distribution type, distribution 
parameters, and scaling are saved to represent each terrain type.

With the training finished, new images can be evaluated by 
segmenting the image into superpixels and comparing each 
superpixel in the image to the previously trained data.  For each 



superpixel in the image, its pixels are scaled and fit with the 
distribution according to each terrain types training data.  The 
distribution curve of the superpixel is then compared to the terrain 
type’s distribution curve using Kullback-Leibler (KL) Divergence 
to get a similarity score.  Using probabilistic fusion [21, 22], the 
KL scores of the MRCS and MCCD images are translated into p-
scores which can then be added despite the KL scores being 
statistically different.  These added scores can then be used to form 
a heat map to indicate where an image is most likely to support 
change detection. 

We conducted a proof-of-concept analysis in which an ISC 
map of one of the CCD images from the eye tracking study was 
compared to participants’ gaze maps. To compare the image p-
scores to the human gaze maps, we first created a set of 20 
thresholded images (P) using the original p-score image and 
thresholding each pixel for thresholds 1,2,3,…20. We then 
calculated the CC metric for each thresholded image, Pi, compared 
to the gaze map from either the IAs or the novices.

 

𝐶𝐶(𝑃𝑖,𝑆𝑗) =
𝑐𝑜𝑣(𝑃𝑖,𝑆𝑗)
𝜎𝑃𝑖
𝜎𝑆𝑗

Where i = 1,2,…20; j = 1(analysts), 2(novices) (2)

At the lower thresholds, the maps show only regions that 
never change, while at higher thresholds the maps show regions 
with increasing susceptibility to change. This analysis showed that 
the CC metric peaked for novices at a p-score threshold of 2 while 
peaking for experts at a p-score threshold of 7. Although 
exploratory, these results indicate that the gaze maps of the novices 
were relatively insensitive to the likelihood that a particular region 
would support change detection. They devoted their attention to 
terrain features that did not provide much support for change 
detection and therefore had low p-scores in the ISC map. In 
contrast, the analysts devoted more attention to regions that had 
higher p-scores and were likely to support change detection.

Discussion
The results of this experiment revealed distinct differences 

between the visual search patterns of the participants in the three 
experience groups. Professional SAR imagery analysts were faster 
and more accurate in finding targets in a visual search task using 
SAR and CCD images. The results of the eye tracking study 
showed that the analysts were rapidly able to identify the ROI in 
the scenes containing targets and spent a significantly higher 
proportion of their time inspecting the ROI than the other groups 
of participants. The viewers with less experience, including non-
analysts and true novices, spent more time viewing other regions 
of the images, which had a negative impact on their speed and 
accuracy.

To explore the relationships between the participants’ gaze 
maps and the visual features of the imagery, we compared the gaze 
maps to bottom-up saliency maps and to maps of image features 
that were either irrelevant (shadows) or relevant (regions 
supporting change detection) to the task. While the gaze maps of 
the novices and experienced non-analysts were correlated with the 
bottom-up saliency of the images, the gaze maps of the 
professional analysts showed no such correlation. These results 
indicate that the less experienced groups were at least somewhat 
distracted by visual features that had high visual saliency but little 

relevance to the task. In contrast, the analysts focused their 
attention on task-relevant features, whether they were highly 
visually salient or not. In other words, the analysts’ visual search 
processes appear to be driven primarily by top-down, goal-directed 
visual attention, while the less experienced participants were 
influenced more by bottom-up visual saliency.

The comparisons of the participants’ gaze maps to 
automatically detected image features also supported this 
interpretation of the eye tracking data. We chose SAR shadows as 
an example of a visual feature that was highly salient but had little 
relevance to the task. When superpixels from shadow regions were 
masked out of the visual saliency maps, the match between the 
saliency maps and the analysts’ gaze maps improved substantially. 
When the same masking was done for the novices, the match 
between the saliency maps and gaze maps was reduced. The 
comparison between the gaze maps and the ISC maps had a similar 
result. The highest match between the novices’ gaze maps and the 
ISC maps was at a very low threshold, where the ISC map showed 
areas with little susceptibility to change. These areas are not very 
informative in a change detection task, but novice participants 
spent quite a bit of time looking at them. The analysts ignored 
those regions, focusing their attention on regions that were 
supportive of change detection and were therefore task-relevant.

The results of this study revealed information about what 
types of SAR and CCD image features are used by people with 
different levels of experience. By studying the professional 
analysts’ approach to the visual search task and identifying the 
features and regions that they focus on, we were able to identify 
which features are most relevant to their real-world visual search 
tasks. This information can be used to inform system design and 
the design of new image products and image processing algorithms 
to support the analysts in their daily work. By comparing the 
professional analysts to experienced non-analysts and novices, we 
were also able to identify image features that might be distracting 
to less experienced viewers. This information can inform the 
training of new analysts. It can also help to validate new image 
processing algorithms. For example, the comparison between the 
participants’ gaze maps and the ISC maps provided valuable 
feedback about the value of the ISC method for identifying regions 
that are relevant to the end users of the imagery. The threshold 
cutoffs identified by the gaze map comparisons can be used when 
deploying the algorithm to help analysts filter out potential false 
alarms.

The methods developed for this study could be applied in 
other domains to assess image quality in terms of how well the 
images support the end user’s top-down goals. By approaching the 
problem from the perspective of human cognition, we were able to 
learn a great deal about the features of the images that did or did 
not support the end users’ cognitive needs. 
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APPENDIX C: A NEW METHOD FOR CATEGORIZING SCANPATHS FROM EYE 
TRACKING DATA3 
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APPENDIX D: PATTERNS OF ATTENTION: HOW DATA VISUALIZATIONS ARE READ4
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Abstract.  Data visualizations are used to communicate information to people in a wide variety of contexts, but few tools are 
available to help visualization designers evaluate the effectiveness of their designs. Visual saliency maps that predict which regions 
of an image are likely to draw the viewer’s attention could be a useful evaluation tool, but existing models of visual saliency often 
make poor predictions for abstract data visualizations. These models do not take into account the importance of features like text in 
visualizations, which may lead to inaccurate saliency maps. In this paper we use data from two eye tracking experiments to 
investigate attention to text in data visualizations. The data sets were collected under two different task conditions: a memory task 
and a free viewing task. Across both tasks, the text elements in the visualizations consistently drew attention, especially during 
early stages of viewing. These findings highlight the need to incorporate additional features into saliency models that will be 
applied to visualizations.

Keywords: Data visualizations, text, eye tracking

Introduction

Data visualizations are widely used to convey information, yet it is difficult to evaluate whether or not they are effective. 
Previous work on graph comprehension has suggested that the effectiveness of a graph depends on the relationships between 
the visual properties of the graph, the experience and expectations of the user, and the type of information to be extracted 
from the graph (reviewed in [27]).  As such, the recommendations for the “best” way to present as dataset may differ for 
every new visualization created. 

Eye tracking can provide insight into how people comprehend data visualizations. It is a useful measure of where visual 
attention is being directed, as attention is typically closely linked with gaze location (see [25] for review). Eye tracking 
measures are divided into fixations (periods of relative stability) and saccades (ballistic movements, during which effectively 
no new visual information is processed). In general, people tend to spend more time looking at, and make more fixations on, 
areas of a display that are difficult to process or important to their current task goals [25]. Graph comprehension researchers 
have devised various metrics to evaluate ease of processing information from graphs. For example, the time to the first 
fixation in a region is taken as an indicator of how easy the region was to find. The time from landing in a region to making a 
decision about a graph is taken as an indicator of how easy the information was to process after it was found (see [5] and [12] 
for discussions of other useful metrics). In this way, eye movement patterns can provide a window into the ongoing cognitive 
processes taking place as people comprehend data visualizations.

Although eye tracking metrics have the potential to be useful in evaluating the effectiveness of a data visualization in 
conveying information to a viewer, they must be evaluated within the context of many different factors that affect viewers’ 
eye movement patterns. One factor is the viewer’s task, which has a large impact on his or her eye movements. For example, 
Goldberg and Helfman [12] found more fixations to a graph when viewers subtracted or added data than when they were 
tasked with simply extracting values. Similarly, Strobel et al. [28] found more fixations to line graphs than bar graphs when 
users were performing trend analyses. The type of visualization technique used also impacts how users take in the same 
information, with, for example, more fixations for unfamiliar or difficult visualizations [10,11]. Characteristics of the viewer 
also influence eye movement behaviors. More experienced users can extract information in less time and may pay attention to 
different aspects of a visualization than less experienced viewers [21].

To address the diversity of factors that can influence what aspects of a data visualization draw the viewer’s attention, it is 
useful to distinguish between top-down and bottom-up visual attention. Top-down, or goal-oriented, visual attention is driven 
by the viewer’s goals and expectations. Meanwhile, bottom-up visual attention is driven by the physical characteristics of the 
image, such as color and contrast [9,23]. There are existing models of bottom-up visual attention that use the visual properties 
of an image to predict which parts of the image will draw a viewer’s attention (cf. [16]). These models take an input image 
and generate a map of visual saliency, where the salient regions are those that are more likely to attract bottom-up visual 
attention. To assess the ability of the models to predict where people will look, the saliency maps are compared to eye 
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tracking data collected under free viewing conditions (i.e. the participants view the images for a fixed amount of time with no 
specific task to complete; [2]). 

In prior work, we developed evaluation approaches for data visualizations that incorporate eye tracking data, saliency 
maps, and sensor phenomenology [21]. We demonstrated that comparing saliency maps to eye tracking data collected from 
experienced and inexperienced viewers can highlight the differences between features that are highly salient and features that 
are highly task-relevant. Using saliency maps and eye tracking data in combination was informative for teasing apart which 
aspects of the data drew viewers’ attention from both the bottom-up and top-down perspectives. This information can then be 
applied to improving the visual representation of the data and to assessing feature detection algorithms.

In subsequent work, we have attempted to extend this general approach from the realm of sensor data into the domain of 
abstract data visualizations. Predicting what parts of a visualization will draw the user’s attention would be a useful first pass 
at evaluation [26]. However, our work has found that existing saliency maps do not work well for predicting where viewers 
will look in abstract data visualizations. In Haass et al. [13], we evaluated the ability of multiple models of visual saliency to 
explain viewing behaviors in natural scenes as well as data visualizations. The models performed well for natural scenes, but 
they were poor predictors of viewing patterns for abstract data visualizations. Based on comparisons of the saliency maps and 
fixations, a large part of the discrepancy seems to be due to people attending to text in the data visualizations. The text 
elements received a high proportion of the viewers’ fixations, but were generally not identified as salient in the saliency 
maps. The visual properties of text are quite different from those of features in natural scenes, so models designed to predict 
eye movement in scene viewing do not account for the text’s influence on the viewer’s patterns of attention.

The findings of Haass and colleagues [13] highlight the point that abstract data visualizations are very different from 
natural scenes – each element was chosen by a designer and is there for a reason. In this way, data visualizations share some 
commonalities with print ads, which are also comprised of a combination of images and text to convey a message. Eye-
tracking techniques have been applied to the print ad literature (see review in [14]), and their findings have largely echoed the 
graph comprehension literature in showing that the viewer’s goals have a huge influence over eye movement guidance. One 
robust finding is that when viewers are asked to learn about a product or decide on a product to purchase, they tend to look at 
the text of an ad earlier and for more time—roughly 70% of viewing time—than when they are evaluating an ad for its 
likeability or effectiveness (in which case viewers show a preference for fixating the images). Readers are also more likely to 
fixate, and spend more time viewing, ads with large text relative to small text, although the same is not true for photo size. 
Importantly, the characteristics of eye movements also change when people look at different elements of ads: readers make 
longer fixation durations and saccades on graphical elements compared to text. 

It is worth noting that the graphical elements in ads and data visualizations serve different purposes (display a product 
versus convey numeric information, respectively), and so different mechanisms might influence viewing patterns for these 
two visualization types. However, gaining an understanding of the features that drive eye movements in a range of 
visualizations is an important first step in understanding how viewers allocate their attention between text and graphics 
during successful comprehension. Uncovering these basic features will help inform models of visual saliency. Our previous 
work has already shown that simple saliency maps are not sufficient to explain viewing patterns in visualizations [13]. 
Updating these models to incorporate insights regarding how users allocate their attention between text and graphics might 
help visualization designers to assess their designs more accurately than models that treat text similarly to graphics.

In the present study, we take a closer look at viewers’ attention to text in data visualizations. First, we analyzed eye 
tracking data collected by Borkin and colleagues [3] in the context of a memory study. While their study included a wide 
range of visualizations, we selected and analyzed a subset of the data that included frequently-used graph types, such as bar 
charts and line graphs. We then assessed how much attention participants devoted to different regions of the visualizations, 
paying particular attention to how attention was allocated to regions that contained text compared to those that did not. The 
data collected by Borkin et al. [3], henceforth referred to as the MASSVIS data, was collected during a memory study. The 
parameters of this task are somewhat different from those used in the eye tracking datasets that are commonly used to 
evaluate visual saliency models. To address this, we collected eye tracking data from a new group of participants who 
completed a free viewing task for the same subset of the MASSVIS images and an additional set of newly created data 
visualizations.

Viewing Data Visualizations in a Memory Task

To study how viewers divide their attention between text and graphics in data visualizations, we began with an analysis of 
a subset of the MASSVIS dataset (http://massvis.mit.edu/). These data were collected during a memory study in which 
participants viewed images for 10 seconds and were later tested on their memory for the visualizations via recognition and 
recall tests [3].

For the present analysis, we selected a subset of 35 images from the MASSVIS study. These images represented a variety 
of commonly used types of data visualizations, all of which contained some combination of text and graphical representations 



of data. The subset included four area plots, four bar charts, one bubble plot, four column charts (including two double Y-axis 
plots in which a line graph was overlaid on the column charts), three correlation plots, three line graphs, two map-based 
visualizations, three network diagrams, three pie charts, and five scatter plots. In addition to these 32 images, we included the 
three visualizations that had the best match between the eye tracking data and the saliency maps in our prior evaluation of 
saliency models [13]. These included two infographics and one line graph.

Regions of interest (ROIs) were defined for the stimulus set, dividing the visualizations into the following regions: Title, 
Data, Data Area, X-Axis, X-Axis Label, Y-Axis, Y-Axis Label, Legend, Data Labels, and Text. For each visualization, the 
ROIs were marked using GIMP software (www.gimp.org). The ROIs were tightly drawn to the edges of each region.

Scan paths, representing the sequence of fixations across the ROIs for each participant and each visualization where 
constructed using MATLAB [20]. Fixations were counted as falling within an ROI if their center, defined as the geometric 
median of all points in the fixation, fell within a 1 degree viewing angle of the ROI, approximating the participants’ useful 
field of view. If the same fixation could be assigned to multiple ROIs, multiple variants of the scan path were generated. 
However, for the purpose of this analysis, only the first variant was used. A total of 562 scan paths were analyzed, with an 
average of 16 scan paths from different participants for each visualization. There were an average of 36 fixations per scan 
path (range 6-51). 

Analyses

For each visualization, the number of participants who fixated within each ROI in the visualization at least once was 
calculated. The average proportion of participants who fixated on an ROI (when present) across all of the visualizations is 
shown in Table 1. Unsurprisingly, participants nearly always fixated on the data in the visualizations. They were also highly 
likely to fixate on the title, legend, and data labels, when those ROIs were present.

To determine where the participants allocated their attention in the visualizations, we calculated the proportion of each 
participant’s fixations that fell within each ROI for each visualization. The average proportion of fixations in each ROI is also 
shown in Table 1. The Data ROI received the highest average proportion of fixations, but this proportion was relatively low. 
On average, only 27% of the participants’ fixations were in the Data ROI, while the Title and Data Labels ROIs received 
similar proportions of fixations (25% and 26%, respectively).

Table 1. Attention to each ROI in the analysis of the MASSVIS data, including average proportions and (standard deviations).

ROI Name Number of 
visualizations 

containing 
ROI

Average proportion 
of participants 
viewing ROI

Average proportion 
of fixations to ROI

Title 26 0.94 (0.10) 0.25 (0.10)
Data 35 0.98 (0.05) 0.27 (0.17)
Data Area 21 0.55 (0.26) 0.04 (0.03)
X-Axis 24 0.64 (0.20) 0.05 (0.03)
X-Axis Label 11 0.67 (0.14) 0.06 (0.05)
Y-Axis 24 0.70 (0.22) 0.12 (0.17)
Y-Axis Label 15 0.73 (0.25) 0.10 (0.08)
Legend 23 0.89 (0.15) 0.20 (0.11)
Data Label 15 0.88 (0.22) 0.26 (0.16)
Text 24 0.56 (0.28) 0.07 (0.10)

To test our hypothesis that participants disproportionately pay attention to text in data visualizations, the ROIs were 
categorized based on whether or not they contained text for each stimulus. For example, the X-Axis ROIs contained text in 
some visualizations but not in others. For each visualization, we then calculated the proportion of fixations that fell in ROIs 
containing text, the proportion of fixations to the data and data area, and the proportion of fixations that fell in other ROIs 
that did not contain text (including graphics, symbols, numbers, etc.). On average across all of the visualizations, 59.9% (SD 
= 16.1%) of the participants’ fixations fell into ROIs containing text relative to 30.0% (SD = 15.6%) of fixations in the data 
ROIs and 10.1% (SD = 6.6%) of fixations in the other non-text ROIs.

As another measure of how participants weighted the relative importance of each ROI, we assessed how often each ROI 
was one of the first three ROIs visited by a participant. This was calculated as the proportion of scan paths in which the ROI 
was one of the first three fixated (for visualizations where that ROI was present). Note that this does not necessarily mean 
that one of the first three fixations in the trial fell in that ROI. For example, if a participant began a trial by fixating four times 
on the title, then fixating three times on the data, and then fixating once on the legend, then the title, data, and legend would 



be counted as the first three ROIs visited on that trial. In other words, we assessed the order in which the ROIs were viewed 
irrespective of the number of fixations in the sequence.

The Title ROI was the most likely to be one of the first three ROIs visited. When the Title ROI was present in a 
visualization, it was one of the first three visited in 87.8% of the scan paths. The Data ROI was a close second at 83.5%. The 
proportions were much lower for the other ROIs (51.1% for Data Labels; 39.8% for Legend; 34.7% for the combination of 
Y-Axis and Y-Axis Labels; 17.0% for the combination of X-Axis and X-Axis Labels; 14.8% for Text). Some of the X- and 
Y-Axis ROIs contained words (e.g. the names of countries or months) while others were numerical (e.g. years or values). The 
axis ROIs were subdivided into those that contained text (other than the axis labels) and those that did not. When the X-Axis 
ROI contained text, it was one of the first three ROIs visited in 48.5% of the scan paths.5 When the X-Axis ROI did not 
contain text, it was one of the first three ROIs visited in 12.4% of the scan paths. The difference was even more dramatic for 
the Y-Axis ROI, which was in the first three ROIs visited in 80.9% of the scan paths when the ROI included text, but only 
13.0% of the scan paths when it did not.

To explore the data further, we looked at correlations between the number of words in an ROI and the proportion of 
fixations in the ROI. If a participant is spending time reading the text in a particular ROI, we would expect to see a high 
correlation between the number of words and the proportion of fixations. The correlations were significant for the Title (R2 = 
0.73, p < 0.001), Text (R2 = 0.82, p < 0.001), X-Axis Label (R2 = 0.69, p < 0.02), and Y-Axis Label (R2 = 0.83, p < 0.001) 
ROIs. For the Legend and Data Label ROIs, which received relatively high proportions of fixations on average, there was not 
a significant correlation between the number of words and the proportion of fixations (Legend: R2 = 0.39, p = 0.07; Data 
Labels: R2 = 0.41, p = 0.15).

The axes themselves provide an interesting opportunity for investigating the effect of text on where viewers spend their 
time when studying a visualization. As mentioned above, some of the X- and Y-Axis ROIs contained words and others 
contained only numbers. When the axes contained words, there was a significant correlation between the number of words 
and the proportion of fixations to the axis (X-Axis: R2 = 0.48, p < 0.02; Y-Axis: R2 = 0.90, p < 0.001). In contrast, when the 
X-Axis contained only numerical values, there was no correlation between the number of numerical values and the 
proportion of fixations (R2 = 0.09, p = 0.68). When the Y-Axis contained only numerical values, there was a significant 
negative correlation (R2 = -0.46, p < 0.03).

Discussion

The results of our analyses indicate that participants disproportionately viewed regions of the visualizations that contained 
text in the MASSVIS study. Although the participants did spend time looking at the visualized data, the majority of their 
fixations were devoted to regions containing text. For some of those regions, including the Title, Text and Axis Label ROIs, 
significant correlations between the number of fixations and the number of words in the ROIs indicate that participants were 
spending time reading the text. For other regions, namely the Legend and Data Label ROIs, there was not a significant 
correlation between the number of fixations and the number of words. These ROIs received relatively high proportions of 
fixations overall, so the absence of a correlation between the number of words and the proportion of fixations in these regions 
likely indicates that the participants read the text in those regions but also referred back to them more than once as they 
studied the visualizations.

Interestingly, the axes of graphs seemed to attract participants’ attention when they contained text but not when they 
contained numbers. Axes containing text were much more likely to be one of the first three ROIs viewed than axes 
containing only numbers, and for the Y-Axis ROI there was a significant negative correlation between the number of 
fixations and the number of numerical values along the axis. There are several possible explanations for this pattern, but it 
seems plausible that numerical axes can be comprehended at a glance, making repeated fixations and revisits unnecessary.

An important point to note is that the MASSVIS eye tracking dataset was collected in the context of a memory study, 
which may have had a substantial influence on how participants allocated their attention. For example, they may have 
devoted a lot of attention to the titles of the graphs, thinking that the titles would be easier to remember than the details of the 
visualized data. To explore the impact of the task on patterns of attention to the visualizations, we conducted a study in which 
participants viewed data visualizations in a free viewing task.

Viewing Data Visualizations in a Free Viewing Task

When eye tracking datasets are used to assess saliency maps, the participants in the eye tracking studies are typically given 
a free viewing task. For example, in the widely used MIT Saliency Benchmark eye tracking datasets (http://saliency.mit.edu), 

5 However, there were only two visualizations in this category, with a total of 33 scan paths. The other groupings 
contained much higher numbers of visualizations and scan paths.



participants completed a free viewing task in which they viewed each image for 5 seconds [2, 6, 17]. In this study, we used 
the same task and presentation duration to examine eye movement patterns on a larger set of data visualizations and a larger 
group of participants. Participants viewed the same subset of MASSVIS stimuli that were used in the analysis described 
above and an additional 27 data visualizations in the context of a larger free viewing experiment.

Method

Participants. 
Thirty participants were recruited from students, faculty, and staff in the University of Illinois community (10 males; mean 

age = 30.53 years, SD = 13.06) and compensated $20 for their time. All participants were tested for color vision deficiencies 
(24 plate Ishihara Test [15]) and near vision acuity prior to completing the study. Data from an additional five participants 
was discarded because: they failed the colorblindness and/or acuity tests prior to beginning the experiment (2 participants); 
the eye tracker failed to successfully capture their eye movements for a significant portion of the experiment (1 participant); 
they fell asleep for any portion of the experiment (1 participant); or there was a problem with the experimental apparatus (1 
participant). 

Materials. 
Four blocks of images were used in this study, consisting of a total of 108 images. Each image was centered and gray 

padded to fill the dimensions of the screen.
Two of the blocks consisted of line drawings (30 images) and fractals (16 images) drawn from the MIT Saliency 

Benchmark CAT2000 dataset [2]. Those blocks are not analyzed in the present study. One block contained thirty-five data 
visualizations pulled from the MASSVIS dataset [3, 4]. These were the same visualizations as those analyzed in section 2. 
The final block contained twenty-seven data visualizations that were created specifically for this experiment (3 bar charts, 3 
boxplots, 3 bubble graphs, 3 column charts, 3 line plots, 3 parallel coordinates plots, 3 pie charts, 3 scatterplots, and 3 violin 
plots6). These stimuli were selected to represent a variety of common types of data visualizations. To mirror the 
visualizations in the MASSVIS set, not all of the visualizations contained all of the possible ROIs and the placement of 
specific ROIs (such as the Legend) varied across visualizations. The newly generated visualizations also differed from the 
MASSVIS set because they did not contain infographics or additional text, such as text indicating the source of the data.

The order in which the four blocks of images were presented was counterbalanced across participants. Within each block, 
the stimuli were shown in a random order.

Procedure. 
The experiment was completed in a dark room at a nominal viewing distance of 0.8 meters. Stimuli were presented on a 

large monitor (0.932 x 0.523 meters; 1920 x 1080 pixels) while eye movements were recorded with two Smart Eye Pro 
cameras. Participants first underwent the standard Smart Eye camera setup procedure and 9-point calibration. 

Participants were instructed to view each image as it was presented. Each trial began with a 2-second fixation cross in the 
center of the screen. The fixation cross was followed by the presentation of an individual image, which was displayed on the 
screen for 5 seconds. 

Analysis.
In the resulting dataset, fixations were defined as samples for which the velocity over the preceding 200 milliseconds (ms) 

was less than 15 degrees per second. The first fixation in each trial and any fixations with a duration less than 100 ms were 
dropped from the analysis. For all of the analyses described below, the visualizations pulled from the MASSVIS set and the 
visualizations created specifically for this experiment are pooled together. A total of 1834 scan paths were included in the 
analysis. There were an average of 11 fixations per scan path (range 1-19).

As in our earlier analysis, the number of participants who fixated within each ROI at least once was calculated for each 
visualization. The average proportion of participants who fixated on an ROI (when present) across all of the visualizations is 
shown in Table 2. In addition, we calculated the proportion of each participant’s total fixations that fell within each ROI for 
each visualization. The average proportion of fixations in each ROI is also shown in Table 2. As before, the three ROIs 
receiving the highest proportion of fixations were the Data (37%), Title (22%) and Data Label (19%) ROIs.

6Due to a programming error, 11 of these images were dropped (leaving a total of 97 images in this experiment). Because they were still of 
interest, the dropped images were included in a subsequent data collection. The participants in that data collection were recruited in the 
same manner as the initial group of participants. The group consisted of thirty participants (7 males; mean age = 29.57, stdev = 13.79). Two 
participants completed both data collection sessions.



The ROIs were categorized based on whether or not they contained text for each stimulus. For each visualization, we then 
calculated the proportion of fixations that fell in ROIs containing text, the proportion of fixations to the data and data area, 
and the proportion of fixations that fell in other ROIs that did not contain text (including graphics, symbols, numbers, etc.). 
On average across all of the visualizations, 40.8% (SD = 19.5%) of the participants’ fixations fell into ROIs containing text 
relative to 44.4% (SD = 18.3%) of fixations in the data ROIs and 14.8% (SD = 0.07%) of fixations in the other non-text 
ROIs.

Table 2. Attention to each ROI for the visualizations in the second analysis, including average proportions and (standard deviations).

ROI Name Number of 
visualizations 

containing 
ROI

Average proportion 
of participants 
viewing ROI

Average proportion 
of fixations to ROI

Title 43 0.71 (0.21) 0.22 (0.14)
Data 62 0.91 (0.12) 0.37 (0.18)
Data Area 43 0.53 (0.23) 0.10 (0.06)
X-Axis 46 0.43 (0.18) 0.07 (0.04)
X-Axis Label 23 0.17 (0.11) 0.02 (0.02)
Y-Axis 47 0.52 (0.22) 0.10 (0.10)
Y-Axis Label 33 0.39 (0.23) 0.07 (0.07)
Legend 42 0.68 (0.21) 0.14 (0.08)
Data Label 17 0.70 (0.30) 0.19 (0.13)
Text 24 0.24 (0.29) 0.05 (0.08)

We assessed how often each ROI was one of the first three ROIs fixated by a participant using the same procedure defined 
above. In this experiment, the Data ROI was most often one of the first three ROIs fixated. It was one of the first three ROIs 
fixated for 80.5% of the scan paths. The Title ROI was second at 67.5%. Once again, the proportions were lower for the other 
ROIs (50.8% for Data Labels; 40.5% for Legend; 40.3% for the combination of Y-Axis and Y-Axis Labels; 18.7% for the 
combination of X-Axis and X-Axis Labels; 13.8% for Text). The axis ROIs were subdivided into those that contained text 
(other than the axis labels) and those that did not. When the X-Axis ROI contained text, it was one of the first three ROIs 
viewed in 22.2% of the scan paths. When the X-Axis ROI did not contain text, it was one of the first three ROIs viewed in 
14.4% of the scan paths. The Y-Axis ROI was one of the first three ROIs viewed in 56.4% of the scan paths when the ROI 
included text and 22.0% of the scan paths when it did not. 

As before, we also assessed the correlations between the number of words in an ROI and the proportion of fixations in the 
ROI. The correlations were significant for the Title (R2 = 0.90, p < 0.001), Text (R2 = 0.81, p < 0.001), X-Axis Label (R2 = 
0.57, p < 0.01), Y-Axis Label (R2 = 0.64, p < 0.001), Legend (R2 = 0.39, p < 0.02) and Data Label (R2 = 0.60, p < 0.02) ROIs. 

As in the first analysis, some of the X- and Y-Axis ROIs contained words and others contained only numbers. For the X-
Axis, there was not a significant correlation between the number of items and the proportion of fixations for axes consisting 
of words (R2 = 0.27, p = 0.07) or numbers (R2 = 0.03, p = 0.86). For the Y-Axis, there was a significant correlation between 
the proportion of fixations and the number of words (R2 = 0.89, p < 0.001), and, as in the first analysis, a significant negative 
correlation for numbers (R2 = -0.41, p < 0.01).

For a more detailed assessment of how participants allocated their attention to the ROIs, plots were created to show the 
time course of attention to various parts of the visualizations. Every trial was divided into 313 consecutive 16 ms time 
windows, from trial onset until the five second trial cutoff time. For each time window, we calculated whether a fixation was 
made, and if so, which ROI the fixation fell into. An ROI was given a value of 1 for the time window if it received a fixation, 
and a 0 if it did not. Time windows of 16 ms were chosen to coincide with the sampling rate of the eye-tracker. Fixations 
were counted as occurring within a time bin if any part of the fixation fell in the window (i.e., even if the fixation ended or 
started during the time window). Only one fixation was allowed to occur in a single 16 ms time window; if multiple fixations 
occurred during a time window, only the first ROI visited was counted, and the fixation to the second ROI was assigned as 
starting in the next time window. However, given that it takes roughly 30-50ms to make a saccade, it is highly unlikely that 
two separate fixations would have been possible in the small time window. The first fixation of the trial was excluded, as it 
began with the disappearance of the fixation cross and did not represent a volitional look to any ROI. 

The data plotted in Figure 1 shows the viewing patterns collapsing across all visualizations. The x-axis represents time 
from trial start, the y-axis represents the probability of fixating an ROI, and each line represents a different ROI. Note that the 
probabilities do not necessarily sum to 1 at every time point, because not every participant made a fixation during every time 
point (e.g., due to saccades or track loss). Overall, participants tended to look at the Title ROI early in the trial, with Title 



fixations peaking between 750-1000 ms after trial onset and then quickly declining. Fixations to the Data ROI surpassed 
looks to the Title beginning ~1500 ms after trial onset, and continued to increase throughout the duration of the trial until 
peaking at ~4500 ms. The next most-fixated ROI was the Legend region, which had a numerically higher probability of 
fixation than the rest of the ROIs from ~750 ms after trial onset until the end of the trial. However, the low probability of 
fixating the other ROIs could be due the fact that not all ROIs were present in all visualizations, meaning that many ROIs had 
zeros for several visualizations. This plot highlights that although users made more fixations to the data ROI overall, this 
pattern was only true in the later part of the viewing period. Upon first viewing a new visualization, users tended to look at 
the Title first, after which they shifted their attention to other areas of the visualization.

Fig. 1. Probability of fixating each ROI across time, collapsing across all visualizations.

The data plotted in Figure 2 shows viewing patterns to visualizations without text in the y-axis (top panel) versus with text 
in the y-axis (bottom panel). In both cases, Title fixations peaked early in the trial (~500 ms in vis without y-axis text and 
~1000 ms in vis with y-axis text).

However, striking differences are apparent in the pattern of looks to the y-axis. In visualizations with y-axis text, users 
showed clear preference for fixating the y-axis over the data area after ~500 ms into the trial, and fixations to the y-axis 
exceeded Title fixations after ~2250 ms. Conversely, in visualizations without y-axis text, participants made very few looks 
to the y-axis, and instead focused most of their fixations on the Title early in the trial, and to the Data ROI later in the trial 
(after ~1500 ms). There was a small preference for fixating the Labels ROI, relative to the non-Data ROIs, from ~3000-4500 
ms, suggesting the need to seek out text to understand the plots when it was not present in the y-axis. This pattern clearly 
shows that users' viewing patterns to the y-axis were strongly influenced by the presence of text. Users made many more y-
axis fixations when text was present compared to when it was not, and even made more fixations to the y-axis than to the 
Data when text was present, highlighting the emphasis that users place on text during visualization comprehension.



General Discussion

Overall, the results of these analyses suggest that viewers devote a great deal of attention to the text in data visualizations. 
For the eye tracking data collected as part of the MASSVIS study, the majority of the participants’ fixations were devoted to 
ROIs that contained text. In the second eye tracking dataset, collected using a larger set of data visualizations and a larger 
group of participants along with a free view rather than memory task, the proportion of fixations devoted to text was 
comparable to the proportion of fixations devoted to the data. 

Fig. 2. Probability of fixating each ROI across time, plotted separately for visualizations without y-axis text (top panel) and with y-axis text 
(bottom panel).

For both datasets, it was instructive to examine the participants’ attention to the axes, which contained text in some 
visualizations and numbers in others. The axes were one of the first three ROIs fixated more often when they contained text 
than when they did not. Interestingly, for the Y-Axis ROI in both datasets, there was a significant correlation between the 
proportion of fixations and the number of words in the ROI, and a significant negative correlation between the proportion of 
fixations and the number of numerical values. An analysis of the time course of fixations for the second dataset indicated that 
when the Y-Axis ROI contained text, it had a high probability of being visited throughout the trials, and was the most likely 
ROI to be viewed in the second half of the trials, after participants had turned their attention away from the title of the 
visualization. When the Y-Axis ROI did not contain text, it had a low probability of visits throughout the trial, with 
participants devoting more attention to the Data and Legend ROIs.

It is important to note that the two datasets are different in several ways. The MASSVIS data was collected in the context 
of a memory study where the visualizations were displayed for 10 seconds each. It consisted of visualizations that were found 
“in the wild.” Although we selected a subset of the visualizations that represented common types of data visualizations, these 
images often contained descriptive titles, annotations, and text noting the source of the data. In other words, the data itself 
was contextualized by the text in the visualizations. In the second study, we added an additional set of visualizations that 
were generated in the lab rather than being found in the wild. These visualizations tended to be simpler and had less 
contextual information. In addition, to mirror the experimental parameters that have been used for assessing visual saliency 
maps, participants were given a free viewing task7 with only 5 seconds for examining the visualizations. The simpler text and 



shorter viewing times in the second dataset may have driven the difference in the overall proportions of fixations to the text 
versus the data. However, even in the second dataset, the ROIs containing text were viewed almost as often as the data ROIs, 
indicating that the text still draws viewers’ attention even when they have little time and the text provides relatively little 
information.

Our finding that viewers focused on the text elements in data visualizations is consistent with prior research. Some studies 
have found that users spend as much as 60-70% of viewing time reading the title, data labels and axes of simple graphs [1, 8, 
18]. Users are also more likely to re-fixate text-based areas, such as the legend [3, 22, 29]. In our current analysis, we 
investigated a wider variety of visualization types and complexities, but the overall tendency to devote a large amount of 
viewing time to text-based regions remained the same.

The analyses presented here have several limitations. First, the relatively small size of the text in visualizations may 
necessitate more direct fixations due to the limits of visual acuity [24]. This may have an impact on overall viewing time. 
Second, the participants in these studies had no particular expertise with interpreting data visualizations, and their tasks did 
not require them to find specific information in the visualizations, or even to understand the gist of the data presented. While 
this approach may be realistic for understanding how people process visualizations that they encounter in daily life, such as 
an infographic presented in a magazine, patterns of attention are likely to be quite different in cases where a viewer is using a 
visualization to obtain specific information in the context of a larger task. Domain experience also plays an important role in 
how people attend to data visualizations. Our own prior work found large differences between professional imagery analysts 
and novice viewers looking at radar imagery [21], and other researchers have found that even brief instructions on how to 
interpret a plot can change how people allocate their attention [7]. Individual differences in information processing also play 
an important role. For example, dyslexic individuals spend disproportionately more time on text than typical readers [18]. 
None of these factors operate in isolation, and taking their combination into account can result in complex interactions 
between such factors as chart type, task difficulty, and the user’s perceptual speed [29].

Despite these limitations, the general finding that text in data visualizations draws the viewer’s attention has important 
implications for the development of visual saliency models that apply to visualizations. As discussed above, the ability to 
make predictions about where viewers will look in data visualizations could be a useful evaluation tool. To make accurate 
predictions, these models must take attention to text into account. In our future work, we plan to develop a new saliency 
model that incorporates text as a visual feature. We will test how to weight this feature relative to the other visual features 
that are commonly used in saliency models (color, contrast, and orientation). If successful, this approach will provide an 
improved tool that will allow visualization designers to evaluate their designs from the perspective of human visual 
processing.
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Introduction
Data visualizations serve an important role in scientific inquiry and communication. A good data 
visualization can allow its viewer to quickly identify important trends and interesting groups or outliers 
in a large dataset or to rapidly grasp the take-home message of an entire study. But what makes a data 
visualization “good”? Members of the visualization community are calling for evaluation of 
visualizations by examining the extent to which they support their viewers’ cognitive needs (Cleveland, 
1993; Card, Mackinlay, and Shneiderman, 1999; Etemadpour, Olk, & Linsen, 2014; Gleicher, et al., 
2013; Micallef, et al., 2017; Munzner, 2014). Under this form of metric, a “good” visualization 
successfully exploits its viewers’ cognitive processes to draw the users’ attention to relevant 
information, minimize distraction, and increase the likelihood of correct interpretation. 

One method for evaluating whether a visualization supports its users’ cognitive processes and ensures 
the users are utilizing the visualization as the visualizer intended is to examine the users’ eye movements 
while they view the visualization. The structure of the retina limits visual acuity to the central portion of 
our field of view. In order to extract detailed information about a region in space we are not currently 
looking at, we must move our eyes to that region. Thus, when users move their eyes to a particular area 
on a data visualization, we can trust they are attending that region (Hoffman & Subramaniam, 1995) and 
that they are extracting and processing information that is available within it (Aloimonos, Weiss, & 
Bandyopadhyay, 1987; Findlay & Gilchrist, 2003; Henderson, 2003). The pattern of eye movements and 
the pauses between each eye movement (fixations) can inform our understanding of how a user is 
processing a visualization. Furthermore, if we understand the factors guiding attention, we can develop 
models to evaluate whether the most relevant portions of the visualization are likely to draw a 
hypothetical user’s attention without undergoing expensive and time-consuming user studies. 

Recently, several research groups have suggested visual salience may be a useful tool for evaluating the 
extent to which visualizations support their users’ cognitive processes (Janicke & Chen, 2010; Kim & 
Varshney, 2006; Matzen et al., 2017). Human visual attention is drawn automatically to unique (salient) 
features in the visual array. Models of human attention based on visual salience predict participants’ eye 
movements with good success in natural (e.g., Itti & Koch, 2001) and man-made (e.g., Berg & Itti, 
2008) scenes under free-viewing conditions. As such, optimal utilization of visual salience in a data 
visualization may guide users through the visualization in the way the visualizer intended while sub-
optimal usage may distract the user. Indeed, increasing the visual salience of task-relevant information 
has been shown to alter or aid user performance in day-to-day decision-making tasks (Milosavljevic et 
al., 2012), in virtual reality (Veas et al., 2011), and, importantly, in data visualization interpretation 
(Gleicher et al., 2013; Healey & Enns, 1998; Hegarty, et al., 2010; Interrante, 2000; Nothelfer, Gleicher, 
& Franconeri, 2017). A modified version of Itti & Koch’s (2001) model of visual salience has also been 
used to successfully predict users’ eye movements in data visualizations (Matzen et al., 2017). 

Visual salience is one of several external sources of information that guide human attention in a 
“bottom-up” fashion—highly salient areas pull attention without high-level cognitive input by the 
observer. Attention can also be guided in a “top-down” fashion, whereby the observer’s goals, 
expectations, and prior experience guide attention to goal-relevant objects (Yarbus, 1967; Wolfe, 1994; 



Wolfe, Cave, & Franzel, 1989). Users viewing a simple scatterplot, therefore, may have their attention 
pulled automatically towards a cluster of salient, red data points amongst several grey clusters or may 
deploy their attention voluntarily to the low-salience axes labels because their prior experiences and 
knowledge suggests they should. 

While visual salience can predict where users of data visualization will look under some circumstances 
(Matzen et al., 2017), top-down processing has a strong influence over where people choose to look and 
can override the bottom-up draw of visually salient regions (Land & Hayhoe, 2001; Land, Mennie, & 
Rusted, 1999). For instance, social cues (Birmingham, Bischof, & Kingstone, 2009), differing task 
priorities (Castelhano, Mack, & Henderson, 2009; Foulsham & Underwood, 2007; Hegarty et al., 2010; 
Henderson, et al., 2007; Land, Mennie, & Rusted, 1999; Mills et al., 2011), expertise (Lansdale, 
Underwood, & Davies, 2010), and prior experiences (Chun, 2000; Lleras, Rensink, & Enns, 2005, 2008) 
are all well-known top-down drivers of attention. Recent research has also demonstrated the influence of 
top down goals on eye movement patterns when interpreting data visualizations. Participants with 
different goals looking at the same visualization will inspect it differently (Michal & Franconeri, 2017; 
Michal, Uttal, Shah, & Franconeri, 2016). 

To better evaluate the extent to which a visualization supports a user’s cognitive processes, the factors 
that guide top-down attention should be considered in addition to bottom-up factors like visual salience. 
As an example, Matzen and colleagues (2017) developed the Data Visualization Saliency (DVS) model 
of visual salience for evaluating data visualizations that took into account the importance of text. Text 
typically has low visual salience and is often not identified by salience-based models of human attention 
(e.g., Itti & Koch, 2001) as a region of interest. However, humans have a top-down motivation to look at 
text despite its low visual salience, and most if not all viewers will choose to look at text if it is present 
(Rayner et al., 2001), particularly in the context of interpreting data visualizations (Matzen et al., 2016). 
Thus, the DVS model better predicted participants’ eye movements for data visualizations than other 
models that did not take into account any top-down processes. There are likely other common 
components of data visualizations that users consistently attend in a top-down fashion, as they do with 
text. If this is the case, identifying these visualization components and adding sensitivity to those 
components to a salience-based model should further improve the model’s performance. 

Creating a useful evaluation of this sort for all data visualizations is difficult in part because data 
visualizations are developed and consumed for a wide variety of high-level goals. For example, 
Munzner (2014) suggests data visualizations can be created with the broad goals of analyzing, searching, 
or querying information. Within each of those broad goals lies a number of more specific goals—a user 
analyzing data with a data visualization may be seeking to discover new information, a user searching 
data via visualization may be exploring information to locate targets of interest, or a user querying via 
data visualization may be seeking to compare two data sets. Each of these goals and combinations of 
them is best served by different kinds of data visualizations and, even within the same data visualization, 
users with different goals may choose to look at different things. Characterizing the eye movement 
behavior associated with certain user goals could further inform a model for evaluating visualizations. 
For example, if the purpose of a visualization is to allow the user to compare two pieces of information, 
a model that accounts for that goal could adjust the weighting of certain features to create an output that 
better reflects that top-down driven goal. 

Toward this end, the goal of the present study is to better understand the role of top-down attention in 
comprehension of data visualizations. If two users have different goals when viewing the same data 
visualization, how do their behaviors differ and what behaviors are similar? Mills and colleagues (2010) 
compared eye movement behavior for four different tasks in natural scenes. When they compared the 
fixation durations and eye movement amplitudes of their participants under different task conditions, 



they found characteristic patterns of eye movement behavior for each task type. The eye-movement 
patterns for these tasks were similar in some ways (e.g., a visual search task and an aesthetic evaluation 
task produced similarly short fixation durations) and different in others (e.g., the visual search task was 
better characterized by longer eye-movements than the aesthetic evaluation task). Applying a similar 
method to data visualizations will provide a better understanding of how top-down factors guide eye 
movements through a visualization, thus opening the door to visualization evaluation techniques 
informed by the user’s top-down goals.

Here, we describe two studies in which we investigate the impact of top-down factors on data 
visualization comprehension. In both experiments, participants’ eyes were tracked. In Experiment 1A, 
we presented participants with scatterplots and asked them to describe the trend they observed or to 
describe any outliers present in the display. Each participant was presented with the same stimuli 
regardless of task instruction, so we were able to directly compare eye movement patterns and 
behavioral results for the two tasks for each scatterplot. In Experiment 1B, participants were given two 
clusters of data and were asked to judge the membership of an intermediate reference point (i.e., which 
cluster does the point belong to) or to judge which cluster was higher. The choice of tasks for 
Experiments 1A and 1B were informed by two prior studies investigating the ways perceptual 
information influences how users interpret scatterplots. Etemadpour, Olk, & Linsen (2014) evaluated 
how users’ eye movement patterns and behavioral responses changed as a function of the layout and 
design of plots. Gleicher and colleagues (2013) investigated the influence of group size, group encoding 
style (including the salience of the group’s encoding), and the number of groups on participants’ ability 
to make mean-value judgements for one group within a multi-class scatterplot. They found that 
numerosity of group members, the number of total groups, and redundant encodings (i.e., one group is 
demarked two unique encodings) did not affect participants’ ability to make mean value judgements. 
However, low salience encodings of group membership negatively impacted participants’ performance. 
Experiments 1A and 1B extend these findings.

In Experiment 2, we sought to evaluate the extent the top-down factor of expertise influences users’ eye 
movements and behavioral performance when viewing data visualizations. We recruited participants 
experienced with statistics and presented them with a variety of styles of data visualizations (e.g., 
scatterplot, box and whisker plot, violin plot, etc.) and a variety of representations of statistical 
uncertainty (e.g., standard error of the mean, interquartile range, etc). Each stimulus depicted two 
groups. Participants evaluated whether they felt the two groups presented in each graph were statistically 
significantly different and then rated their certainty in their evaluation. The same data was depicted 
using each of the chart types and representations of uncertainty, allowing us to examine the extent to 
which participants were able to evaluate the statistical significance of the difference between the two 
groups given a certain data visualization (i.e., the visualizations’ efficacy compared to other 
visualizations of the same data). We also asked participants to indicate their familiarity with each of the 
chart and representations of uncertainty used in the experiment to further evaluate the influence of 
expertise on participants’ eye movements and behavioral performance. 

Experiment 1A
In Experiment 1A, we examined participants’ eye movements and behavioral responses while viewing 
simple scatterplots with the goal of either detecting outliers or describing the relationship between the 
two variables plotted.

Methods

Participants



Thirty participants were recruited from students, faculty, and staff in the University of Illinois 
community (7 males; mean age = 29.57, stdev = 13.79) and compensated $20 for their time. All 
participants were tested for color vision deficiencies (24 plate Ishihara Test; Ishihara, 1972) and near 
vision acuity prior to completing the study. 

Design
Task (trend or outlier description), data pattern (+/- linear, sinusoidal, +/- logarithmic, flat, and +/- 
quadratic), and number of outliers (2 or 4) were manipulated within subjects. 

Materials
All stimuli were created in R Software (R Development Core Team, 2008) from simulated data, using 
the standard plotting function to create simple scatterplots. The stimuli were plotted on a white 
background, with labeled axes and main title. Each stimulus consisted of 100 data points (plotted as 
open circles). All foreground elements were black in color. See Appendix A for example stimuli.

Thirty-two scatterplots with the following trends were created for Experiment 1A: positive linear, 
negative linear, flat, sinusoidal (cyclical), positive logarithmic (asymptotic), negative logarithmic 
(asymptotic), positive quadratic, and negative quadratic. Each graph had either 2 or 4 outliers. The 32 
stimuli consisted of 2 each of the 16 unique combinations of trend and number of outliers. Simulated 
data were drawn from Gaussian distributions with intuitive parameters for the given axis labels. The 
main body of data was constrained to fall within two vertical standard deviations of the trend function. 
The outliers were created to be at least four standard deviations away from the trend function.

Procedure
The experiment was completed individually in a dark room at a nominal viewing distance of .8 meters. 
Stimuli were presented on a large monitor (.932 x .523 meters; 1920 x 1080 pixels) while eye 
movements were recorded with two Smart Eye Pro cameras. Participants first underwent the standard 
Smart Eye camera setup procedure and 9-point calibration.
 
Experiment 1A was divided into 3 sections: practice and two blocks of stimuli. During the practice 
session, participants worked through two example stimuli and were given the opportunity to ask the 
experimenter for further clarification. Half the participants described the data trend during the first block 
of stimuli and then described the outliers during the second; the other half of the participants described 
the outliers in the first block and then described the data trend in the second block.

The 32 images were divided into two sets, each containing 16 unique combinations of data trends and 
number of outliers (counterbalanced across the two blocks of stimuli between subjects). Each image was 
1000 pixels high (width was allowed to vary to maintain aspect ratio) and placed in the center of the 
screen; the edges were white-padded to fill the screen.

Each image was presented one at a time, was preceded with a fixation cross, and had a 500 ms 
interstimulus interval. Participants were allowed to work through the images at their own pace, with a 
maximum of 10 seconds allowed on each image. After studying the image, participants advanced to a 
blank screen and verbally described the image (either the trend or the outliers, depending on condition). 
The experimenter recorded their response and asked for further clarification if necessary (all responses 
were also captured in audio files).

Behavioral Results
All statistical tests reported here were held at an α = .05 level and run using R Software (R Development 
Core Team, 2008).



Trend Description
This section covers the blocks where participants described the trend shown in the scatterplot. Each 
response was scored on a scale from 1 to 3, with 1 meaning the response did not demonstrate sufficient 
understanding of the trend, 2 meaning the participants noted some of the key features but were partially 
incorrect or did not describe it in full, and 3 meaning the response demonstrated an acceptable level of 
understanding. Because this scoring system is subjective, we had two raters independently score each 
response. On responses where there was a discrepancy in the scores, the raters discussed their scores. If 
an agreement was reached, the score was updated; if an agreement was not reached, the scores were not 
changed. After this process, the correlation between the two sets of scores was quite high (r = .958). 
Subsequent analyses used the average of the two scores. Subsequent analyses used the average of the 
two scores.

A Kruskal-Wallis rank sum test indicated a significant difference in scores among the types of graphs 
(Χ2 = 97.752, df = 4, p < .001).

Outlier Detection
This section covers the blocks where participants identified outliers in each image. Once again, two 
raters independently worked through each response, indicating how many outliers were identified. The 
counts from the two raters were compared; where the counts differed, the raters discussed the response 
and updated their score if they came to an agreement. Ambiguous responses or those that did not 
mention outliers were flagged and dropped from subsequent analyses. If one rater indicated that the 
response was too ambiguous to score, it was also dropped from subsequent analyses. The correlation 
between the two raters was once again quite high (r = .961). Errors were calculated as the difference 
between the actual number of outliers (2 or 4) and the number of outliers reported (average of the counts 
from the two raters).

Out of 398 trials, errors were made on 220 trials (55.3%). Participants tended to miss outliers (200 trials, 
90.9% of errors) rather than falsely identify outliers. A Kruskal-Wallis rank sum test indicated no 
significant difference in absolute error among the types of graphs (Χ2 = 7.697, df = 4, p = .103).

Eye Movement Results
Fixations were calculated using SmartEye’s default algorithm (any sample for which the velocity over 
the preceding 200 ms is less than 15°/s is deemed a fixation). Any fixation less than 100 ms and first 
fixations in each trial were dropped.

In Experiment 1A, our primary interest was in how visual attention changes in response to differences in 
task. A mixed effects model with a fixed effect for task and random intercepts for participant and 
stimulus (using Satterthwaite approximation for degrees of freedom) revealed that overall, participants 
had more fixations in the outlier task (mean = 22.83 fixations, stdev = 4.78) relative to the trend task 
(mean = 19.90 fixations, stdev = 5.37; t(885) = 10.04, p < .001). A similar mixed effects model with 
fixation duration as the fixed effect revealed that fixation durations in the trend task (mean = 325.38 ms, 
stdev = 293.92) tended to be longer than those in the outlier task (mean = 279.84 ms; stdev = 232.53; 
t(20015) = 12.43, p < .001). 

Task also influenced which regions of the graph participants most frequently fixated. Each stimulus was 
divided into the following regions of interest (ROIs): outliers, trend, title, x-axis, x-label, y-axis, y-label, 
and other. Proportion of fixations to each type of ROI were calculated for each participant and stimulus 
(see Figure KK). The critical ROIs of interest were the trend and outlier ROIs due to their direct 
relevance to the two tasks of trend description and outlier detection. A mixed effects model predicting 



proportion of fixations as a function of the fixed effects of task and ROI and with random intercepts for 
subject and stimulus (using Satterthwaite approximation for degrees of freedom) revealed significant 
simple effects of task for both: a higher proportion of fixations occurred to the outlier ROIs in the outlier 
task (t(7560) = 4.41, p < .001), but a higher proportion of fixations occurred to the trend ROI in the 
trend task (t(7560) = 12.71, p < .001). The model also revealed that participants in the trend description 
task (relative to the outlier detection task) had a higher proportion of fixations to all other ROIs, with the 
exception of the “other” ROI where those in the outlier detection task had a higher proportion of 
fixations (all t-statistics < 2.00 and p-values < .05).

Experiment 1B
In Experiment 1B, we monitored participants’ eye movements while viewing two-dimensional clusters 
of data with a reference point superimposed between the clusters. Participants were asked to either 
identify which cluster the reference point belongs to or which cluster has the overall highest vertical 
mean. 

Methods

Participants
The same participants who completed Experiment 1A also completed Experiment 1B.

Design
Task (cluster mean comparison or reference point grouping), reference point centering (standard 
deviation or mean), relative cluster height (even or raised), cluster sparsity (low or high), and cluster 
dispersion (low or high) were manipulated within subjects.

Materials



All stimuli were created in R Software (R Development Core Team, 2008) from simulated data using 
the ggplot2 software package (Wickham, 2009). The scatterplots had design characteristics similar to 
those used in Etemadpour, Olk, and Linsen (2014). Each scatterplot had two clusters and one reference 
point. The data points were filled colored circles outlined in black on a white background. No axis titles 
or tick marks were provided. One cluster was blue and the other was green (randomly assigned); the 
reference point was always red. See Appendix B for example stimuli.

Clusters were manipulated along the sparsity (low or high) and dispersion (low or high) dimensions. 
Clusters with high sparsity contained fewer data points per square unit than those with low sparsity. 
Clusters with high dispersion were more spread out (i.e., higher standard deviation, leading to a wider 
cluster) than those with low dispersion. Crossing these two dimensions leads to four types of clusters: 
Cluster A: low sparsity and low dispersion (n = 40, stdev = 10), Cluster B: high sparsity and low 
dispersion (n = 15, stdev = 10), Cluster C: low sparsity and high dispersion (n = 85, stdev = 25), and 
Cluster D: high sparsity and high dispersion (n = 40, stdev = 25). Simulated data were drawn from 
Gaussian distributions with the parameters indicated in each cluster class. See Appendix B for examples 
of each cluster type. Clusters were paired in all possible combinations (e.g., A-A, C-D, D-C) to create 80 
total images. In half of the stimuli, the mean cluster height was the same for each cluster in the pair; in 
the other half, one cluster was higher than the other. 

A reference point was placed between the two clusters. One cluster was always to the left of the 
reference point; the other was always to the right. The reference point was mean-centered on 50% of the 
stimuli and standard-deviation-centered on the other 50%. When the reference point was mean-centered, 
it was exactly halfway between the horizontal and vertical mean for both clusters. When the reference 
point was standard-deviation-centered, it was exactly four standard deviations along the horizontal axis 
away from the mean of each cluster (and mean-centered along the vertical axis for clusters with means 
at the same height or one vertical standard deviation above or below the means of the clusters for 
clusters at different heights).

Procedure
Experiment 1B was completed following a short break after Experiment 1A. It used the same setup as in 
Experiment 1A.

Experiment 1B was also divided into 3 sections: practice and two blocks of stimuli. During the practice 
session, participants worked through two example stimuli and were given the opportunity to ask the 
experimenter for further clarification. Half the participants indicated which cluster’s mean was higher in 
the first block of stimuli and then indicated which cluster the reference point belonged to in the second; 
the other half of the participants indicated reference point membership in the first block of stimuli and 
then indicated which cluster was higher in the second block.

The 80 images were divided into two sets, each containing 40 images (with cluster pairing, reference 
point centering, and relative cluster height counterbalanced). The groups were counterbalanced across 
Sets 1 and 2 and between subjects (see Appendix B). Each image was 1000 pixels high (width was 
allowed to vary to maintain aspect ratio) and placed in the center of the screen; the edges were white-
padded to fill the screen.

Each image was presented one at a time, was preceded with a fixation cross, and had a 500 ms 
interstimulus interval. Participants were allowed to work through the images at their own pace, with a 
maximum of 10 seconds allowed on each image. Participants pressed a key to indicate which cluster was 
higher or which cluster the reference point belonged to (depending on condition). The experiment 
advanced to the next image after the key press.8



Behavioral Results
All statistical tests reported here were held at an α = .05 level (95% confidence interval, CI). Exact 
binomial tests analyzed whether the clusters chosen differed significantly from what one would expect 
based on chance (50%). All analyses were run using R Software (R Development Core Team, 2008).

Reference Point Membership
On half of the trials, participants were asked to indicate which cluster (left or right) the reference point 
belonged to. The analyses in this subsection are for that reference point membership task.
Across all stimuli, participants showed a slight bias toward indicating the reference point belonged to the 
cluster on the right (53.6%, CI [50.7%, 56.4%], p = .014). However, all conditions were perfectly 
counterbalanced across the left-right dimension, so this bias does not systematically change the 
interpretation of the results. All further analyses are collapsed across whether the cluster was on the left 
or right side of the screen.

Sparsity
Selecting trials in which one cluster had low sparsity and one had high sparsity (more vs. fewer data 
points per square unit), we analyzed whether relative sparsity of the clusters influenced participants’ 
decisions in the reference point membership task.
Overall, participants consistently indicated that the reference point belonged to the cluster with lower 
sparsity (more data points per square unit). The cluster with lower sparsity was chosen 78.8% of the 
time (CI [73.0%, 83.7%], p < .001). This pattern held, regardless of whether the clusters also had low 
dispersion (low sparsity chosen 81.7%, CI [73.6%, 88.1%], p < .001) or high dispersion (low sparsity 
chosen 75.8%, CI [67.2%, 83.2%], p < .001). It also held regardless of whether the reference point was 
mean centered (low sparsity chosen 78.3%, CI [69.9%, 85.3%], p < .001) or standard deviation centered 
(low sparsity chosen 81.7%, CI [70.8%, 86.0%], p < .001).

Dispersion
We also examined the influence of low versus high dispersion (how spread out the points were) on 
participants’ preference for reference point cluster membership. 
When collapsing across sparsity (low vs. high) and centering (mean vs. standard deviation), no 
significant effects were found (high dispersion cluster chosen 52.1%, CI [45.6%, 58.6%], p = .561). 
However, that null result appears to have been driven by reference point centering technique leading to 
opposite effects. When the reference point was mean centered, participants were more likely to indicate 
the reference point belonged to the cluster with a high dispersion (high dispersion cluster chosen 91.7%, 
CI [85.2%, 95.9%], p < .001). This pattern held, regardless of whether the clusters had low sparsity 
(high dispersion cluster chosen 83.3%, CI [71.5%, 91.7%], p < .001) or high sparsity (high dispersion 
cluster chosen 100.0%, CI [94.0%, 100.0%], p < .001). When the reference point was standard deviation 
centered, participants were more likely to indicate the reference point belonged to the cluster with a low 
dispersion (low dispersion cluster chosen 87.5%, CI [80.2%, 92.8%], p < .001). Once again, this pattern 
held regardless of whether the clusters had low sparsity (low dispersion cluster chosen 91.7%, CI 
[81.6%, 97.2%], p < .001) or high sparsity (low dispersion cluster chosen 83.3%, CI [71.5%, 91.7%], p 
< .001). 
Cluster Types

8 Following a short break after completing Experiment 2, participants also worked through a block a free view data 
visualization images while their eyes were tracked. They were asked about their experience using graphs (verbal explanation 
and 5-point Likert rating from very infrequently to very frequently interpret graphs). Those results were not analyzed as part 
of this manuscript and are therefore not included.



We also analyzed which cluster was preferred for reference point membership when different cluster 
types were pitted against one another. Recall that clusters of type A had low dispersion and low sparsity, 
B had low dispersion and high sparsity, C had high dispersion and low sparsity, and D had high 
dispersion and high sparsity. See Table X for the results, broken down by reference point centering 
method. For stimuli that had mean centered reference points, the preferred cluster type for reference 
point membership ranked as follows: 1. C, 2. D, 3. A, and 4. B. For stimuli that had standard deviation 
centered reference points, the preferred cluster type for reference point membership ranked as follows: 
1. A, 2. B, 3. C, and 4. D. The driving factor for preference was dispersion, but its effect differed based 
on centering method. Clusters with high dispersion were preferred when the reference point was mean 
centered; clusters with low dispersion were preferred when the reference point was standard deviation 
centered. Of secondary importance was sparsity, with low sparsity clusters preferred over high sparsity 
clusters.
 

Centering Clusters Chosen Most Percent 95% CI p-value
A vs. B A 78.3% [65.9%, 87.9%] < .001
A vs. C C 83.3% [71.5%, 91.7%] < .001
A vs. D D 81.7% [69.6%, 90.5%] < .001
B vs. C C 91.7% [81.6%, 97.2%] < .001
B vs. D D 100.0% [94.0%, 100.0%] < .001
C vs. D C 78.3% [65.9%, 87.9%] < .001
A vs. B A 85.0% [73.4%, 92.9%] < .001
A vs. C A 91.7% [81.6%, 97.2%] < .001
A vs. D A 93.3% [83.8%, 98.2%] < .001
B vs. C B 85.0% [73.4%, 92.9%] < .001
B vs. D B 83.3% [71.5%, 91.7%] < .001
C vs. D C 73.3% [60.3%, 83.9%] < .001

Mean

Standard 
Deviation

Table X.  Cluster types A (low dispersion, low sparsity), B (low dispersion, high sparsity), C (high 
dispersion, low sparsity), and D (high dispersion, high sparsity), compared in the reference point 
membership task and split based on reference point centering method. Percentage for most 
common choice, 95% condifidence intervals, and p-value reported.

Nearest Neighbor
One explanation for participants’ decisions in this task is they pair the reference point with the cluster 
that has the closest point to that reference point. To investigate, we used GIMP software (GIMP 
Development Team, 2007) to hand code the pixel coordinates of the center of the reference point and the 
nearest neighbor point in each cluster for each stimulus. We calculated the distance between the nearest 
neighbor in each cluster and the reference point. We noted which cluster had the nearest point and 
determined whether that cluster was chosen by participants more often than the other cluster. For 91.3% 
of the stimuli, the cluster with the nearest neighbor was chosen more frequently than the other cluster 
(CI [82.8%, 96.4%], p <.001). See Figure ZZ for average distance between nearest neighbor and 
reference point for stimuli with mean centered and standard deviation centered reference points. 
Notably, the average nearest neighbor metric perfectly aligns with the cluster type preferred. Because 
the nearest neighbor distance and the distribution/weight of the cluster (based on sparsity and dispersion) 
are highly correlated, the current study does not lend itself to teasing apart the contribution of each. 



Discussion
Dispersion, combined with reference point centering method, was the driving factor in the reference 
point membership task. When the reference point was mean centered, participants chose the cluster with 
high dispersion (higher standard deviation). When the reference point was standard deviation centered, 
participants chose the cluster with low dispersion (low standard deviation). Notably, the reference point 
centering method only mattered when the two clusters were drawn from distributions with different 
standard deviations. See Figures B2 and B3 in Appendix B for examples of clusters with the similar and 
different variances. The combination of dispersion and centering method goes hand in hand with nearest 
neighbor metric. When the reference point was mean centered, the cluster with the closest nearest 
neighbor tended to be the one with high dispersion; the opposite pattern held for standard deviation 
centered reference points. Sparsity also had a consistent effect on the task, although it fell to secondary 
importance after dispersion. Participants generally chose the cluster with low sparsity (more data per 
square unit) as opposed to high sparsity.

Highest Cluster
On half the trials in Experiment 1B, participants performed the reference point membership task; on the 
other half, they indicated which of the clusters was higher. In half the stimuli, one of the clusters had a 
higher (y-axis) mean value; in the other of the stimuli, the vertical mean value of the clusters was the 
same. The analyses reported in this section were conducted on trials in which the participants were 
performing the highest cluster task and responding to clusters with the same mean height.



Participants showed a statistically insignificant trend toward choosing the cluster on the right (53.8%, CI 
[49.8%, 57.9%], p = .066). Once again, all stimuli were counterbalanced across the left-right dimension; 
all further analyses are collapsed across whether the cluster was on the left or right side of the screen.

Sparsity
When a cluster with low sparsity and a cluster with high sparsity were paired, participants tended to 
indicate that the cluster with low sparsity was higher (79.2%, CI [70.8%, 86.0%], p < .001). This pattern 
was consistent across centering and dispersion manipulations. It held regardless of whether the clusters 
had low dispersion (low sparsity cluster chosen 78.3%, CI [65.8%, 87.9%], p < .001) or high dispersion 
(low sparsity cluster chosen 80.0%, CI [67.7%, 89.2%], p < .001) and whether the reference point was 
mean centered (low sparsity cluster chosen 81.7%, CI [69.6%, 90.5%], p < .001) or standard deviation 
centered (low sparsity cluster chosen 76.7%, CI [64.0%, 86.6%], p < .001).

Dispersion
When a low dispersion and high dispersion cluster were paired, participants tended to choose the cluster 
with high dispersion as having a higher vertical mean (70.8%, CI [61.8%, 78.8%], p < .001). Contrary to 
the reference point membership task, this pattern was consistent across centering method, along with 
sparsity manipulation. It held regardless of whether the clusters had low sparsity (high dispersion cluster 
chosen 66.7%, CI [53.3%, 78.3%], p = .013) or high sparsity (high dispersion cluster chosen 75.0%, CI 
[62.1%, 85.3%], p < .001) and whether the reference point was mean centered (high dispersion cluster 
chosen 66.7%, CI [53.3%, 78.3%], p = .013) or standard deviation centered (high dispersion cluster 
chosen 75.0%, CI [62.1%, 85.3%], p < .001).

Cluster Types
We examined which cluster type was preferred when the different types of clusters were pitted against 
one another. Once again, recall that clusters of type A had low dispersion and low sparsity, B had low 
dispersion and high sparsity, C had high dispersion and low sparsity, and D had high dispersion and high 
sparsity. Table Y below shows the results, collapsed across centering method (since the same pattern 
was found regardless of centering method). The preferred cluster type for the higher mean task ranks as 
follows: 1. C, 2. D, 3. A, and 4. B. Dispersion was the driving factor, with high dispersion clusters 
preferred. Sparsity was of secondary importance, with low sparsity clusters preferred over high sparsity 
clusters.

Clusters Chosen Most Percent 95% CI p-value
A vs. B A 78.3% [65.8%, 87.9%] < .001
A vs. C C 67.7% [53.3%, 78.3%] .013
A vs. D D 72.9% [58.6%, 82.5%] .001
B vs. C C 78.3% [65.8%, 87.9%] < .001
B vs. D D 75.0% [62.1%, 85.3%] < .001
C vs. D C 80.0% [67.7%, 89.2%] < .001

Table Y.  Cluster types A (low dispersion, low sparsity), B (low dispersion, high 
sparsity), C (high dispersion, low sparsity), and D (high dispersion, high 
sparsity), compared in the highest cluster task. Percentage for most common 
choice, 95% confidence intervals, and p-value reported.

Highest Point
The dispersion and sparsity manipulation also influence which cluster tends to have the highest overall 
point. Participants might simply be choosing the cluster with the highest overall point when deciding 
which cluster has the highest mean. To examine this possibility, we once again used GIMP software 
(GIMP Development Team, 2007) to hand code the pixel coordinates of the highest point in each 
cluster. We then determined which cluster of each pair had the highest point and whether on average 
participants were more likely to choose the cluster with the highest point. Participants chose the cluster 



with the highest point 85.0% of the time (CI [70.2%, 94.3%], p < .001). When comparing cluster types, 
the highest point pattern perfectly aligned with the cluster preferences (e.g., A tended to have a higher 
point than B, and A was preferred over B). Once again, because the overall highest point metric and the 
distribution of the cluster based on the dispersion and sparsity manipulation are strongly correlated, this 
design does not allow us to tease apart the individual contributions of each.9

Discussion
Dispersion was the primary driver in the highest cluster task, with clusters with high dispersion being 
seen as higher than those with low dispersion. Of secondary importance was sparsity: clusters with low 
sparsity were seen as higher than clusters with high sparsity. These manipulations aligned with which 
cluster tended to have the overall highest point. Reference point centering method wasn’t influential in 
this task, which isn’t surprising considering the reference is not relevant to the task.

Eye Movement Results
Fixations were calculated in the same way in Experiment 1B as in Experiment 1A. 
We first examined overall differences in number of fixations and fixation duration between the two tasks 
(reference point membership and cluster height). A mixed effects model with a fixed effect for task and 
random intercepts for participant and stimulus (using Satterthwaite approximation for degrees of 
freedom) revealed that overall, participants had slightly more fixations on average in the cluster height 
task (mean = 4.75 fixations, stdev = 3.64) relative to the reference point task (mean = 4.59 fixations, 
stdev = 3.44; t(1900) = 2.28, p = .023). A similar mixed effects model with fixation duration as the fixed 
effect revealed that fixation durations in the reference point task (mean = 394.78 ms, stdev = 330.01) 
tended to be longer than those in the outlier task (mean = 347.04 ms; stdev = 257.36; t(8695) = 9.19, p < 
.001). 

We also examined proportion of fixations to each of three ROI categories (cluster, reference point, and 
other). See Figure LL. A mixed effects model predicting proportion of fixations from the fixed effects of 
task (highest cluster vs. reference point membership) and type of ROI along with random intercepts for 
subject and stimuli (using Satterthwaite approximation for degrees of freedom) revealed significant 
simple effects of task for each the ROIs. Relative to the highest cluster task, participants in the reference 
point membership task tended to have a higher proportion of fixations to both the reference point ROI 
(t(5910) = 6.53, p < .001) and the “other” ROIs (t(5910) = 10.18, p < .001); in contrast, those in the 
highest cluster task tended to have a higher proportion of fixations to the cluster ROIs than those in the 
reference point membership task (t(5910) = 16.71, p < .001).

9 We also examined the effect of highest point in each cluster when the means of the two clusters were not the same. When 
participants gave an incorrect response (e.g., indicated the left cluster had a higher mean when the right cluster actually had a 
higher mean), was it because the incorrect cluster had a higher point? Across 600 trials where the clusters were at different 
mean heights, participants made a mistake on 74 trials (12%). On those 74 trials, only 10 trials (14%) were on stimuli where 
the cluster with the lower mean had the overall highest point. Participants do not appear to primarily make errors due to 
reliance on highest point when there is a true difference in mean cluster height. We suspect that the driving effect of the 
overall 12% error rate on images with different means is due to user error (e.g., hit the wrong button or not appropriately 
following instructions).  



Experiment 2

Methods

Participants
Fifteen participants were recruited from students, faculty, and staff at the University of Illinois (5 males, 
mean age = 31.87 years, stdev = 10.84 years) and compensated $20 for their time. All participants were 
required to have at least one publication in a scientific journal and were tested for color vision 
deficiencies (24 plate Ishihara Test; Ishihara, 1972) and near vision acuity. The data from one 
participant was dropped and replaced due to colorblindness. Seven out of the fifteen participants also 
completed Experiments 1A and 1B.

Design
Type of plot (bar with standard error, bar with confidence intervals, dot, violin, box, or density), number 
of data points per variable (low or high), variance in the data (low or high), and p-value for the 
difference between the two variables (5 ranges) were manipulated within subjects. Participants 
interpreted the difference between two variables and gave confidence ratings.

Materials

Stimuli



All stimuli in the main task were created in R Software (R Development Core Team, 2008) from 
simulated data using the ggplot2 software package (Wickham, 2009). Twenty unique data sets were 
created by crossing 2 levels of number of data points per variable (n=25 or n=100), 2 levels of variance 
in the data (low or high), and 5 levels of p-values for an unpaired, two-tailed t-test of the difference 
between the two variables (p < .001, .01 ≤ p ≤ .03, .04 ≤ p ≤ .06, .07 ≤ p ≤ .15, and .40 ≤ p ≤ .60). Each 
data set contained two independent variables (labeled “A” and “B”) drawn from Gaussian distributions. 
Whether the mean of A or B was higher was randomly determined. Each of the 20 data sets was plotted 
6 ways: a bar plot with standard error of the mean, a bar plot with 95% confidence intervals, a jittered 
dot plot, a violin plot, a box plot (with 1.5 * Inter-Quartile Range error bars), and an overlaid density 
plot, leading to 120 different plots. See Appendix C for example stimuli.

Pre-Task Survey
Participants answered the following survey questions prior to completing the main task. How many 
years of experience do you have in research requiring statistical inference? What is your main field of 
research? How would you rate your statistical knowledge (5-point Likert scale)? What is the commonly 
acceptable value for statistical significance in your field? What does it mean if a t-test has a p-value of 
0.01? What type of visualization or graph do you most frequently use when presenting your work?

Post-Task Survey
After completing the main task, participants answered whether they were familiar with all of the chart 
types and measures of error presented. If not, they were asked to identify which ones were not familiar.

Procedure
Experiment 2 was completed in the same environment with the same equipment as in Experiments 1A 
and 1B. Participants were tested for color vision deficiencies and near visual acuity, along with reporting 
their age and gender, prior to completing the study. Then participants responded to the pre-task survey 
questions, worked through the main task of viewing data visualizations, and responded to the post-task 
survey question.

In the main task, participants randomly viewed each of the 120 stimuli. The task was self-paced unless 
the participant did not advance within 10 seconds (at which time the program automatically advanced). 
After viewing each stimulus, the participant responded to two questions using mouse clicks: (A) Is the 
difference between Groups A and B statistically significant (p < .05)? (B) How confident are you in your 
response to (A)? (Likert scale from 1 to 5, with 1 being not at all confident, 3 being moderately 
confident, and 5 being very confident). Eye tracking data was collected while stimuli were on the screen 
but not during a participant’s response.

Behavioral Results

Survey Results
Pre-Task Survey
Participants had on average 8.7 years of experience in research requiring statistical inference (stdev = 
5.9 years). Most participants primarily worked in a field related to psychology or neuroscience (13 
participants); 1 each were in biology or engineering. The average rating on the statistical knowledge 
question was 3.6 (stdev = 0.8; 5-pt Likert scale with 1 for poor, 3 for moderate, and 5 for strong). Every 
participant sufficiently described the meaning of a p-value of 0.01 in a t-test. Bar graphs were the most 
commonly used visualizations (7 participants mentioned them). Two to three participants indicated they 
used scatterplots, line graphs, wave form plots, and/or violin plots. Pie charts, histograms, bivariate, and 
3D plots were mentioned by a single participant. (Please note that a single participant was allowed to list 
more than one type of visualization s/he commonly used).



Post-Task Survey
Participants were least familiar with the box plot with inter-quartile range error bars (8 participants). 
Three participants each were unfamiliar with the violin or density plots. Three participants indicated 
they were familiar with all the visualization types used in the main task.

Visualization Task
While the eye movement behavior was of primary interest, we also looked at the behavioral responses to 
the task. We pulled plot type, p-value range, sample size, and variance together as fixed effects in a 
mixed effects model with a random effect for participant using the lme4 package in R software (Bates, 
Maechler, & Dai, 2011) to predict accuracy. See Figure NN for accuracy results. Accuracy was higher 
for bar plots than other plots overall (Z = 3.26, p = .001), with higher performance on bar plots with 
standard error of the mean than bar plots with 95% confidence intervals (Z = 3.28, p = .001). While we 
found a consistent numerical increase in accuracy, there were no significant differences in accuracy 
between adjacent steps of confidence levels (e.g., 1 relative to 2), with the exception of more accurate 
responses for those given a confidence rating of 5 relative to 4 (Z = 3.48, p < .001). Significant 
differences in accuracy were found moving between all adjacent ranges of p-values (all Z > 4.9, all p < 
.001). Accuracy was significantly higher for low sample sizes than high sample sizes (Z = 5.93, p 
<.001). No significant differences in accuracy performance were found for standard deviation 
differences.

 

Once 
again we 
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Figure NN. Average accuracy performance by (a) plot type, (b) confidence rating, and 
(c) p-value range. Error bars represent standard error of the mean.
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Abstract—Evaluating the effectiveness of data visualizations is a challenging undertaking and often relies on one-
off studies that test a visualization in the context of one specific task. Researchers across the fields of data science, 
visualization, and human-computer interaction are calling for foundational tools and principles that could be applied 
to assessing the effectiveness of data visualizations in a more rapid and generalizable manner. One possibility for 
such a tool is a model of visual saliency for data visualizations. Visual saliency models are typically based on the 
properties of the human visual cortex and predict which areas of a scene have visual features (e.g. color, luminance, 
edges) that are likely to draw a viewer’s attention. While these models can accurately predict where viewers will 
look in a natural scene, they typically do not perform well for abstract data visualizations. In this paper, we discuss 
the reasons for the poor performance of existing saliency models when applied to data visualizations. We introduce 
the Data Visualization Saliency (DVS) model, a saliency model tailored to address some of these weaknesses, and 
we test the performance of the DVS model and existing saliency models by comparing the saliency maps produced 
by the models to eye tracking data obtained from human viewers. Finally, we describe how modified saliency 
models could be used as general tools for assessing the effectiveness of visualizations, including the strengths and 
weaknesses of this approach.

INTRODUCTION
Vision is the dominant sense for humans [2], with researchers estimating that over 50% of the brain is involved in 
processing visual information [1,39]. Given how heavily most humans rely on vision to navigate and understand the 
physical world, it is no surprise that visualizations are a common tool for helping people to navigate through 
information. Visualizations leverage the capabilities of the human visual system and can provide users with a natural 
way to explore and comprehend large amounts of information. However, visualizations can also be confusing and 
misleading, particularly for complex, multidimensional data sets that do not have a natural visual representation.

Evaluating the effectiveness of visualizations can be very challenging [10,30]. Ideally, visualizations would be 
evaluated with well-designed user studies, but these are not always possible (e.g. if the designer does not have 
access to the end users) and can also be expensive and time consuming. It would be useful for designers to have 
more evaluation tools that can be deployed rapidly and iteratively during the design process to assess visualizations 
prior to conducting a user study. Prior work has suggested that visual saliency models could be one such tool 
[26,38].

Visual saliency models assess the visual features of an image to predict which areas of that image will draw a 
viewer’s attention. Saliency models are typically inspired by the structure and function of the human visual cortex. 
The models take an input image and generate a saliency map that predicts which regions of the image will be most 
likely to draw a human viewer’s attention [24]. There are a variety of metrics that can be used to assess the 
performance of the models by comparing the saliency maps to human fixation data recorded via eye tracking [4,7,8]. 
Saliency models have been the subject of a great deal of research in the fields of cognitive science and computer 
vision, and they could prove useful to visualization designers as well. Since data visualizations make use of the 
human visual system to convey information, evaluation techniques that are rooted in neural processes could provide 
useful, generalizable metrics.

It is important to note that saliency models’ predictions of where viewers will look are based only on the physical 
properties of the visual stimulus. They are models of what is known as bottom-up visual attention. In real-world 
tasks, a viewer’s eye movements are also guided by top-down visual attention, which is influenced by the viewer’s 
goals, expectations, and experience [12,43,46]. In the brain, these two processes operate in parallel. Bottom-up 
visual attention is drawn to regions of a stimulus that are distinct from things around them in terms of their basic 
visual features (e.g. contrast, color, motion), and top-down visual attention is allocated voluntarily based on the 
viewer’s task and prior knowledge. Regions with high bottom-up saliency may or may not be relevant to the 
viewer’s task and goals, so there is a constant interplay between the two neural systems that guide visual attention 
and eye movements [41].

When a saliency model is applied to an image, it produces a map that predicts which regions of the image are 
most likely to draw the viewer’s bottom-up attention. In the context of data visualizations, this could allow designers 
to assess whether or not their design will draw attention to the most important information [26]. In other words, 
saliency maps provide designers with a metric of how well bottom-up attention and top-down goals will overlap for 
the application that the designer has in mind. From the perspective of a person using a visualization, a strong overlap 
between visual saliency and important features will allow the user to complete tasks faster and more efficiently, 
minimizing distraction from unimportant information.

Although generating saliency maps for data visualizations could provide a useful and widely applicable 
evaluation metric, there is a substantial obstacle to this approach. The existing models of bottom-up visual saliency 
were designed for images of natural scenes, and the visual and spatial properties of natural scenes can be quite 
different from those of visualizations. While saliency models can generate reasonable predictions of where people 
will look in scene-like visualizations (i.e., visualizations that resemble photographs) [38], these models typically 
underperform for abstract visualizations [18].

This is a disadvantage for existing saliency models, but it raises the possibility that these models can be modified 
to better account for patterns of attention in data visualizations. The differing nature of visualizations and natural 
scenes also presents opportunities to incorporate some information about top-down attention into saliency models. In 
the context of natural scenes, top-down attention is highly task- and situation- dependent, making it very difficult to 



model in any generalized way. This is the reason that most existing saliency models take only bottom-up attention 
into account. However, in the context of data visualizations, the visual features and their placement within the scene 
are selected by a designer in support of a particular goal or goals. A designer is structuring the image in order to 
convey information, so the visual features that the designer selects encode top-down information in a way that the 
features of a natural scene do not. Visualizations are also typically “born digital,” unlike images of natural scenes, 
making it easier to isolate distinct elements (such as individual data regions or text regions) and infer their 
importance from a top-down perspective.

In this paper, we explore why existing saliency models underperform for abstract data visualizations. We identify 
the visual and structural features of visualizations that are incompatible with the existing, scene-based visual 
saliency models. We then discuss the development of a modified saliency model that addresses these features and 
incorporates new information based on top-down attention, allowing it to make more accurate predictions of which 
regions of a visualization will draw a viewer’s attention. We outline the features of the Data Visualization Saliency 
(DVS) model and compare its performance to a set of existing saliency models. Finally, we discuss how the DVS 
model could be used as an evaluation tool during the process of designing a visualization, allowing designers to 
rapidly assess how various design choices affect the saliency of different parts of a visualization.

1 EVALUATION OF EXISTING SALIENCY MODELS
There are numerous bottom-up saliency models that have been developed to predict where people will look in 
natural scenes. Many of these models are based on the neurophysiology of human and other primates’ visual 
systems [3]. They select visual features that are known to elicit neural responses in the visual cortex, such as 
luminance, hue, contrast and orientation. The feature maps are often created at multiple scales of image resolution, 
filtered, and then combined to produce a master saliency map. The performance of saliency models is assessed by 
comparing the saliency maps produced for a range of stimuli to eye tracking data obtained from human viewers 
looking at the same stimuli.

The MIT Saliency Benchmark project [7] keeps a running scoreboard for author-submitted models, showing how 
well they predict human fixations on benchmark image sets. The project includes two sets of benchmark images and 
corresponding fixation data recorded from human viewers. The project has also established eight metrics for 
assessing the match between saliency and fixation maps [8]. A full discussion of each metric is outside of the scope 
of this paper (see [8,18] for more detailed descriptions), but each metric is briefly described below. 

Three of the eight metrics are location-based, meaning that they assess how well saliency maps predict the 
location of human fixations in an image. All three of the location metrics are based on the concept from signal 
detection theory of the Area under the Receiver Operating Characteristic (ROC) Curve, or AUC. The three variants 
of this approach are AUC-Judd, AUC-Borji, and shuffled AUC (sAUC). Scores range from 0 to 1 with 1 being the 
optimal score and 0.5 representing chance performance. The key differences between these three metrics lie in how 
they calculate true and false positives. For example, AUC-Borji uses a uniform random sample, while the sAUC, 
which was developed specifically for assessing saliency models, samples in a way that penalizes models that are 
biased toward the center of the image [8].

Four metrics are based on comparisons of the distribution of fixations across an image to the distribution of 
saliency in a saliency map. These metrics are called the similarity metric (SIM), Earth Mover’s Distance (EMD), 
Pearson’s Correlation Coefficient (CC), and Kullback-Leibler divergence (KL). The SIM metric treats the fixation 
and saliency maps as histograms and assesses their overlap. Scores range from 0 to 1, with 1 indicating perfect 
overlap. False negatives are highly penalized under the SIM metric. The EMD computes the cost of transforming 
one map to the other. If two distributions are identical, the EMD is zero, so lower scores represent better 
performance. CC measures how correlated the two maps are, penalizing false negatives and false positives equally. 
A score of 1 represents a near-perfect correlation between the saliency and fixation maps. KL is an information 
theoretic measure that assesses the information lost when the saliency map is used to approximate the fixation map. 
A score of zero is optimal, so lower scores represent better performance for the saliency map. The KL metric is 
particularly sensitive to zero values, so sparse saliency maps are penalized with high KL scores [8,18].

Finally, the Normalized Scanpath Saliency (NSS) is a value-based metric. It standardizes the saliency map and 
then computes the average saliency at locations that were fixated. When the NSS score is greater than 1, that 
indicates that the fixated locations had significantly higher saliency than other locations in the image [8,18].

The visual saliency modelling community has not settled on any single metric for evaluating model performance. 
We feel it is important to consider at least one metric from each category (value, location, distribution) because 
corner cases may be easier to identify when comparing results from metrics in different categories. For consistency 
with prior publications, and in hope of compatibility with future investigations, we provide results for all of the eight 
metrics in the evaluations discussed below. 

Saliency models are generally trained and tested using images of natural scenes. One of the two sets of 
benchmark images provided by the MIT Saliency Benchmark, the MIT300 set, consists of 300 images of indoor and 
outdoor scenes. The other dataset, CAT2000, consists of 2000 training and 2000 test images organized into 20 
categories. Of the 20 categories, 15 are comprised of images of natural scenes. These are either photographs or 
manipulations of photographs, such as inverted or low resolution images. The remaining five categories contain 
images that are more abstract, such as cartoons, sketches, and fractals. 

In a prior study [18], we sought to assess the performance of existing visual saliency models on data 
visualizations, a category that is not represented in the CAT2000 benchmark. We selected three saliency models that 



spanned a range of performance on the CAT2000 benchmark: the Itti, Koch and Niebur model [25], the Boolean 
Map Based Saliency model (BMS) [48], and the Ensembles of Deep Networks Model (eDN) [45]. We measured the 
performance of each of the selected models on a set of 184 data visualizations drawn from the Massachusetts 
(Massive) Visualization Data Set (MASSVIS) [6]. These were common types of data visualizations (bar charts, pie 
charts, etc.) that had corresponding eye movement data from human viewers. For each model, saliency maps were 
generated for each visualization and compared to the fixation maps using the eight metrics discussed earlier. 

This analysis found that all three saliency models generally performed worse on the visualizations than on the 
images from the CAT2000 data set. The BMS model, which is one of the highest performers on the CAT2000 
benchmark, performed significantly worse on data visualizations relative to the CAT2000 images for 6 of the 8 
evaluation metrics. The eDN model had significantly worse performance according to five of the eight metrics. 
Interestingly, the Itti model, which has the lowest average performance of these three models on the CAT2000 set, 
performed best on the data visualizations. However, it still performed significantly worse on data visualizations than 
on the CAT2000 images according to four of the eight metrics.
A simple example of the models’ underperformance on visualizations is shown in Figure 1, which provides one 
example from the MASSVIS set with corresponding fixation and saliency maps. Note that most of the fixations 
(Panel B) were devoted to the text labels for the bar graph. In contrast, the three saliency models tend to predict that 
viewers will fixate on the bars themselves due to their high contrast, sharp edges, and central location in the image. 
The reasons for this mismatch are outlined in more detail below.

Figure 1. Fixation map and saliency maps generated by different models for an image from the MASSVIS set. (A) the original data 
visualization; (B) fixation map from Borkin et al. [5]; (C) Itti model; (D) BMS model; (E) eDN model; and (F) DVS model.

2 D IFFERENCES IN V ISUAL PROPERTIES OF DATA V ISUALIZATIONS AND NATURAL SCENES

It is clear from the analysis outlined above that existing visual saliency models are inadequate for predicting where people will 
look in abstract data visualizations. Models that generally perform quite well on natural scenes, and even somewhat abstract 
imagery such as cartoons, performed significantly worse on common types of data visualizations. We hypothesize that the reason 
for this poor performance is that the spatial scales and visual features used by the saliency models are inadequate for data 
visualizations.

2.1 Spatial Scales
Each of the models discussed above (Itti, eDN and BMS) follows a common approach. First, for each type of visual feature used 
by the model, “interestingness” maps (or “conspicuity maps,” after Itti et al. [25]) are computed at one or more resolutions. 
Second, the individual feature maps are combined into an overall attention map and then into a saliency map. 

As an example, the Itti model operates on multiple spatial scales by constructing a Gaussian pyramid from the input image. 
At each level of the pyramid, a Gaussian smoothing function is applied and the image is subsampled by a factor of two, creating a 
smaller, smoothed version of the image, as shown in Figure 2. A feature map is computed for each level, and then the feature 
maps are compared across levels of the Gaussian pyramid. Image regions with the greatest difference in feature values across 



scales are assigned higher saliency values than regions with smaller differences across scales. This comparison process is the 
model’s implementation of the center-surround neural activation properties of the human visual system.
Although this approach works relatively well for natural scenes, the spatial properties of data visualizations are quite different. 
Many of the elements in data visualizations (glyphs, lines, text) are quite small, and visualizations are likely to have a higher 
proportion of small but important variations than natural scenes. The smoothing and subsampling process results in the loss of 
these small details. For example, text becomes blurry at the first level of smoothing, leading to minimal differences between the 
levels of the Gaussian pyramid when the visual features of the text are compared across scales. This results in low saliency values 
for text even though text typically receives a high proportion of fixations [37]. 

Figure 2. Example of a Gaussian pyramid with four levels of smoothing and resizing.

Another problematic aspect of the existing saliency models is that many of them resize the input image to a standard size as 
their first step. For example, the BMS model begins by resizing the input to be exactly 600 pixels wide. Similarly, the reference 
implementation of the eDN model resizes its input to a resolution of 512x384. While this makes the computation go quickly, it 
also tends to blur text into unrecognizability and obliterate fine contours completely. This is a particular problem for 
visualizations since the meaningful elements of many data representations (line charts, box charts, some geographic maps and 
weather diagrams) are nothing but fine contours.

2.2 Visual Features
While the way in which the models combine their feature maps is fundamentally similar, they differ in terms of the specific 
visual features used to create the feature maps. The Itti model computes center-surround operations on intensity, orientation and 
color channels and combines them to create the attention map. It computes four color maps (red, green, blue and yellow) using 
RGB pixel values. The eDN model uses a support vector machine trained over many randomly constructed hierarchical features 
[42]. These features operate variously on RGB, YUV and grayscale images. The BMS model uses exactly one feature – 
connected regions. It computes these regions at multiple intensity thresholds using the channels of the CIE LAB color space.

2.2.1 Color
Since all three models compute some or all of their features over color channels, we believe that the color space chosen for 

these computations is particularly important. In our assessment of the three saliency models using the MASSVIS images, we 
noted that the models often assigned low saliency values to bright red regions, causing discrepancies between the saliency maps 
and the map of human fixations. We believe that this mismatch is driven by the fact that human color perception is very different 
from the way colors are created on paper or on an electronic display.  This difference manifests in two ways.  First, color spaces 
such as RGB or CMYK that are defined by the properties of an output device are perceptually non-uniform.  That is, adding 0.1 
to the red component of a color produces a larger perceived difference for some colors than for others. Second, the different 
“channels” of human color perception are not independent as they are in the case of display primaries.  That is, adding redness 
while keeping luminance constant may change perceived luminance. 

The YUV color space uses a luminance + chrominance representation of color that it is designed to permit efficient 
compression while minimizing artifacts. From the perspective of perceptual uniformity, YUV is an improvement over RGB but 
still leaves much to be desired.  In order to do color arithmetic in a way that yields perceptually comparable results, it is advisable 
to work in a color space like CIE XYZ or CIE LAB [14]. The XYZ model operates with the tristimulus values obtained from the 
color-sensitive cones in the retina. The LAB model transforms these into a luminance channel (L) and two color-opponent 
channels (A and B) that agree with current thinking about the way color is processed in the brain. The LAB model has the 
additional advantage of being perceptually uniform. Adding 0.1 to a color component produces a change that appears to the 
observer to be of the same magnitude regardless of where it is in the color space. As a result, feature maps computed over 
different channels in the color space have values that can be meaningfully compared with one another.

2.2.2 White Space
A crucial difference between visualizations and natural scenes is the presence of white space. The real world is cluttered and 

natural scenes tend to have information (in the Shannon sense) absolutely everywhere. Synthetic scenes do not: they often 
contain large areas of uniform, untextured color. Some of these may be objects, but some are simply blank areas. Distinguishing 



between the two is a challenge. In either case, feature-based saliency models may have trouble “seeing” these regions since they 
will only be detectible a very coarse scale.

The spatial distribution of figures relative to the background is also quite different for abstract data representations than for 
physical objects. Many saliency models use a center weighting. This works well for photographs, where objects of interest are 
often centered. However, it may not be appropriate for visualizations, where meaningful information can appear in any spatial 
location and is often deliberately distributed across the entire image.

2.2.3 Text
As mentioned above, text in data visualizations receives a great deal of attention from viewers. In prior work, we have found 

that people viewing data visualizations while performing memory or free viewing tasks devote a disproportionate amount of 
attention to regions containing text. For example, in one dataset, an average of 60% of the participants’ fixations fell in regions 
containing text, relative to 30% in regions containing visual representations of data [37]. In general, participants were highly 
likely to view regions containing text and to view them relatively early in the trial.

There are several causes for the high proportion of fixations devoted to text in visualizations. In general, literate people’s 
attention is automatically drawn to text [28,33,35]. In data visualizations, text often provides context and details that are 
necessary for understanding the data. For example, our prior work found that participants are likely to refer to text-containing 
regions such as the legend and data labels multiple times as they view the visualization [37]. Finally, reading text requires 
numerous fixations. Under normal conditions, the estimated visual span for reading is about 10 letters [31]; words presented in 
peripheral vision cannot be resolved due to low visual acuity and crowding.

While text draws attention and necessitates many fixations, it is not included as a feature in most saliency models. The 
models are tailored to and/or trained on images of natural scenes, which rarely contain text. Our analysis of the performance of 
existing saliency models on data visualizations indicates that assigning appropriate levels of saliency to text is one of the key 
areas in which their performance could be improved.

3 THE DATA V ISUALIZATION SALIENCY MODEL

Existing saliency models fall short for data visualizations, but our analysis of several models revealed concrete steps that can be 
taken to adapt them to this domain. We have developed the Data Visualization Saliency (DVS) model‡‡‡, which builds on the 
strengths of existing models while extending their capabilities to account for the visual features and spatial scales that are 
common in data visualizations. The two primary components of the current implementation of the model are a modified version 
of the Itti model and a text recognizer, which allows us to detect one of the key features of visualizations that is missed by current 
models. The DVS model combines the outputs of the modified Itti model and a text map to produce saliency maps that are 
specialized for data visualizations.

3.1 Modified Itti Model
We took as a starting point the Itti, Koch and Niebur saliency model [25] as implemented in the Graph Based Visual Saliency 
(GBVS) toolbox [20,21]. Of the existing models that were tested with data visualizations, this model had the highest performance 
[18]. The authors of the GBVS saliency model note that the original Itti model uses a simple color opponency representation 
based on RGB values. As discussed above, using the RGB color space is suboptimal, particularly in the case of data 
visualizations, where colors are chosen deliberately by a designer. To better approximate human visual perception, we modified 
the original algorithm by transforming the representation of the input images into CIE LAB color space. This change is likely to 
improve the model’s performance for all types of imagery, but it is particularly important for visualizations, in which colors are 
deliberately selected to convey information. 

3.2 Text Saliency Map
As discussed above, viewers devote a great deal of attention to text in data visualizations, yet text is not highlighted in existing 
saliency models. Although text regions often have high contrast, they tend to be small. The high-frequency details of text are lost 
when an input image is resized or smoothed. This leads to few differences across the levels of the Gaussian pyramid, and the text 
regions are not identified as being salient. To account for viewers’ tendency to fixate on text in visualizations, we developed a 
text saliency model that could be combined with the modified Itti model. Attention to text is primarily driven by top-down visual 
attention, since people expect text to contain meaningful information. By incorporating this feature into our model, we are taking 
a step towards a saliency model that takes both bottom-up and top-down attention into account.

Our goal was to build an algorithm that computes the likelihood of belonging to a text region for each pixel of an input 
visualization image. Text detection is a popular challenge in the computer vision literature, and numerous successful models and 
algorithms have been developed in this domain. Detecting text in visualizations is a relatively easy task compared to detecting 
text from photos of real-world scenes. The method we detail below is essentially a combination of various classic text detection 
techniques. However, instead of producing a binary output, like traditional text detection algorithms, this method produces a 
continuous, probabilistic output that can be incorporated into a saliency map. 

We used a common approach in the text detection literature, which is to extract Maximally Stable Extremal Regions (MSER) 
[36] as candidate text regions, and then to apply various text-diagnostic features to filter out the non-text candidates (e.g., 
[11,17,40]). The MSER algorithm detects connected, homogeneous (“maximally stable”) regions of pixels. Because text almost 

‡‡‡ Available at: https://github.com/mjhaass/DataVisSaliency.git

https://github.com/mjhaass/DataVisSaliency.git


always has uniform color and each letter in English is connected (in the sense that each “stroke” is connected to all other strokes 
in the same letter), English letters should be detected as MSER regions (i.e., the miss rate should be very low). 

In order to exclude MSER regions that are not text, all detected MSER regions went through a filtering process based on 
simple properties of these regions, such as aspect ratio [11], Euler number [17,40], and solidity [17]. As an example, for most 
fonts of English letters and Arabic numerals, the height-to-width ratio should be less than 4 and greater than 1/3, so the aspect 
ratio of the bounding box of MSER regions was restricted to this range [11]. Finally, the data was filtered based on stroke width 
variation [17,32]. The variability of each MSER component’s stroke width was compared to its mean stroke width. If the relative 
variability was too large, the region was filtered out (since letters and digits have relatively small stroke width variations).

After the above filtering, the remaining MSER regions had a relatively high likelihood of being letters or digits. In order to 
quantify this likelihood, we computed three text-diagnostic edge features on these regions (using simplified versions of the 
algorithms proposed by [34]). We took the bounding box of each MSER region and computed these features on the image patch 
defined by the bounding box. The three feature values were then summed together to form the raw “text saliency” score. 

The first feature was based on the magnitude of the image gradient. For each image patch (i.e., each MSER region), the image 
gradient was computed on the grayscale transformation of the original colored patch. The mean gradient magnitude μ(G) and the 
standard deviation σ(G) of gradient magnitude were computed with P as a scaling constant: 

 
𝐹1 = 𝑃

𝜇(𝐺)
𝜎(𝐺) (1)

This feature is akin to a signal-to-noise ratio. In most scenarios, text strokes appear on a highly uniform background; the 
variability of the gradient magnitude is low but the text edges lead to high gradient magnitudes. This ratio should be high when 
the image patch contains text. 

The remaining features were based on the edges in an image patch. For each MSER region, the Canny edge detection 
algorithm [9] was used to compute an “edge image” for each color channel of the image patch as represented in the CIE LAB 
color space. 

The second feature attempts to capture a specific topological characteristic of text. Most text characters have either multiple 
strokes that intersect each other or curved strokes so that a vertical or horizontal “scan line” may cross the character body more 
than once. Since each stroke produces two edges, such “scan lines” will very likely cross the edges of the character more than 
twice. Therefore, the frequency of multiple-crossing by a scan line that scans horizontally and vertically is diagnostic of text. The 
higher the frequency, the more likely the image patch contains text. Formally, this feature can be given as

(2)𝐹2 = 𝑄

(
𝐻

∑
𝑖= 1

𝑓(𝑐𝑛𝑖) +
𝑊

∑
𝑗= 1

𝑓(𝑐𝑛𝑗))

(𝑊+ 𝐻)

where W and H are the width and height of the image patch in pixels, cni and cnj denote the number of crossings for a specific 
scan line (vertical and horizontal respectively) and the edges in the image patch, and f(x) is a function that returns 1 when x is 
larger than 2 and 0 when x is equal to or less than 2. The constant Q is for scaling and weighting purposes. Using an exponential 
function with base Q increases the feature’s sensitivity to higher multiple-crossing event counts and reduces sensitivity to small 
counts (which can occur randomly in non-text regions). 

The third feature was based on a more straightforward characteristic. Text strokes usually produce two parallel edges, so that 
the number of crossings between a vertical or horizontal scan line and the text edges is often an even number. Hence the third 
feature can be defined similarly to the second one:

(3)𝐹3 = 𝑅
( 𝐻

∑
𝑖= 1

𝑔(𝑐𝑛𝑖) +
𝑊

∑
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𝑔(𝑐𝑛𝑗))
(𝑊+ 𝐻)

where g(x) returns 1 if x is an even number and 0 if it’s odd. In the current implementation, the values of the scaling constants are 
P = 2.5, Q = 4, R = 1.22.

The text-specific feature values were normalized, combined, and treated as an index of probability of text in each region. The 
combined value of the three features was assigned to the pixel at the center of the region. This procedure was computed at 
different scales on the original image in order to enhance the method’s sensitivity to smaller and larger fonts. The text saliency 
indices computed at each scale were re-scaled to the original image size and then combined by averaging. This raw text saliency 
map was then processed with Gaussian smoothing to simulate the randomness in the exact locations of human fixations.



3.3 Linear Combinations of the Model Components
Because there is insufficient data to inform how to best combine the 
text saliency map and the modified Itti saliency map, we opted for the 
simplest approach: a linear combination. Formally, the DVS model’s 
saliency map S for a given visualization is computed as follows:
 

 (4)
𝑆=

(𝐼+𝑤 ∗ 𝑇)
(1 +𝑤)

where I is the saliency map given by the modified Itti saliency model, 
and T is the text saliency map. The parameter w determines the relative 
weight between I and T. Both I and T are linearly scaled to have values 
ranging from 0 to 1 before combination. The denominator, (1 + w), 
produces a weighted average to maintain the overall saliency scaling 
from 0 to 1. Thus, for each data visualization image, a series of saliency 
maps based on a series of weight values can be generated. In order to 
choose an appropriate weight for the text saliency map, we 
systematically manipulated linear combinations of I and T and 
compared the resulting saliency maps to eye tracking data from the 
MASSVIS project [5]. The MASSVIS data set provides 393 data 
visualization images and corresponding fixation data. Thirty-three 
participants viewed the images while trying to memorize them for a 
later test. One visualization was excluded from our evaluation because 
it had an irregular size (less than 128 pixels wide) that is incompatible 
with the Itti saliency model. Thus, saliency maps and performance 
metrics were computed on the remaining 392 images.

We were primarily interested in how the average value for each of 
the eight MIT Saliency Benchmark evaluation metrics changed as a 
function of relative weight w between the modified Itti saliency map I 
and the text saliency map T. When w = 0, the saliency map S is just the 
modified Itti map; similarly, when w → ∞, S is equivalent to the text 
saliency map T. If the bottom-up saliency component captured by the 
modified Itti map I and the text-directed attention captured by T do 
complement one another, at some nonzero value of w, the combined 
map S should provide higher performance than either I or T. In other 
words, the performance-relative weight function should have a 
maximum point. Because of the differences in the nature of these 
metrics, we expect these functions to have different maximum points. 
Our goal was to find a reasonably good estimate of the window of w 
values in which the function reaches maximum for each of the eight 
metrics. Figure S1 in the Supplemental Materials plots each metric as a 
function of the weight parameter. 

Notably, the baseline performance for the text saliency model was 
better than the baseline performance of the modified Itti model for six 
of the eight metrics (the SIM and KL metrics were the exceptions, 
likely because the text saliency maps include large regions that contain 
only zeros, and both of these metrics heavily penalize false negatives). 
The preference for the text saliency model is consistent with prior 
analyses showing that viewers disproportionately devote their attention 
to the text in the MASSVIS images [37]. Modelling only the text 
regions is a reasonable approximation for where people look in this 
particular data set and task. However, across all eight metrics, the linear 
combination of the modified Itti model and the text saliency model 
produced significantly higher matches to the human fixation data than 
either model alone.

The weight functions for each metric exhibit different shapes, 
reaching their maxima at different weight values. This aspect of the 
data was expected and supports the assertion that the eight metrics 
emphasize different aspects of the performance of a saliency model. 
There is no objectively optimal choice of the text saliency map weight, 
since no unique weight value optimizes all metrics of performance. In 
our experience, the choice of weighting factor typically causes 
performance results to fall into one of three categories; under fit, where 
performance increases proportionally to the weighting factor, 



acceptable, where the performance is stable, or changes very slowly with changing weighting factor, and over fit, where 
performance may increase, but the gain on a given test case is likely not to transfer to another test case. Figure S1 shows that at 
least four of the performance metrics are approaching an asymptotic limit as the weight factor value approaches 2. To reduce the 
risk of over fitting, we chose to use a weight of 2 in the following analyses. Users of the DVS model can easily adjust this weight, 
if desired.

Figure 3 shows a representative example of the differences between the DVS model and the original Itti model. Additional 
examples are provided in the Supplemental Materials. The top panel of Figure 3 shows a data visualization from the MASSVIS 
set with overlaid fixation data (A). The remaining panels show the saliency maps produced by the original Itti map (B), the 
modified Itti map (C), the text saliency map (D), and the final, weighted DVS saliency map (E). Finally, the bottom panel (F) 
shows the DVS map overlaid on the original image, using the same color scale as the fixation map, allowing for a visual 
comparison of the two. Note that the original Itti map identifies the lower portion of the bar chart as the most salient region. The 
differences between the original Itti map and the map with the modified color space are subtle, but the modified model appears to 
do a better job of picking out the line graphs. The text saliency map correctly identifies all of the text regions in the image, but 
also has a few false alarms to features in the data, such as the data points on the line graphs. The DVS saliency map indicates that 
the title is highly salient, as is the lower part of the chart and the labels at the bottom of the chart. This corresponds well to the 
actual distribution of viewers’ fixations.

3.4 Comparing the DVS Model to Existing Saliency Models
Once the weights in the DVS model had been optimized, the performance of the final model was compared to the original Itti 
model (as implemented in the GBVS toolbox), the BMS model, the eDN model, and to the text saliency maps alone. All of the 
models were used to generate saliency maps for 392 data visualizations from the MASSVIS dataset that had corresponding eye 
tracking data (as before, one visualization was excluded because its dimensions were incompatible with the Itti model). The 
saliency maps were compared to the eye tracking data using the eight metrics that are used by the MIT Saliency Benchmark. A 
one-way ANOVA was run for each metric, showing that there was a significant difference in the performance of the five models 
on all eight metrics (all Fs > 44.69, all ps < 0.001). 

Table 1 shows the percentage of improvement for the final, weighted DVS model relative to the Itti, BMS, eDN, and text 
saliency models on all eight metrics. The DVS model offered a substantial 
improvement in performance over the other models. Since the DVS model is based on the Itti model, we paid particular attention 
to how the components of the DVS model performed relative to the original Itti model. Figure 4 shows the effect size, using 
Glass’s delta, for the improvement in performance for the text saliency maps and the final DVS model relative to the original Itti 
model. Notably, for all of the metrics other than EMD, the improvement in performance over the original Itti model was larger 
than one standard deviation. Performance also improved for the EMD metric, but the magnitude of the improvement was smaller. 
Finally, we used paired t-tests to assess whether or not the DVS model, as implemented with a weighting of 2, performed better 
than the text saliency maps alone. The KL metric was excluded from this analysis because its high sensitivity to zero values 
produced abnormally large scores for the text saliency maps. The DVS model performed significantly better than the text only 
 Figure 3. (A) An image from the MASSVIS set overlaid with fixation data and saliency maps produced by the original Itti (B), 
modified Itti (C), text saliency (D), and DVS (E) saliency models, with the DVS map overlaid on the original image in (F).
model as measured by six of the seven metrics (all ts > 2.04, all ps < 0.02). The only exception was the EMD metric (t(391) = 
0.65, p = 0.26). In this case, the scores for the text only and DVS models were nearly identical.

Table 1. Percentage Improvement for the DVS Model Relative to the Itti, BMS, eDN, and Text-Only Models.

Itti BMS eDN Text
AUC-J 9% 11% 24% 2%
AUC-B 9% 12% 22% 5%Location 

Metrics
sAUC 9% 11% 21% 4%
SIM 9% 14% 18% 15%
EMD 18% 21% 26% -1%
CC 41% 70% 133% 5%

Distribution 
Metrics

KL 20% 37% 33% --
Value Metric NSS 55% 82% 176% 2%

AUC-J AUC-B sAUC SIM EMD CC KL NSS
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Figure 4. Effect size, using Glass’s delta, of the improvement due to using the DVS model for all eight metrics.

4 TESTING THE DVS  MODEL’S PERFORMANCE

While the DVS model outperformed the Itti model in our initial assessment, there are several factors that limit our ability to 
generalize these findings. First, the MASSVIS data were collected in the context of a memory study, which might bias 
participants to focus more on the text in the visualizations. In addition, participants in the MASSVIS study viewed the images for 
10 seconds, which is a longer duration than is typically used for comparing fixation data to saliency maps. For example, the 
widely-used eye tracking data sets provided by the MIT Saliency Benchmark had images that were presented for three seconds 
(MIT300) [27] or for five seconds (CAT2000) [4].

To get a broader understanding of the performance of the DVS model relative to existing saliency models, we used an 
additional data set to compare the performance of the DVS, Itti, BMS, and eDN models. This data set [37] consisted of eye 
tracking data collected from 30 participants who viewed four types of stimuli. As in the CAT2000 dataset, the participants 
viewed each stimulus for five seconds under free viewing conditions. The stimuli were presented in four counterbalanced blocks. 
One block contained 35 data visualizations from the MASSVIS dataset. Another contained 27 newly-generated, simple data 
visualizations that contained relatively little text. This set contained three visualizations of each of the following types: bar charts, 
box plots, bubble plots, column charts, line plots, parallel coordinates plots, pie charts, scatter plots, and violin charts. The other 
two blocks contained stimuli from the CAT2000 dataset [4] that were selected for their visualization-like properties. One block 
contained 30 line drawings and the other contained 16 images of fractals. These materials were chosen because they have already 
been incorporated into assessments of visual saliency models, yet like data visualizations, they have visual properties that differ 
from those of natural scenes. The line drawings have the same overall spatial layouts as natural scenes, but no colors and many 
fine contours that may be lost when the images are smoothed and resized by the saliency models. The fractals have very different 
spatial properties and color palettes than natural scenes, with vivid colors and shapes that fill the entire frame. Like data 
visualizations, they are abstract and computer-generated.

For each subset of stimuli, we assessed the match between the human fixation data collected by Matzen and colleagues [37] 
to the saliency maps produced by the DVS, Itti, BMS and eDN models using the eight MIT Benchmark metrics. In addition, as a 
point of reference, we compared the fixation data across experiments. For the MASSVIS stimuli, fixations were compared across 
the Matzen and colleagues [37] dataset and the original MASSVIS study [5]. For the fractal and line drawing stimuli, the fixation 
data was compared to the MIT Saliency Benchmark fixation data [4,7]. Although different groups of participants viewed the 
stimuli in the various experiments, and in the case of the MASSVIS data, the participants were performing a different task, we 
would expect to see the highest scores on the eight metrics when comparing one set of human fixations to another. If the models 
can accurately predict where viewers will look in data visualizations, their performance should approach the level of agreement 
between the two sets of fixation maps.

The results of the analysis for the line drawing stimuli are shown in Table S1 in the Supplemental Materials. These stimuli are 
most similar to natural scenes in terms of their spatial properties. As expected, the comparison between the two sets of fixation 
data had the best similarity scores for most of the metrics (six of the eight). When comparing the performance of the four models 
against the Matzen and colleagues [37] fixation data, the eDN model had the best scores for four of the eight metrics, the Itti 
model had the best scores on three of the metrics, and the DVS model had the best score on one metric, the sAUC.

The results of the analysis for the fractal stimuli are shown in Table S2 in the Supplemental Materials. These stimuli are 
somewhat of an intermediate point between natural scenes and data visualizations. They are computer generated and do not have 
naturalistic colors or spatial layouts, yet they do not contain text and their visual elements are not intended to convey specific 
information to the viewer. For these stimuli, the comparison of the two sets of fixation data had the best similarity scores for all 
eight metrics. When comparing the models to the fixation data, the eDN model had the best scores for six metrics and the DVS 
model had the best scores for two of the metrics. 

The results of the analysis for the simple data visualizations are shown in Table S3 in the Supplemental Materials. When the 
four sets of saliency maps were compared to the fixation data, the DVS model had the best scores for seven of the eight metrics. 
The Itti model had the best score on the AUC-Borji metric. 

The results of the analysis for the MASSVIS stimuli are shown in Table S4 in the Supplemental Materials. Once again, the 
comparison of the two sets of fixation data led to the best similarity scores for all eight metrics. When comparing the models to 
the fixation data, the DVS model had the best scores for all eight metrics.

To test whether or not the DVS model performed significantly better than the Itti, BMS and eDN models for data 
visualizations, the two sets of visualizations were combined. One-way ANOVAs were conducted for each of the eight metrics. 
These ANOVAs showed that there was a significant difference in performance across models for all eight metrics (all Fs > 22.37, 
all ps < 0.001). Post-hoc t-tests showed that the DVS model’s scores were better than the other models’ scores for seven of the 
eight metrics (all ts > 3.74, all ps < 0.001). The exception was the AUC-Borji metric. According to this metric, the DVS model 
performed significantly better than the BMS (t(61) = 6.50, p < 0.001) and eDN (t(61) = 9.34, p < 0.001) models, but not the Itti 
model (t(61) = 1.20, p = 0.12).

4.1 Discussion
Our comparison of the Data Visualization Saliency model to the Itti, BMS, and eDN models found that the eDN model was 
generally the highest performer for line drawings, images that are somewhat abstract, but that share the spatial properties of 
natural scenes. This is consistent with the eDN model’s overall high performance on the MIT Saliency Benchmark, the source 
from which the line drawing stimuli were taken. Similarly, the eDN model was also the best performer for fractal stimuli, which 
were also drawn from the MIT Saliency Benchmark set. We observed that the eDN model tends to produce saliency maps with a 



pronounced center weighting. This aligns well to the fixation maps for the fractal stimuli, where participants tended to fixate 
most on the center of the images.

For the line drawing and fractal stimuli, the DVS model’s performance was typically similar to, or slightly better than, that of 
the Itti model, the model on which it is based. This indicates that our changes to the Itti model’s color maps and the addition of 
the text saliency maps does not hinder the model’s performance on stimuli that are not data visualizations. We anticipate that this 
would be true for images of natural scenes as well. The improved color map provides small improvements to performance, while 
the text saliency map contains only zero values in a scene that has no text, so it does not impact the final DVS map for such 
scenes. 

Since our focus is on developing a saliency model that can be used as an evaluation tool for data visualizations, those stimuli 
provide the most important test of the model’s performance. Our test set included two types of data visualization stimuli: simple 
visualizations that contained minimal text, no contextual information, and no “chart junk,” and in-the-wild visualizations culled 
from publications, which typically contained explanatory text, source information, and graphical elements chosen for aesthetic or 
branding reasons. For the simpler data visualizations, the DVS model had the best performance according to seven of the eight 
metrics, and for the more complex visualizations, it had the best scores for all eight metrics. These results show that modifying 
the color map of the Itti model and adding a new visual feature (text saliency) led to significantly better performance on data 
visualizations.

For the MASSVIS stimuli, we were able to compare fixation data recorded from two different populations of participants in 
two different experimental contexts [5,37]. This comparison is in some sense a benchmark for model performance. If the models 
can accurately predict human fixations, their performance should approach the level of similarity obtained by comparing two sets 
of fixation data. The DVS model’s scores were the closest to the scores for the fixation-to-fixation comparison for all eight 
metrics, and for the sAUC and KL metrics, paired t-tests showed that there was not a significant difference between the two 
scores (t(34) = 0.01 for sAUC, t(34) = 0.04 for KL).

5 APPLYING THE DVS  MODEL

Our results indicate that, of the models tested, the saliency maps produced by the DVS model were the best match to maps of 
human fixations, approaching the level of fixation-to-fixation comparisons in some cases. This suggests that the DVS saliency 
maps provide a reasonable approximation of which regions of a visualization are most likely to draw the viewer’s attention. 

As described above, this provides a useful evaluation metric for visualization designers. Ideally, the most important 
information in a visualization will also be highly salient [26,38]. Jänicke and Chen [26] illustrated this approach by using the Itti 
model as an evaluation tool. They compared saliency maps generated by the Itti model to a “relevancy map” defined by the 
visualization designer. They suggest that this comparison can be used to evaluate different visualization techniques or candidate 
visualizations in order to choose the one that most effectively highlights the important information.

The DVS model represents an improvement over the Itti model, but it can be used in a similar manner to evaluate 
visualizations. For example, the DVS saliency map in Figure 3 shows that the viewer’s attention is most likely to be drawn to the 
text, the dark blue bars, and the tops of the light blue bars upon his or her initial viewing of the visualization. However, suppose 
that the visualization designer knows that the data represented by the line graphs is particularly important. The DVS saliency map 
provides a quick and easy way to assess whether or not this visualization will draw attention that data. In this example, the line 
graphs are not very salient, so the match between the importance of the data (i.e., top-down goals) and its salience (i.e., bottom-
up attention) is poor. Armed with this information, the designer can try other variants of the visualization or other visualization 
techniques in order to select one that makes the most important information more salient.

The simplest way to evaluate a visualization using a saliency model is to take a qualitative approach. A designer can generate 
saliency maps for a set of visualizations and compare them visually, identifying the options that have a good distribution of 
saliency (as defined by the designer’s goals). However, the saliency maps can also be used in a quantitative fashion. As suggested 
by Jänicke and Chen [26], designers could define a relevancy map and assess the match between the relevancy and the saliency 
maps. This assessment could be done categorically, as in their paper, or it could be done using one or more of the eight metrics 
that are commonly used to assess saliency maps. If only one is used, we propose that the value-based NSS metric would be the 
most appropriate for this type of comparison. If the designer assigns a relevancy value to each region of a visualization, the NSS 
metric can be used to assess the match between the relevancy values and the saliency values at each location. One prior study 
[23] has used the NSS metric to compare fixation data to important features in 2D flow visualizations, so there is some precedent 
for using this particular metric in the context of evaluating visualization techniques.

Another approach to quantitative assessment is to define regions of interest that outline the most important features in the 
data. After generating a saliency map, a designer could assess what percentage of the saliency falls within the regions of interest. 
This provides a simple numerical assessment of the match between the importance of the data and its saliency. To aid in 
evaluation, we have implemented this feature in the DVS model. A user can input the coordinates of a polygon describing a 
region of interest, and the model will provide the percentage of visual saliency, normalized for overall area, that falls within that 
region.

6 GENERAL D ISCUSSION

Visual saliency models have been the focus of a great deal of research in the cognitive science and computer vision communities 
because mimicking human visual attention has numerous applications, including image compression, image segmentation, object 
recognition, visual tracking, and image quality assessment [38,45,49]. Visual saliency maps could also play a role in evaluating 
data visualizations by allowing designers to determine whether or not a particular visualization draws the viewer’s attention as 



intended. Since saliency models are inspired by the properties of the human visual system, the same system that is used to convey 
information in data visualizations, these models have the potential to serve as a simple and general evaluation tool.

While visual saliency models have a great deal of potential as an evaluation metric, prior evaluations have shown that existing 
saliency models consistently underperform on data visualizations, often failing altogether [18]. The models that perform best with 
natural scenes perform worst on data visualizations, and vice versa. Through assessments of three saliency models that generally 
perform well for natural scenes, we found that the spatial scales and visual features used by the existing saliency models are 
inadequate for data visualizations. Two particularly problematic areas were color models and text. The existing models perform 
operations using color spaces that do not correspond well to human perception of color. And while text draws a great deal of 
human attention, it is typically missed by saliency models due to its small spatial extent and high-frequency variation. Color and 
text are both very important features of data visualizations, chosen by designers to convey specific information to viewers. Thus, 
we chose to focus on these two areas in order to develop a saliency model that makes more accurate predictions of where viewers 
look in data visualizations.

We based the Data Visualization Saliency (DVS) model on the Itti model, which performed better than other existing saliency 
models on data visualizations. We modified the Itti model to use the CIE LAB color space, which is more representative of 
human color perception, and added a model of text saliency. We used a linear combination to incorporate the text saliency maps 
into the modified Itti model, and optimized the weighting of each component by testing the model against the stimuli in the 
MASSVIS dataset. To assess the performance of the final, weighted model, we compared its performance to the original Itti, 
BMS and eDN models using a set of fixation data obtained from participants viewing line drawings, fractals, and data 
visualizations [37]. We found that the DVS model’s performance was comparable to the original Itti model’s performance on the 
line drawing and fractal stimuli, and that it performed significantly better than the other models for data visualizations.

We suggest that the resulting model could be a simple and useful evaluation tool, which visualization designers can use to 
compare candidate designs in either a qualitative or quantitative manner. This approach is broadly applicable, but it may be 
particularly relevant to the evaluation of emphasis effects. There are numerous techniques that have been developed to emphasize 
subsets of the data in a visualization (see [19] for a review and evaluation framework). Hall and colleagues [19] frame emphasis 
effects in terms of visual prominence, which is another way of describing visual salience. They discuss intrinsic prominence, 
driven by the initial process of creating a visual mapping for data, and extrinsic emphasis effects, such as zooming and 
highlighting, that are used to enhance the prominence of selected features. Saliency maps could be used to evaluate both types of 
effects and to determine when one type of emphasis overrides the other. An evaluation based on visual saliency is particularly 
suited to assessing emphasis effects, since many of the features that are commonly used for emphasis (e.g., changes in color or 
size) are the same features that are used by saliency models.

Evaluations using visual saliency maps are complementary to other evaluation techniques, such as eye tracking. Eye tracking 
is a useful evaluation tool in its own right, and has been growing in popularity [13,15,16,29,44]. In our prior work with scene-like 
visualizations, we showed that eye tracking and saliency maps could be used in combination to assess the importance of features 
in the data and to understand the impact of users’ expertise on their attention to those features. This provides information about 
how the visualization could be modified to better support the users’ needs [38]. However, while eye tracking can be very 
informative, these studies can also be very time consuming and complex. Saliency maps provide a prediction of where users are 
likely to look without the need for eye tracking, and for many evaluation contexts, this may be sufficient.

6.1 Limitations and Future Directions
Although this model has the potential to be a simple and generalizable evaluation metric, there are several limitations to this 
approach. One important limitation is that the DVS model currently applies only to static images. This is a limitation both 
because interactions are a key component of many visualizations and because motion is a visual feature that typically captures 
human attention. In its current implementation, the DVS model can be applied to still images representing different phases of an 
interactive process, but it cannot capture the interactive component itself. In future work, motion detection algorithms could be 
incorporated into the model, enabling it to predict which parts of a dynamic scene will draw the viewer’s attention most strongly. 
This would improve the model both in terms of its representation of human visual processing and in terms of its utility as an 
evaluation tool.

Another limitation is that the current implementation of the model does not change the spatial scales used by the Itti model, 
although these can also be problematic when applied to visualizations. The model resizes and smooths images, resulting in the 
loss of fine-grained details that are often very important in data visualizations. In future work, we plan to address these issues by 
allowing larger input images (limiting the need for resizing) and exploring the effects of changing the scales at which 
multiresolution differences are calculated.

A limitation of saliency models in general is that they focus on bottom-up visual attention. Bottom-up attention is only part of 
the picture, and top-down visual attention, driven by the viewer’s task, goals, and prior experience, is also of tremendous 
importance in determining where a person will look in an image or a visualization [22,38,47].  Viewers with different goals may 
look at completely different parts of the same visualization. The DVS model incorporates one aspect of top-down attention by 
incorporating attention to text. Small regions of text may not be very salient from a bottom-up perspective, but people look at 
these regions because they expect them to convey meaningful information. In the future, additional feature detectors could be 
incorporated into the model to capture common graphical codes that convey semantic information in data visualizations [46], as 
these would also have high importance from the perspective of top-down attention. The eight evaluation metrics could be used to 
assess how the performance of the model changes with the addition of each feature.

On the other hand, the addition of more top-down features could quickly reduce the generalizability of the model. Text is 
unique in some sense because all literate people have extensive experience with processing text, to the point where it becomes 



automatic and involuntary [28,33,35]. That is not necessarily the case for other features that are used in visualizations. This could 
lead to differences between users with different levels of experience with the visualization technique or with the domain.

An alternate approach may be to incorporate Gestalt-based features into the model, since many visualization techniques are 
rooted in Gestalt psychology [46]. Like text comprehension, Gestalt principles reflect general cognitive processes that are not 
dependent on knowledge of any particular domain. The BMS saliency model relies on the Gestalt principle of figure-ground 
segregation to identify figures within an image [18,48], so incorporating Gestalt principles into a saliency model is certainly 
feasible. The BMS model does not perform well for visualizations [18], indicating that this principle alone is not sufficient for 
our purposes. However, it may be possible to use a similar approach to implement Gestalt-based features within the DVS model. 
The combination of the modified Itti maps, text saliency maps, and Gestalt-based maps could further improve the model’s 
performance. This is an area that we would like to explore in future research.

Visualizations serve a variety of functions and support a vast range of tasks, so there is an enormous range of factors that 
might influence the viewer’s top-down, goal-oriented processing. The wide range of roles for visualizations is part of what makes 
evaluation difficult in the first place! Saliency models cannot solve this problem, even with the addition of more features that are 
inspired by top-down attention. However, despite their imperfections, they can still be a useful tool in a designer’s evaluation tool 
kit. If a designer has a sense of what information is most important from a top-down perspective, she can then assess the visual 
saliency of her design to determine whether or not the most important features are also salient from a bottom-up perspective. This 
provides a simple and rapid assessment that can be used in a quantitative or qualitative fashion to inform the visualization’s 
design.
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