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Four Topics

1. Developing a Stillinger-Weber InGaN 
potential;

2. Preliminary simulations of InGaN growth;
3. Introduction to a polymorphic pairstyle in 

LAMMPS;
4. MD simulations of substitutional diffusion 

in InGaN.



Why InGaN as the 1st Case for III-V?

1. Solid-state lighting is currently limited by the 
“green gap”;

2. Increasing In content InxGa1-xN leads to green 
light emission;

3. Lattice mismatch defects, phase separation, and 
piezoelectric/polarization lead to low efficiency 
for green light emission;

4. MD simulations can help optimize the materials 
via nanostructuring.



A Stillinger-Weber InGaN potential
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pair ij   a A B  
InIn 2.449833 1.938334 1.622254 7.9170 0.970030 32.5 1.2

GaGa 2.926384 1.759683 1.607120 7.9170 0.995618 32.5 1.2
NN 4.420186 1.726983 1.630012 7.0496 0.969832 32.5 1.2
InN 2.202060 1.852758 1.799906 7.0496 0.761521 32.5 1.2
GaN 2.289660 1.715927 1.799677 7.0496 0.641026 32.5 1.2
InGa 1.984319 1.769153 1.710916 7.0496 0.865982 32.5 1.2
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In Ga N InN GaN

prediction -2.4894 -2.7930 -3.8382 -3.7702 -4.4012

experiment -2.4894 -2.7930 -3.8382* -3.7702 -4.4012

Parameters

Energies (experimental data from Barin, VCH, 1993)



Preliminary Simulations of
InxGa1-xN Growth

Dislocation  
Configuration Analysis

Microstructure Analysis

Surface Roughness Analysis



Why SW Potential?
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1. SW potentials are very easy to parameterize;
2. The difficulty of potential parameterization is to ensure the lowest 

energy for the equilibrium phase as compared to ANY OTHER 
configurations;

3. MD simulations of crystalline growth or crystallization from melt can 
be used to determine if a potential captures the equilibrium phase 

4. Using an angular term to penalize non-tetrahedral bond angles, SW 
potentials easily ensure the lowest energy for the diamond-cubic or 
zinc-blende structure.

F. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262 (1985).
J. Tersoff, Phys. Rev. B, 39, 5566 (1989).

3014 citations as compared to 2103 for Tersoff potential

Issues:
1. Designed only for diamond-cubic, zinc-blende crystals;
2. Can be extended for fcc elements, but elastic constants are too high.



SW Potential Improvement
Issue

High elastic constants for fcc elements are 
due to nearest neighbor, smooth cutoff

Solution
Morse potential function + longer cutoff for 
similar species (nearest neighbor cutoff 
only required for dissimilar species)

Issue
Limitation to crystals are due to angular 
function penalizing only tetrahedral angle 

Solution
More general angular function
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Hurdle to LAMMPS Users
Any modifications of interatomic 
potentials require new pair styles

Note:
Tersoff potentials have also been modified to 
improve property prediction:
1. J. Wang, and A. Rockett, Phys. Rev. B 43, 

12571 (1991)
2. X. W. Zhou, and R. E. Jones, Modelling 

Simul. Mater. Sci. Eng., 19, 025004 (2011).



Polymorphic Pairstyle in LAMMPS
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X. W. Zhou, M. E. Foster, R. Jones, P. Yang, H. Fan, and F. P. Doty, J. Mater. Sci. Res., 4, 15 (2015).
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The potential is fully defined by indicators ij and IJ, and the six 
functions UIJ(r), VIJ(r), PIJ(r), WIJ(r), FIJ(X), and GJIK() (for all the 
species I, J, K = 1, 2, …) 

rjik = rij - IJ·rik IJ: parameter

ij = 1 (i = j) or 0 (i  j)
ij = ij or ij = 1- ij (depending on potential type)



Modified SW Potential

The polymorphic potential 
reduces to any modified SW 
potential shown above, if user 
use this polymorphic 
tabulation:
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SW Potential

The polymorphic 
potential reduces to 
original SW potential if 
user use this 
polymorphic tabulation:
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F. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262 (1985).
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Tersoff  Potential

The polymorphic potential 
reduces to original Tersoff 
potential if user use this 
polymorphic tabulation:

J. Tersoff, Phys. Rev. B, 39, 5566 (1989).
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Rockett-Tersoff  Potential

The polymorphic 
potential reduces 
to Rockett-Tersoff 
potential if user 
use this 
polymorphic 
tabulation:

J. Wang, and A. Rockett, Phys. Rev. B 43, 12571 (1991).
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format is the same as that in Tersoff potential
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EAM Potential

The polymorphic potential reduces to 
embedded-atom method potential if user 
use this polymorphic tabulation:

M. S. Daw, and M. I. Baskes, Phys. Rev. B, 29, 6443 (1984).

where IJ(r) is a pair function, fJ(r) is an 
atomic electron density function, FI(X) 
is the embedding energy function, and 
X is used to represent electron density 
(X = ). 
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Polymorphic TlBr Potential

X. W. Zhou, M. E. Foster, R. Jones, P. Yang, H. Fan, and F. P. Doty, J. Mater. Sci. Res., 4, 15 (2015).

1. The polymorphic pairstyle of a modified SW 
potential has been successfully applied for TlBr 
whose crystal structure is B2;

2. Try it out: the polymorphic pairstyle may be faster 
than sw or tersoff pairstyles.



MD Simulation of  Diffusion
1. Conventionally done at 0 K for atomic jumps;
2. Huge number of atomic jumps with alloys and defects;
3. Unclear about the overall diffusion behavior;
4. No mass effect;
5. Solution: Arrhenius fit to MD diffusivities at different T;
6. Successfully applied for interstitial diffusion of H in Al.

MD Constructed Arrhenius Plot of H in Al

X. W. Zhou, F. El Gabaly, V. Stavila, and M. D. 
Allendorf, J. Phys. Chem. C, 120, 7500 (2016).



MD Simulation of
Substitutional Diffusion in InGaN
MD Constructed Arrhenius Plot of at a Given CV

Linear Relationships between D0 and CV Achieved

Long simulation time is the key!



Conclusions
1. Simple SW potential has been developed for 

InGaN;
2. Preliminary MD simulations of InxGa1-xN growth 

already provided understanding of defects;
3. With the polymorphic pairstyle, researchers can 

now freely modify many potential formats 
without changing MD codes;

4. MD has become powerful tool to study diffusion 
regardless complexity of systems.


