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Abstract

The energy-dependent probability density of tunneled carrier states for arbitrarily
specified longitudinal potential-energy profiles in planar bipolar devices is
numerically computed using the scattering method. Results agree accurately with a
previous treatment based on solution of the localized eigenvalue problem, where
computation times are much greater. These developments enable quantitative
treatment of tunneling-assisted recombination in irradiated heterojunction bipolar
transistors, where band offsets may enhance the tunneling effect by orders of
magnitude. The calculations also reveal the density of non-tunneled carrier states in
spatially varying potentials, and thereby test the common approximation of uniform-
bulk values for such densities.
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1. INTRODUCTION

Detrimental recombination of carriers at irradiation-defect traps in bipolar devices may be
substantially increased by tunneling where the bands vary with location. This effect has been
simulated by analytic treatments assuming a straight-line variation of the potential along the
longitudinal device axis, as produced by a uniform internal field (See, e.g., Ref. 1). Recently one
of us (Wampler) found that device models employing this approximation are inadequate for
heterojunction bipolar transistors (HBTs), where composition-related band offsets approaching
one-half electron volt may be superimposed on the field-induced slope. We previously
developed a device model utilizing a numerical solution of the 1-D quantum-mechanical
tunneling problem for an arbitrarily specified longitudinal potential, which yielded good
consistency with experiments on Sandia devices [2, 3]. Additionally, an analytic approximation
has been devised by Xujiao Gao in which the potential profile is represented by connected
straight-line segments [4], pursuant to implementation in the Sandia codes CHARON [5] for
devices and XYCE for circuits [6]. The device-relevant product of such calculations is the

combined 3-D probability density of carrier states per unit energy E at the location x; of a trap,
Np(E,x¢). In simulations this quantity is combined with the E-dependent state-occupation

probability and the E-dependent multiphonon reaction coefficient to obtain the carrier trapping

rate [2,3].

In this report we describe a different numerical approach to the tunneling problem:
impinging plane waves, with independently determined energy eigenvalues, are treated as
scattered by the varying potential in the junction region to obtain the needed carrier probability
densities. This contrasts with our previous use of an eigensolver to determine locally bounded
wave functions [2,3]. The one-band envelope equation with the effective-mass approximation is
employed in both cases, since higher-order two-band treatments [7] were previously found to be
unnecessary for HBT modeling [3]. Computation time is reduced by orders of magnitude in the
scattering method, but with reduced flexibility in configuring the problem, so that the approaches

are complimentary. We compare results for Ni(E,x¢) from the two methods and consider

sensitivities to particulars of the calculations.

Our evaluation of state probability densities extends seamlessly into the non-tunneled

regime where the energies of carriers are above that at the band edge. In addition to the direct



interaction with traps, this is where the processes of drift and diffusion occur. Modelers
routinely assume bulk carrier properties in this regime. Our findings allow examination of the

approximation.

2. METHOD
We deal first with the solution of the envelope equation to obtain carrier eigenstates, and
then discuss their utilization to calculate the combined local density of states (DOS) N(E,x¢).

The 3-D one-band envelope equation for the planer heterojunction structure, and the associated

wave functions and energy eigenvalues, are separable into axial components as
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The ¥ and v are wave functions, the E are state energies, m is the effective mass of the carriers,
and 7 is Planck's constant divided by 2x; U is the potential energy, corresponding to the band
edge for conduction electrons and its negative for holes, which varies with location along the
longitudinal x axis of the device. As in the previously discussed eigensolver approach [2, 3],
Egs. (4) and (5) are each treated analytically for an infinitively deep square well of width L much
greater than the longitudinal dimension of the device. The resulting oscillatory solutions are real

and non-degenerate with wave numbers and energy eigenvalues given by

Ki’,z = %\/@ = %j for positive integers j ©



and average squared wave-function amplitudes 1/L corresponding to an integrated probability of

1.

The scattering approach is applied to an x-axis interval of varying potential U(x) bounded

by two extended regions of respective constant potentials Umin < Umax » With the x-axis state
energies being such that Up,in < Ex <Umpax. An idealized example that includes the principle

features of a heterojunction structure is shown in Fig. 1, where a linear variation arising from a

uniform internal field is interrupted by a step due to the abrupt composition change. Within the
higher plateau on the left, the wave function is exponentially attenuated as x decreases, whereas
in the plateau to the right the solution is oscillatory. The system is bounded on the right by an

infinite step in U at the deeper end of the lower plateau.

A key property underlying the relative computational efficiency of the scattering

approach is that, when the length of the lower-energy plateau is taken to be much larger than the

range of varying potential, the energy eigenvalues Ei approach those for a square well given by

where L is the plateau dimension. With this independent knowledge of Ef( it is not necessary to

solve Eq. (3) as an eigenvalue problem requiring iteration; instead, the wave function for a given
energy is obtained by a single numerical integration of the differential equation. The need to
explicitly match phases between oscillations in the lower-plateau region and the more complex
wave-function behavior near the junction is avoided by initiating the integration within the
higher-energy plateau, where the dependence on x is a simple exponential. For convenience we
equate the length of the lower x-axis plateau to the width of the square wells along the transverse
axes. (Minute adjustment to achieve zero amplitude at the outer boundary is unnecessary for

large L. )

The idealized x-axis potential profile used for the scattering calculations departs from
physical reality with increasing distance from the tunneling region of interest. The assumed
extent of the low-energy plateau exceeds by decades the actual width of structural features such
as the base of HBTs, and also exceeds the scattering-limited coherence distance of the carriers,

which may be in the nanometer range [3]. At the end of this section and in Sect. 3, we discuss

(7)



arguments and computational results supporting the insensitivity of pertinent carrier probability

densities N (E,x¢) to such idealizations at the periphery.
Discretizing the derivative in Eq. (3) yields a form suitable for numerical integration:

; 2m(_; 2 j :
U T  VI

where superscript j identifies the energy eigenvalue, subscript i is the position index for

discretized x, and Ax is the corresponding increment. Subscripts denoting the x axis have been

omitted from the discretized wave-function amplitudes for convenience. Pending normalization,
\V{ is equated to 1. Within the higher-energy plateau, where Py increases exponentially with

increasing x, one has [8]
2} :\yfexp(AAx) 9)

where

A:%\/2m(UmaX—Ej) . (10)

After numerical integration to obtain the wg, the wave functions are normalized so that the

average squared amplitude over one oscillation in the lower-energy plateau is equal to 1/L,
making the probability integrated over the entire interval L equal to 1. This numerical

determination of the x-axis wave functions is computationally limiting, and is performed only for
a single, representative eigenvalue Ei within each of the discretization intervals AEy to be
discussed.

The tunneled probability density at depth x; for an individual 3-D eigenstate ¥ having

total energy E and x-axis energy Ex < E can be written

[WEE x| :[(\VX(EX,xt)Té (11)

where the average squared amplitude 1/L is used for the y and z axial components of the wave

function. Here, and in the following, it is sufficient and convenient to identify the eigenstates in

10



terms of continuum energies rather than indices because, at large L, any chosen value is
negligibly distant from an actual eigenvalue. The combined energy-dependent probability DOS
for tunneled carriers, N (E,x¢), is obtained by summing the probability densities given by Eq.

(11) for all states with total energies in a small interval from E-AE/2 to E+AE/2, and then
dividing by AE. This summation is visualized as extending over one eighth of a spherical shell

in the space of positive axial wave numbers {KX,Ky,KZ}, wherein the coordinates of the
eigenstates are uniformly distributed with axial spacing n/L, corresponding to a volume density
of (L/n)3. (Since the axial coordinates in wave-number space have units of reciprocal meters,
the subject volume density is given as meters cubed. There are analogous inversions for area and

distance.) The xy plane is depicted in Fig. 2, which shows a bounded element, with K-space area

AAx , that is determined by K, AK, Ky and AKy where

1<:\/sz+1<y2+1<z2 : (12)

The corresponding AE and AEy , related to AK and AKy through Egs. (6) and (7), are chosen to
be invariant and equal. When the above planer element is projected a distance Dk along an arc

about the x axis so as to traverse an angle of n/2, the number AS of contained eigenstate

coordinates is given for small increments by

3
AS:(EJ Dy AA
7T
3
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A change of variables using Eqgs. (6) and (7) gives

LS 3/2
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where the equality of AE and AEy is assumed. Multiplying AS by the single-state probability

density in Eq. (11), dividing by AE, and adding a factor of 2 for spin degeneracy gives the
contribution ANp(E,Ex,x¢) to the tunneled DOS Ny (E,x¢) from the interval AEy at x-axis energy

Ex<E:

L m>2AE
o \2(E,-U

AN, (E,E, ,x,)= [(WX(EX,Xt)T . (15)

min )
As explained above, the normalization of the wave function is such that its squared amplitude is
proportional to 1/L, so that ANy, is independent of L. It is therefore permissible to use L = 1

meter in the calculation.

In Refs. 2 and 3 we reported calculations of Np(E,x¢) in which the x-axis envelope

equation, Eq. (3) above, was solved for locally bound potential wells having microscopic

dimensions Ly comparable to or even smaller than the region of varying U(x) near the

heterojunction. The fewer eigenstates, with energy eigenvalues not independently available,
were obtained using an iterative eigensolver. This more computationally intensive method
facilitates examination of the influences of model configuration and wave-function termination

on the extracted DOS.

It is illuminating to compare the above Eq. (15) with the summation terms for Np(E,x¢) in
the eigensolver approach, where each energy interval AEy contains a single eigenvalue. Relative

to Eq. (13) of Ref. 3, Eq. (15) has the additional factor

L ml/ZAEX
nh [J2(E,-U

(16)

min )

(except in the particular case of Ex = E with Ey =E, =0). This expression can be shown to be
the number of x-axis scattering eigenvalues Ey within the interval AEy, which is consistent with
the following physical insight. If the numerous x-axis scattering eigenstates within AEy are

replaced by a single state near the center of the interval, and if that state is artificially assigned a
degeneracy equal to the actual number of states, then the summation of Ref. 3 should become

applicable and yield results in accord with the present approach.

12



Pursuant to an optimal outcome from coarse energy discretization, we adopt a procedural

detail from the earlier study [2,3]. In computing N},(E,x¢), the uppermost AE interval of the

summation is centered on E, and the associated term is one-half of that given in Eq. (15). One

then has

1
Np(E.x) =S ANy(E.E, = E.x,)+ D ANG(E.E,.x) . (17)
Ey<E

In practice the lower limit of the summation is the higher of Uy, i, or the energy of the trapped

state.

The above scattering approach is based on the impingement of plane waves with
independently known eigenvalues; as already noted, it implies an extended potential plateau not
actually present in bipolar devices. When the plateau dimension L is large compared to the
range of varying U(x), the number of states per unit energy and the amplitudes of the normalized
wave functions near a given energy vary oppositely with L, compensating to produce an

invariant probability density N, as detailed above. These opposing dependences persist when L

is comparable to the range of the varying potential, as can be shown using the WKB
approximation of the wave function. In the following section and in Ref. 3, comparison of
computational results between the scattering approach and the eigensolver method, combined
with eigensolver calculations for multiple widths of the potential well, show good consistency

indicative of accurate compensation for conditions of interest.

3. CALCULATIONS AND DISCUSSION

The scattering method discussed in Sect. 2 was applied to the problem represented in Fig.
1, with results shown in Fig. 3. The potential ramp corresponds to a field magnitude of 10
MV/m, typical of HBTs, while the step amplitude of 0.5 eV is near the upper end of values
encountered in Sandia devices. The normalized effective mass m/m0 is 0.1, roughly
representative of electrons and light holes in GaAs. The dimension of the three axial potential
wells L is 1 meter. The numerical solution of Eq. (3) was carried to x = 500 nm, sufficient for
characterization of the oscillatory wave function in the lower-energy plateau. Also shown is the

result without the potential step, where the linear ramp is continued uninterrupted down to zero

13



potential. The large difference in the DOS illustrates the substantial influence of the band offset

and the resultant need for a realistic description.

An equivalent problem was solved using the eigensolver approach of Refs. 2 and 3, with
results included in Fig. 3. The potential profile in the localized well, with a width of 1000 nm
rather than 1 meter, is shown in Fig. 4. The extent of the ramp is several times larger than in Fig.
1 in order to produce a suitable distribution of eigenstates, but relevant conditions near the step
are identical. The execution time for the eigensolver calculation is about two orders of

magnitude greater than for the scattering treatment, for reasons that were discussed in Sect. 2.

The consistency in Fig. 3 between the different methodologies and potential
configurations is a favorable indication for the correctness of the results and their insensitivity to
computational details. In this regard we also note a calculation reported in Refs. 2 and 3, where
a potential well similar to that in Fig. 4 was narrowed to the point where the left wall intersected
the ramp and was only 40 nm from the trap. While the energy separation of the x-axis
eigenstates was greatly increased, sufficient resolution remained to demonstrate quantitative
consistency of the tunneled DOS. This reflects the accurately compensating variations of wave-

function normalization and number of states per unit energy that was discussed in Sect. 2.

As indicated above, our treatment of the energy-dependent probability density is believed
to remain valid when the energies of the carrier states extend above that of the band edge at the
location of the trap. While the local influence of tunneling ceases, the findings are pertinent to
recombination by direct trapping, and also to the number of states contributing to transport by
drift and diffusion. The bulk DOS is routinely considered to remain applicable in the regions of
bipolar devices where the bands vary, and the accuracy of this approximation warrants

examination. In Fig. 5 we show Np(E,x¢) in the non-tunneling regime under three conditions:

the uniform bulk in zero field [9]; an extended potential ramp in a representative field of
magnitude 10 MV/m; and, the same ramp interrupted by a 0.5 eV step located 0.05 eV down-
slope from the trap. The small energy range of the plot is chosen to emphasize the region of
significant thermal occupancy near room temperature. Inspection suggests modest errors in

predicted device operating characteristics that can be offset through parameter calibration.

14



4, CONCLUSION

We have developed an efficient numerical method based on the scattering approach for
calculating the combined probability density of tunneled carrier states in planer bipolar devices.
This facilitates the description of band-to-trap tunneling under arbitrary longitudinal potential
profiles, and is particularly useful in modeling carrier recombination in irradiated heterojunction
bipolar transistors. The approach is also applicable to non-tunneled carriers, and could be used

to refine descriptions of direct carrier reactions and transport via drift-diffusion.

In present form our calculation treats carriers impinging from a single direction, and
employs the one-band envelop equation with the effective-mass approximation. We have found
these simplifications to be acceptable in modeling HBTs. The scattering approach can
accommodate incidence from two directions, including circumstances where the carrier chemical
potentials on the two sides are different, but such a calculation is substantially more complicated.
Also feasible is implementation of the two-band Flietner model [10], which is expected to
describe tunneling far from the band edge more realistically than the effective-mass

approximation.
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Figure 1. Profile of carrier potential energy U versus depth x for an idealized heterojunction
having a uniform internal field of magnitude 10 MV/m and a band offset of 0.5 eV, which is
used to calculate the tunneled probability density of states at a trap by the scattering approach.
The trap is located at 30 nm, with tunneling occurring from the band region on the right.
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Figure 2. Diagram of the xy plane in {KX,Ky,KZ} space used to formulate the summation over
carrier eigenstates. All coordinates within each x-axis interval AK connect to a single
numerical evaluation of yyx(Ex,X¢).
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Figure 3. Tunneled probability densities of carrier states at the trap, Np(E,X¢), obtained by the
scattering approach for the conditions of Fig. 1 with and without the potential-energy step. The

band edge at the location of the trap is at 0.8 eV, corresponding to the right margin. A
corresponding result from the eigensolver method is included for comparison. These results

illustrate the large influence of the band offset.
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Figure 5. Densities of states at energies above the band edge for a constant potential; for a ramp
corresponding to a field magnitude of 10 MV/m; and for a ramp with a 0.5 eV step located 0.05
eV down the ramp from the trap.
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