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Abstract

This project was inspired by two needs. The first is a need for tools to help scientists and
engineers to design effective data visualizations for communicating information, whether to
the user of a system, an analyst who must make decisions based on complex data, or in the
context of a technical report or publication. Most scientists and engineers are not trained in
visualization design, and they could benefit from simple metrics to assess how well their
visualization’s design conveys the intended message. In other words, will the most important
information draw the viewer’s attention?

The second is the need for cognition-based metrics for evaluating new types of visualizations
created by researchers in the information visualization and visual analytics communities.
Evaluating visualizations is difficult even for experts. However, all visualization methods
and techniques are intended to exploit the properties of the human visual system to convey
information efficiently to a viewer. Thus, developing evaluation methods that are rooted in
the scientific knowledge of the human visual system could be a useful approach.

In this project, we conducted fundamental research on how humans make sense of abstract
data visualizations, and how this process is influenced by their goals and prior experience.
We then used that research to develop a new model, the Data Visualization Saliency Model,
that can make accurate predictions about which features in an abstract visualization will draw
a viewer’s attention. The model is an evaluation tool that can address both of the needs
described above, supporting both visualization research and Sandia mission needs.
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EXECUTIVE SUMMARY

A key factor in designing effective algorithms and tools is presenting the data to the human user in a
format that s/he can interpret and understand. Visualizations are a common way to present data to users
because humans rely heavily on vision to navigate the world, and those same cognitive processes can be
used to navigate through information space. However, as data sets and analyses become ever more
complicated, presenting information to analysts in a way that they can comprehend becomes ever more
challenging.

While there is a great deal of research devoted to data visualization methods and techniques, efforts to
assess the effectiveness of the resulting visualizations for the end users remain rare. Prominent
researchers have argued that “the creation of comprehensive models of human-computer cognitive
processing should be a core component of the visual analytics effort, and is an essential prerequisite for
success of visual analytics as a field” [1]. In this project, we addressed these needs by combining a
bottom-up model of visual saliency (the Data Visualization Saliency, or DVS model) with top-down eye
tracking studies of sensemaking in the context of abstract data visualizations. We supported the
development of this model with a series of human subject experiments, tracking participants’ eye
movements while they interacted with various types of visualizations under different goals. This novel
combination of evaluation and modeling techniques drawn from the cognitive science and information
visualization literatures helps lay the scientific foundation for evaluating data visualizations from a
human cognitive perspective. Better understanding both what attracts a user’s attention and why places
us on stronger footing for designing more effective visual representations. With data complexity far
outstripping the power of our representations, this ability constitutes a strategic advantage as well as a
deep theoretical contribution.

This project built on Sandia’s unique combination of strengths in data science, cognitive science, and
information visualization to address fundamental questions about comprehension of abstract data
visualizations, while leveraging Academic Alliance funded collaborations with both the University of
Illinois and Georgia Tech. These questions are critically important for advancing the field of visual
analytics and for improving human performance in the numerous mission areas that rely upon
visualizations to support analysis and decision making.



1. PROJECT OVERVIEW

Data visualizations are ubiquitous in research and national security domains, and professionals in a wide
variety of fields rely on visualizations when making high-consequence decisions. However, very little is
known about how to evaluate a visualization’s effectiveness for an end user. As data sets become larger
and more disparate, it is becoming increasingly difficult to develop effective techniques for displaying
complex, abstract data. For several years, prominent researchers in the field of information visualization
have been calling for models informed by cognitive science to aid in the design and evaluation of data
visualizations and visual analytics tools [1].

Despite the clear need for methods for evaluating data visualizations that are grounded in human
cognition, at the start of this project, few researchers had addressed this issue. The few studies of how
users navigate through data visualizations focused on fairly simple metrics, such as the order in which
people view the axes on a graph [2; see also 3, 4, 5]. One reason for the lack of progress in this area was
that few institutions have collaborations between cognitive scientists and visualization researchers, and
even fewer have such collaborations in addition to access to the subject matter experts and analysts who
are the intended end users of many visualizations. Sandia is uniquely positioned to address this issue
because of our strongly interdisciplinary teams, access to subject matter experts, and our need for better
methods in this area, both for applications within Sandia and in projects for external customers. Sandia
has a strong history of visualization research, data science, and research on human cognition and
decision making. We have a growing portfolio of visual cognition research that we leveraged to address
these crucial questions about how people navigate through visual information when reasoning about the
data and drawing conclusions.

We aimed to address the gaps identified above by conducting a series of studies that helped to lay the
scientific foundation for evaluating visualizations from a human cognitive perspective. The project had
two main goals. The first was to develop models for assessing the bottom-up visual saliency of data
visualizations, and the second was to conduct eye tracking studies to develop models of the top-down
sensemaking strategies employed by users of data visualizations. We utilized a novel combination of
evaluation and modeling techniques drawn from both the cognitive science and information
visualization literatures. This research is advancing the state of the art for evaluating the utility of data
visualizations and has had a broad impact both within and outside of Sandia, benefiting numerous other
projects.

1.1. Outline of Technical Work

Human visual processing is guided by two parallel processes: bottom-up and top-down visual attention,
also known as stimulus-driven and goal-oriented attention [6]. Bottom-up visual attention is captured
automatically by the physical properties of a stimulus (e.g. contrast, color, motion) while top-down
visual attention is allocated voluntarily and is driven by the viewer’s goals and expectations (e.g. what
information the person is looking for and past experience with where to find that information [7]). The
cognitive processing underlying visual search is thought to have two main processes. In the first stage,
which happens very rapidly when a person first sees an image, the visual cortex of the brain pre-
attentively filters the stimulus, identifying the most visually salient regions (the regions with high
bottom-up salience). The information obtained at this stage of processing is then used to guide top-down
visual attention, in which the viewer processes information serially by moving his or her eyes from one
region of interest to another [8]. Regions with high bottom-up saliency may or may not be relevant to
the viewer’s task and goals, so there is a constant interplay between the two neural systems that guide



visual attention and eye movements [9]. By focusing on both of the cognitive processes that guide
humans’ interactions with the visual world, we aimed to advance the scientific theories of visual
attention while also providing practical guidelines for visualization designers.

The neural processes underlying bottom-up and top-down visual attention are fairly well understood, but
the vast majority of the work prior to this project focused exclusively on natural scenes, such as
photographs [10]. There were existing bottom-up saliency models that can predict where a viewer will
look in a photograph [11]. The first publication produced by this project drew on prior visual cognition
research at Sandia [12, 13, 14] and showed how an existing saliency model, the Itti and Koch model [11]
could be combined with eye tracking data to evaluate the utility of scene-like data visualizations
(Matzen, Haass, Tran & McNamara [15], see Appendix A for full text).

Our next step was to apply the Itti model and other popular saliency models to abstract data
visualizations, such as those that are commonly find in scientific reports, software and system user
interfaces, and visual analytics tools. We found that the models that perform best for images of natural
scenes tend to fail for abstract data visualizations (Haass, Wilson, Matzen & Divis [16], see Appendix B
for full text). Through a detailed assessment of where and why the models failed for abstract
visualizations, we began to develop the Data Visualization Saliency (DVS) model to enable more
accurate predictions of where viewers will look in a visualization.

To support the development of the model, we conducted a series of eye tracking studies to assess how
viewers navigate through abstract visualizations. Our goal was to incorporate new features into the
model to account for the unique visual properties of abstract visualizations. These features needed to be
realistic in terms of how the human visual cortex processes information (e.g., appropriate color maps),
and they also needed to be structured so that the contents of visualizations could reliably be incorporated
into the saliency model. A cross-validation approach in which the model’s saliency predictions were
compared to recorded eye movements was used to determine the utility of each feature. The validity of
this framework was tested using existing metrics that have been developed for assessing the match
between predicted patterns of eye movements and actual user eye movements [17]. An initial study
developed a new method for using scanpath data to infer a viewer’s high-level task (Haass, Matzen,
Butler & Armenta [18], see Appendix C for full text). Our first study that focused specifically on top-
down influences on viewing of data visualizations found that viewers disproportionately attend to text in
visualizations (Matzen, Haass, Divis & Stites [19], see Appendix D for full text). Two subsequent
studies focused on the influence of high-level tasks and prior experience on comprehension of
visualizations. A manuscript describing these studies is in preparation. See Appendix E for the
preliminary results.

The results of the eye tracking studies informed the development of the DVS model, which is the first
model of its kind to draw on both top-down and bottom-up characteristics in relation to data
visualizations. The model expands the dimensionality of existing bottom-up saliency models and
generates accurate saliency maps that can be used for evaluating abstract visualizations. The final,
published version of the model significantly out-performs existing saliency models when applied to data
visualizations, typically by a standard deviation or more (Matzen, Haass, Divis, Wang, & Wilson [20],
see Appendix F for full text). The model is available for download at:
https://github.com/mjhaass/DataVisSaliency.git



https://github.com/mjhaass/DataVisSaliency.git

1.2 Summary

The lack of evaluation methods informed by models of human cognition was a crucial gap in the science
of data visualization, both in terms of scientific understanding and in terms of mission needs, that this
project has taken major steps toward addressing. Although some research had previously addressed this
problem for natural scenes and for scene-like visualizations, many mission-critical visualizations are
based on abstract or multidimensional data that cannot be tied to a natural physical representation. These
are more difficult to design and evaluate, and they are also more difficult for an end user to interpret.
When interpreting a photograph or a scene-like visualization, a user can draw on a lifetime of experience
with navigating the physical world. Until this project, there had been very little research on how users
navigate through abstract information spaces. This area carries a substantially higher level of technical
risk because of the diversity of representations and applications for abstract data visualizations, as well
as the absence of the constraints imposed by natural scenes on humans’ visual search and reasoning
strategies.

We have made substantial process in addressing this gap by integrating information about how humans
process abstract visualizations from the perspective of both bottom-up and top-down visual cognitive
processing. The outcome of this line of work is a widely applicable tool that can be used by data
scientists and visualization designers to assess the visual saliency of their data visualizations and to
predict (and guide) the user’s allocation of attention. This in turn will support the end users of these
visualizations, providing them with better tools that will enable faster and more accurate reasoning and
decision making.
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APPENDIX A: USING EYE TRACKING METRICS AND VISUAL SALIENCY MAPS TO
ASSESS IMAGE UTILITY!

Abstract

In this study, eye tracking metrics and visual saliency maps were used to assess analysts’ interactions with synthetic aperture radar (SAR)
imagery. Participants with varying levels of experience with SAR imagery completed a target detection task while their eye movements and
behavioral responses were recorded. The resulting gaze maps were compared with maps of bottom-up visual saliency and with maps of
automatically detected image features. The results showed striking differences between professional SAR analysts and novices in terms of
how their visual search patterns related to the visual saliency of features in the imagery. They also revealed patterns that reflect the utility
of various features in the images for the professional analysts. These findings have implications for system design and for the design and
use of automatic feature classification algorithms.

' Matzen, L. E., Haass, M. J., Tran, J., & McNamara, L. A. (2016). Using eye tracking metrics and
visual saliency maps to assess image utility. Electronic Imaging, 2016 (16), 1-8.

13



Introduction

Human visual processing is guided by two parallel processes:
bottom-up and top-down visual attention, also known as stimulus-
driven and goal-oriented attention [1]. Bottom-up visual attention
is captured automatically by the physical properties of a stimulus
(e.g. contrast, color, motion) while top-down visual attention is
allocated voluntarily and is driven by the viewer’s goals and
expectations (e.g. what information the person is looking for and
past experience with where to find that information [2]). The
cognitive processing underlying visual search is thought to have
two main processes. In the first stage, which happens very rapidly
when a person first sees an image, the visual cortex of the brain
pre-attentively filters the stimulus, identifying the most visually
salient regions (the regions with high bottom-up saliency). The
information obtained at this stage of processing is then used to
guide top-down visual attention, in which the viewer processes
information serially by moving his or her eyes from one region of
interest to another [3]. Regions with high bottom-up saliency may
or may not be relevant to the viewer’s task and goals, so there is a
constant interplay between the two neural systems that guide visual
attention and eye movements [4].

Since the brain is so highly attuned to processing visual
information, most human-computer interfaces rely heavily on the
capabilities of the human visual system. A great deal of effort is
devoted to finding ways to visualize information so that humans
can understand and make sense of it. This is particularly
challenging when the information is multidimensional, such as in
visualizations with a temporal component. Once a visualization has
been developed, assessing its utility for a human analyst can prove
to be even more challenging than developing the visualization
itself. Ideally, a visualization should draw the viewer’s attention to
the information that is most useful to the viewer’s task. In other
words, there should be overlap between the features that are
visually salient and those that are most important from a top-down,
goal-oriented perspective.

In this paper, we describe a study in which we assessed the
utility of images by comparing viewers’ eye movements to maps of
visual saliency and image features. The project focused on
Synthetic Aperture Radar (SAR) and Coherent Change Detection
(CCD) imagery. SAR is used in a variety of surveillance and
mapping applications and the radar data is converted into a two-
dimensional image (see Figure 1) for use by human analysts [5].

Figure 1. Syntetic Aperture Radar (SAR) imagea baseball diamond.
Image courtesy of Sandia National Laboratories, Airborne ISR.

CCD images (Figure 2) are created by co-registering SAR images
of the same scene and measuring changes in coherence that can
reveal changes that have taken place in the scene over time [6].

h S | BT | ; I A iy JE - - r;
Figure 2. Coherent Change Detection (CCD) image highlighting several
changes between images taken of the same scene at two different times.
Image courtesy of Sandia National Laboratories, Airborne ISR.

Applied Studies of Imagery Analytic
Workflows

The work described in this paper is part of an interdisciplinary
family of research activities, in which Sandia National
Laboratories researchers are examining how computational
technologies influence the performance of professional imagery
analysts. In this context, imagery analysis describes the perceptual
and cognitive work of evaluating features of interest captured in
two-dimensional images generated from remotely sensed data.

Visual inspection of imagery is an important component of
work in a wide range of domains, from medical diagnostics to
tactical military planning. However, the technologies used in
imagery analysis have changed dramatically over the past couple
of decades. Even as recently as the 1990s, “hardcopy” imagery
and light tables comprised the major tools of imagery analysts.
Importantly, the standards that express nominal thresholds for the
detectability of feature classes in image products are rooted in
psychophysical studies with imagery analysts using the hardcopy
tool suite [7].

These days, however, computational or “softcopy” platforms
are the main tools of imagery analysis. In many government
workplaces, for example, light tables have disappeared as
organizations have wholeheartedly embraced desktop computing
systems and imagery analytic software. In a complementary
fashion, computers have facilitated the development of image
processing algorithms that can highlight or emphasize different
features in a scene; for example, by exploiting changes in
waveform characteristics to reveal ground changes in a scene-
something that CCD imagery does very well. In short, the entire
technological suite of imagery analysis has evolved dramatically
over the past twenty years, with a wide array of electronic
platforms and new image products available to support analytic
workflows.

The imagery analytic revolution has raised questions about
the functional equivalence of hardcopy vs. softcopy imagery for
human visual detection tasks. A related issue is assessing the
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degree to which emerging image products might be used to support
particular analytic workflows or feature detection goals. Finally,
the rapid evolution of softcopy imagery also creates opportunities
to examine how people interact with various types of image
products as they are performing the visual cognitive work of
professional imagery analysis. Of particular importance is the
acquisition of perceptual skills, as people learn to “read” different
types of imagery. We are particularly interested in understanding
how imagery analysts learn to focus on the most valuable regions
of an image product in relation to top-down analytic goals; and
how these top down goals interact with bottom-up sensory and
perceptual events driven by qualities of a given image product.
Understanding these micro-processes is critical if we are to
understand how people interact with imagery to establish a
plausible narrative about the meaning of events captured in an
image - for example, the import of footprints and tire tracks
indicative of human activity in a rural area.

Current Research

The objective of this project was to identify which features in
SAR and CCD imagery drew the attention of experienced and
novice analysts during a visual search and decision making task.
Our aim was to inform system design by identifying differences in
search patterns between groups with varying levels of experience
and relating those patterns to features in the imagery and their
visual saliency.

SAR imagery is well-suited for this type of investigation for
several reasons. First, SAR and CCD images are superficially
similar to optical imagery, but extensive training is required for
analysts to learn to interpret SAR phenomenology correctly. This
creates unique advantages for studying the influence of experience
and top-down visual attention on visual search behavior.
Professional imagery analysts who work with SAR perform visual
search tasks using SAR and CCD images on a daily basis,
developing extensive expertise and efficient visual search and
decision making strategies. At the same time, there are many true
novices who have never seen SAR or CCD images, yet the
similarity between SAR imagery and optical images enables
novices to complete visual search tasks despite their lack of
domain-specific experience. Second, several feature detection
algorithms have been developed for SAR and CCD images. These
algorithms can identify specific terrain features and image regions
that are particularly useful (or not useful) to the visual search task.
This allows us to map the participants’ gaze patterns against image
features with high or low importance from the perspective of top-
down attention. Finally, prior research has shown that visual
saliency maps designed for optical imagery, such as the tool
developed by Itti and Koch [8], are also applicable to SAR and
CCD images because of their scene-like properties [9]. This allows
us to contrast the participants’ gaze maps with maps of the bottom-
up visual saliency of the images. All of these characteristics make
SAR a particularly useful domain for studying differences in visual
search between experienced and inexperienced viewers, and how
those differences relate to properties of the images.

In the study, we collected behavioral and eye tracking data
from three groups of participants with varying levels of experience
with SAR imagery, ranging from true novices to professional SAR
imagery analysts. The participants completed a visual search and
decision making task in which they were asked to search SAR and
CCD images for targets. The targets were specific types of changes
within the scenes. The gaze maps collected from the three groups
of participants were then contrasted with visual saliency maps and

with maps of automatically segmented terrain features. We also
conducted an exploratory analysis in which the gaze maps were
compared to a metric of change susceptibility within the scenes,
described in more detail below.

We hypothesized that in situations where the decision-
relevant information was not the most visually salient information,
novice viewers would be more likely to get distracted. In contrast,
experienced analysts are likely to have developed strategies to
discount salient but irrelevant visual features. We predicted that the
experienced analysts would focus on the most task-relevant regions
of the images, regardless of their visual saliency. Comparing the
performance and eye movements of groups with varying levels of
experience allowed us to investigate the influence of top-down
visual attention on task performance and to explore the interplay
between expertise and image utility.

Eye Tracking Study

Method

Participants

Twenty-four participants completed a target detection task
using SAR images while their eye movements were recorded at 60
Hz using the FaceLab 5 Standard system and EyeWorks software.
Eight of the participants were professional SAR analysts who
conduct visual search tasks using SAR imagery on a daily basis.
Eight were non-analysts who work with SAR images regularly,
typically on a weekly basis. They had extensive knowledge of the
domain, but do not typically engage in visual search tasks using the
imagery. Most of the participants in this group were radar
engineers who design and test SAR systems. We refer to this group
as the “experienced non-analysts.” The remaining eight
participants were novices with no prior exposure to SAR imagery.
All participants gave their written informed consent before
participating in the study.
Materials

Participants completed a target detection task using 20 pairs
of images. Each pair consisted of a SAR image and a CCD image
of the same scene. The CCD image was created by co-registering
SAR images of the same scene over time and measuring changes
in coherence that can reveal temporal changes [6]. Essentially, the
SAR image provided viewers with contextual information about
the scene and the CCD image provided viewers with information
about the presence or absence of targets in the scene.

Half of the 20 image pairs contained a target and half did not.
The targets were the same types of targets that the professional
SAR analysts look for in their daily work. The experienced non-
analysts were also familiar with the nature of the targets and view
them frequently, although not in the context of a visual search task.
The novices were not familiar with the domain, so they were
shown examples of targets before beginning the experiment. They
received instructions about what to look for to determine whether
or not a target was present in the scene.

Procedure

The participants completed a battery of general cognitive and
visual search tasks in addition to the target detection task using
SAR imagery [10]. In the target detection task, they were asked to
stare at a fixation cross in the center of the computer screen. The
cross remained on the screen for one second, and then one of the
image pairs appeared on the screen. The SAR image was shown to
the left of the fixation cross and the CCD image of the same scene
was shown to the right of the fixation cross.



Participants were instructed to search the images for targets
and to use a 1-4 scale to record their assessment of whether or not
each scene contained a target. A response of “1” indicated that they
were sure that there was not a target in the scene. A response of
“2” indicated that they thought there was no target, but they were
unsure. A response of “3” indicated that they thought there was a
target present, but were unsure. A response of “4” indicated that
they were sure that there was a target present. The SAR and CCD
images remained on the screen until the participants responded or
until 45 seconds had elapsed. The participants did not receive
feedback about their answers until after the experiment was
completed.

Results

Behavioral Results

The behavioral results showed that the professional imagery
analysts were able to detect the targets more accurately than the
novices and faster than both the novices and the experienced non-
analysts. The analysts responded correctly to 74.4% of the trials,
on average, with an average reaction time of 9.5 seconds. The
experienced non-analysts responded correctly to 70.0% of the trials
with an average reaction time of 14.5 seconds. The novice
participants responded correctly to 56.9% of the trials with an
average reaction time of 22.4 seconds.

One-way ANOVAs showed that the groups differed
significantly in both their average accuracy (F(2,21) = 4.62, p <
0.03) and their average reaction times (£(2,21) = 11.98, p <0.001).
Post-hoc t-tests showed that the analysts had significantly higher
accuracy (#(14) = 2.95, p < 0.01) and faster reaction times (#(14) =
4.34, p < 0.001) than the novices. The experienced non-analysts
also had significantly higher accuracy (#(14) = 2.14, p < 0.03) and
reaction times (#(14) = 2.57, p < 0.02) than the novices. The
accuracy of the analysts and experienced non-analysts did not
differ significantly (#(14) = 0.73), but the analysts had significantly
faster reaction times (#(14) =2.93, p <0.01).

Eye Tracking Results

Two participants, one from the novice group and one from the
experienced group, were excluded from the eye tracking data
analysis due to noisy data. A region of interest (ROI) was

Analysts

Experienced non-analysts

MNovices

Figure 3. Gaze maps for each of the three groups of participants with the ROl
indicated in red.

demarcated around each target that contained the target itself plus a
buffer intended to represent a person’s useful field of view
(approximately 90 pixels on each side of the target).

The time to first fixation in the ROI was calculated for each
trial in which a target was present. The average time to the first
fixation in the ROI was 5.3 seconds for novices, 3.0 seconds for
experienced non-analysts, and 2.1 seconds for analysts. The
difference between groups was significant (F(2,19) = 9.21, p <
0.01). Post-hoc t-tests showed that the experienced non-analysts
and the analysts were both significantly faster than the novices
(7(12) = 2.41, p < 0.02 and #13) = 4.36, p < 0.001, respectively).
However, the experienced non-analysts and the analysts did not
differ significantly from one another (#(13) = 1.53, p = 0.08).



For each trial, we calculated the percentage of total fixations
that occurred within the ROIL. On average, 17.4% of the novice’s
fixations were in the ROI, compared to 25.3% for the experienced
non-analysts and 38.9% for the analysts. The difference between
groups was significant (F(2, 19) = 8.08, p < 0.01). Post-hoc t-test
showed that the experienced non-analysts had a significantly
higher percentage of fixations in the ROI than the novices (#(12) =
247, p < 0.02) and the analysts had a significantly higher
percentage of fixations in the ROI than the experienced non-
analysts (#(13) =2.13, p <0.03).

Discussion

Working within their domain of expertise, the SAR imagery
analysts and experienced non-analysts were both more accurate in
their responses than the novices, who had not viewed SAR
imagery before taking part in the experiment. In addition to their
high accuracy, the analysts were faster than experienced non-
analysts and novices, both in terms of overall task reaction time
and in terms of the time to first fixation in the ROI. The analysts
were highly efficient in their ability to identify the ROI, typically
fixating in the ROI within two seconds of stimulus onset. They
devoted a higher proportion of fixations to the ROI than either of
the other groups.

The efficiency of the analysts indicates that their visual search
performance is driven by top-down visual processing. The analysts
were able to rapidly triage the information in the imagery, zeroing
in on the task-relevant information in the ROIs. In the analyses
described below, we contrasted the gaze maps of the analysts and
novices with other information about the content of the scenes,
including bottom-up visual saliency and automatically detected
terrain features. These analyses allowed us to further tease apart
the contributions of bottom-up and top-down visual processing to
the participants’ visual search performance.

Comparison of Gaze Maps to Saliency Maps

In order to compare the visual search patterns of the
participant groups to visual properties of the imagery, gaze maps
were created for each stimulus using each group’s tracking data.
Following the approach of Wooding [11], the gaze maps were
constructed by pooling the raw eye tracker samples over all
subjects in each group (i.e. analysts, experienced non-analysts and
novices) and accumulating a two dimensional Gaussian function at
each point. The standard deviation of the Gaussian function was
defined to equal a two degree field of view (90 pixels) at the
average viewing distance.

Visual saliency maps for each stimulus where created using
the Itti and Koch model [12] as implemented in Harel’s Graph
Based Visual Saliency Toolbox [13]. The Itti and Koch model
decomposes images into three feature sets that are based on
processes in the human visual cortex: color, orientation and
intensity. These feature sets are constructed at multiple scales
using Gaussian pyramids. Areas of the image with the greatest
differences in features across scales are assigned larger saliency
values while areas with smaller differences in features across
scales are assigned lower saliency values. In this study,
participants were viewing two images placed side by side on the
screen. Because the two image products have different mean
intensity levels, we calculated the saliency maps separately for
each image product to avoid saliency artifacts at the image product
boundary.

Saliency Map

Gaze Map

Figure 4. The top panel shows the saliency map for one of the CCD stimuli
used in the study and the bottom panel shows the analysts’ gaze map for the
same stimulus. The ROl is indicated in red.

Results

For each of the 10 stimuli in the eye tracking study that
contained a target, we calculated the percentage of the overall
visual saliency that fell within the ROI around the target. Then, for
each group of participants, we calculated the percentage of gaze
observations that fell within the ROI for that stimulus. For all of
the target-containing stimuli, an average of 17% of the total visual
saliency fell within the ROIs. For the professional analysts, an
average of 57% of the gaze observations fell within the ROlIs,
consistent with the behavioral finding that the analysts were very
efficient in identifying the ROIs. The experienced non-analysts and
novices had lower percentages of gaze observations in the ROIs,
with 42% for the experienced non-analysts and 27% for the
novices.

Correlations were calculated between the percentage of visual
saliency in the ROI and the percentage of gaze observations in the
ROI for each stimulus within each group of participants. The
results showed that the correlation was significant for the novices
(R? =0.71, p < 0.01) and for the experienced non-analysts (R’ =
0.52, p = 0.01). However, for the professional analysts, there was



not a significant correlation between the percentage of saliency in
the ROIs and the percentage of gaze observations in the ROIs (R’ =
0.02).
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Figure 5.The percentage of gaze in the ROl versus the percentage of saliency
in the ROI for each participant group for every stimulus that contained a
target.

As discussed above, we hypothesized that professional
analysts would rely on their past experience and on top-down
visual attention to focus on the most task-relevant information,
regardless of whether or not it was salient from a bottom-up
perspective. The results of the eye tracking study and our
comparisons between the gaze maps and saliency maps supported
this hypothesis. To further explore the relationships between
terrain features, visual saliency, and visual search, we compared
the participants’ gaze maps to automatically generated maps of
image features. We chose to investigate two specific types of
terrain features: SAR shadows and regions categorized as
supporting change detection through a method called Index for
Surface Coherence (ISC). These analyses and the preliminary
results are described in the sections below.

Comparison of Gaze Maps and Terrain

Features

SAR imagery has unique properties that support a variety of
methods for automatic feature detection. For example, specific
terrain features can be detected and labeled by automated image
processing algorithms such as superpixel segmentation and
classification [14, 15]. Superpixel segmentation groups pixels by
capturing image redundancy [16, 17]. A new method known as
ISC extends this capability by identifying image regions in which
the terrain features are more or less conducive to change detection
[18].

We chose to focus our analyses on two types of automatically
detected terrain features. First, we contrasted the gaze maps with
maps of SAR shadows. The shadows in SAR images have
relatively low importance in target detection tasks, but have high
visual saliency. We predicted that experienced analysts would
ignore shadow regions while novices would be more likely to be
distracted by their high visual saliency. Second, in an exploratory
analysis, we contrasted the gaze maps with ISC maps representing
regions of the images that were most supportive of change
detection. We predicted that the analysts would devote more

attention to the regions that were most likely to support change
detection, particularly since they were being asked to complete a
target detection task in which the targets were changes to the
scene. In contrast, we predicted that novices would not have the
experience needed to determine which regions were most valuable
to completing the task, making them less sensitive to this metric.

Modulating Saliency Maps Using Terrain Features

In order to test the analysts’ and novices’ ability to ignore the
highly salient but low value shadows, we calculated the overlap
between the participants’ gaze maps and the saliency maps with
and without the shadows. First, algorithms were used to segment
[14] the stimuli used in the eye tracking study into superpixels and
to classify [15] the shadow superpixels.
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Figure 6. The top panel shows a superpixel segmentation of a scene and the
bottom panel shows superpixels classified as shadow regions in red.

Next, modified saliency maps were created in which the
superpixels identified as shadow regions were masked out, as
shown in Figure 7.



100 200 300 400 500 600

Figure 7. The top panel shows the visual saliency map created from the SAR
image in Figure 6. The bottom panel shows the masking of the superpixels
classified as shadow regions.

The gaze maps were compared to the original and masked
saliency maps using the linear correlation coefficient (CC) metric.
CC has been used in prior studies to measure performance of
saliency estimation algorithms by comparing saliency maps to
human gaze maps [19]. CC is a measure of the strength of a linear
relationship between a gaze map (G) and a saliency map (S)

cov(G,S)
CCG,S) = ——
0g0s 0

When CC is close to *1, there is almost a perfectly linear
relationship between the human gaze map and the predicted
saliency map.

A subset of the eye tracking data (three analysts and three
novices) was used to test the effects of masking shadows out of the
saliency maps. For the analysts, masking the shadow regions
improved CC agreement between saliency and gaze maps by a
factor of 3.3 times. For the novices, masking the shadow regions
reduced CC agreement by only 0.95 times.

These results provide further evidence to support our finding
that professional analysts successfully relied on top-down visual

attention, largely ignoring regions that were not relevant to the
target detection task even if they were highly visually salient. The
approach developed here could be applied for any other terrain
features, allowing system designers to conduct a detailed analysis
of how much experienced and novice users rely on each feature
when completing a particular task. This could be a powerful
method for assessing image quality by testing the relative
contributions of each image feature to both the visual saliency of
the scene and to the users’ task performance.

Comparing Gaze Maps to the Index of Surface
Coherence

As discussed above, CCD images provide a method for
observing changes in a scene that would otherwise be undetectable
to the human eye [20]. By using multiple SAR collects, the
magnitude and phase difference between each collect can be
utilized to detect changes in a SAR image. However, the method
used to calculate this change product is agnostic to the underlying
terrain on which the calculation is made. Some features (such as
walls) are stationary and not susceptible to change, appearing as
areas that cohere perfectly in the CCD images. Other features, such
as vegetation, have low coherence due to their random geometries
and continuously show up as changes in the CCD product. Both
types of features can be distracting to an analyst or algorithm
looking for changes of interest (i.e. areas of low coherence in the
scene that typically have high coherence). Discerning changes of
interest in natural scenes requires training for human analysts and a
better understanding of the underlying terrain for algorithms.

A new method to address this issue creates maps of the Index
of Surface Coherence (ISC) for SAR images. These maps can be
used to mask a CCD product and eliminate the areas that do not
support detection of changes of interest. To create these maps, a
long-term observation of an area is utilized to acquire the
underlying nature of the terrain. With many observations of the
same area over a period of time, a stack of images can be created.
By registering all of the images and taking the median of each
pixel in the stack, a stable representation of the area is observed.
Using a median radar cross section (RCS) and median CCD
product, the terrain in the area can be classified according to its
coherence properties. The median RCS (MRCS) and median CCDs
(MCCD) images are segmented into superpixels using the SLIC
superpixel segmentation, which allows a user to define how
compact the superpixel appears and the number of superpixels in
the image. This allows a user to create a nearly uniform grid of
pixel groups [14, 17]. A truly uniform segmentation would
provide pixel groups and reduce the computing complexity, but the
pixels in those groups would be visually and statistically very
dissimilar.

After the median MRCS and median MCCD images are
segmented, a training process is used in which terrain types that
support change detection are identified and a subset of superpixels
capturing each terrain type is chosen. In this study, approximately
20 superpixels consisting of 500 pixels for each terrain type were
selected. For each data type, a distribution curve is generated for
both the MRCS and MCCD products. The distribution curve is
generated by fitting common distribution types (Gamma, Beta,
Log-Normal, Exponential, and Gaussian) to the each data type’s
scaled histogram data. The distribution type, distribution
parameters, and scaling are saved to represent each terrain type.

With the training finished, new images can be evaluated by
segmenting the image into superpixels and comparing each
superpixel in the image to the previously trained data. For each



superpixel in the image, its pixels are scaled and fit with the
distribution according to each terrain types training data. The
distribution curve of the superpixel is then compared to the terrain
type’s distribution curve using Kullback-Leibler (KL) Divergence
to get a similarity score. Using probabilistic fusion [21, 22], the
KL scores of the MRCS and MCCD images are translated into p-
scores which can then be added despite the KL scores being
statistically different. These added scores can then be used to form
a heat map to indicate where an image is most likely to support
change detection.

We conducted a proof-of-concept analysis in which an ISC
map of one of the CCD images from the eye tracking study was
compared to participants’ gaze maps. To compare the image p-
scores to the human gaze maps, we first created a set of 20
thresholded images (P) using the original p-score image and
thresholding each pixel for thresholds 1,2,3,...20. We then
calculated the CC metric for each thresholded image, P;, compared
to the gaze map from either the IAs or the novices.

cov(P,S;)
CC(P,S) =——
O'PiO'Sj
Where i = 1,2,...20; j = I(analysts), 2(novices) 2)

At the lower thresholds, the maps show only regions that
never change, while at higher thresholds the maps show regions
with increasing susceptibility to change. This analysis showed that
the CC metric peaked for novices at a p-score threshold of 2 while
peaking for experts at a p-score threshold of 7. Although
exploratory, these results indicate that the gaze maps of the novices
were relatively insensitive to the likelihood that a particular region
would support change detection. They devoted their attention to
terrain features that did not provide much support for change
detection and therefore had low p-scores in the ISC map. In
contrast, the analysts devoted more attention to regions that had
higher p-scores and were likely to support change detection.

Discussion

The results of this experiment revealed distinct differences
between the visual search patterns of the participants in the three
experience groups. Professional SAR imagery analysts were faster
and more accurate in finding targets in a visual search task using
SAR and CCD images. The results of the eye tracking study
showed that the analysts were rapidly able to identify the ROI in
the scenes containing targets and spent a significantly higher
proportion of their time inspecting the ROI than the other groups
of participants. The viewers with less experience, including non-
analysts and true novices, spent more time viewing other regions
of the images, which had a negative impact on their speed and
accuracy.

To explore the relationships between the participants’ gaze
maps and the visual features of the imagery, we compared the gaze
maps to bottom-up saliency maps and to maps of image features
that were either irrelevant (shadows) or relevant (regions
supporting change detection) to the task. While the gaze maps of
the novices and experienced non-analysts were correlated with the
bottom-up saliency of the images, the gaze maps of the
professional analysts showed no such correlation. These results
indicate that the less experienced groups were at least somewhat
distracted by visual features that had high visual saliency but little

relevance to the task. In contrast, the analysts focused their
attention on task-relevant features, whether they were highly
visually salient or not. In other words, the analysts’ visual search
processes appear to be driven primarily by top-down, goal-directed
visual attention, while the less experienced participants were
influenced more by bottom-up visual saliency.

The comparisons of the participants’ gaze maps to
automatically detected image features also supported this
interpretation of the eye tracking data. We chose SAR shadows as
an example of a visual feature that was highly salient but had little
relevance to the task. When superpixels from shadow regions were
masked out of the visual saliency maps, the match between the
saliency maps and the analysts’ gaze maps improved substantially.
When the same masking was done for the novices, the match
between the saliency maps and gaze maps was reduced. The
comparison between the gaze maps and the ISC maps had a similar
result. The highest match between the novices’ gaze maps and the
ISC maps was at a very low threshold, where the ISC map showed
areas with little susceptibility to change. These areas are not very
informative in a change detection task, but novice participants
spent quite a bit of time looking at them. The analysts ignored
those regions, focusing their attention on regions that were
supportive of change detection and were therefore task-relevant.

The results of this study revealed information about what
types of SAR and CCD image features are used by people with
different levels of experience. By studying the professional
analysts’ approach to the visual search task and identifying the
features and regions that they focus on, we were able to identify
which features are most relevant to their real-world visual search
tasks. This information can be used to inform system design and
the design of new image products and image processing algorithms
to support the analysts in their daily work. By comparing the
professional analysts to experienced non-analysts and novices, we
were also able to identify image features that might be distracting
to less experienced viewers. This information can inform the
training of new analysts. It can also help to validate new image
processing algorithms. For example, the comparison between the
participants’ gaze maps and the ISC maps provided valuable
feedback about the value of the ISC method for identifying regions
that are relevant to the end users of the imagery. The threshold
cutoffs identified by the gaze map comparisons can be used when
deploying the algorithm to help analysts filter out potential false
alarms.

The methods developed for this study could be applied in
other domains to assess image quality in terms of how well the
images support the end user’s top-down goals. By approaching the
problem from the perspective of human cognition, we were able to
learn a great deal about the features of the images that did or did
not support the end users’ cognitive needs.
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APPENDIX B: MODELING HUMAN COMPREHENSION OF DATA VISUALIZATIONS?
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Abstract. A critical challenge in dala science is conveying the meaning
of data to human decision makers. While working with visualizations, de-
cision makers are engaged in a visual search for information to support
their reasoning proc A; 1sors proliferate and high performance com-
puting becomes increasingly accessible, the volume of data decision mak-

ers must contend with is growing continuously and driving the need for
more efficient and effective data visualizations. Consequently, researchers
across the fields of data science, visualization, and human-computer in-
teraction are calling for foundational tools and principles to assess the
effectiveness of data visualizations. In this paper, we compare the per-
formance of th
visualizations. This comparison establishes a performance baseline for
assessment of new data visualization saliency models.

different saliency models across a common set of data
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1 Introduction

A eri
decision maks ‘While working with visualizations, analysts or decision makers
are engaged in a visnal search [or information to support their reasoning proc
As sensors proliferate and high performance computing becomes increasingly
accessible, the volume of data that analysts must contend with is growing con-
tinuously. The resulting bloom of data and derived data products is driving the

ical challenge in data science is conveying the meaning of data to human

need for more efficient and effective means of presenting data to human analysts
and decision makers. Consequently, researchers across the fields ol dala science,
visualization, and human-computer interaction are calling for foundational tools
and principles to assess the effectiveness of data visnalizations[9]. In this paper,
we deseribe the need for a computational model of bottom-up, stimulus-driven
visual saliency that is appropriate for abstract data visnalization. We compare
the performance of three different saliency models across a common set of data
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visualizations to establish a performance baseline for assessment of new data
visualization saliency models.

Human visual processing is guided by two parallel processes: bottom-up and
top-down visual attention[16]. When viewing an image, a person’s eye movements
are guided by hoth the visnal properties of the image that capture bottom-up
attention (e.g. color, contrast, motion) and top-down processes such as task
goals, prior experience, and use of search strategies[8]. Many bottom-up models
are based on the neurophysiology of human and primate visual systems[1]. These
models construct a number of features from the image data and then highlight
differences in the features across multiple scales of image resolution. The chosen
features are based on the response of neurons in the visual processing system to
certain image characteristics such as luminance, hue, contrast and orientation.
Various models have explored the use of different visual features at different
scales to predict where humans will look in natural scene imagery.

Maps of bottom-up visual saliency have been valuable tools for studying how
people process information in natural scenes, and could also be useful for evaluat-
ing the effectiveness of data visualizations. Ideally, the most important informa-
tion in a data visualization would also have high visnal saliency. This evaluation
approach has been demonstrated with scene-like data visualizations[12], but it
is unclear whether or not it is applicable to abstract data visualizations. In ad-
dressing this question, it is important to consider how visual search may differ
between natural scene visualizations and abstract data visualizations. For the
latter, viewers are engaged in drawing conclusions about causality, efficacy or
consequences rather than identifying objects or properties of objects. The visual
appearance of their target (information) may not be well defined or known ahead
of time. The vast majority, if not all, existing computational models were devel-
oped and optimized to predict visual saliency for image-like, or natural, scenes
and may not perform as well when applied to abstract data visualizations. In
fact one published taxonomy of visual stimuli used in studies of gaze direction
lists only three types of stimuli: psychophysies laboratory stimuli, static natu-
ral scenes, and dynamic natural scenes[15]. To date, we have been unable to
find any published examples of bottom-up saliency models designed explicitly
for data visualizations. In the following sections, we compare the performance
of three high performing natural scene saliency models across a common set of
data visnalizations.

2 DMethod

The MIT Saliency Benchmark[7] is an online source of saliency model per-
formance and datasets. The site scores and reports performance on author-
contributed saliency models on datasets where the human fixation positions are
not public. This approach prevents model performance inflation due to over-
fitting of the test dataset. We selected three saliency models, deseribed below,
listed on the MIT Saliency Benchmark site that span a range of performance
on natural scenes when measured on standard stimuli with a common set of



human gaze data. For baseline performance on natural scenes for each model,
we used results for the cat2000 data set[4] because it is the most recent (intro-
duced Jan 2015). MATLAB or Python code for each model was downloaded
from saliency.mit.edu and saliency maps were constructed with each model
on a set of data visualizations. We measured the performance of each model
for the data visunalizations using the same eight metrics used for the saliency
benchmark project. We selected 184 example data visualizations from the Mas-
sachusetts (Massive) Visualization Dataset[6] with corresponding eye-movement
data[5] from 33 viewers (average 16 viewers per visualization, minimum of 11,
maximum of 22). Figure 1 shows an example data visualization and correspond-
ing human fixation map. The MASSVIS samples were selected from infographic
blogs, government reports, news media websites and scientific journals.

(@) (b)

Fig. 1. Example data visnalization (a) and human fixation map (b).

2.1 Saliency Models

Itti, Koch and Nieber Numerous saliency prediction models have been de-
veloped in recent years, taking a variety of approaches to predict which parts
of an image are likely to draw a viewer’s attention. Several of these approaches
involve the creation of feature maps that are weighted, combined, and filtered
to produce a visual saliency map. The most prominent of these models, the Ttti,
Koch and Niebur model[11], is based on the properties of the human visual sys-
tem. The model detects changes in low-level features such as color, intensity,
and orientation at varying spatial scales. It then weights those features and uses
an iterative spatial competition process to create feature maps that are then
summed to produce the saliency map. More recently, other researchers have de-
veloped new approaches to create saliency maps. When compared using the MIT
Saliency Benchmark, two visual saliency models that consistently perform well
with images of natural scenes are the Boolean Map based Saliency model[20, 21]
and the Ensembles of Deep Networks model[19].



Boolean Map based Saliency The Boolean Map based Saliency model (BMS)
[20] creates a set of Boolean maps to characterize images. It relies on the Gestalt
principle of figure-ground segregation and the idea that visual attention will
be drawn to the fizures in an image rather than the background. The model
randomly thresholds an image’s feature maps, such as the color map, to generate
a set of Boolean maps. For each Boolean map, the model uses the feature of
surroundedness|21] (a connected region with a closed outer contour) to identify
figures within the image and to create an attention map. The attention maps
are then normalized and combined to form the full-resolution attention map.
This approach differs from many other saliency models because it utilizes scale-
invariant information about the topological structure of the images. It does not
use multi-scale processing, center-surround filtering, or statistical analysis of
features. Thus, it is a relatively simple model that focuses on identifying figures
within images.

Ensebles of Deep Networks Like the classic Itti and Koch model, the en-
sembles of Deep Networks (eDIN) model is hierarchical with operations that are
based on the known mechanisms of the human visual cortex. However, rather
than hand-selecting visual features of interest, a guided search procedure is
used to optimize the model for identifying salient features. In other words, the
saliency prediction task is a supervised learning problem in which the model
is optimized for predicting where humans will look in natural scenes. Multiple
high-performing models are identified and the combination of the models is opti-
mized. Center bias and Gaussian smoothing are used to create the final saliency
maps from the model outputs. For this comparison, the eDN model coefficients
provided by Vig et al., learned using natural scene stimuli rather than data vi-
sualizations, were used to illustrate the difference in feature sensitivity across
the two stimuli types. Future comparisons of learned model coefficients across
the stimuli types could inform the development of saliency models for data visu-
alizations. Figure 2 shows examples of each saliency model applied to the data
visualization shown in Fig. 1.

(a) (b) (©)

Fig. 2. Example saliency maps, (a) Itti, (b) BMS, (c) eDN, for data visualization shown
in Fig. 1.



2.2 Comparison Metrics

Many different metrics have been proposed for comparing saliency and fixation
maps. Riche et al. provide a thorough review and taxonomy of published com-
parison metrics[17]. The authors use a two-dimensional taxonomy to organize
the various metries. Along one dimension, they ecategorize the metries as “value-
based,” “location-based” or “distribution-based.” Along the other dimension,
they categorize the metrics as “common,” “hybrid” or “specific.” Metrics cate-
gorized as common are generalized and were not originally designed for saliency
comparisons. Metrics categorized as hybrid are adapted from other fields to
work with saliency and fixation data. Metrics categorized as specific were de-
veloped directly for application to saliency comparisons. In order to compare
model performance on natural scenes and data visualizations, we elected to use
the eight comparison metrics used by the MIT Saliency Benchmark project. Of
the eight metrics, one was value-based, three were location-based, and four are
distribution-based, as deseribed in more detail helow.

Value-based Metric The normalized scanpath saliency metric (NSS)[2] first
standardizes saliency values to have zero mean and unit standard deviation, then
computes the average saliency value at human fixation locations. When NSS is
greater than one, the saliency map exhibits significantly higher values at fixation
locations compared to other locations.

Location-based Metrics Three of the comparison metrics are based on the
receiver-operator characteristic (ROC). For these metrics, the human gaze posi-
tions are considered positive examples and all other points are considered neg-
ative examples. The saliency map is treated as binary classifier to separate the
positive and negative example sets at various thresholds and the area under the
resulting ROC curve (AUC) is computed. As the salieney map and fixation map
become more similar, AUC values approach one. Random chance agreement re-
sults in an AUC value of 0.5. For all three implementations, the true positive
rate is the proportion of saliency values above the threshold at all fixation loca-
tions. For the AUC-Judd implementation the false positive rate is the proportion
saliency values above the threshold at non-fixated locations and the thresholds
are sampled from the saliency map values[17]. For the AUC-Borji implementa-
tion, the false positive rate is based on saliency values sampled uniformly from
all image pixels and the thresholds are sampled with a fixed stepsize[3]. For the
shuffled AUC implementation, the false positive rate is based on saliency values
sampled uniformly from fixation locations on a random set of other images[22,
3].

Distribution-based Metrics The similarity score (SIM) is a histogram inter-
section measure. Each distribution is scaled so that its sum is one. Similarity
is the sum of the minimum value between the two scaled distributions at each
point. When SIM equals one, the distributions are the same and when SIM equals



zero, there is no overlap between the two distributions. The earth mover’s dis-
tance (EMD)[18] is based on the minimal cost to transform one distribution
(the saliency map) into the other distribution (the fixation map). Smaller values
of EMD represent better agreement between the saliency map and the fixation
map and when EMD equals zero, the two distributions are identical. The linear
correlation coefficient (CC) is a measure of the linear relationship hetween a
fixation map and a saliency map[2]. When CC is close to one, the linear rela-
tionship between the saliency map and the fixation map is nearly perfect. The
KullbackLeibler divergence (KL)[10] is a measure of the information lost when
the saliency map is used to approximate the fixation map. KL ranges from zero,
when the two maps are identical, to infinity.

3  Experimental Results

Figure 3 shows the performance of the three models on the natural scenes and
data visualizations. The results are displayed in the form of a percent difference
score that is negative when the models performed better on natural scenes and
positive when the models performed better on data visualizations. The corre-
sponding numerical values are shown in Table 1. Table 2 shows the effect size,
using Glass’s delta across natural scenes and data visualization.

Generally, the models had poorer performance for data visnalizations than for
natural scenes. All three models performed worse on visualizations than on natu-
ral scenes as measured by four of the eight metrics: the value-based metric NSS,
two location-based metrics, AUC-Judd and AUC-Borji, and the distribution-
based metric EMD. For these metrics, the effect sizes were largest for the BMS
and eDN models. The performance of the eDN model was not significantly dif-
ferent for visnalizations and natural scenes when measured by the location-based
metrie sSAUC and the distribution-based metric SIM. Similarly, the performance
of the Itti model was not significantly different for visualizations and natural
scenes when measured by the distribution-based metric CC. However, for the
distribution-based metric KL, both the Itti and eDN models performed signifi-
cantly better for data visualizations than natural scenes. This is consistent with
the finding of Riche et al.[17] that the KL metric is quite different from the other
metrics. Because the KL metric does not take absolute location into account,
but considers only the statistical distribution of the map, two maps having sim-
ilar distributions can have very different location properties. The performance
of the BMS model was not significantly different for visualizations and natu-
ral scenes when assessed by the KL metric. For this metric, the effect size was
largest for the Itti model followed by the eDN model, while the effect size for the
BMS model was close to zero. Of note, for the metrics where the performance
of all three models was significantly different between visualizations and natural
scenes, the Itti model performed better on visualizations than either the BMS
model or the eDN model. This is contrary to the general trend in performance
on natural scenes for these metrics where eDN is the best performing saliency
model.
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Fig. 3. Model Comparison Across Stimuli Type and Metric. (a) Value-based metric,
(b) Location-based Metrics, (c) Distrbution-based Metrics. Results are displayed in the
form of a difference score that is negative when the models performed better on natural
scenes and positive when the models performed better on data visualizations.

Table 1. Model Comparison Across Stimulus Type. First value in each pair is sample
mean; second value is standard error of the mean (SEM). Bold font indicates significant
differences between mean values for natural scenes and visnalizations (p < 0.05).

Itti BMS eDN

Nat. Vis. Nat. Vis. Nat. Vis.
AUC-1.|0.77 £ 0.002|0.68 £ 0.006|0.85 £+ 0.001|0.67 £+ 0.006(0.85 £ 0.001(0.58 &+ 0.009
SIM|0.48 + 0.002(0.57 = 0.006(0.61 + 0.002|0.54 + 0.005| 0.52 &+ 0.002 | 0.52 + 0.005
EMD|3.44 +0.016/ 3.92+0.11 |1.95 + 0.013 4.19+0.12 (2.64 £ 0.013{ 4.48 + 0.12
AUC-B.|0.76 £+ 0.002|0.67 + 0.006|0.84 + 0.001|0.65 = 0.006|0.84 = 0.001|0.58 £+ 0.009
sAUC|0.59 + 0.002(0.64 = 0.007(0.59 £ 0.002(0.63 £ 0.006| 0.55 £ 0.002 | 0.56 £ 0.009
CC| 0,42 £ 0.004 | 0.40 = 0.017 [0.67 £ 0.002/0.32 £ 0.014|0.54 £+ 0.002(0.20 £+ 0.020
NSS|1.06 +0.012(0.64 = 0.030|1.67 £ 0.012/0.52 £ 0.025|1.30 £+ 0.006(0.30 &+ 0.032
KL|0.92 £+ 0.006|0.63 £ 0.019| 0.83 £ 0.012 | 0.79 £ 0.021 |0.97 = 0.006|0.78 £ 0.018

4 Discussion and Conclusion

The visualizations used in this comparison study are all highly curated, employ-
ing text and graphic design principles to help viewers identify the most important
results. The Itti model may perform best on these data visualizations because
of its close ties to the human visual processing system, while other models have



Table 2. Glass’s Delta Effect Size for Model Comparison Across Stimulus Type. Bold
font indicates significant differences between mean values for natural scenes and visual-
izations (p < 0.05). For normalization of Glass's delta, the natural scenes were treated
as the control group.

AUC-J.| SIM (EMDAUC-B.|sAUC| CC [ NS5 | KL
Itti| —0.98| 1.23| 0.66| —0.98| 0.69| —0.14|-0.79(-1.16

BMS| —3.58|—-1.00| 3.79| —3.77| 0.58(-3.21|—2.09| —0.07
eDN| —5.34| —0.04| 3.07| —5.18| 0.14(—4.22|—-3.43|-0.67

been designed and optimized for natural scenes, placing less emphasis on faithful
representation of neural processes. The natural scene models may also under per-
form on data visualizations, since many graphical elements used in visualization
have smaller spatial extent than objects that typically appear in natural scenes.
The finer resolution graphical elements result in higher frequency components
to which natural scene models maybe insensitive. Another factor that may limit
the applicability of natural scene models is the use of text in data visualizations.
Text plays a significant role in human attentional allocation and the resulting
direction of eyve movements. The process of reading text in a visualization would
result in a higher density of fixations around text elements. Future work should
leverage a taxonomy of visualization elements such as the one described in Mun-
zner’s book[13]. Our future research will focus on data visnalization techniques
for two-dimensional representation of high-dimensional data.

This comparison study has established a baseline that can be used to as-
sess the performance of new saliency models for data visualizations. The current
trend towards better model performance on natural scenes seems to come at the
expense of performance on data visualizations. This inverse relationship between
model performance on natural scenes and on data visualizations supports our
position that new saliency models are needed to aid development of generalized
theories of visual search for data visualizations. In future work, we will expand
on existing models of visual saliency to address these issues and investigate the
role of top-down visnal attention in viewers’ navigation of abstract data visual-
izations. Developing general models of top-down sense-making has proven to be
quite difficult[14]. Knowledge elicitation techniques have heen used to identify
top-down goals and strategies and the resulting influence on eye movements.
Other approaches have applied machine learning techniques to eve movement
data collected as experts perform a given task. The resulting models can pre-
dict expert attention allocation for new stimuli, but it is often difficult to use
these models to understand why experts allocate attention to certain content
and not to other content. Because of this difficulty, we advocate the combina-
tion of computational models of bottom-up saliency with empirical studies of
eye movements to identify tacit sense-making strategies.

As this work progresses, we will also explore the role of expertise in visual
processing of data visualizations. Expertise is a erucial factor in top-down visual
attention, and its impact may be even greater with abstract visualizations, where



users cannot rely on their prior experience with real-world scenes to guide their
search. Visual search tasks using abstract data visualizations can be contrasted
with visual search tasks in complex decision making domains. For example, air-
port luggage screeners search x-ray imagery for prohibited items. In this domain,
as in many abstract visualizations, the visual appearance of the target is often
not known in advance and furthermore the target may be obscured by overlap-
ping items. However, the users’ knowledge about the image features may be quite
different. Luggage sereening personnel have extensive training and experience in
how to search through images, but may have little expertise on the physics of
the image formation process. In contrast, experts such as scientists and engi-
neers who work with abstract data are likely to have very deep knowledge of
the physical properties driving the content of visualizations. These differences
should be considered as top-down factors are identified.
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APPENDIX C: ANEW METHOD FOR CATEGORIZING SCANPATHS FROM EYE
TRACKING DATA?

Michael J. Haass, Laura E. Matzen, Karin M. Butler, Mika Armenta®
Sandia Mational Laboratories

Abstract

From the seminal work of Yarbus [1967] on the relationship of eve
movements to vision, scanpath analysis has been recognized as a
window into the mind. Computationally, characierizing the scan-
path. the sequential and spatial dependencies between eye posi-
tions, has been demanding. We sought a method that could ex-
tract scanpath trajectory information from raw eye movement data
without assumptions defining fixations and regions of interest. We
adapted a set of libraries that perform multidimensional clustering
on geometric features derived from large volumes of spatictemporal
data to cye movement data in an approach we call Gare Appraise.
To validate the capabilitics of GareApprase for scanpath anaby-
sis, we collected eye tracking data from 41 participants while they
completed four smooth pursmit racking tasks. Unsupervized cluster
analysis on the features mvealed that 162 of 164 recorded scanpaths
wemr categorzed into one of four clusters and the remaining two
scanpaths were not categonzed (recall'sensitviy=%8.8%). All of
the caegonzed scanpaths wers grouped only with other scanpaths
elicited by the same task {precision=100%). GareA ppraise offers a
unique approach to the categorization of scanpaths that may be par-
ticularly useful in dynamic environments and in visual search tasks
requiring sysiematic search strategies.

Keywords:  eye tracking, pattern analysis, scanpath, trajectory
analysis method, Gaeed ppraise

Concepts: «Applied computing — Psychology: sTheory of
computation — Compusarional geomerry;

1 Introduction

Moment-to-moment changes in mind and brain processing are re-
fiected in how a person moves their eyes through a scene. Most
commaonly, eye tracking data are partitioned into discrete ohserva-
tions of periods of eye stability (fixations) and eye movements (sac-
cades). These parameters have proved useful for revealing mind
processes, such as the operation of spatial atention [Butler and Za-
cks 20006], and for relating mind and brain [Henderson et al. 2015].
Analyzis of the sequential dependencies be tween eye positions, Le.,
scanpath analysis, has been more difficult though, in part. because
of the computational complexity. Visual representations of fixations
and saccades spatially m onto the visual stimulus suggest that
capturing and characterizing the combination of spatial and em-
poral features may provide important insights into the mind. For
example, Yarbus's [1967 ] images of the fixations and saccades as-
sociated with answering different guestions about a painting (give
the ages of the people, estimate the material circumstances of the
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family, etc.) suggested that the goals of the viewer could be dis-
cemed from the trajectory of cye movements,

Recently several groups have used vanous methods to anabyze the
combined spatial and eemporal features of eye movement behavior
(represented as a vector of features) in order to distinguish task per-
formance [Borji and It 2004 Haji-Abolhassani and Clark 2014;
Henderson et al. 2013], however Greene et al. [2012] using similar
methods wene unable to distinguish between tasks. A limitation of
these methods is that they do not capture the sequential dependen-
cies betwesn oy e MOVEmEnts.

Several methods have been developed to quantify scanpath simi-
larity but these methods requine preprocessing of the visual stimuli
or the eye movement data. Many of them rely on specifying areas
of interest within the visual stimuolus [Cristine et al. 20010]). In re-
currence quantification analysis (RQA). the scanpaths of individual
viewers from individual stimuli are extracted by initially dividing
the stimulus into an array of spatial locations and mapping the sc-
quence of fivation positions onto the array [Anderson et al. 2013].
Dewhurst et al. [2012] presented a method for companng scan-
paths that captune the sequential dependencies of eye positions us-
ing geometric vectors with a method called MultiMatch. However,
this approach requires that the eye movement samples be processed
in several ways before comparisons can be made [Jarodzka et al.

2010].

We sought a method of extracting eye movement trajectory infor-
maton that could be apphed o mimmally-processed eye movement
data, and that could be applied withoot specifying arcas of inter-
est a priont.  The rescarch we present hens represents a proof-of-
concept that this new approach can be used with unprocessed eye
tracking data Tracktsble [Rintoul et al. 2015] iz a set of libranes
(so0n to be open source ) that performs multidimensional clustering
on geometric features derived from large volumes of spatiotempo-
ral data. The Tracktable libranes wene onginally designed for ap-
plication to geospatial trajectories and have been tested using air
traffic data from the US Federal Aviation Administration Aircraft
Situation Display to Industry (ASDI). Tracktable is able to rapidly
identify flight trajectory pattems such as holding patterns, weather
avoidance, and mapping activities wheme the aircraft raser-scans
over a land ara. Like air traffic data, eye tracking data are made
up of ime-ordered sequenoes of spatial position coordinates. Rec-
ognizing the need for similar pattern identification capabilities for
both domains, we have investigated the application of the Track-
table methodology to smooth pursuit eyve movement data. In this
paper, we repont GareAppraise, our adapiation of Tracktable for ap-
plication to eye tracking data. GareAppraise calculates geometric
features over temporal intervals at multiple scales for each scanpath
in an input set of eye tracking data (for example from multiple sub-

Jjects viewing multiple stimuli). GarzeAppraise then performs clus-

tering in feature space to categorize scanpaths by similarity. This
approach is novel because it segments eye racking data into tempo-
ral intervals that determine the boundaries for calculating the spa-
tial features {as opposed to defining fixations and saccades). The
sequential dependencies between the eye samples are reflected in
the mapping of these featunes onto multidimensional space.

3 Haass, M. J., Matzen, L. E., Butler, K. M., & Armenta, M. (2016, March). A new method for categorizing scanpaths from
eye tracking data. In Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications (pp. 35-
38). ACM.



2 Method
2.1 Participants

Forty-one employees (Males = 22, Females = 16, 3 participants did
not self-identify; Age: M = 27.0, 5D = 115, Range = 17 to 65
years) were recruited from Sandia National Laboratonies via email
messages distributed w0 members of the workforce.  Participants
wemr paid their typical wage for their ime spent participating in
this study.

2.2 Apparatus

Eye movements were tracked using Seeing Machines FOVIO run-
ning at 60 Hz. The FOVIO was interfaced with EyeWorks Record
3.12 software running on a DELL Precision T3600 and using the
Windows 7 operating systems on an Intel Xeon CPU E3-1603 0
@ 2.80 GHz with & GB of RAM. Movie files of a moving dot wen:
presented using a script created in EyeWorks Design 3.1 All stim-
uli were presented on a DELL 197 LCD monitor set at a resolution
of 1280 » 1024

2.3 Materials

The stimuli consisted of four movie files in .avi format in which a
whike dot (22 x 20 pixels) moved across a black background. The
four stimuli werne created such that the white dot entered each quad-
rant of the visual d.i?:r]ay and so that some of the stimuli had similar
curving geometric forms. The shapes traced by the white dot in-
cluded a star, an 5, an (), and a swirl starting from the center of the
screen spiraling out. The video dimensions wene 1024 = 640 and
the movie files were 23, 18, 14, and 14 seconds in length, respec-
tively. At an average viewing distance of 78 cm the dot moved at
6.0 degree of visual angle/sec, a speed that would allow participants
i use smooth pursuit eye movements to track the dot. During stim-
ulus presentation each video was preceded by aw hite fixation cross
of 87 x 93 pixels on a black background presented for 2 seconds.

Jy
sflc

Figure 1: Four shapes rraced by whire dor in the smooth pursuir
risk.

2.4 Procedure

This study was approved by the Sandia National Laboratonies Ho-
man Subject Review board. Informed consent was obtained from
all participants. Participants were seated in a quiet and darkened

room at a distance of 34 to 92 cm from the monitor.  Before be-
ginming the eye tracking tasks, the FOVIO was calibrated using a
five-point calibration screen. Stimulus presentation was self-paced.
Participants wemr instructed to look at the fixation cross when it
appeared and then to follow the white dot as it moved across the
screen. The 41 participants generated 164 scanpaths.,

Figure 2: Sample scanparfis from iwe randomly chosen subjec s for
each of four shapes used in smooth pursuis rask.

3 GazeAppraise for Scanpath Analysis

The 164 scanpaths consisting of the = and y position of each sam-
ple mcorded at 60 He were processed using Gare Appraise. In our
analysis, we chose 4 emporal scales, resulting in 10 temporal in-
tervals: (1) the entire scanpath, (2 - 3) the first and second halves of
the scanpath, (4 - 6) thirds of the scanpath and (7 - 10} quarters of
the scanpath. Mote that the total number of emporal intervals, T,
for the number of emporal scales, n, follows the triangle number
BETICS,

T _n§n+1
n = _2 a

We began with 4 eemporal scales that had been shown in previous
work to minimize computational complexity while providing suffi-
cient esolution to differentiate aircraft trajpectones. We found this
choice of temporal scales to also be effective in this application to
eye movement patierns. Following the Tracktable method of Rin-
toul et al. [2013] et SP(£)(£ £ [0 1]) represent the entire scanpath,
then the set of scanpath emporal inkervals is:

(1 SP(t)jt=[01])
(2-3)  SP(t)(t < [01]) and SP(t){f  [£ 1])

4-6) SP{t)t [0 L]). SP(t)t = [§ 2]) and
SP(t)(t € [3 1])

SP(t)(t € [0 3]). SP(t)(t € [ 1), SP()(t €
7 1) and SP(t)(t € [3 1])

7 -1

COne or more features can be calculated over each emporal interval.
For the smooth pursuit task. we calculated a two dimensional fea-
ture at each temporal interval: the median = and y position of the
gare. This metric was chosen because it is a robust statistic; it is
less sensitive to noise in the eye tracking samples introduced by the
specific eve tracking system or study environment conditions (such
as subjects free to move in the eye tracker's head box volume ). Let
md(SP[E0 t1]) be the median = and 4 location of the scanpath
samples contained in the emporal interval [£0 £1], then the set of
10, two dimensional, features describing the scanpath is:




(1) md(SP)01]
2-3) md(SF)0 %] and md{SP)[4 1]
4-6) md(SF}i0 g],md{SP’J[% ?1 and md{SF)[2 1]
T-100  md(SF)0 1], md(SP)[1 1] md(SP)[L i]and
md(SP)[z 1]

The median calculation is implkemented using the BOOST C++ 5i-
brary {www boost.org) using a P2 quantike estimation algonithm.

To illustrate the feature calculation process, Figure 3 shows the ver-
tical position (z axis) of the gaze of an ideal viewer versus elapsed
time for the star smooth pursuit pattern. For this example, an ideal
viewer would produce gaze coordinates that exactly match those of
the stimulus dot as it moves over the screen. The horizontal lines at
the top of the figure show three of the temporal scales used o cal-
culaie the median gare i location at each of six temporal intervals.
The triangles indicaie the median gare location feature value calcu-
lated at each of the cormsponding temporal intervals, The 100, owo-
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Figure 3: Verical position of the paze of an deal viewer versus
elapsed rime for the star simulus. Three upper, horizomal lines
show temporal inrervals used ro calculare fearures. Triangles show
fearure values ar each remporal imerval

[eTe———

Figure 4: Three dimensional view of fearure dara wsed in unsuper-
vised clustering Color indicares cluster membership idensified by
Crazed ppraise.

dimensional features calculated for the smooth pursuit tasks werne
represented in 20-dimensional space. Unsupervised cluster analy-
sis was performed using a scale-insensitive approach based on the
well-known density based spatial clussering algorithm, DESCAN
[Ester et al. 1996]. For density based clustering, the total number
of clusters does not need to be specified a prion.  Instead, two in-
tuitive parameters, the minimum number of members reguired to
form a cluster (minPts} and the neighborhood radius (Eps), influ-
ence cluster identification. We set minPts equal to 10 1i4th of the

total number of subjects) and Eps equal to 200 pixels (" 1/6th of the
full horzontal screen width), To illusirate the mulidimensionality
of these metrics. Figure 4 displays a subset of data [t depicts the
= dimension data from 3 features calculated for the four different
stimuli and each panicipant. Color indicates cluster membership
identified by Gaze A ppraise. This figure also illustrates the need for
2 density based clusiering algorithm rather than other approaches
such as k-nearest-neighbors, Clusters are clearly present in the fea-
ture set, but the complexity of the cluster boundanies increases with
incrzasing dimensionality of the feature space.

4 Results

Table 1 presents the results of applying the GazeA ppraise algorithm
to the 164 scanpaths. Unsupervised cluster analysis revealed that
162 of the scanpaths were categorized into one of four clusters and
the mmaining two scanpaths were considered outliers and not cat-
egorized, rsulting in a recallsensitivity score of 98.8%. All of
the caegorzed scanpaths were grouped only with other scanpaths
elicited by the same task for a precision = 1005,

Table 1: Number af scanparhs assigned 1o each cluster in unsuper-

vised clustering of 164 scanpar ks,
Stimuli
Cluster O 5 Star  Swarl
1 40
2 o 4
3 o 0o 40
+ o 0 0 41
Outlier 1 0 1 0

5 Discussion

When GareA ppraise was applied to unprocessed eye tracking data
to extract spatictemporal features, the resulting multidime nsional
data wem clustered into categones that reflecied the differences
between the original stimuli.  This study represents a proof-of-
concept; GazeAppraise successfully cakegorzed raw eye tracking
samples into distinct scanpaths that reflected the stimolus con-
straints, but in the absence of stimulus information to constrain the
calegonzation.

One advantage of Gare Appraise is that, unlike previous scanpath
analysis techniques {e.g., Mulimatch; Dewhurst et al., [2012]),
GareAppraise does not require preprocessing of the eye movement
data into fixations and saccades. Calculating these parameters from
eye movement data requires assumptions that define which samples
are part of fixations and which samples are from saccades. Parsing
the eye movement record into discrete units {fixations and saccades)
becomes more complex in dynamic environments where fixating
a visual stimulus may require smooth pursuit eye movemenis, or
when saccades may not be required to "fixae” o new ohject be-
cause the visual scene has changed.

Another advantage of GazeAppraise is that the approach does not
require defining arcas of interest or arrays of spatial locations a
priori. Rather 1t classifies similar scanpath shapes together in the
absence of stimulus information or knowledge. This ability is im-
portant because as visual stimuli become mone cluttered and dy-
namic the requirement of characterizing the spatial location of im-
portant information, or a rlevant spatial array, becomes more oner-
ous. Indeed, Gare A ppraise can categorize the spatial dependencies
between eye movement samples in the absence of a visual stimu-
lus, thus providing a means of characierizing eye movements that



are related to visual imagery and mindwandering.

In their guide to eyetracking, Holmgvist and colleagues identified
several scanpath compansons that could be useful [Holmgvistet al
2011]. Of the seven listed, GareAppraise has the potential o ad-
dress four of them: (1) overall shape comparison, (2) similar shape
that differs in scake, (3} similanty m position but reversal of order,
and (4] differences in the speed of execution of a scanpath.

In this paper. we demonstrated that GapeAppraise can categorize
scanpaths from raw eye tracking data, even when those data include
samples coliected with variations in calibration precision, tracking
consisiency, and viewer performance. Future work will need w ex-
plore how much and in what ways shapes can differ but still be
categonzed together. Similarly, scaling algorithms applied to the
calculation of = and y features could allow similarly-shaped scan
paths that differ in scale to be clustered together, while representa-
tion of the reversed order of a set of positions at different temporal
scabes would also be relatively straightforward to implement.

Although not ested here, it can be mathematically shown that,
GazeA pprajse will cluster wogether similar scanpaths that vary in
temporal duration when the differences in time are distributed
evenly across the eye movement samples relative to the duration
of the scanpath. It remains to be demonstrated how robust Gazedp-
praise is to uneven distnbution of these emporal differences across
a viewing event. For example, it is expected that there would
be mor temporal variation across individuals in eye movement
samples collected duning cognitively guided viewing than during
saliency guided viewing.

Although this application of GareAppraise used the median = and
y position as features, the metrics used for each feature are flexi-
ble. In fact, each feature can have a different units scale, ie. one
featum measured in degrees of visual angle, another measured in
milliseconds and another measured in pinels. Thus, features can
be any quantity calculable from the eye tracking samples in each
temporal inerval. Other features that may be useful for scanpath
categonzation include, but are not limited to, mean and variance of
poini-to-point distances, mean nearsst neighbor distance (random-
ness of points), total length of scanpath, area and centroid of the
comvex hull encompassing scanpath points, etc. For example, met-
rics based on point-to-point distances would implicitly encode the
proportion of fixation to saccade activity over the temporal inter-
wval. Total scanpath length could measure the amount of the visual
display that was viewed which may be important for assessing sys-
iematic search processes like visual inspection. Comvex hull met-
rics could measure the amount of the peripheral visual display that
is viewed.

The application of GareAppraise to eye movement analysis is
nascent; the eye tracking samples were collected under highly con-
strained viewing conditions {smooth pursuit eve movements con-
strained by the stimulus characteristics) not typical of everyday eve
movement patterns. It remains to be demonstrated that more typi-
cal eye movement trajectonies with fivations and saccades, that ane
influenced to a greater extent by top-down processes, can be catego-
rized. The contribution of this research is to demonstrate the appli-
cation of a new set of spatiotemporal trajectory libraries to rew eye
tracking data, an application we nefer to as GareAppraise. Catego-
rization of eye tracking data collected while viewing four different,
but constraining, stimuli was highly successful. Future work will
wvalidate the usefulness of this approach by applying the algonthm
toeye tracking data from systematic search tasks.
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APPENDIX D: PATTERNS OF ATTENTION: HOW DATA VISUALIZATIONS ARE READ*
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Abstract. Data visualizations are used to communicate information to people in a wide variety of contexts, but few tools are
available to help visualization designers evaluate the effectiveness of their designs. Visual saliency maps that predict which regions
of an image are likely to draw the viewer’s attention could be a useful evaluation tool, but existing models of visual saliency often
make poor predictions for abstract data visualizations. These models do not take into account the importance of features like text in
visualizations, which may lead to inaccurate saliency maps. In this paper we use data from two eye tracking experiments to
investigate attention to text in data visualizations. The data sets were collected under two different task conditions: a memory task
and a free viewing task. Across both tasks, the text elements in the visualizations consistently drew attention, especially during
early stages of viewing. These findings highlight the need to incorporate additional features into saliency models that will be
applied to visualizations.

Keywords: Data visualizations, text, eye tracking

Introduction

Data visualizations are widely used to convey information, yet it is difficult to evaluate whether or not they are effective.
Previous work on graph comprehension has suggested that the effectiveness of a graph depends on the relationships between
the visual properties of the graph, the experience and expectations of the user, and the type of information to be extracted
from the graph (reviewed in [27]). As such, the recommendations for the “best” way to present as dataset may differ for
every new visualization created.

Eye tracking can provide insight into how people comprehend data visualizations. It is a useful measure of where visual
attention is being directed, as attention is typically closely linked with gaze location (see [25] for review). Eye tracking
measures are divided into fixations (periods of relative stability) and saccades (ballistic movements, during which effectively
no new visual information is processed). In general, people tend to spend more time looking at, and make more fixations on,
areas of a display that are difficult to process or important to their current task goals [25]. Graph comprehension researchers
have devised various metrics to evaluate ease of processing information from graphs. For example, the time to the first
fixation in a region is taken as an indicator of how easy the region was to find. The time from landing in a region to making a
decision about a graph is taken as an indicator of how easy the information was to process after it was found (see [5] and [12]
for discussions of other useful metrics). In this way, eye movement patterns can provide a window into the ongoing cognitive
processes taking place as people comprehend data visualizations.

Although eye tracking metrics have the potential to be useful in evaluating the effectiveness of a data visualization in
conveying information to a viewer, they must be evaluated within the context of many different factors that affect viewers’
eye movement patterns. One factor is the viewer’s task, which has a large impact on his or her eye movements. For example,
Goldberg and Helfman [12] found more fixations to a graph when viewers subtracted or added data than when they were
tasked with simply extracting values. Similarly, Strobel et al. [28] found more fixations to line graphs than bar graphs when
users were performing trend analyses. The type of visualization technique used also impacts how users take in the same
information, with, for example, more fixations for unfamiliar or difficult visualizations [10,11]. Characteristics of the viewer
also influence eye movement behaviors. More experienced users can extract information in less time and may pay attention to
different aspects of a visualization than less experienced viewers [21].

To address the diversity of factors that can influence what aspects of a data visualization draw the viewer’s attention, it is
useful to distinguish between top-down and bottom-up visual attention. Top-down, or goal-oriented, visual attention is driven
by the viewer’s goals and expectations. Meanwhile, bottom-up visual attention is driven by the physical characteristics of the
image, such as color and contrast [9,23]. There are existing models of bottom-up visual attention that use the visual properties
of an image to predict which parts of the image will draw a viewer’s attention (cf. [16]). These models take an input image
and generate a map of visual saliency, where the salient regions are those that are more likely to attract bottom-up visual
attention. To assess the ability of the models to predict where people will look, the saliency maps are compared to eye

4 Matzen, L. E., Haass, M. J., Divis, K. M., & Stites, M. C. (2017, July). Patterns of Attention: How
Data Visualizations Are Read. In International Conference on Augmented Cognition (pp. 176-191).
Springer, Cham.


mailto://lematze@sandia.gov
mailto://mjhaass@sandia.gov
mailto://kmdivis@sandia.gov

tracking data collected under free viewing conditions (i.e. the participants view the images for a fixed amount of time with no
specific task to complete; [2]).

In prior work, we developed evaluation approaches for data visualizations that incorporate eye tracking data, saliency
maps, and sensor phenomenology [21]. We demonstrated that comparing saliency maps to eye tracking data collected from
experienced and inexperienced viewers can highlight the differences between features that are highly salient and features that
are highly task-relevant. Using saliency maps and eye tracking data in combination was informative for teasing apart which
aspects of the data drew viewers’ attention from both the bottom-up and top-down perspectives. This information can then be
applied to improving the visual representation of the data and to assessing feature detection algorithms.

In subsequent work, we have attempted to extend this general approach from the realm of sensor data into the domain of
abstract data visualizations. Predicting what parts of a visualization will draw the user’s attention would be a useful first pass
at evaluation [26]. However, our work has found that existing saliency maps do not work well for predicting where viewers
will look in abstract data visualizations. In Haass et al. [13], we evaluated the ability of multiple models of visual saliency to
explain viewing behaviors in natural scenes as well as data visualizations. The models performed well for natural scenes, but
they were poor predictors of viewing patterns for abstract data visualizations. Based on comparisons of the saliency maps and
fixations, a large part of the discrepancy seems to be due to people attending to text in the data visualizations. The text
elements received a high proportion of the viewers’ fixations, but were generally not identified as salient in the saliency
maps. The visual properties of text are quite different from those of features in natural scenes, so models designed to predict
eye movement in scene viewing do not account for the text’s influence on the viewer’s patterns of attention.

The findings of Haass and colleagues [13] highlight the point that abstract data visualizations are very different from
natural scenes — each element was chosen by a designer and is there for a reason. In this way, data visualizations share some
commonalities with print ads, which are also comprised of a combination of images and text to convey a message. Eye-
tracking techniques have been applied to the print ad literature (see review in [14]), and their findings have largely echoed the
graph comprehension literature in showing that the viewer’s goals have a huge influence over eye movement guidance. One
robust finding is that when viewers are asked to learn about a product or decide on a product to purchase, they tend to look at
the text of an ad earlier and for more time—roughly 70% of viewing time—than when they are evaluating an ad for its
likeability or effectiveness (in which case viewers show a preference for fixating the images). Readers are also more likely to
fixate, and spend more time viewing, ads with large text relative to small text, although the same is not true for photo size.
Importantly, the characteristics of eye movements also change when people look at different elements of ads: readers make
longer fixation durations and saccades on graphical elements compared to text.

It is worth noting that the graphical elements in ads and data visualizations serve different purposes (display a product
versus convey numeric information, respectively), and so different mechanisms might influence viewing patterns for these
two visualization types. However, gaining an understanding of the features that drive eye movements in a range of
visualizations is an important first step in understanding how viewers allocate their attention between text and graphics
during successful comprehension. Uncovering these basic features will help inform models of visual saliency. Our previous
work has already shown that simple saliency maps are not sufficient to explain viewing patterns in visualizations [13].
Updating these models to incorporate insights regarding how users allocate their attention between text and graphics might
help visualization designers to assess their designs more accurately than models that treat text similarly to graphics.

In the present study, we take a closer look at viewers’ attention to text in data visualizations. First, we analyzed eye
tracking data collected by Borkin and colleagues [3] in the context of a memory study. While their study included a wide
range of visualizations, we selected and analyzed a subset of the data that included frequently-used graph types, such as bar
charts and line graphs. We then assessed how much attention participants devoted to different regions of the visualizations,
paying particular attention to how attention was allocated to regions that contained text compared to those that did not. The
data collected by Borkin et al. [3], henceforth referred to as the MASSVIS data, was collected during a memory study. The
parameters of this task are somewhat different from those used in the eye tracking datasets that are commonly used to
evaluate visual saliency models. To address this, we collected eye tracking data from a new group of participants who
completed a free viewing task for the same subset of the MASSVIS images and an additional set of newly created data
visualizations.

Viewing Data Visualizations in a Memory Task

To study how viewers divide their attention between text and graphics in data visualizations, we began with an analysis of
a subset of the MASSVIS dataset (http://massvis.mit.edu/). These data were collected during a memory study in which
participants viewed images for 10 seconds and were later tested on their memory for the visualizations via recognition and
recall tests [3].

For the present analysis, we selected a subset of 35 images from the MASSVIS study. These images represented a variety
of commonly used types of data visualizations, all of which contained some combination of text and graphical representations



of data. The subset included four area plots, four bar charts, one bubble plot, four column charts (including two double Y-axis
plots in which a line graph was overlaid on the column charts), three correlation plots, three line graphs, two map-based
visualizations, three network diagrams, three pie charts, and five scatter plots. In addition to these 32 images, we included the
three visualizations that had the best match between the eye tracking data and the saliency maps in our prior evaluation of
saliency models [13]. These included two infographics and one line graph.

Regions of interest (ROIs) were defined for the stimulus set, dividing the visualizations into the following regions: Title,
Data, Data Area, X-Axis, X-Axis Label, Y-Axis, Y-Axis Label, Legend, Data Labels, and Text. For each visualization, the
ROIs were marked using GIMP software (www.gimp.org). The ROIs were tightly drawn to the edges of each region.

Scan paths, representing the sequence of fixations across the ROIs for each participant and each visualization where
constructed using MATLAB [20]. Fixations were counted as falling within an ROI if their center, defined as the geometric
median of all points in the fixation, fell within a 1 degree viewing angle of the ROI, approximating the participants’ useful
field of view. If the same fixation could be assigned to multiple ROIs, multiple variants of the scan path were generated.
However, for the purpose of this analysis, only the first variant was used. A total of 562 scan paths were analyzed, with an
average of 16 scan paths from different participants for each visualization. There were an average of 36 fixations per scan
path (range 6-51).

Analyses

For each visualization, the number of participants who fixated within each ROI in the visualization at least once was
calculated. The average proportion of participants who fixated on an ROI (when present) across all of the visualizations is
shown in Table 1. Unsurprisingly, participants nearly always fixated on the data in the visualizations. They were also highly
likely to fixate on the title, legend, and data labels, when those ROIs were present.

To determine where the participants allocated their attention in the visualizations, we calculated the proportion of each
participant’s fixations that fell within each ROI for each visualization. The average proportion of fixations in each ROI is also
shown in Table 1. The Data ROI received the highest average proportion of fixations, but this proportion was relatively low.
On average, only 27% of the participants’ fixations were in the Data ROI, while the Title and Data Labels ROIs received
similar proportions of fixations (25% and 26%, respectively).

Table 1. Attention to each ROI in the analysis of the MASSVIS data, including average proportions and (standard deviations).

ROI Name Number of | Average proportion | Average proportion
visualizations of participants of fixations to ROI
containing viewing ROI
ROI
Title 26 0.94 (0.10) 0.25 (0.10)
Data 35 0.98 (0.05) 0.27 (0.17)
Data Area 21 0.55 (0.26) 0.04 (0.03)
X-Axis 24 0.64 (0.20) 0.05 (0.03)
X-Axis Label 11 0.67 (0.14) 0.06 (0.05)
Y-Axis 24 0.70 (0.22) 0.12 (0.17)
Y-Axis Label 15 0.73 (0.25) 0.10 (0.08)
Legend 23 0.89 (0.15) 0.20 (0.11)
Data Label 15 0.88 (0.22) 0.26 (0.16)
Text 24 0.56 (0.28) 0.07 (0.10)

To test our hypothesis that participants disproportionately pay attention to text in data visualizations, the ROIs were
categorized based on whether or not they contained text for each stimulus. For example, the X-Axis ROIs contained text in
some visualizations but not in others. For each visualization, we then calculated the proportion of fixations that fell in ROIs
containing text, the proportion of fixations to the data and data area, and the proportion of fixations that fell in other ROIs
that did not contain text (including graphics, symbols, numbers, etc.). On average across all of the visualizations, 59.9% (SD
= 16.1%) of the participants’ fixations fell into ROIs containing text relative to 30.0% (SD = 15.6%) of fixations in the data
ROIs and 10.1% (SD = 6.6%) of fixations in the other non-text ROIs.

As another measure of how participants weighted the relative importance of each ROI, we assessed how often each ROI
was one of the first three ROIs visited by a participant. This was calculated as the proportion of scan paths in which the ROI
was one of the first three fixated (for visualizations where that ROI was present). Note that this does not necessarily mean
that one of the first three fixations in the trial fell in that ROI. For example, if a participant began a trial by fixating four times
on the title, then fixating three times on the data, and then fixating once on the legend, then the title, data, and legend would



be counted as the first three ROIs visited on that trial. In other words, we assessed the order in which the ROIs were viewed
irrespective of the number of fixations in the sequence.

The Title ROI was the most likely to be one of the first three ROIs visited. When the Title ROI was present in a
visualization, it was one of the first three visited in 87.8% of the scan paths. The Data ROI was a close second at 83.5%. The
proportions were much lower for the other ROIs (51.1% for Data Labels; 39.8% for Legend; 34.7% for the combination of
Y-Axis and Y-Axis Labels; 17.0% for the combination of X-Axis and X-Axis Labels; 14.8% for Text). Some of the X- and
Y-Axis ROIs contained words (e.g. the names of countries or months) while others were numerical (e.g. years or values). The
axis ROIs were subdivided into those that contained text (other than the axis labels) and those that did not. When the X-Axis
ROI contained text, it was one of the first three ROIs visited in 48.5% of the scan paths.> When the X-Axis ROI did not
contain text, it was one of the first three ROIs visited in 12.4% of the scan paths. The difference was even more dramatic for
the Y-Axis ROI, which was in the first three ROIs visited in 80.9% of the scan paths when the ROI included text, but only
13.0% of the scan paths when it did not.

To explore the data further, we looked at correlations between the number of words in an ROI and the proportion of
fixations in the ROI. If a participant is spending time reading the text in a particular ROI, we would expect to see a high
correlation between the number of words and the proportion of fixations. The correlations were significant for the Title (R’ =
0.73, p < 0.001), Text (R’ = 0.82, p < 0.001), X-Axis Label (R’ = 0.69, p < 0.02), and Y-Axis Label (R? = 0.83, p < 0.001)
ROIs. For the Legend and Data Label ROIs, which received relatively high proportions of fixations on average, there was not
a significant correlation between the number of words and the proportion of fixations (Legend: R? = 0.39, p = 0.07; Data
Labels: R?=0.41, p =0.15).

The axes themselves provide an interesting opportunity for investigating the effect of text on where viewers spend their
time when studying a visualization. As mentioned above, some of the X- and Y-Axis ROIs contained words and others
contained only numbers. When the axes contained words, there was a significant correlation between the number of words
and the proportion of fixations to the axis (X-Axis: R? = 0.48, p < 0.02; Y-Axis: R? =0.90, p < 0.001). In contrast, when the
X-Axis contained only numerical values, there was no correlation between the number of numerical values and the
proportion of fixations (R’ = 0.09, p = 0.68). When the Y-Axis contained only numerical values, there was a significant
negative correlation (R’ = -0.46, p < 0.03).

Discussion

The results of our analyses indicate that participants disproportionately viewed regions of the visualizations that contained
text in the MASSVIS study. Although the participants did spend time looking at the visualized data, the majority of their
fixations were devoted to regions containing text. For some of those regions, including the Title, Text and Axis Label ROIs,
significant correlations between the number of fixations and the number of words in the ROIs indicate that participants were
spending time reading the text. For other regions, namely the Legend and Data Label ROIs, there was not a significant
correlation between the number of fixations and the number of words. These ROIs received relatively high proportions of
fixations overall, so the absence of a correlation between the number of words and the proportion of fixations in these regions
likely indicates that the participants read the text in those regions but also referred back to them more than once as they
studied the visualizations.

Interestingly, the axes of graphs seemed to attract participants’ attention when they contained text but not when they
contained numbers. Axes containing text were much more likely to be one of the first three ROIs viewed than axes
containing only numbers, and for the Y-Axis ROI there was a significant negative correlation between the number of
fixations and the number of numerical values along the axis. There are several possible explanations for this pattern, but it
seems plausible that numerical axes can be comprehended at a glance, making repeated fixations and revisits unnecessary.

An important point to note is that the MASSVIS eye tracking dataset was collected in the context of a memory study,
which may have had a substantial influence on how participants allocated their attention. For example, they may have
devoted a lot of attention to the titles of the graphs, thinking that the titles would be easier to remember than the details of the
visualized data. To explore the impact of the task on patterns of attention to the visualizations, we conducted a study in which
participants viewed data visualizations in a free viewing task.

Viewing Data Visualizations in a Free Viewing Task

When eye tracking datasets are used to assess saliency maps, the participants in the eye tracking studies are typically given
a free viewing task. For example, in the widely used MIT Saliency Benchmark eye tracking datasets (http://saliency.mit.edu),

3 However, there were only two visualizations in this category, with a total of 33 scan paths. The other groupings
contained much higher numbers of visualizations and scan paths.



participants completed a free viewing task in which they viewed each image for 5 seconds [2, 6, 17]. In this study, we used
the same task and presentation duration to examine eye movement patterns on a larger set of data visualizations and a larger
group of participants. Participants viewed the same subset of MASSVIS stimuli that were used in the analysis described
above and an additional 27 data visualizations in the context of a larger free viewing experiment.

Method

Participants.

Thirty participants were recruited from students, faculty, and staff in the University of Illinois community (10 males; mean
age = 30.53 years, SD = 13.06) and compensated $20 for their time. All participants were tested for color vision deficiencies
(24 plate Ishihara Test [15]) and near vision acuity prior to completing the study. Data from an additional five participants
was discarded because: they failed the colorblindness and/or acuity tests prior to beginning the experiment (2 participants);
the eye tracker failed to successfully capture their eye movements for a significant portion of the experiment (1 participant);
they fell asleep for any portion of the experiment (1 participant); or there was a problem with the experimental apparatus (1
participant).

Materials.

Four blocks of images were used in this study, consisting of a total of 108 images. Each image was centered and gray
padded to fill the dimensions of the screen.

Two of the blocks consisted of line drawings (30 images) and fractals (16 images) drawn from the MIT Saliency
Benchmark CAT2000 dataset [2]. Those blocks are not analyzed in the present study. One block contained thirty-five data
visualizations pulled from the MASSVIS dataset [3, 4]. These were the same visualizations as those analyzed in section 2.
The final block contained twenty-seven data visualizations that were created specifically for this experiment (3 bar charts, 3
boxplots, 3 bubble graphs, 3 column charts, 3 line plots, 3 parallel coordinates plots, 3 pie charts, 3 scatterplots, and 3 violin
plots®). These stimuli were selected to represent a variety of common types of data visualizations. To mirror the
visualizations in the MASSVIS set, not all of the visualizations contained all of the possible ROIs and the placement of
specific ROIs (such as the Legend) varied across visualizations. The newly generated visualizations also differed from the
MASSVIS set because they did not contain infographics or additional text, such as text indicating the source of the data.

The order in which the four blocks of images were presented was counterbalanced across participants. Within each block,
the stimuli were shown in a random order.

Procedure.

The experiment was completed in a dark room at a nominal viewing distance of 0.8 meters. Stimuli were presented on a
large monitor (0.932 x 0.523 meters; 1920 x 1080 pixels) while eye movements were recorded with two Smart Eye Pro
cameras. Participants first underwent the standard Smart Eye camera setup procedure and 9-point calibration.

Participants were instructed to view each image as it was presented. Each trial began with a 2-second fixation cross in the
center of the screen. The fixation cross was followed by the presentation of an individual image, which was displayed on the
screen for 5 seconds.

Analysis.

In the resulting dataset, fixations were defined as samples for which the velocity over the preceding 200 milliseconds (ms)
was less than 15 degrees per second. The first fixation in each trial and any fixations with a duration less than 100 ms were
dropped from the analysis. For all of the analyses described below, the visualizations pulled from the MASSVIS set and the
visualizations created specifically for this experiment are pooled together. A total of 1834 scan paths were included in the
analysis. There were an average of 11 fixations per scan path (range 1-19).

As in our earlier analysis, the number of participants who fixated within each ROI at least once was calculated for each
visualization. The average proportion of participants who fixated on an ROI (when present) across all of the visualizations is
shown in Table 2. In addition, we calculated the proportion of each participant’s total fixations that fell within each ROI for
each visualization. The average proportion of fixations in each ROI is also shown in Table 2. As before, the three ROIs
receiving the highest proportion of fixations were the Data (37%), Title (22%) and Data Label (19%) ROIs.

®Due to a programming error, 11 of these images were dropped (leaving a total of 97 images in this experiment). Because they were still of
interest, the dropped images were included in a subsequent data collection. The participants in that data collection were recruited in the
same manner as the initial group of participants. The group consisted of thirty participants (7 males; mean age = 29.57, stdev = 13.79). Two
participants completed both data collection sessions.



The ROIs were categorized based on whether or not they contained text for each stimulus. For each visualization, we then
calculated the proportion of fixations that fell in ROIs containing text, the proportion of fixations to the data and data area,
and the proportion of fixations that fell in other ROIs that did not contain text (including graphics, symbols, numbers, etc.).
On average across all of the visualizations, 40.8% (SD = 19.5%) of the participants’ fixations fell into ROIs containing text
relative to 44.4% (SD = 18.3%) of fixations in the data ROIs and 14.8% (SD = 0.07%) of fixations in the other non-text
ROIs.

Table 2. Attention to each ROI for the visualizations in the second analysis, including average proportions and (standard deviations).

ROI Name Number of | Average proportion | Average proportion
visualizations of participants of fixations to ROI
containing viewing ROI
ROI
Title 43 0.71 (0.21) 0.22 (0.14)
Data 62 0.91 (0.12) 0.37 (0.18)
Data Area 43 0.53 (0.23) 0.10 (0.06)
X-Axis 46 0.43 (0.18) 0.07 (0.04)
X-Axis Label 23 0.17 (0.11) 0.02 (0.02)
Y-Axis 47 0.52 (0.22) 0.10 (0.10)
Y-Axis Label 33 0.39 (0.23) 0.07 (0.07)
Legend 42 0.68 (0.21) 0.14 (0.08)
Data Label 17 0.70 (0.30) 0.19 (0.13)
Text 24 0.24 (0.29) 0.05 (0.08)

We assessed how often each ROI was one of the first three ROIs fixated by a participant using the same procedure defined
above. In this experiment, the Data ROI was most often one of the first three ROIs fixated. It was one of the first three ROIs
fixated for 80.5% of the scan paths. The Title ROI was second at 67.5%. Once again, the proportions were lower for the other
ROIs (50.8% for Data Labels; 40.5% for Legend; 40.3% for the combination of Y-Axis and Y-Axis Labels; 18.7% for the
combination of X-Axis and X-Axis Labels; 13.8% for Text). The axis ROIs were subdivided into those that contained text
(other than the axis labels) and those that did not. When the X-Axis ROI contained text, it was one of the first three ROIs
viewed in 22.2% of the scan paths. When the X-Axis ROI did not contain text, it was one of the first three ROIs viewed in
14.4% of the scan paths. The Y-Axis ROI was one of the first three ROIs viewed in 56.4% of the scan paths when the ROI
included text and 22.0% of the scan paths when it did not.

As before, we also assessed the correlations between the number of words in an ROI and the proportion of fixations in the
ROIL. The correlations were significant for the Title (R’ = 0.90, p < 0.001), Text (R’ = 0.81, p < 0.001), X-Axis Label (R’ =
0.57, p <0.01), Y-Axis Label (R?=0.64, p < 0.001), Legend (R’ = 0.39, p < 0.02) and Data Label (R?= 0.60, p < 0.02) ROIs.

As in the first analysis, some of the X- and Y-Axis ROIs contained words and others contained only numbers. For the X-
Axis, there was not a significant correlation between the number of items and the proportion of fixations for axes consisting
of words (R? = 0.27, p = 0.07) or numbers (R’ = 0.03, p = 0.86). For the Y-Axis, there was a significant correlation between
the proportion of fixations and the number of words (R? = 0.89, p < 0.001), and, as in the first analysis, a significant negative
correlation for numbers (R’ =-0.41, p <0.01).

For a more detailed assessment of how participants allocated their attention to the ROIs, plots were created to show the
time course of attention to various parts of the visualizations. Every trial was divided into 313 consecutive 16 ms time
windows, from trial onset until the five second trial cutoff time. For each time window, we calculated whether a fixation was
made, and if so, which ROI the fixation fell into. An ROI was given a value of 1 for the time window if it received a fixation,
and a 0 if it did not. Time windows of 16 ms were chosen to coincide with the sampling rate of the eye-tracker. Fixations
were counted as occurring within a time bin if any part of the fixation fell in the window (i.e., even if the fixation ended or
started during the time window). Only one fixation was allowed to occur in a single 16 ms time window; if multiple fixations
occurred during a time window, only the first ROI visited was counted, and the fixation to the second ROI was assigned as
starting in the next time window. However, given that it takes roughly 30-50ms to make a saccade, it is highly unlikely that
two separate fixations would have been possible in the small time window. The first fixation of the trial was excluded, as it
began with the disappearance of the fixation cross and did not represent a volitional look to any ROI.

The data plotted in Figure 1 shows the viewing patterns collapsing across all visualizations. The x-axis represents time
from trial start, the y-axis represents the probability of fixating an ROI, and each line represents a different ROI. Note that the
probabilities do not necessarily sum to 1 at every time point, because not every participant made a fixation during every time
point (e.g., due to saccades or track loss). Overall, participants tended to look at the Title ROI early in the trial, with Title



fixations peaking between 750-1000 ms after trial onset and then quickly declining. Fixations to the Data ROI surpassed
looks to the Title beginning ~1500 ms after trial onset, and continued to increase throughout the duration of the trial until
peaking at ~4500 ms. The next most-fixated ROI was the Legend region, which had a numerically higher probability of
fixation than the rest of the ROIs from ~750 ms after trial onset until the end of the trial. However, the low probability of
fixating the other ROIs could be due the fact that not all ROIs were present in all visualizations, meaning that many ROIs had
zeros for several visualizations. This plot highlights that although users made more fixations to the data ROI overall, this
pattern was only true in the later part of the viewing period. Upon first viewing a new visualization, users tended to look at
the Title first, after which they shifted their attention to other areas of the visualization.
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Fig. 1. Probability of fixating each ROI across time, collapsing across all visualizations.

The data plotted in Figure 2 shows viewing patterns to visualizations without text in the y-axis (top panel) versus with text
in the y-axis (bottom panel). In both cases, Title fixations peaked early in the trial (~500 ms in vis without y-axis text and
~1000 ms in vis with y-axis text).

However, striking differences are apparent in the pattern of looks to the y-axis. In visualizations with y-axis text, users
showed clear preference for fixating the y-axis over the data area after ~500 ms into the trial, and fixations to the y-axis
exceeded Title fixations after ~2250 ms. Conversely, in visualizations without y-axis text, participants made very few looks
to the y-axis, and instead focused most of their fixations on the Title early in the trial, and to the Data ROI later in the trial
(after ~1500 ms). There was a small preference for fixating the Labels ROI, relative to the non-Data ROIs, from ~3000-4500
ms, suggesting the need to seek out text to understand the plots when it was not present in the y-axis. This pattern clearly
shows that users' viewing patterns to the y-axis were strongly influenced by the presence of text. Users made many more y-
axis fixations when text was present compared to when it was not, and even made more fixations to the y-axis than to the
Data when text was present, highlighting the emphasis that users place on text during visualization comprehension.



General Discussion

Overall, the results of these analyses suggest that viewers devote a great deal of attention to the text in data visualizations.
For the eye tracking data collected as part of the MASSVIS study, the majority of the participants’ fixations were devoted to
ROIs that contained text. In the second eye tracking dataset, collected using a larger set of data visualizations and a larger
group of participants along with a free view rather than memory task, the proportion of fixations devoted to text was
comparable to the proportion of fixations devoted to the data.

Probabilty of Visiting Each
Region of Interest Across Time
Visualizations with and without Y-Axis Text

0.4
R
>
0.3 1 E
(7]
=4
-
0.2 =5
=
5
_ Region of Interest
1 o
8 o @ = = = Data
-
-9 LU Labels
=
i 004 - Legend
% . Title
2 04 X Axis
% ' = = XAxis Text Label
-g Y Axis
= =< ’
o 0.3 1 Y Axis Text Label
' >
=,
(7]
0.21 g
—
=2
-
®
0.14 ﬁ
0.0
s & H S D D D S o
R N R S S T S N s

Time from Trial Start (ms)

Fig. 2. Probability of fixating each ROI across time, plotted separately for visualizations without y-axis text (top panel) and with y-axis text
(bottom panel).

For both datasets, it was instructive to examine the participants’ attention to the axes, which contained text in some
visualizations and numbers in others. The axes were one of the first three ROIs fixated more often when they contained text
than when they did not. Interestingly, for the Y-Axis ROI in both datasets, there was a significant correlation between the
proportion of fixations and the number of words in the ROI, and a significant negative correlation between the proportion of
fixations and the number of numerical values. An analysis of the time course of fixations for the second dataset indicated that
when the Y-Axis ROI contained text, it had a high probability of being visited throughout the trials, and was the most likely
ROI to be viewed in the second half of the trials, after participants had turned their attention away from the title of the
visualization. When the Y-Axis ROI did not contain text, it had a low probability of visits throughout the trial, with
participants devoting more attention to the Data and Legend ROls.

It is important to note that the two datasets are different in several ways. The MASSVIS data was collected in the context
of a memory study where the visualizations were displayed for 10 seconds each. It consisted of visualizations that were found
“in the wild.” Although we selected a subset of the visualizations that represented common types of data visualizations, these
images often contained descriptive titles, annotations, and text noting the source of the data. In other words, the data itself
was contextualized by the text in the visualizations. In the second study, we added an additional set of visualizations that
were generated in the lab rather than being found in the wild. These visualizations tended to be simpler and had less
contextual information. In addition, to mirror the experimental parameters that have been used for assessing visual saliency
maps, participants were given a free viewing task’ with only 5 seconds for examining the visualizations. The simpler text and



shorter viewing times in the second dataset may have driven the difference in the overall proportions of fixations to the text
versus the data. However, even in the second dataset, the ROIs containing text were viewed almost as often as the data ROls,
indicating that the text still draws viewers’ attention even when they have little time and the text provides relatively little
information.

Our finding that viewers focused on the text elements in data visualizations is consistent with prior research. Some studies
have found that users spend as much as 60-70% of viewing time reading the title, data labels and axes of simple graphs [1, 8,
18]. Users are also more likely to re-fixate text-based areas, such as the legend [3, 22, 29]. In our current analysis, we
investigated a wider variety of visualization types and complexities, but the overall tendency to devote a large amount of
viewing time to text-based regions remained the same.

The analyses presented here have several limitations. First, the relatively small size of the text in visualizations may
necessitate more direct fixations due to the limits of visual acuity [24]. This may have an impact on overall viewing time.
Second, the participants in these studies had no particular expertise with interpreting data visualizations, and their tasks did
not require them to find specific information in the visualizations, or even to understand the gist of the data presented. While
this approach may be realistic for understanding how people process visualizations that they encounter in daily life, such as
an infographic presented in a magazine, patterns of attention are likely to be quite different in cases where a viewer is using a
visualization to obtain specific information in the context of a larger task. Domain experience also plays an important role in
how people attend to data visualizations. Our own prior work found large differences between professional imagery analysts
and novice viewers looking at radar imagery [21], and other researchers have found that even brief instructions on how to
interpret a plot can change how people allocate their attention [7]. Individual differences in information processing also play
an important role. For example, dyslexic individuals spend disproportionately more time on text than typical readers [18].
None of these factors operate in isolation, and taking their combination into account can result in complex interactions
between such factors as chart type, task difficulty, and the user’s perceptual speed [29].

Despite these limitations, the general finding that text in data visualizations draws the viewer’s attention has important
implications for the development of visual saliency models that apply to visualizations. As discussed above, the ability to
make predictions about where viewers will look in data visualizations could be a useful evaluation tool. To make accurate
predictions, these models must take attention to text into account. In our future work, we plan to develop a new saliency
model that incorporates text as a visual feature. We will test how to weight this feature relative to the other visual features
that are commonly used in saliency models (color, contrast, and orientation). If successful, this approach will provide an
improved tool that will allow visualization designers to evaluate their designs from the perspective of human visual
processing.
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Introduction

Data visualizations serve an important role in scientific inquiry and communication. A good data
visualization can allow its viewer to quickly identify important trends and interesting groups or outliers
in a large dataset or to rapidly grasp the take-home message of an entire study. But what makes a data
visualization “good”? Members of the visualization community are calling for evaluation of
visualizations by examining the extent to which they support their viewers’ cognitive needs (Cleveland,
1993; Card, Mackinlay, and Shneiderman, 1999; Etemadpour, Olk, & Linsen, 2014; Gleicher, et al.,
2013; Micallef, et al., 2017; Munzner, 2014). Under this form of metric, a “good” visualization
successfully exploits its viewers’ cognitive processes to draw the users’ attention to relevant
information, minimize distraction, and increase the likelihood of correct interpretation.

One method for evaluating whether a visualization supports its users’ cognitive processes and ensures
the users are utilizing the visualization as the visualizer intended is to examine the users’ eye movements
while they view the visualization. The structure of the retina limits visual acuity to the central portion of
our field of view. In order to extract detailed information about a region in space we are not currently
looking at, we must move our eyes to that region. Thus, when users move their eyes to a particular area
on a data visualization, we can trust they are attending that region (Hoffman & Subramaniam, 1995) and
that they are extracting and processing information that is available within it (Aloimonos, Weiss, &
Bandyopadhyay, 1987; Findlay & Gilchrist, 2003; Henderson, 2003). The pattern of eye movements and
the pauses between each eye movement (fixations) can inform our understanding of how a user is
processing a visualization. Furthermore, if we understand the factors guiding attention, we can develop
models to evaluate whether the most relevant portions of the visualization are likely to draw a
hypothetical user’s attention without undergoing expensive and time-consuming user studies.

Recently, several research groups have suggested visual salience may be a useful tool for evaluating the
extent to which visualizations support their users’ cognitive processes (Janicke & Chen, 2010; Kim &
Varshney, 2006; Matzen et al., 2017). Human visual attention is drawn automatically to unique (salient)
features in the visual array. Models of human attention based on visual salience predict participants’ eye
movements with good success in natural (e.g., Itti & Koch, 2001) and man-made (e.g., Berg & Itti,
2008) scenes under free-viewing conditions. As such, optimal utilization of visual salience in a data
visualization may guide users through the visualization in the way the visualizer intended while sub-
optimal usage may distract the user. Indeed, increasing the visual salience of task-relevant information
has been shown to alter or aid user performance in day-to-day decision-making tasks (Milosavljevic et
al., 2012), in virtual reality (Veas et al., 2011), and, importantly, in data visualization interpretation
(Gleicher et al., 2013; Healey & Enns, 1998; Hegarty, et al., 2010; Interrante, 2000; Nothelfer, Gleicher,
& Franconeri, 2017). A modified version of Itti & Koch’s (2001) model of visual salience has also been
used to successfully predict users’ eye movements in data visualizations (Matzen et al., 2017).

Visual salience is one of several external sources of information that guide human attention in a
“bottom-up” fashion—highly salient areas pull attention without high-level cognitive input by the
observer. Attention can also be guided in a “top-down” fashion, whereby the observer’s goals,
expectations, and prior experience guide attention to goal-relevant objects (Yarbus, 1967; Wolfe, 1994;



Wolfe, Cave, & Franzel, 1989). Users viewing a simple scatterplot, therefore, may have their attention
pulled automatically towards a cluster of salient, red data points amongst several grey clusters or may
deploy their attention voluntarily to the low-salience axes labels because their prior experiences and
knowledge suggests they should.

While visual salience can predict where users of data visualization will look under some circumstances
(Matzen et al., 2017), top-down processing has a strong influence over where people choose to look and
can override the bottom-up draw of visually salient regions (Land & Hayhoe, 2001; Land, Mennie, &
Rusted, 1999). For instance, social cues (Birmingham, Bischof, & Kingstone, 2009), differing task
priorities (Castelhano, Mack, & Henderson, 2009; Foulsham & Underwood, 2007; Hegarty et al., 2010;
Henderson, et al., 2007; Land, Mennie, & Rusted, 1999; Mills et al., 2011), expertise (Lansdale,
Underwood, & Davies, 2010), and prior experiences (Chun, 2000; Lleras, Rensink, & Enns, 2005, 2008)
are all well-known top-down drivers of attention. Recent research has also demonstrated the influence of
top down goals on eye movement patterns when interpreting data visualizations. Participants with
different goals looking at the same visualization will inspect it differently (Michal & Franconeri, 2017;
Michal, Uttal, Shah, & Franconeri, 2016).

To better evaluate the extent to which a visualization supports a user’s cognitive processes, the factors
that guide top-down attention should be considered in addition to bottom-up factors like visual salience.
As an example, Matzen and colleagues (2017) developed the Data Visualization Saliency (DVS) model
of visual salience for evaluating data visualizations that took into account the importance of text. Text
typically has low visual salience and is often not identified by salience-based models of human attention
(e.g., Itti & Koch, 2001) as a region of interest. However, humans have a top-down motivation to look at
text despite its low visual salience, and most if not all viewers will choose to look at text if it is present
(Rayner et al., 2001), particularly in the context of interpreting data visualizations (Matzen et al., 2016).
Thus, the DVS model better predicted participants’ eye movements for data visualizations than other
models that did not take into account any top-down processes. There are likely other common
components of data visualizations that users consistently attend in a top-down fashion, as they do with
text. If this is the case, identifying these visualization components and adding sensitivity to those
components to a salience-based model should further improve the model’s performance.

Creating a useful evaluation of this sort for all data visualizations is difficult in part because data
visualizations are developed and consumed for a wide variety of high-level goals. For example,
Munzner (2014) suggests data visualizations can be created with the broad goals of analyzing, searching,
or querying information. Within each of those broad goals lies a number of more specific goals—a user
analyzing data with a data visualization may be seeking to discover new information, a user searching
data via visualization may be exploring information to locate targets of interest, or a user querying via
data visualization may be seeking to compare two data sets. Each of these goals and combinations of
them is best served by different kinds of data visualizations and, even within the same data visualization,
users with different goals may choose to look at different things. Characterizing the eye movement
behavior associated with certain user goals could further inform a model for evaluating visualizations.
For example, if the purpose of a visualization is to allow the user to compare two pieces of information,
a model that accounts for that goal could adjust the weighting of certain features to create an output that
better reflects that top-down driven goal.

Toward this end, the goal of the present study is to better understand the role of top-down attention in
comprehension of data visualizations. If two users have different goals when viewing the same data
visualization, how do their behaviors differ and what behaviors are similar? Mills and colleagues (2010)
compared eye movement behavior for four different tasks in natural scenes. When they compared the
fixation durations and eye movement amplitudes of their participants under different task conditions,



they found characteristic patterns of eye movement behavior for each task type. The eye-movement
patterns for these tasks were similar in some ways (e.g., a visual search task and an aesthetic evaluation
task produced similarly short fixation durations) and different in others (e.g., the visual search task was
better characterized by longer eye-movements than the aesthetic evaluation task). Applying a similar
method to data visualizations will provide a better understanding of how top-down factors guide eye
movements through a visualization, thus opening the door to visualization evaluation techniques
informed by the user’s top-down goals.

Here, we describe two studies in which we investigate the impact of top-down factors on data
visualization comprehension. In both experiments, participants’ eyes were tracked. In Experiment 1A,
we presented participants with scatterplots and asked them to describe the trend they observed or to
describe any outliers present in the display. Each participant was presented with the same stimuli
regardless of task instruction, so we were able to directly compare eye movement patterns and
behavioral results for the two tasks for each scatterplot. In Experiment 1B, participants were given two
clusters of data and were asked to judge the membership of an intermediate reference point (i.e., which
cluster does the point belong to) or to judge which cluster was higher. The choice of tasks for
Experiments 1A and 1B were informed by two prior studies investigating the ways perceptual
information influences how users interpret scatterplots. Etemadpour, Olk, & Linsen (2014) evaluated
how users’ eye movement patterns and behavioral responses changed as a function of the layout and
design of plots. Gleicher and colleagues (2013) investigated the influence of group size, group encoding
style (including the salience of the group’s encoding), and the number of groups on participants’ ability
to make mean-value judgements for one group within a multi-class scatterplot. They found that
numerosity of group members, the number of total groups, and redundant encodings (i.e., one group is
demarked two unique encodings) did not affect participants’ ability to make mean value judgements.
However, low salience encodings of group membership negatively impacted participants’ performance.
Experiments 1A and 1B extend these findings.

In Experiment 2, we sought to evaluate the extent the top-down factor of expertise influences users’ eye
movements and behavioral performance when viewing data visualizations. We recruited participants
experienced with statistics and presented them with a variety of styles of data visualizations (e.g.,
scatterplot, box and whisker plot, violin plot, etc.) and a variety of representations of statistical
uncertainty (e.g., standard error of the mean, interquartile range, etc). Each stimulus depicted two
groups. Participants evaluated whether they felt the two groups presented in each graph were statistically
significantly different and then rated their certainty in their evaluation. The same data was depicted
using each of the chart types and representations of uncertainty, allowing us to examine the extent to
which participants were able to evaluate the statistical significance of the difference between the two
groups given a certain data visualization (i.e., the visualizations’ efficacy compared to other
visualizations of the same data). We also asked participants to indicate their familiarity with each of the
chart and representations of uncertainty used in the experiment to further evaluate the influence of
expertise on participants’ eye movements and behavioral performance.

Experiment 1A

In Experiment 1A, we examined participants’ eye movements and behavioral responses while viewing
simple scatterplots with the goal of either detecting outliers or describing the relationship between the
two variables plotted.

Methods

Participants



Thirty participants were recruited from students, faculty, and staff in the University of Illinois
community (7 males; mean age = 29.57, stdev = 13.79) and compensated $20 for their time. All
participants were tested for color vision deficiencies (24 plate Ishihara Test; Ishihara, 1972) and near
vision acuity prior to completing the study.

Design
Task (trend or outlier description), data pattern (+/- linear, sinusoidal, +/- logarithmic, flat, and +/-
quadratic), and number of outliers (2 or 4) were manipulated within subjects.

Materials

All stimuli were created in R Software (R Development Core Team, 2008) from simulated data, using
the standard plotting function to create simple scatterplots. The stimuli were plotted on a white
background, with labeled axes and main title. Each stimulus consisted of 100 data points (plotted as
open circles). All foreground elements were black in color. See Appendix A for example stimuli.

Thirty-two scatterplots with the following trends were created for Experiment 1A: positive linear,
negative linear, flat, sinusoidal (cyclical), positive logarithmic (asymptotic), negative logarithmic
(asymptotic), positive quadratic, and negative quadratic. Each graph had either 2 or 4 outliers. The 32
stimuli consisted of 2 each of the 16 unique combinations of trend and number of outliers. Simulated
data were drawn from Gaussian distributions with intuitive parameters for the given axis labels. The
main body of data was constrained to fall within two vertical standard deviations of the trend function.
The outliers were created to be at least four standard deviations away from the trend function.

Procedure

The experiment was completed individually in a dark room at a nominal viewing distance of .8 meters.
Stimuli were presented on a large monitor (.932 x .523 meters; 1920 x 1080 pixels) while eye
movements were recorded with two Smart Eye Pro cameras. Participants first underwent the standard
Smart Eye camera setup procedure and 9-point calibration.

Experiment 1A was divided into 3 sections: practice and two blocks of stimuli. During the practice
session, participants worked through two example stimuli and were given the opportunity to ask the
experimenter for further clarification. Half the participants described the data trend during the first block
of stimuli and then described the outliers during the second; the other half of the participants described
the outliers in the first block and then described the data trend in the second block.

The 32 images were divided into two sets, each containing 16 unique combinations of data trends and
number of outliers (counterbalanced across the two blocks of stimuli between subjects). Each image was
1000 pixels high (width was allowed to vary to maintain aspect ratio) and placed in the center of the
screen; the edges were white-padded to fill the screen.

Each image was presented one at a time, was preceded with a fixation cross, and had a 500 ms
interstimulus interval. Participants were allowed to work through the images at their own pace, with a
maximum of 10 seconds allowed on each image. After studying the image, participants advanced to a
blank screen and verbally described the image (either the trend or the outliers, depending on condition).
The experimenter recorded their response and asked for further clarification if necessary (all responses
were also captured in audio files).

Behavioral Results
All statistical tests reported here were held at an a = .05 level and run using R Software (R Development
Core Team, 2008).



Trend Description

This section covers the blocks where participants described the trend shown in the scatterplot. Each
response was scored on a scale from / to 3, with / meaning the response did not demonstrate sufficient
understanding of the trend, 2 meaning the participants noted some of the key features but were partially
incorrect or did not describe it in full, and 3 meaning the response demonstrated an acceptable level of
understanding. Because this scoring system is subjective, we had two raters independently score each
response. On responses where there was a discrepancy in the scores, the raters discussed their scores. If
an agreement was reached, the score was updated; if an agreement was not reached, the scores were not
changed. After this process, the correlation between the two sets of scores was quite high (» = .958).
Subsequent analyses used the average of the two scores. Subsequent analyses used the average of the
two scores.

A Kruskal-Wallis rank sum test indicated a significant difference in scores among the types of graphs
(X?=97.752,df=4, p <.001).

Outlier Detection

This section covers the blocks where participants identified outliers in each image. Once again, two
raters independently worked through each response, indicating how many outliers were identified. The
counts from the two raters were compared; where the counts differed, the raters discussed the response
and updated their score if they came to an agreement. Ambiguous responses or those that did not
mention outliers were flagged and dropped from subsequent analyses. If one rater indicated that the
response was too ambiguous to score, it was also dropped from subsequent analyses. The correlation
between the two raters was once again quite high (» = .961). Errors were calculated as the difference
between the actual number of outliers (2 or 4) and the number of outliers reported (average of the counts
from the two raters).

Out of 398 trials, errors were made on 220 trials (55.3%). Participants tended to miss outliers (200 trials,
90.9% of errors) rather than falsely identify outliers. A Kruskal-Wallis rank sum test indicated no
significant difference in absolute error among the types of graphs (X? = 7.697, df = 4, p = .103).

Eye Movement Results

Fixations were calculated using SmartEye’s default algorithm (any sample for which the velocity over
the preceding 200 ms is less than 15°/s is deemed a fixation). Any fixation less than 100 ms and first
fixations in each trial were dropped.

In Experiment 1A, our primary interest was in how visual attention changes in response to differences in
task. A mixed effects model with a fixed effect for task and random intercepts for participant and
stimulus (using Satterthwaite approximation for degrees of freedom) revealed that overall, participants
had more fixations in the outlier task (mean = 22.83 fixations, stdev = 4.78) relative to the trend task
(mean = 19.90 fixations, stdev = 5.37; #(885) = 10.04, p <.001). A similar mixed effects model with
fixation duration as the fixed effect revealed that fixation durations in the trend task (mean = 325.38 ms,
stdev =293.92) tended to be longer than those in the outlier task (mean = 279.84 ms; stdev = 232.53;
#20015) =12.43, p <.001).

Task also influenced which regions of the graph participants most frequently fixated. Each stimulus was
divided into the following regions of interest (ROIs): outliers, trend, title, x-axis, x-label, y-axis, y-label,
and other. Proportion of fixations to each type of ROI were calculated for each participant and stimulus
(see Figure KK). The critical ROIs of interest were the trend and outlier ROIs due to their direct
relevance to the two tasks of trend description and outlier detection. A mixed effects model predicting



proportion of fixations as a function of the fixed effects of task and ROI and with random intercepts for
subject and stimulus (using Satterthwaite approximation for degrees of freedom) revealed significant
simple effects of task for both: a higher proportion of fixations occurred to the outlier ROIs in the outlier
task (#(7560) = 4.41, p <.001), but a higher proportion of fixations occurred to the trend ROI in the
trend task (#(7560) = 12.71, p <.001). The model also revealed that participants in the trend description
task (relative to the outlier detection task) had a higher proportion of fixations to all other ROIs, with the
exception of the “other” ROI where those in the outlier detection task had a higher proportion of
fixations (all #-statistics < 2.00 and p-values < .05).
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Figure KK. Proportion of fixations each subject made to regions of interest (ROIs) based on task (outlier detection or
trend description) in Experiment 1A. Error bars represent standard error of the mean.

Experiment 1B

In Experiment 1B, we monitored participants’ eye movements while viewing two-dimensional clusters
of data with a reference point superimposed between the clusters. Participants were asked to either
identify which cluster the reference point belongs to or which cluster has the overall highest vertical
mean.

Methods

Participants
The same participants who completed Experiment 1A also completed Experiment 1B.

Design

Task (cluster mean comparison or reference point grouping), reference point centering (standard
deviation or mean), relative cluster height (even or raised), cluster sparsity (low or high), and cluster
dispersion (low or high) were manipulated within subjects.

Materials



All stimuli were created in R Software (R Development Core Team, 2008) from simulated data using
the ggplot2 software package (Wickham, 2009). The scatterplots had design characteristics similar to
those used in Etemadpour, Olk, and Linsen (2014). Each scatterplot had two clusters and one reference
point. The data points were filled colored circles outlined in black on a white background. No axis titles
or tick marks were provided. One cluster was blue and the other was green (randomly assigned); the
reference point was always red. See Appendix B for example stimuli.

Clusters were manipulated along the sparsity (low or high) and dispersion (low or high) dimensions.
Clusters with high sparsity contained fewer data points per square unit than those with low sparsity.
Clusters with high dispersion were more spread out (i.e., higher standard deviation, leading to a wider
cluster) than those with low dispersion. Crossing these two dimensions leads to four types of clusters:
Cluster A: low sparsity and low dispersion (n = 40, stdev = 10), Cluster B: high sparsity and low
dispersion (n = 15, stdev = 10), Cluster C: low sparsity and high dispersion (n = 85, stdev = 25), and
Cluster D: high sparsity and high dispersion (n = 40, stdev = 25). Simulated data were drawn from
Gaussian distributions with the parameters indicated in each cluster class. See Appendix B for examples
of each cluster type. Clusters were paired in all possible combinations (e.g., A-A, C-D, D-C) to create 80
total images. In half of the stimuli, the mean cluster height was the same for each cluster in the pair; in
the other half, one cluster was higher than the other.

A reference point was placed between the two clusters. One cluster was always to the left of the
reference point; the other was always to the right. The reference point was mean-centered on 50% of the
stimuli and standard-deviation-centered on the other 50%. When the reference point was mean-centered,
it was exactly halfway between the horizontal and vertical mean for both clusters. When the reference
point was standard-deviation-centered, it was exactly four standard deviations along the horizontal axis
away from the mean of each cluster (and mean-centered along the vertical axis for clusters with means
at the same height or one vertical standard deviation above or below the means of the clusters for
clusters at different heights).

Procedure
Experiment 1B was completed following a short break after Experiment 1A. It used the same setup as in
Experiment 1A.

Experiment 1B was also divided into 3 sections: practice and two blocks of stimuli. During the practice
session, participants worked through two example stimuli and were given the opportunity to ask the
experimenter for further clarification. Half the participants indicated which cluster’s mean was higher in
the first block of stimuli and then indicated which cluster the reference point belonged to in the second;
the other half of the participants indicated reference point membership in the first block of stimuli and
then indicated which cluster was higher in the second block.

The 80 images were divided into two sets, each containing 40 images (with cluster pairing, reference
point centering, and relative cluster height counterbalanced). The groups were counterbalanced across
Sets 1 and 2 and between subjects (see Appendix B). Each image was 1000 pixels high (width was
allowed to vary to maintain aspect ratio) and placed in the center of the screen; the edges were white-
padded to fill the screen.

Each image was presented one at a time, was preceded with a fixation cross, and had a 500 ms
interstimulus interval. Participants were allowed to work through the images at their own pace, with a
maximum of 10 seconds allowed on each image. Participants pressed a key to indicate which cluster was
higher or which cluster the reference point belonged to (depending on condition). The experiment
advanced to the next image after the key press.®



Behavioral Results

All statistical tests reported here were held at an a = .05 level (95% confidence interval, CI). Exact
binomial tests analyzed whether the clusters chosen differed significantly from what one would expect
based on chance (50%). All analyses were run using R Software (R Development Core Team, 2008).

Reference Point Membership

On half of the trials, participants were asked to indicate which cluster (left or right) the reference point
belonged to. The analyses in this subsection are for that reference point membership task.

Across all stimuli, participants showed a slight bias toward indicating the reference point belonged to the
cluster on the right (53.6%, CI [50.7%, 56.4%], p = .014). However, all conditions were perfectly
counterbalanced across the left-right dimension, so this bias does not systematically change the
interpretation of the results. All further analyses are collapsed across whether the cluster was on the left
or right side of the screen.

Sparsity

Selecting trials in which one cluster had low sparsity and one had high sparsity (more vs. fewer data
points per square unit), we analyzed whether relative sparsity of the clusters influenced participants’
decisions in the reference point membership task.

Overall, participants consistently indicated that the reference point belonged to the cluster with lower
sparsity (more data points per square unit). The cluster with lower sparsity was chosen 78.8% of the
time (CI [73.0%, 83.7%], p <.001). This pattern held, regardless of whether the clusters also had low
dispersion (low sparsity chosen 81.7%, CI [73.6%, 88.1%], p <.001) or high dispersion (low sparsity
chosen 75.8%, CI [67.2%, 83.2%], p <.001). It also held regardless of whether the reference point was
mean centered (low sparsity chosen 78.3%, CI [69.9%, 85.3%], p <.001) or standard deviation centered
(low sparsity chosen 81.7%, CI [70.8%, 86.0%], p <.001).

Dispersion

We also examined the influence of low versus high dispersion (how spread out the points were) on
participants’ preference for reference point cluster membership.

When collapsing across sparsity (low vs. high) and centering (mean vs. standard deviation), no
significant effects were found (high dispersion cluster chosen 52.1%, CI [45.6%, 58.6%], p = .561).
However, that null result appears to have been driven by reference point centering technique leading to
opposite effects. When the reference point was mean centered, participants were more likely to indicate
the reference point belonged to the cluster with a high dispersion (high dispersion cluster chosen 91.7%,
CI [85.2%, 95.9%], p <.001). This pattern held, regardless of whether the clusters had low sparsity
(high dispersion cluster chosen 83.3%, CI [71.5%, 91.7%], p < .001) or high sparsity (high dispersion
cluster chosen 100.0%, CI [94.0%, 100.0%], p <.001). When the reference point was standard deviation
centered, participants were more likely to indicate the reference point belonged to the cluster with a low
dispersion (low dispersion cluster chosen 87.5%, CI [80.2%, 92.8%], p <.001). Once again, this pattern
held regardless of whether the clusters had low sparsity (low dispersion cluster chosen 91.7%, CI
[81.6%, 97.2%], p <.001) or high sparsity (low dispersion cluster chosen 83.3%, CI[71.5%, 91.7%], p
<.001).

Cluster Types

8 Following a short break after completing Experiment 2, participants also worked through a block a free view data
visualization images while their eyes were tracked. They were asked about their experience using graphs (verbal explanation
and 5-point Likert rating from very infrequently to very frequently interpret graphs). Those results were not analyzed as part
of this manuscript and are therefore not included.



We also analyzed which cluster was preferred for reference point membership when different cluster
types were pitted against one another. Recall that clusters of type A4 had low dispersion and low sparsity,
B had low dispersion and high sparsity, C had high dispersion and low sparsity, and D had high
dispersion and high sparsity. See Table X for the results, broken down by reference point centering
method. For stimuli that had mean centered reference points, the preferred cluster type for reference
point membership ranked as follows: 1. C, 2. D, 3. 4, and 4. B. For stimuli that had standard deviation
centered reference points, the preferred cluster type for reference point membership ranked as follows:
1.4,2.B,3. C,and 4. D. The driving factor for preference was dispersion, but its effect differed based
on centering method. Clusters with high dispersion were preferred when the reference point was mean
centered; clusters with low dispersion were preferred when the reference point was standard deviation
centered. Of secondary importance was sparsity, with low sparsity clusters preferred over high sparsity
clusters.

Centering Clusters Chosen Most  Percent 95% CI p-value
Avs.B A 78.3% [65.9%, 87.9%] <.001
Avs. C C 83.3% [71.5%, 91.7%] <.001
Mean Avs.D D 81.7% [69.6%, 90.5%] <.001
Bvs. C C 91.7% [81.6%, 97.2%)] <.001
Bvs.D D 100.0%  [94.0%, 100.0%] <.001
Cvs.D C 78.3% [65.9%, 87.9%] <.001
Avs.B A 85.0% [73.4%, 92.9%] <.001
Avs. C A 91.7% [81.6%, 97.2%)] <.001
Standard Avs.D A 93.3% [83.8%, 98.2%] <.001
Deviation Bvs.C B 85.0% [73.4%, 92.9%] <.001
Bvs.D B 83.3% [71.5%, 91.7%] <.001
Cvs.D C 73.3% [60.3%, 83.9%] <.001

Table X. Cluster types A (low dispersion, low sparsity), B (low dispersion, high sparsity), C (high
dispersion, low sparsity), and D (high dispersion, high sparsity), compared in the reference point
membership task and split based on reference point centering method. Percentage for most
common choice, 95% condifidence intervals, and p-value reported.

Nearest Neighbor

One explanation for participants’ decisions in this task is they pair the reference point with the cluster
that has the closest point to that reference point. To investigate, we used GIMP software (GIMP
Development Team, 2007) to hand code the pixel coordinates of the center of the reference point and the
nearest neighbor point in each cluster for each stimulus. We calculated the distance between the nearest
neighbor in each cluster and the reference point. We noted which cluster had the nearest point and
determined whether that cluster was chosen by participants more often than the other cluster. For 91.3%
of the stimuli, the cluster with the nearest neighbor was chosen more frequently than the other cluster
(CI [82.8%, 96.4%], p <.001). See Figure ZZ for average distance between nearest neighbor and
reference point for stimuli with mean centered and standard deviation centered reference points.
Notably, the average nearest neighbor metric perfectly aligns with the cluster type preferred. Because
the nearest neighbor distance and the distribution/weight of the cluster (based on sparsity and dispersion)
are highly correlated, the current study does not lend itself to teasing apart the contribution of each.
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Figure ZZ. Average pixel distance between nearest neighbor and reference point when reference
point was (a) mean centered and (b) standard deviation centered. The cluster chosen most often
as being closest to the reference point is highlighted in red. Error bars represent standard
deviation of the mean.

Discussion

Dispersion, combined with reference point centering method, was the driving factor in the reference
point membership task. When the reference point was mean centered, participants chose the cluster with
high dispersion (higher standard deviation). When the reference point was standard deviation centered,
participants chose the cluster with low dispersion (low standard deviation). Notably, the reference point
centering method only mattered when the two clusters were drawn from distributions with different
standard deviations. See Figures B2 and B3 in Appendix B for examples of clusters with the similar and
different variances. The combination of dispersion and centering method goes hand in hand with nearest
neighbor metric. When the reference point was mean centered, the cluster with the closest nearest
neighbor tended to be the one with high dispersion; the opposite pattern held for standard deviation
centered reference points. Sparsity also had a consistent effect on the task, although it fell to secondary
importance after dispersion. Participants generally chose the cluster with low sparsity (more data per
square unit) as opposed to high sparsity.

Highest Cluster

On half the trials in Experiment 1B, participants performed the reference point membership task; on the
other half, they indicated which of the clusters was higher. In half the stimuli, one of the clusters had a
higher (y-axis) mean value; in the other of the stimuli, the vertical mean value of the clusters was the
same. The analyses reported in this section were conducted on trials in which the participants were
performing the highest cluster task and responding to clusters with the same mean height.



Participants showed a statistically insignificant trend toward choosing the cluster on the right (53.8%, CI
[49.8%, 57.9%], p = .066). Once again, all stimuli were counterbalanced across the left-right dimension;
all further analyses are collapsed across whether the cluster was on the left or right side of the screen.

Sparsity

When a cluster with low sparsity and a cluster with high sparsity were paired, participants tended to
indicate that the cluster with low sparsity was higher (79.2%, CI [70.8%, 86.0%], p <.001). This pattern
was consistent across centering and dispersion manipulations. It held regardless of whether the clusters
had low dispersion (low sparsity cluster chosen 78.3%, CI [65.8%, 87.9%], p <.001) or high dispersion
(low sparsity cluster chosen 80.0%, CI [67.7%, 89.2%], p < .001) and whether the reference point was
mean centered (low sparsity cluster chosen 81.7%, CI [69.6%, 90.5%], p <.001) or standard deviation
centered (low sparsity cluster chosen 76.7%, CI [64.0%, 86.6%], p <.001).

Dispersion

When a low dispersion and high dispersion cluster were paired, participants tended to choose the cluster
with high dispersion as having a higher vertical mean (70.8%, CI [61.8%, 78.8%], p <.001). Contrary to
the reference point membership task, this pattern was consistent across centering method, along with
sparsity manipulation. It held regardless of whether the clusters had low sparsity (high dispersion cluster
chosen 66.7%, CI [53.3%, 78.3%], p = .013) or high sparsity (high dispersion cluster chosen 75.0%, CI
[62.1%, 85.3%], p <.001) and whether the reference point was mean centered (high dispersion cluster
chosen 66.7%, CI [53.3%, 78.3%], p = .013) or standard deviation centered (high dispersion cluster
chosen 75.0%, CI [62.1%, 85.3%], p <.001).

Cluster Types

We examined which cluster type was preferred when the different types of clusters were pitted against
one another. Once again, recall that clusters of type 4 had low dispersion and low sparsity, B had low
dispersion and high sparsity, C had high dispersion and low sparsity, and D had high dispersion and high
sparsity. Table Y below shows the results, collapsed across centering method (since the same pattern
was found regardless of centering method). The preferred cluster type for the higher mean task ranks as
follows: 1. C, 2. D, 3. A, and 4. B. Dispersion was the driving factor, with high dispersion clusters
preferred. Sparsity was of secondary importance, with low sparsity clusters preferred over high sparsity
clusters.

Clusters Chosen Most  Percent 95% CI p-value
Avs.B A 78.3% [65.8%, 87.9%] <.001
Avs. C C 67.7% [53.3%, 78.3%] .013

Avs.D D 72.9% [58.6%, 82.5%] .001

Bvs.C C 78.3% [65.8%, 87.9%] <.001
Bvs.D D 75.0% [62.1%, 85.3%)] <.001
Cvs.D C 80.0% [67.7%, 89.2%] <.001

Table Y. Cluster types A (low dispersion, low sparsity), B (low dispersion, high
sparsity), C (high dispersion, low sparsity), and D (high dispersion, high
sparsity), compared in the highest cluster task. Percentage for most common
choice, 95% confidence intervals, and p-value reported.

Highest Point

The dispersion and sparsity manipulation also influence which cluster tends to have the highest overall
point. Participants might simply be choosing the cluster with the highest overall point when deciding
which cluster has the highest mean. To examine this possibility, we once again used GIMP software
(GIMP Development Team, 2007) to hand code the pixel coordinates of the highest point in each
cluster. We then determined which cluster of each pair had the highest point and whether on average
participants were more likely to choose the cluster with the highest point. Participants chose the cluster



with the highest point 85.0% of the time (CI [70.2%, 94.3%], p <.001). When comparing cluster types,
the highest point pattern perfectly aligned with the cluster preferences (e.g., 4 tended to have a higher
point than B, and 4 was preferred over B). Once again, because the overall highest point metric and the
distribution of the cluster based on the dispersion and sparsity manipulation are strongly correlated, this
design does not allow us to tease apart the individual contributions of each.’

Discussion

Dispersion was the primary driver in the highest cluster task, with clusters with high dispersion being
seen as higher than those with low dispersion. Of secondary importance was sparsity: clusters with low
sparsity were seen as higher than clusters with high sparsity. These manipulations aligned with which
cluster tended to have the overall highest point. Reference point centering method wasn’t influential in
this task, which isn’t surprising considering the reference is not relevant to the task.

Eye Movement Results

Fixations were calculated in the same way in Experiment 1B as in Experiment 1A.

We first examined overall differences in number of fixations and fixation duration between the two tasks
(reference point membership and cluster height). A mixed effects model with a fixed effect for task and
random intercepts for participant and stimulus (using Satterthwaite approximation for degrees of
freedom) revealed that overall, participants had slightly more fixations on average in the cluster height
task (mean = 4.75 fixations, stdev = 3.64) relative to the reference point task (mean = 4.59 fixations,
stdev = 3.44; 1(1900) = 2.28, p = .023). A similar mixed effects model with fixation duration as the fixed
effect revealed that fixation durations in the reference point task (mean = 394.78 ms, stdev = 330.01)
tended to be longer than those in the outlier task (mean = 347.04 ms; stdev = 257.36; t(8695) =9.19, p <
.001).

We also examined proportion of fixations to each of three ROI categories (cluster, reference point, and
other). See Figure LL. A mixed effects model predicting proportion of fixations from the fixed effects of
task (highest cluster vs. reference point membership) and type of ROI along with random intercepts for
subject and stimuli (using Satterthwaite approximation for degrees of freedom) revealed significant
simple effects of task for each the ROIs. Relative to the highest cluster task, participants in the reference
point membership task tended to have a higher proportion of fixations to both the reference point ROI
(#(5910) = 6.53, p <.001) and the “other” ROIs (#5910) = 10.18, p <.001); in contrast, those in the
highest cluster task tended to have a higher proportion of fixations to the cluster ROIs than those in the
reference point membership task (#5910) = 16.71, p <.001).

9 We also examined the effect of highest point in each cluster when the means of the two clusters were not the same. When
participants gave an incorrect response (e.g., indicated the left cluster had a higher mean when the right cluster actually had a
higher mean), was it because the incorrect cluster had a higher point? Across 600 trials where the clusters were at different
mean heights, participants made a mistake on 74 trials (12%). On those 74 trials, only 10 trials (14%) were on stimuli where
the cluster with the Jower mean had the overall highest point. Participants do not appear to primarily make errors due to
reliance on highest point when there is a true difference in mean cluster height. We suspect that the driving effect of the
overall 12% error rate on images with different means is due to user error (e.g., hit the wrong button or not appropriately
following instructions).
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Figure LL. Proportion of fixations each subject made to regions of interest (ROIs) based on task (highest cluster or
reference point membership) in Experiment 1B. Error bars represent standard error of the mean.

Experiment 2
Methods

Participants

Fifteen participants were recruited from students, faculty, and staff at the University of Illinois (5 males,
mean age = 31.87 years, stdev = 10.84 years) and compensated $20 for their time. All participants were
required to have at least one publication in a scientific journal and were tested for color vision
deficiencies (24 plate Ishihara Test; Ishihara, 1972) and near vision acuity. The data from one
participant was dropped and replaced due to colorblindness. Seven out of the fifteen participants also
completed Experiments 1A and 1B.

Design

Type of plot (bar with standard error, bar with confidence intervals, dot, violin, box, or density), number
of data points per variable (low or high), variance in the data (low or high), and p-value for the
difference between the two variables (5 ranges) were manipulated within subjects. Participants
interpreted the difference between two variables and gave confidence ratings.

Materials

Stimuli



All stimuli in the main task were created in R Software (R Development Core Team, 2008) from
simulated data using the ggplot2 software package (Wickham, 2009). Twenty unique data sets were
created by crossing 2 levels of number of data points per variable (n=25 or n=100), 2 levels of variance
in the data (low or high), and 5 levels of p-values for an unpaired, two-tailed t-test of the difference
between the two variables (p <.001, .01 <p <.03,.04 <p <.06,.07<p<.15, and .40 <p <.60). Each
data set contained two independent variables (labeled “A” and “B”) drawn from Gaussian distributions.
Whether the mean of A or B was higher was randomly determined. Each of the 20 data sets was plotted
6 ways: a bar plot with standard error of the mean, a bar plot with 95% confidence intervals, a jittered
dot plot, a violin plot, a box plot (with 1.5 * Inter-Quartile Range error bars), and an overlaid density
plot, leading to 120 different plots. See Appendix C for example stimuli.

Pre-Task Survey

Participants answered the following survey questions prior to completing the main task. How many
years of experience do you have in research requiring statistical inference? What is your main field of
research? How would you rate your statistical knowledge (5-point Likert scale)? What is the commonly
acceptable value for statistical significance in your field? What does it mean if a t-test has a p-value of
0.01? What type of visualization or graph do you most frequently use when presenting your work?

Post-Task Survey
After completing the main task, participants answered whether they were familiar with all of the chart
types and measures of error presented. If not, they were asked to identify which ones were not familiar.

Procedure

Experiment 2 was completed in the same environment with the same equipment as in Experiments 1A
and 1B. Participants were tested for color vision deficiencies and near visual acuity, along with reporting
their age and gender, prior to completing the study. Then participants responded to the pre-task survey
questions, worked through the main task of viewing data visualizations, and responded to the post-task
survey question.

In the main task, participants randomly viewed each of the 120 stimuli. The task was self-paced unless
the participant did not advance within 10 seconds (at which time the program automatically advanced).
After viewing each stimulus, the participant responded to two questions using mouse clicks: (A) Is the
difference between Groups A and B statistically significant (p < .05)? (B) How confident are you in your
response to (A)? (Likert scale from 7 to 5, with / being not at all confident, 3 being moderately
confident, and 5 being very confident). Eye tracking data was collected while stimuli were on the screen
but not during a participant’s response.

Behavioral Results

Survey Results

Pre-Task Survey

Participants had on average 8.7 years of experience in research requiring statistical inference (stdev =
5.9 years). Most participants primarily worked in a field related to psychology or neuroscience (13
participants); 1 each were in biology or engineering. The average rating on the statistical knowledge
question was 3.6 (stdev = 0.8; 5-pt Likert scale with / for poor, 3 for moderate, and 5 for strong). Every
participant sufficiently described the meaning of a p-value of 0.01 in a t-test. Bar graphs were the most
commonly used visualizations (7 participants mentioned them). Two to three participants indicated they
used scatterplots, line graphs, wave form plots, and/or violin plots. Pie charts, histograms, bivariate, and
3D plots were mentioned by a single participant. (Please note that a single participant was allowed to list
more than one type of visualization s/he commonly used).



Post-Task Survey

Participants were least familiar with the box plot with inter-quartile range error bars (8 participants).
Three participants each were unfamiliar with the violin or density plots. Three participants indicated
they were familiar with all the visualization types used in the main task.

Visualization Task

While the eye movement behavior was of primary interest, we also looked at the behavioral responses to
the task. We pulled plot type, p-value range, sample size, and variance together as fixed effects in a
mixed effects model with a random effect for participant using the Ime4 package in R software (Bates,
Maechler, & Dai, 2011) to predict accuracy. See Figure NN for accuracy results. Accuracy was higher
for bar plots than other plots overall (Z=3.26, p = .001), with higher performance on bar plots with
standard error of the mean than bar plots with 95% confidence intervals (Z = 3.28, p =.001). While we
found a consistent numerical increase in accuracy, there were no significant differences in accuracy
between adjacent steps of confidence levels (e.g., 1 relative to 2), with the exception of more accurate
responses for those given a confidence rating of 5 relative to 4 (Z = 3.48, p <.001). Significant
differences in accuracy were found moving between all adjacent ranges of p-values (all Z> 4.9, all p <
.001). Accuracy was significantly higher for low sample sizes than high sample sizes (Z=15.93, p
<.001). No significant differences in accuracy performance were found for standard deviation
differences.
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Abstract—Evaluating the effectiveness of data visualizations is a challenging undertaking and often relies on one-
off studies that test a visualization in the context of one specific task. Researchers across the fields of data science,
visualization, and human-computer interaction are calling for foundational tools and principles that could be applied
to assessing the effectiveness of data visualizations in a more rapid and generalizable manner. One possibility for
such a tool is a model of visual saliency for data visualizations. Visual saliency models are typically based on the
properties of the human visual cortex and predict which areas of a scene have visual features (e.g. color, luminance,
edges) that are likely to draw a viewer’s attention. While these models can accurately predict where viewers will
look in a natural scene, they typically do not perform well for abstract data visualizations. In this paper, we discuss
the reasons for the poor performance of existing saliency models when applied to data visualizations. We introduce
the Data Visualization Saliency (DVS) model, a saliency model tailored to address some of these weaknesses, and
we test the performance of the DVS model and existing saliency models by comparing the saliency maps produced
by the models to eye tracking data obtained from human viewers. Finally, we describe how modified saliency
models could be used as general tools for assessing the effectiveness of visualizations, including the strengths and
weaknesses of this approach.

INTRODUCTION

Vision is the dominant sense for humans [2], with researchers estimating that over 50% of the brain is involved in
processing visual information [1,39]. Given how heavily most humans rely on vision to navigate and understand the
physical world, it is no surprise that visualizations are a common tool for helping people to navigate through
information. Visualizations leverage the capabilities of the human visual system and can provide users with a natural
way to explore and comprehend large amounts of information. However, visualizations can also be confusing and
misleading, particularly for complex, multidimensional data sets that do not have a natural visual representation.

Evaluating the effectiveness of visualizations can be very challenging [10,30]. Ideally, visualizations would be
evaluated with well-designed user studies, but these are not always possible (e.g. if the designer does not have
access to the end users) and can also be expensive and time consuming. It would be useful for designers to have
more evaluation tools that can be deployed rapidly and iteratively during the design process to assess visualizations
prior to conducting a user study. Prior work has suggested that visual saliency models could be one such tool
[26,38].

Visual saliency models assess the visual features of an image to predict which areas of that image will draw a
viewer’s attention. Saliency models are typically inspired by the structure and function of the human visual cortex.
The models take an input image and generate a saliency map that predicts which regions of the image will be most
likely to draw a human viewer’s attention [24]. There are a variety of metrics that can be used to assess the
performance of the models by comparing the saliency maps to human fixation data recorded via eye tracking [4,7,8].
Saliency models have been the subject of a great deal of research in the fields of cognitive science and computer
vision, and they could prove useful to visualization designers as well. Since data visualizations make use of the
human visual system to convey information, evaluation techniques that are rooted in neural processes could provide
useful, generalizable metrics.

It is important to note that saliency models’ predictions of where viewers will look are based only on the physical
properties of the visual stimulus. They are models of what is known as bottom-up visual attention. In real-world
tasks, a viewer’s eye movements are also guided by top-down visual attention, which is influenced by the viewer’s
goals, expectations, and experience [12,43,46]. In the brain, these two processes operate in parallel. Bottom-up
visual attention is drawn to regions of a stimulus that are distinct from things around them in terms of their basic
visual features (e.g. contrast, color, motion), and top-down visual attention is allocated voluntarily based on the
viewer’s task and prior knowledge. Regions with high bottom-up saliency may or may not be relevant to the
viewer’s task and goals, so there is a constant interplay between the two neural systems that guide visual attention
and eye movements [41].

When a saliency model is applied to an image, it produces a map that predicts which regions of the image are
most likely to draw the viewer’s bottom-up attention. In the context of data visualizations, this could allow designers
to assess whether or not their design will draw attention to the most important information [26]. In other words,
saliency maps provide designers with a metric of how well bottom-up attention and top-down goals will overlap for
the application that the designer has in mind. From the perspective of a person using a visualization, a strong overlap
between visual saliency and important features will allow the user to complete tasks faster and more efficiently,
minimizing distraction from unimportant information.

Although generating saliency maps for data visualizations could provide a useful and widely applicable
evaluation metric, there is a substantial obstacle to this approach. The existing models of bottom-up visual saliency
were designed for images of natural scenes, and the visual and spatial properties of natural scenes can be quite
different from those of visualizations. While saliency models can generate reasonable predictions of where people
will look in scene-like visualizations (i.e., visualizations that resemble photographs) [38], these models typically
underperform for abstract visualizations [18].

This is a disadvantage for existing saliency models, but it raises the possibility that these models can be modified
to better account for patterns of attention in data visualizations. The differing nature of visualizations and natural
scenes also presents opportunities to incorporate some information about top-down attention into saliency models. In
the context of natural scenes, top-down attention is highly task- and situation- dependent, making it very difficult to



model in any generalized way. This is the reason that most existing saliency models take only bottom-up attention
into account. However, in the context of data visualizations, the visual features and their placement within the scene
are selected by a designer in support of a particular goal or goals. A designer is structuring the image in order to
convey information, so the visual features that the designer selects encode top-down information in a way that the
features of a natural scene do not. Visualizations are also typically “born digital,” unlike images of natural scenes,
making it easier to isolate distinct elements (such as individual data regions or text regions) and infer their
importance from a top-down perspective.

In this paper, we explore why existing saliency models underperform for abstract data visualizations. We identify
the visual and structural features of visualizations that are incompatible with the existing, scene-based visual
saliency models. We then discuss the development of a modified saliency model that addresses these features and
incorporates new information based on top-down attention, allowing it to make more accurate predictions of which
regions of a visualization will draw a viewer’s attention. We outline the features of the Data Visualization Saliency
(DVS) model and compare its performance to a set of existing saliency models. Finally, we discuss how the DVS
model could be used as an evaluation tool during the process of designing a visualization, allowing designers to
rapidly assess how various design choices affect the saliency of different parts of a visualization.

1 EVALUATION OF EXISTING SALIENCY MODELS

There are numerous bottom-up saliency models that have been developed to predict where people will look in
natural scenes. Many of these models are based on the neurophysiology of human and other primates’ visual
systems [3]. They select visual features that are known to elicit neural responses in the visual cortex, such as
luminance, hue, contrast and orientation. The feature maps are often created at multiple scales of image resolution,
filtered, and then combined to produce a master saliency map. The performance of saliency models is assessed by
comparing the saliency maps produced for a range of stimuli to eye tracking data obtained from human viewers
looking at the same stimuli.

The MIT Saliency Benchmark project [7] keeps a running scoreboard for author-submitted models, showing how
well they predict human fixations on benchmark image sets. The project includes two sets of benchmark images and
corresponding fixation data recorded from human viewers. The project has also established eight metrics for
assessing the match between saliency and fixation maps [8]. A full discussion of each metric is outside of the scope
of this paper (see [8,18] for more detailed descriptions), but each metric is briefly described below.

Three of the eight metrics are location-based, meaning that they assess how well saliency maps predict the
location of human fixations in an image. All three of the location metrics are based on the concept from signal
detection theory of the Area under the Receiver Operating Characteristic (ROC) Curve, or AUC. The three variants
of this approach are AUC-Judd, AUC-Borji, and shuffled AUC (sAUC). Scores range from 0 to 1 with 1 being the
optimal score and 0.5 representing chance performance. The key differences between these three metrics lie in how
they calculate true and false positives. For example, AUC-Borji uses a uniform random sample, while the sAUC,
which was developed specifically for assessing saliency models, samples in a way that penalizes models that are
biased toward the center of the image [8].

Four metrics are based on comparisons of the distribution of fixations across an image to the distribution of
saliency in a saliency map. These metrics are called the similarity metric (SIM), Earth Mover’s Distance (EMD),
Pearson’s Correlation Coefficient (CC), and Kullback-Leibler divergence (KL). The SIM metric treats the fixation
and saliency maps as histograms and assesses their overlap. Scores range from 0 to 1, with 1 indicating perfect
overlap. False negatives are highly penalized under the SIM metric. The EMD computes the cost of transforming
one map to the other. If two distributions are identical, the EMD is zero, so lower scores represent better
performance. CC measures how correlated the two maps are, penalizing false negatives and false positives equally.
A score of 1 represents a near-perfect correlation between the saliency and fixation maps. KL is an information
theoretic measure that assesses the information lost when the saliency map is used to approximate the fixation map.
A score of zero is optimal, so lower scores represent better performance for the saliency map. The KL metric is
particularly sensitive to zero values, so sparse saliency maps are penalized with high KL scores [8,18].

Finally, the Normalized Scanpath Saliency (NSS) is a value-based metric. It standardizes the saliency map and
then computes the average saliency at locations that were fixated. When the NSS score is greater than 1, that
indicates that the fixated locations had significantly higher saliency than other locations in the image [8,18].

The visual saliency modelling community has not settled on any single metric for evaluating model performance.
We feel it is important to consider at least one metric from each category (value, location, distribution) because
corner cases may be easier to identify when comparing results from metrics in different categories. For consistency
with prior publications, and in hope of compatibility with future investigations, we provide results for all of the eight
metrics in the evaluations discussed below.

Saliency models are generally trained and tested using images of natural scenes. One of the two sets of
benchmark images provided by the MIT Saliency Benchmark, the MIT300 set, consists of 300 images of indoor and
outdoor scenes. The other dataset, CAT2000, consists of 2000 training and 2000 test images organized into 20
categories. Of the 20 categories, 15 are comprised of images of natural scenes. These are either photographs or
manipulations of photographs, such as inverted or low resolution images. The remaining five categories contain
images that are more abstract, such as cartoons, sketches, and fractals.

In a prior study [18], we sought to assess the performance of existing visual saliency models on data
visualizations, a category that is not represented in the CAT2000 benchmark. We selected three saliency models that



spanned a range of performance on the CAT2000 benchmark: the Itti, Koch and Niebur model [25], the Boolean
Map Based Saliency model (BMS) [48], and the Ensembles of Deep Networks Model (eDN) [45]. We measured the
performance of each of the selected models on a set of 184 data visualizations drawn from the Massachusetts
(Massive) Visualization Data Set (MASSVIS) [6]. These were common types of data visualizations (bar charts, pie
charts, etc.) that had corresponding eye movement data from human viewers. For each model, saliency maps were
generated for each visualization and compared to the fixation maps using the eight metrics discussed earlier.

This analysis found that all three saliency models generally performed worse on the visualizations than on the

images from the CAT2000 data set. The BMS model, which is one of the highest performers on the CAT2000
benchmark, performed significantly worse on data visualizations relative to the CAT2000 images for 6 of the 8
evaluation metrics. The eDN model had significantly worse performance according to five of the eight metrics.
Interestingly, the Itti model, which has the lowest average performance of these three models on the CAT2000 set,
performed best on the data visualizations. However, it still performed significantly worse on data visualizations than
on the CAT2000 images according to four of the eight metrics.
A simple example of the models’ underperformance on visualizations is shown in Figure 1, which provides one
example from the MASSVIS set with corresponding fixation and saliency maps. Note that most of the fixations
(Panel B) were devoted to the text labels for the bar graph. In contrast, the three saliency models tend to predict that
viewers will fixate on the bars themselves due to their high contrast, sharp edges, and central location in the image.
The reasons for this mismatch are outlined in more detail below.
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Figure 1. Fixation map and saliency maps generated by different models for an image from the MASSVIS set. (A) the original data
visualization; (B) fixation map from Borkin et al. [5]; (C) Itti model; (D) BMS model; (E) eDN model; and (F) DVS model.

2 DIFFERENCES IN VISUAL PROPERTIES OF DATA VISUALIZATIONS AND NATURAL SCENES

It is clear from the analysis outlined above that existing visual saliency models are inadequate for predicting where people will
look in abstract data visualizations. Models that generally perform quite well on natural scenes, and even somewhat abstract
imagery such as cartoons, performed significantly worse on common types of data visualizations. We hypothesize that the reason
for this poor performance is that the spatial scales and visual features used by the saliency models are inadequate for data
visualizations.

21 Spatial Scales

Each of the models discussed above (Itti, eDN and BMS) follows a common approach. First, for each type of visual feature used
by the model, “interestingness” maps (or “conspicuity maps,” after Itti et al. [25]) are computed at one or more resolutions.
Second, the individual feature maps are combined into an overall attention map and then into a saliency map.

As an example, the Itti model operates on multiple spatial scales by constructing a Gaussian pyramid from the input image.
At each level of the pyramid, a Gaussian smoothing function is applied and the image is subsampled by a factor of two, creating a
smaller, smoothed version of the image, as shown in Figure 2. A feature map is computed for each level, and then the feature
maps are compared across levels of the Gaussian pyramid. Image regions with the greatest difference in feature values across



scales are assigned higher saliency values than regions with smaller differences across scales. This comparison process is the
model’s implementation of the center-surround neural activation properties of the human visual system.

Although this approach works relatively well for natural scenes, the spatial properties of data visualizations are quite different.
Many of the elements in data visualizations (glyphs, lines, text) are quite small, and visualizations are likely to have a higher
proportion of small but important variations than natural scenes. The smoothing and subsampling process results in the loss of
these small details. For example, text becomes blurry at the first level of smoothing, leading to minimal differences between the
levels of the Gaussian pyramid when the visual features of the text are compared across scales. This results in low saliency values
for text even though text typically receives a high proportion of fixations [37].
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Figure 2. Example of a Gaussian pyramid with four levels of smoothing and resizing.

Another problematic aspect of the existing saliency models is that many of them resize the input image to a standard size as
their first step. For example, the BMS model begins by resizing the input to be exactly 600 pixels wide. Similarly, the reference
implementation of the eDN model resizes its input to a resolution of 512x384. While this makes the computation go quickly, it
also tends to blur text into unrecognizability and obliterate fine contours completely. This is a particular problem for

visualizations since the meaningful elements of many data representations (line charts, box charts, some geographic maps and
weather diagrams) are nothing but fine contours.

2.2 Visual Features

While the way in which the models combine their feature maps is fundamentally similar, they differ in terms of the specific
visual features used to create the feature maps. The Itti model computes center-surround operations on intensity, orientation and
color channels and combines them to create the attention map. It computes four color maps (red, green, blue and yellow) using
RGB pixel values. The eDN model uses a support vector machine trained over many randomly constructed hierarchical features
[42]. These features operate variously on RGB, YUV and grayscale images. The BMS model uses exactly one feature —
connected regions. It computes these regions at multiple intensity thresholds using the channels of the CIE LAB color space.

2.2.1 Color

Since all three models compute some or all of their features over color channels, we believe that the color space chosen for
these computations is particularly important. In our assessment of the three saliency models using the MASSVIS images, we
noted that the models often assigned low saliency values to bright red regions, causing discrepancies between the saliency maps
and the map of human fixations. We believe that this mismatch is driven by the fact that human color perception is very different
from the way colors are created on paper or on an electronic display. This difference manifests in two ways. First, color spaces
such as RGB or CMYK that are defined by the properties of an output device are perceptually non-uniform. That is, adding 0.1
to the red component of a color produces a larger perceived difference for some colors than for others. Second, the different
“channels” of human color perception are not independent as they are in the case of display primaries. That is, adding redness
while keeping luminance constant may change perceived luminance.

The YUV color space uses a luminance + chrominance representation of color that it is designed to permit efficient
compression while minimizing artifacts. From the perspective of perceptual uniformity, YUV is an improvement over RGB but
still leaves much to be desired. In order to do color arithmetic in a way that yields perceptually comparable results, it is advisable
to work in a color space like CIE XYZ or CIE LAB [14]. The XYZ model operates with the tristimulus values obtained from the
color-sensitive cones in the retina. The LAB model transforms these into a luminance channel (L) and two color-opponent
channels (A and B) that agree with current thinking about the way color is processed in the brain. The LAB model has the
additional advantage of being perceptually uniform. Adding 0.1 to a color component produces a change that appears to the
observer to be of the same magnitude regardless of where it is in the color space. As a result, feature maps computed over
different channels in the color space have values that can be meaningfully compared with one another.

2.2.2  White Space

A crucial difference between visualizations and natural scenes is the presence of white space. The real world is cluttered and
natural scenes tend to have information (in the Shannon sense) absolutely everywhere. Synthetic scenes do not: they often
contain large areas of uniform, untextured color. Some of these may be objects, but some are simply blank areas. Distinguishing



between the two is a challenge. In either case, feature-based saliency models may have trouble “seeing” these regions since they
will only be detectible a very coarse scale.

The spatial distribution of figures relative to the background is also quite different for abstract data representations than for
physical objects. Many saliency models use a center weighting. This works well for photographs, where objects of interest are
often centered. However, it may not be appropriate for visualizations, where meaningful information can appear in any spatial
location and is often deliberately distributed across the entire image.

2.2.3 Text

As mentioned above, text in data visualizations receives a great deal of attention from viewers. In prior work, we have found
that people viewing data visualizations while performing memory or free viewing tasks devote a disproportionate amount of
attention to regions containing text. For example, in one dataset, an average of 60% of the participants’ fixations fell in regions
containing text, relative to 30% in regions containing visual representations of data [37]. In general, participants were highly
likely to view regions containing text and to view them relatively early in the trial.

There are several causes for the high proportion of fixations devoted to text in visualizations. In general, literate people’s
attention is automatically drawn to text [28,33,35]. In data visualizations, text often provides context and details that are
necessary for understanding the data. For example, our prior work found that participants are likely to refer to text-containing
regions such as the legend and data labels multiple times as they view the visualization [37]. Finally, reading text requires
numerous fixations. Under normal conditions, the estimated visual span for reading is about 10 letters [31]; words presented in
peripheral vision cannot be resolved due to low visual acuity and crowding.

While text draws attention and necessitates many fixations, it is not included as a feature in most saliency models. The
models are tailored to and/or trained on images of natural scenes, which rarely contain text. Our analysis of the performance of
existing saliency models on data visualizations indicates that assigning appropriate levels of saliency to text is one of the key
areas in which their performance could be improved.

3 THE DATA VISUALIZATION SALIENCY MODEL

Existing saliency models fall short for data visualizations, but our analysis of several models revealed concrete steps that can be
taken to adapt them to this domain. We have developed the Data Visualization Saliency (DVS) model#, which builds on the
strengths of existing models while extending their capabilities to account for the visual features and spatial scales that are
common in data visualizations. The two primary components of the current implementation of the model are a modified version
of the Itti model and a text recognizer, which allows us to detect one of the key features of visualizations that is missed by current
models. The DVS model combines the outputs of the modified Itti model and a text map to produce saliency maps that are
specialized for data visualizations.

31 Modified Itti Model

We took as a starting point the Itti, Koch and Niebur saliency model [25] as implemented in the Graph Based Visual Saliency
(GBVS) toolbox [20,21]. Of the existing models that were tested with data visualizations, this model had the highest performance
[18]. The authors of the GBVS saliency model note that the original Itti model uses a simple color opponency representation
based on RGB values. As discussed above, using the RGB color space is suboptimal, particularly in the case of data
visualizations, where colors are chosen deliberately by a designer. To better approximate human visual perception, we modified
the original algorithm by transforming the representation of the input images into CIE LAB color space. This change is likely to
improve the model’s performance for all types of imagery, but it is particularly important for visualizations, in which colors are
deliberately selected to convey information.

3.2 Text Saliency Map

As discussed above, viewers devote a great deal of attention to text in data visualizations, yet text is not highlighted in existing
saliency models. Although text regions often have high contrast, they tend to be small. The high-frequency details of text are lost
when an input image is resized or smoothed. This leads to few differences across the levels of the Gaussian pyramid, and the text
regions are not identified as being salient. To account for viewers’ tendency to fixate on text in visualizations, we developed a
text saliency model that could be combined with the modified Itti model. Attention to text is primarily driven by top-down visual
attention, since people expect text to contain meaningful information. By incorporating this feature into our model, we are taking
a step towards a saliency model that takes both bottom-up and top-down attention into account.

Our goal was to build an algorithm that computes the likelihood of belonging to a text region for each pixel of an input
visualization image. Text detection is a popular challenge in the computer vision literature, and numerous successful models and
algorithms have been developed in this domain. Detecting text in visualizations is a relatively easy task compared to detecting
text from photos of real-world scenes. The method we detail below is essentially a combination of various classic text detection
techniques. However, instead of producing a binary output, like traditional text detection algorithms, this method produces a
continuous, probabilistic output that can be incorporated into a saliency map.

We used a common approach in the text detection literature, which is to extract Maximally Stable Extremal Regions (MSER)
[36] as candidate text regions, and then to apply various text-diagnostic features to filter out the non-text candidates (e.g.,
[11,17,40]). The MSER algorithm detects connected, homogeneous (“maximally stable”) regions of pixels. Because text almost

11 Available at: https://github.com/mjhaass/DataVisSaliency.git
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always has uniform color and each letter in English is connected (in the sense that each “stroke” is connected to all other strokes
in the same letter), English letters should be detected as MSER regions (i.e., the miss rate should be very low).

In order to exclude MSER regions that are not text, all detected MSER regions went through a filtering process based on
simple properties of these regions, such as aspect ratio [11], Euler number [17,40], and solidity [17]. As an example, for most
fonts of English letters and Arabic numerals, the height-to-width ratio should be less than 4 and greater than 1/3, so the aspect
ratio of the bounding box of MSER regions was restricted to this range [11]. Finally, the data was filtered based on stroke width
variation [17,32]. The variability of each MSER component’s stroke width was compared to its mean stroke width. If the relative
variability was too large, the region was filtered out (since letters and digits have relatively small stroke width variations).

After the above filtering, the remaining MSER regions had a relatively high likelihood of being letters or digits. In order to
quantify this likelihood, we computed three text-diagnostic edge features on these regions (using simplified versions of the
algorithms proposed by [34]). We took the bounding box of each MSER region and computed these features on the image patch
defined by the bounding box. The three feature values were then summed together to form the raw “text saliency” score.

The first feature was based on the magnitude of the image gradient. For each image patch (i.e., each MSER region), the image
gradient was computed on the grayscale transformation of the original colored patch. The mean gradient magnitude 4(G) and the
standard deviation ¢(G) of gradient magnitude were computed with P as a scaling constant:
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This feature is akin to a signal-to-noise ratio. In most scenarios, text strokes appear on a highly uniform background; the
variability of the gradient magnitude is low but the text edges lead to high gradient magnitudes. This ratio should be high when
the image patch contains text.

The remaining features were based on the edges in an image patch. For each MSER region, the Canny edge detection
algorithm [9] was used to compute an “edge image” for each color channel of the image patch as represented in the CIE LAB
color space.

The second feature attempts to capture a specific topological characteristic of text. Most text characters have either multiple
strokes that intersect each other or curved strokes so that a vertical or horizontal “scan line” may cross the character body more
than once. Since each stroke produces two edges, such “scan lines” will very likely cross the edges of the character more than
twice. Therefore, the frequency of multiple-crossing by a scan line that scans horizontally and vertically is diagnostic of text. The
higher the frequency, the more likely the image patch contains text. Formally, this feature can be given as
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where W and H are the width and height of the image patch in pixels, cn; and cn; denote the number of crossings for a specific
scan line (vertical and horizontal respectively) and the edges in the image patch, and f{x) is a function that returns 1 when x is
larger than 2 and 0 when x is equal to or less than 2. The constant Q is for scaling and weighting purposes. Using an exponential
function with base Q increases the feature’s sensitivity to higher multiple-crossing event counts and reduces sensitivity to small
counts (which can occur randomly in non-text regions).

The third feature was based on a more straightforward characteristic. Text strokes usually produce two parallel edges, so that
the number of crossings between a vertical or horizontal scan line and the text edges is often an even number. Hence the third
feature can be defined similarly to the second one:
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where g(x) returns 1 if x is an even number and 0 if it’s odd. In the current implementation, the values of the scaling constants are
P=25,0=4,R=122.

The text-specific feature values were normalized, combined, and treated as an index of probability of text in each region. The
combined value of the three features was assigned to the pixel at the center of the region. This procedure was computed at
different scales on the original image in order to enhance the method’s sensitivity to smaller and larger fonts. The text saliency
indices computed at each scale were re-scaled to the original image size and then combined by averaging. This raw text saliency
map was then processed with Gaussian smoothing to simulate the randomness in the exact locations of human fixations.



3.3 Linear Combinations of the Model Components

Because there is insufficient data to inform how to best combine the
text saliency map and the modified Itti saliency map, we opted for the
simplest approach: a linear combination. Formally, the DVS model’s
saliency map S for a given visualization is computed as follows:
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where [ is the saliency map given by the modified Itti saliency model,
and T is the text saliency map. The parameter w determines the relative
weight between / and 7. Both / and T are linearly scaled to have values
ranging from 0 to 1 before combination. The denominator, (1 + w),
produces a weighted average to maintain the overall saliency scaling
from O to 1. Thus, for each data visualization image, a series of saliency
maps based on a series of weight values can be generated. In order to
choose an appropriate weight for the text saliency map, we
systematically manipulated linear combinations of / and 7 and
compared the resulting saliency maps to eye tracking data from the
MASSVIS project [5]. The MASSVIS data set provides 393 data
visualization images and corresponding fixation data. Thirty-three
participants viewed the images while trying to memorize them for a
later test. One visualization was excluded from our evaluation because
it had an irregular size (less than 128 pixels wide) that is incompatible
with the Itti saliency model. Thus, saliency maps and performance
metrics were computed on the remaining 392 images.

We were primarily interested in how the average value for each of
the eight MIT Saliency Benchmark evaluation metrics changed as a
function of relative weight w between the modified Itti saliency map /
and the text saliency map 7. When w = 0, the saliency map S is just the
modified Itti map; similarly, when w — oo, S is equivalent to the text
saliency map T. If the bottom-up saliency component captured by the
modified Itti map / and the text-directed attention captured by 7 do
complement one another, at some nonzero value of w, the combined
map S should provide higher performance than either / or 7. In other
words, the performance-relative weight function should have a
maximum point. Because of the differences in the nature of these
metrics, we expect these functions to have different maximum points.
Our goal was to find a reasonably good estimate of the window of w
values in which the function reaches maximum for each of the eight
metrics. Figure S1 in the Supplemental Materials plots each metric as a
function of the weight parameter.

Notably, the baseline performance for the text saliency model was
better than the baseline performance of the modified Itti model for six
of the eight metrics (the SIM and KL metrics were the exceptions,
likely because the text saliency maps include large regions that contain
only zeros, and both of these metrics heavily penalize false negatives).
The preference for the text saliency model is consistent with prior
analyses showing that viewers disproportionately devote their attention
to the text in the MASSVIS images [37]. Modelling only the text
regions is a reasonable approximation for where people look in this
particular data set and task. However, across all eight metrics, the linear
combination of the modified Itti model and the text saliency model
produced significantly higher matches to the human fixation data than
either model alone.

The weight functions for each metric exhibit different shapes,
reaching their maxima at different weight values. This aspect of the
data was expected and supports the assertion that the eight metrics
emphasize different aspects of the performance of a saliency model.
There is no objectively optimal choice of the text saliency map weight,
since no unique weight value optimizes all metrics of performance. In
our experience, the choice of weighting factor typically causes
performance results to fall into one of three categories; under fit, where
performance increases proportionally to the weighting factor,
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acceptable, where the performance is stable, or changes very slowly with changing weighting factor, and over fit, where
performance may increase, but the gain on a given test case is likely not to transfer to another test case. Figure S1 shows that at
least four of the performance metrics are approaching an asymptotic limit as the weight factor value approaches 2. To reduce the
risk of over fitting, we chose to use a weight of 2 in the following analyses. Users of the DVS model can easily adjust this weight,
if desired.

Figure 3 shows a representative example of the differences between the DVS model and the original Itti model. Additional
examples are provided in the Supplemental Materials. The top panel of Figure 3 shows a data visualization from the MASSVIS
set with overlaid fixation data (A). The remaining panels show the saliency maps produced by the original Itti map (B), the
modified Itti map (C), the text saliency map (D), and the final, weighted DVS saliency map (E). Finally, the bottom panel (F)
shows the DVS map overlaid on the original image, using the same color scale as the fixation map, allowing for a visual
comparison of the two. Note that the original Itti map identifies the lower portion of the bar chart as the most salient region. The
differences between the original Itti map and the map with the modified color space are subtle, but the modified model appears to
do a better job of picking out the line graphs. The text saliency map correctly identifies all of the text regions in the image, but
also has a few false alarms to features in the data, such as the data points on the line graphs. The DVS saliency map indicates that
the title is highly salient, as is the lower part of the chart and the labels at the bottom of the chart. This corresponds well to the
actual distribution of viewers’ fixations.

3.4 Comparing the DVS Model to Existing Saliency Models

Once the weights in the DVS model had been optimized, the performance of the final model was compared to the original Itti
model (as implemented in the GBVS toolbox), the BMS model, the eDN model, and to the text saliency maps alone. All of the
models were used to generate saliency maps for 392 data visualizations from the MASSVIS dataset that had corresponding eye
tracking data (as before, one visualization was excluded because its dimensions were incompatible with the Itti model). The
saliency maps were compared to the eye tracking data using the eight metrics that are used by the MIT Saliency Benchmark. A
one-way ANOVA was run for each metric, showing that there was a significant difference in the performance of the five models
on all eight metrics (all F's > 44.69, all ps <0.001).

Table 1 shows the percentage of improvement for the final, weighted DVS model relative to the Itti, BMS, eDN, and text
saliency models on all eight metrics. The DVS model offered a substantial
improvement in performance over the other models. Since the DVS model is based on the Itti model, we paid particular attention
to how the components of the DVS model performed relative to the original Itti model. Figure 4 shows the effect size, using
Glass’s delta, for the improvement in performance for the text saliency maps and the final DVS model relative to the original Itti
model. Notably, for all of the metrics other than EMD, the improvement in performance over the original Itti model was larger
than one standard deviation. Performance also improved for the EMD metric, but the magnitude of the improvement was smaller.
Finally, we used paired t-tests to assess whether or not the DVS model, as implemented with a weighting of 2, performed better
than the text saliency maps alone. The KL metric was excluded from this analysis because its high sensitivity to zero values
produced abnormally large scores for the text saliency maps. The DVS model performed significantly better than the text only
Figure 3. (A) An image from the MASSVIS set overlaid with fixation data and saliency maps produced by the original Itti (B),
modified Itti (C), text saliency (D), and DVS (E) saliency models, with the DVS map overlaid on the original image in (F).
model as measured by six of the seven metrics (all #s > 2.04, all ps < 0.02). The only exception was the EMD metric (#(391) =
0.65, p = 0.26). In this case, the scores for the text only and DVS models were nearly identical.

Table 1. Percentage Improvement for the DVS Model Relative to the Itti, BMS, eDN, and Text-Only Models.

Itti BMS eDN Text
AUC-J 9% 11%  24% 2%

I;\gcat?"“ AUC-B 9%  12% 22% 5%
etrics
SAUC 9% 1% 21% 4%
SIM 9%  14%  18%  15%
Distribution  EMD 18%  21%  26%  -1%
Metrics CC 4% 0%  133% 5%
KL 20%  37%  33% -

Value Metric NSS 55% 82% 176% 2%
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Figure 4. Effect size, using Glass’s delta, of the improvement due to using the DVS model for all eight metrics.

4 TESTING THE DVS MODEL’S PERFORMANCE

While the DVS model outperformed the Itti model in our initial assessment, there are several factors that limit our ability to
generalize these findings. First, the MASSVIS data were collected in the context of a memory study, which might bias
participants to focus more on the text in the visualizations. In addition, participants in the MASSVIS study viewed the images for
10 seconds, which is a longer duration than is typically used for comparing fixation data to saliency maps. For example, the
widely-used eye tracking data sets provided by the MIT Saliency Benchmark had images that were presented for three seconds
(MIT300) [27] or for five seconds (CAT2000) [4].

To get a broader understanding of the performance of the DVS model relative to existing saliency models, we used an
additional data set to compare the performance of the DVS, Itti, BMS, and eDN models. This data set [37] consisted of eye
tracking data collected from 30 participants who viewed four types of stimuli. As in the CAT2000 dataset, the participants
viewed each stimulus for five seconds under free viewing conditions. The stimuli were presented in four counterbalanced blocks.
One block contained 35 data visualizations from the MASSVIS dataset. Another contained 27 newly-generated, simple data
visualizations that contained relatively little text. This set contained three visualizations of each of the following types: bar charts,
box plots, bubble plots, column charts, line plots, parallel coordinates plots, pie charts, scatter plots, and violin charts. The other
two blocks contained stimuli from the CAT2000 dataset [4] that were selected for their visualization-like properties. One block
contained 30 line drawings and the other contained 16 images of fractals. These materials were chosen because they have already
been incorporated into assessments of visual saliency models, yet like data visualizations, they have visual properties that differ
from those of natural scenes. The line drawings have the same overall spatial layouts as natural scenes, but no colors and many
fine contours that may be lost when the images are smoothed and resized by the saliency models. The fractals have very different
spatial properties and color palettes than natural scenes, with vivid colors and shapes that fill the entire frame. Like data
visualizations, they are abstract and computer-generated.

For each subset of stimuli, we assessed the match between the human fixation data collected by Matzen and colleagues [37]
to the saliency maps produced by the DVS, Itti, BMS and eDN models using the eight MIT Benchmark metrics. In addition, as a
point of reference, we compared the fixation data across experiments. For the MASSVIS stimuli, fixations were compared across
the Matzen and colleagues [37] dataset and the original MASSVIS study [5]. For the fractal and line drawing stimuli, the fixation
data was compared to the MIT Saliency Benchmark fixation data [4,7]. Although different groups of participants viewed the
stimuli in the various experiments, and in the case of the MASSVIS data, the participants were performing a different task, we
would expect to see the highest scores on the eight metrics when comparing one set of human fixations to another. If the models
can accurately predict where viewers will look in data visualizations, their performance should approach the level of agreement
between the two sets of fixation maps.

The results of the analysis for the line drawing stimuli are shown in Table S1 in the Supplemental Materials. These stimuli are
most similar to natural scenes in terms of their spatial properties. As expected, the comparison between the two sets of fixation
data had the best similarity scores for most of the metrics (six of the eight). When comparing the performance of the four models
against the Matzen and colleagues [37] fixation data, the eDN model had the best scores for four of the eight metrics, the Itti
model had the best scores on three of the metrics, and the DVS model had the best score on one metric, the sSAUC.

The results of the analysis for the fractal stimuli are shown in Table S2 in the Supplemental Materials. These stimuli are
somewhat of an intermediate point between natural scenes and data visualizations. They are computer generated and do not have
naturalistic colors or spatial layouts, yet they do not contain text and their visual elements are not intended to convey specific
information to the viewer. For these stimuli, the comparison of the two sets of fixation data had the best similarity scores for all
eight metrics. When comparing the models to the fixation data, the eDN model had the best scores for six metrics and the DVS
model had the best scores for two of the metrics.

The results of the analysis for the simple data visualizations are shown in Table S3 in the Supplemental Materials. When the
four sets of saliency maps were compared to the fixation data, the DVS model had the best scores for seven of the eight metrics.
The Itti model had the best score on the AUC-Borji metric.

The results of the analysis for the MASSVIS stimuli are shown in Table S4 in the Supplemental Materials. Once again, the
comparison of the two sets of fixation data led to the best similarity scores for all eight metrics. When comparing the models to
the fixation data, the DVS model had the best scores for all eight metrics.

To test whether or not the DVS model performed significantly better than the Itti, BMS and eDN models for data
visualizations, the two sets of visualizations were combined. One-way ANOVAs were conducted for each of the eight metrics.
These ANOVAs showed that there was a significant difference in performance across models for all eight metrics (all F's > 22.37,
all ps < 0.001). Post-hoc t-tests showed that the DVS model’s scores were better than the other models’ scores for seven of the
eight metrics (all ts > 3.74, all ps < 0.001). The exception was the AUC-Borji metric. According to this metric, the DVS model
performed significantly better than the BMS (#(61) = 6.50, p < 0.001) and eDN (#(61) = 9.34, p < 0.001) models, but not the Itti
model (#(61) =1.20, p =0.12).

41 Discussion

Our comparison of the Data Visualization Saliency model to the Itti, BMS, and eDN models found that the eDN model was
generally the highest performer for line drawings, images that are somewhat abstract, but that share the spatial properties of
natural scenes. This is consistent with the eDN model’s overall high performance on the MIT Saliency Benchmark, the source
from which the line drawing stimuli were taken. Similarly, the eDN model was also the best performer for fractal stimuli, which
were also drawn from the MIT Saliency Benchmark set. We observed that the eDN model tends to produce saliency maps with a



pronounced center weighting. This aligns well to the fixation maps for the fractal stimuli, where participants tended to fixate
most on the center of the images.

For the line drawing and fractal stimuli, the DVS model’s performance was typically similar to, or slightly better than, that of
the Itti model, the model on which it is based. This indicates that our changes to the Itti model’s color maps and the addition of
the text saliency maps does not hinder the model’s performance on stimuli that are not data visualizations. We anticipate that this
would be true for images of natural scenes as well. The improved color map provides small improvements to performance, while
the text saliency map contains only zero values in a scene that has no text, so it does not impact the final DVS map for such
scenes.

Since our focus is on developing a saliency model that can be used as an evaluation tool for data visualizations, those stimuli
provide the most important test of the model’s performance. Our test set included two types of data visualization stimuli: simple
visualizations that contained minimal text, no contextual information, and no “chart junk,” and in-the-wild visualizations culled
from publications, which typically contained explanatory text, source information, and graphical elements chosen for aesthetic or
branding reasons. For the simpler data visualizations, the DVS model had the best performance according to seven of the eight
metrics, and for the more complex visualizations, it had the best scores for all eight metrics. These results show that modifying
the color map of the Itti model and adding a new visual feature (text saliency) led to significantly better performance on data
visualizations.

For the MASSVIS stimuli, we were able to compare fixation data recorded from two different populations of participants in
two different experimental contexts [5,37]. This comparison is in some sense a benchmark for model performance. If the models
can accurately predict human fixations, their performance should approach the level of similarity obtained by comparing two sets
of fixation data. The DVS model’s scores were the closest to the scores for the fixation-to-fixation comparison for all eight
metrics, and for the sSAUC and KL metrics, paired t-tests showed that there was not a significant difference between the two
scores (#(34) = 0.01 for sAUC, #34) = 0.04 for KL).

5 APPLYING THE DVS MODEL

Our results indicate that, of the models tested, the saliency maps produced by the DVS model were the best match to maps of
human fixations, approaching the level of fixation-to-fixation comparisons in some cases. This suggests that the DVS saliency
maps provide a reasonable approximation of which regions of a visualization are most likely to draw the viewer’s attention.

As described above, this provides a useful evaluation metric for visualization designers. Ideally, the most important
information in a visualization will also be highly salient [26,38]. Jédnicke and Chen [26] illustrated this approach by using the Itti
model as an evaluation tool. They compared saliency maps generated by the Itti model to a “relevancy map” defined by the
visualization designer. They suggest that this comparison can be used to evaluate different visualization techniques or candidate
visualizations in order to choose the one that most effectively highlights the important information.

The DVS model represents an improvement over the Itti model, but it can be used in a similar manner to evaluate
visualizations. For example, the DVS saliency map in Figure 3 shows that the viewer’s attention is most likely to be drawn to the
text, the dark blue bars, and the tops of the light blue bars upon his or her initial viewing of the visualization. However, suppose
that the visualization designer knows that the data represented by the line graphs is particularly important. The DVS saliency map
provides a quick and easy way to assess whether or not this visualization will draw attention that data. In this example, the line
graphs are not very salient, so the match between the importance of the data (i.e., top-down goals) and its salience (i.e., bottom-
up attention) is poor. Armed with this information, the designer can try other variants of the visualization or other visualization
techniques in order to select one that makes the most important information more salient.

The simplest way to evaluate a visualization using a saliency model is to take a qualitative approach. A designer can generate
saliency maps for a set of visualizations and compare them visually, identifying the options that have a good distribution of
saliency (as defined by the designer’s goals). However, the saliency maps can also be used in a quantitative fashion. As suggested
by Janicke and Chen [26], designers could define a relevancy map and assess the match between the relevancy and the saliency
maps. This assessment could be done categorically, as in their paper, or it could be done using one or more of the eight metrics
that are commonly used to assess saliency maps. If only one is used, we propose that the value-based NSS metric would be the
most appropriate for this type of comparison. If the designer assigns a relevancy value to each region of a visualization, the NSS
metric can be used to assess the match between the relevancy values and the saliency values at each location. One prior study
[23] has used the NSS metric to compare fixation data to important features in 2D flow visualizations, so there is some precedent
for using this particular metric in the context of evaluating visualization techniques.

Another approach to quantitative assessment is to define regions of interest that outline the most important features in the
data. After generating a saliency map, a designer could assess what percentage of the saliency falls within the regions of interest.
This provides a simple numerical assessment of the match between the importance of the data and its saliency. To aid in
evaluation, we have implemented this feature in the DVS model. A user can input the coordinates of a polygon describing a
region of interest, and the model will provide the percentage of visual saliency, normalized for overall area, that falls within that
region.

6 GENERAL DiscussION

Visual saliency models have been the focus of a great deal of research in the cognitive science and computer vision communities
because mimicking human visual attention has numerous applications, including image compression, image segmentation, object
recognition, visual tracking, and image quality assessment [38,45,49]. Visual saliency maps could also play a role in evaluating
data visualizations by allowing designers to determine whether or not a particular visualization draws the viewer’s attention as



intended. Since saliency models are inspired by the properties of the human visual system, the same system that is used to convey
information in data visualizations, these models have the potential to serve as a simple and general evaluation tool.

While visual saliency models have a great deal of potential as an evaluation metric, prior evaluations have shown that existing
saliency models consistently underperform on data visualizations, often failing altogether [18]. The models that perform best with
natural scenes perform worst on data visualizations, and vice versa. Through assessments of three saliency models that generally
perform well for natural scenes, we found that the spatial scales and visual features used by the existing saliency models are
inadequate for data visualizations. Two particularly problematic areas were color models and text. The existing models perform
operations using color spaces that do not correspond well to human perception of color. And while text draws a great deal of
human attention, it is typically missed by saliency models due to its small spatial extent and high-frequency variation. Color and
text are both very important features of data visualizations, chosen by designers to convey specific information to viewers. Thus,
we chose to focus on these two areas in order to develop a saliency model that makes more accurate predictions of where viewers
look in data visualizations.

We based the Data Visualization Saliency (DVS) model on the Itti model, which performed better than other existing saliency
models on data visualizations. We modified the Itti model to use the CIE LAB color space, which is more representative of
human color perception, and added a model of text saliency. We used a linear combination to incorporate the text saliency maps
into the modified Itti model, and optimized the weighting of each component by testing the model against the stimuli in the
MASSVIS dataset. To assess the performance of the final, weighted model, we compared its performance to the original Itti,
BMS and eDN models using a set of fixation data obtained from participants viewing line drawings, fractals, and data
visualizations [37]. We found that the DVS model’s performance was comparable to the original Itti model’s performance on the
line drawing and fractal stimuli, and that it performed significantly better than the other models for data visualizations.

We suggest that the resulting model could be a simple and useful evaluation tool, which visualization designers can use to
compare candidate designs in either a qualitative or quantitative manner. This approach is broadly applicable, but it may be
particularly relevant to the evaluation of emphasis effects. There are numerous techniques that have been developed to emphasize
subsets of the data in a visualization (see [19] for a review and evaluation framework). Hall and colleagues [19] frame emphasis
effects in terms of visual prominence, which is another way of describing visual salience. They discuss intrinsic prominence,
driven by the initial process of creating a visual mapping for data, and extrinsic emphasis effects, such as zooming and
highlighting, that are used to enhance the prominence of selected features. Saliency maps could be used to evaluate both types of
effects and to determine when one type of emphasis overrides the other. An evaluation based on visual saliency is particularly
suited to assessing emphasis effects, since many of the features that are commonly used for emphasis (e.g., changes in color or
size) are the same features that are used by saliency models.

Evaluations using visual saliency maps are complementary to other evaluation techniques, such as eye tracking. Eye tracking
is a useful evaluation tool in its own right, and has been growing in popularity [13,15,16,29,44]. In our prior work with scene-like
visualizations, we showed that eye tracking and saliency maps could be used in combination to assess the importance of features
in the data and to understand the impact of users’ expertise on their attention to those features. This provides information about
how the visualization could be modified to better support the users’ needs [38]. However, while eye tracking can be very
informative, these studies can also be very time consuming and complex. Saliency maps provide a prediction of where users are
likely to look without the need for eye tracking, and for many evaluation contexts, this may be sufficient.

6.1 Limitations and Future Directions

Although this model has the potential to be a simple and generalizable evaluation metric, there are several limitations to this
approach. One important limitation is that the DVS model currently applies only to static images. This is a limitation both
because interactions are a key component of many visualizations and because motion is a visual feature that typically captures
human attention. In its current implementation, the DVS model can be applied to still images representing different phases of an
interactive process, but it cannot capture the interactive component itself. In future work, motion detection algorithms could be
incorporated into the model, enabling it to predict which parts of a dynamic scene will draw the viewer’s attention most strongly.
This would improve the model both in terms of its representation of human visual processing and in terms of its utility as an
evaluation tool.

Another limitation is that the current implementation of the model does not change the spatial scales used by the Itti model,
although these can also be problematic when applied to visualizations. The model resizes and smooths images, resulting in the
loss of fine-grained details that are often very important in data visualizations. In future work, we plan to address these issues by
allowing larger input images (limiting the need for resizing) and exploring the effects of changing the scales at which
multiresolution differences are calculated.

A limitation of saliency models in general is that they focus on bottom-up visual attention. Bottom-up attention is only part of
the picture, and top-down visual attention, driven by the viewer’s task, goals, and prior experience, is also of tremendous
importance in determining where a person will look in an image or a visualization [22,38,47]. Viewers with different goals may
look at completely different parts of the same visualization. The DVS model incorporates one aspect of top-down attention by
incorporating attention to text. Small regions of text may not be very salient from a bottom-up perspective, but people look at
these regions because they expect them to convey meaningful information. In the future, additional feature detectors could be
incorporated into the model to capture common graphical codes that convey semantic information in data visualizations [46], as
these would also have high importance from the perspective of top-down attention. The eight evaluation metrics could be used to
assess how the performance of the model changes with the addition of each feature.

On the other hand, the addition of more top-down features could quickly reduce the generalizability of the model. Text is
unique in some sense because all literate people have extensive experience with processing text, to the point where it becomes



automatic and involuntary [28,33,35]. That is not necessarily the case for other features that are used in visualizations. This could
lead to differences between users with different levels of experience with the visualization technique or with the domain.

An alternate approach may be to incorporate Gestalt-based features into the model, since many visualization techniques are
rooted in Gestalt psychology [46]. Like text comprehension, Gestalt principles reflect general cognitive processes that are not
dependent on knowledge of any particular domain. The BMS saliency model relies on the Gestalt principle of figure-ground
segregation to identify figures within an image [18,48], so incorporating Gestalt principles into a saliency model is certainly
feasible. The BMS model does not perform well for visualizations [18], indicating that this principle alone is not sufficient for
our purposes. However, it may be possible to use a similar approach to implement Gestalt-based features within the DVS model.
The combination of the modified Itti maps, text saliency maps, and Gestalt-based maps could further improve the model’s
performance. This is an area that we would like to explore in future research.

Visualizations serve a variety of functions and support a vast range of tasks, so there is an enormous range of factors that
might influence the viewer’s top-down, goal-oriented processing. The wide range of roles for visualizations is part of what makes
evaluation difficult in the first place! Saliency models cannot solve this problem, even with the addition of more features that are
inspired by top-down attention. However, despite their imperfections, they can still be a useful tool in a designer’s evaluation tool
kit. If a designer has a sense of what information is most important from a top-down perspective, she can then assess the visual
saliency of her design to determine whether or not the most important features are also salient from a bottom-up perspective. This
provides a simple and rapid assessment that can be used in a quantitative or qualitative fashion to inform the visualization’s
design.
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