
                         

SANDIA REPORT
SAND2017-XXXX
Unlimited Release
Printed September 2017

Probability density of tunneled carrier 
states near heterojunctions calculated 
numerically by the scattering method

Samuel M. Myers, William R. Wampler and Normand A. Modine

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico  87185 and Livermore, California  94550

Sandia National Laboratories is a multi-mission laboratory managed and operated 
by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned 
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s 
National Nuclear Security Administration under contract DE-NA0003525.



2

Issued by Sandia National Laboratories, operated for the United States Department of Energy by 
National Technology and Engineering Solutions of Sandia, LLC.

NOTICE:  This report was prepared as an account of work sponsored by an agency of the United 
States Government.  Neither the United States Government, nor any agency thereof, nor any of 
their employees, nor any of their contractors, subcontractors, or their employees, make any 
warranty, express or implied, or assume any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process disclosed, or 
represent that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government, any agency thereof, or any of their contractors or subcontractors.  The 
views and opinions expressed herein do not necessarily state or reflect those of the United States 
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best 
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN  37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA  22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: http://www.ntis.gov/search

mailto://reports@osti.gov
http://www.osti.gov/scitech
mailto://orders@ntis.gov
http://www.ntis.gov/search


3

SAND2017-10494
Printed July 2017
Unlimited Release

Probability density of tunneled carrier states 
near heterojunctions calculated numerically by 
the scattering method

Samuel M. Myers and William R. Wampler 
Radiation-Solid Interactions Department 1861

and
Normand A. Modine

Nanostructure Physics Department 1881

Sandia National Laboratories
P. O. Box 5800

Albuquerque, New Mexico  87185-MS1056

Abstract
The energy-dependent probability density of tunneled carrier states for arbitrarily 
specified longitudinal potential-energy profiles in planar bipolar devices is 
numerically computed using the scattering method.  Results agree accurately with a 
previous treatment based on solution of the localized eigenvalue problem, where 
computation times are much greater.  These developments enable quantitative 
treatment of tunneling-assisted recombination in irradiated heterojunction bipolar 
transistors, where band offsets may enhance the tunneling effect by orders of 
magnitude.  The calculations also reveal the density of non-tunneled carrier states in 
spatially varying potentials, and thereby test the common approximation of uniform-
bulk values for such densities.
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1. INTRODUCTION
Detrimental recombination of carriers at irradiation-defect traps  in bipolar devices may be 

substantially increased by tunneling where the bands vary with location.  This effect has been 

simulated by analytic treatments assuming a straight-line variation of the potential along the 

longitudinal device axis, as produced by a uniform internal field (See, e.g., Ref. 1).  Recently one 

of us (Wampler) found that device models employing this approximation are inadequate for 

heterojunction bipolar transistors (HBTs), where composition-related band offsets approaching 

one-half electron volt may be superimposed on the field-induced slope.  We previously 

developed a device model utilizing a numerical solution of the 1-D quantum-mechanical 

tunneling problem for an arbitrarily specified longitudinal potential, which yielded good 

consistency with experiments on Sandia devices [2, 3].  Additionally, an analytic approximation 

has been devised by Xujiao Gao in which the potential profile is represented by connected 

straight-line segments [4], pursuant to implementation in the Sandia codes CHARON [5] for 

devices and XYCE for circuits [6].  The device-relevant product of such calculations is the 

combined 3-D probability density of carrier states per unit energy E at the location xt of a trap, 

Nb(E,xt).  In simulations this quantity is combined with the E-dependent state-occupation 

probability and the E-dependent multiphonon reaction coefficient to obtain the carrier trapping 

rate [2,3].

In this report we describe a different numerical approach to the tunneling problem:  

impinging plane waves, with independently determined energy eigenvalues, are treated as 

scattered by the varying potential in the junction region to obtain the needed carrier probability 

densities.  This contrasts with our previous use of an eigensolver to determine locally bounded 

wave functions [2,3].  The one-band envelope equation with the effective-mass approximation is 

employed in both cases, since higher-order two-band treatments [7] were previously found to be 

unnecessary for HBT modeling [3].  Computation time is reduced by orders of magnitude in the 

scattering method, but with reduced flexibility in configuring the problem, so that the approaches 

are complimentary.  We compare results for Nb(E,xt) from the two methods and consider 

sensitivities to particulars of the calculations.

Our evaluation of state probability densities extends seamlessly into the non-tunneled 

regime where the energies of carriers are above that at the band edge.  In addition to the direct 
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interaction with traps, this is where the processes of drift and diffusion occur.  Modelers 

routinely assume bulk carrier properties in this regime.  Our findings allow examination of the 

approximation.

2. METHOD

We deal first with the solution of the envelope equation to obtain carrier eigenstates, and 

then discuss their utilization to calculate the combined local density of states (DOS) Nb(E,xt).  

The 3-D one-band envelope equation for the planer heterojunction structure, and the associated 

wave functions and energy eigenvalues, are separable into axial components as

(1)
 
  x (x) y(y)z (z)

(2)
 
E  Ex  Ey  Ez

(3)

(4)

  . (5)

The Ψ and ψ are wave functions, the E are state energies, m is the effective mass of the carriers, 

and is Planck's constant divided by 2π; U is the potential energy, corresponding to the band 

edge for conduction electrons and its negative for holes, which varies with location along the 

longitudinal x axis of the device.  As in the previously discussed eigensolver approach [2, 3], 

Eqs. (4) and (5) are each treated analytically for an infinitively deep square well of width L much 

greater than the longitudinal dimension of the device.  The resulting oscillatory solutions are real 

and non-degenerate with wave numbers and energy eigenvalues given by

  , (6)
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and average squared wave-function amplitudes 1/L corresponding to an integrated probability of 

1. 

The scattering approach is applied to an x-axis interval of varying potential U(x) bounded 

by two extended regions of respective constant potentials Umin < Umax , with the x-axis state 

energies being such that Umin < Ex < Umax.  An idealized example that includes the principle 

features of a heterojunction structure is shown in Fig. 1, where a linear variation arising from a 

uniform internal field is interrupted by a step due to the abrupt composition change.  Within the 

higher plateau on the left, the wave function is exponentially attenuated as x decreases, whereas 

in the plateau to the right the solution is oscillatory.  The system is bounded on the right by an 

infinite step in U at the deeper end of the lower plateau.

A key property underlying the relative computational efficiency of the scattering 

approach is that, when the length of the lower-energy plateau is taken to be much larger than the 

range of varying potential, the energy eigenvalues  approach those for a square well given by Ex
j

  (7)

where L is the plateau dimension.  With this independent knowledge of  it is not necessary to  Ex
j

solve Eq. (3) as an eigenvalue problem requiring iteration; instead, the wave function for a given 

energy is obtained by a single numerical integration of the differential equation.  The need to 

explicitly match phases between oscillations in the lower-plateau region and the more complex 

wave-function behavior near the junction is avoided by initiating the integration within the 

higher-energy plateau, where the dependence on x is a simple exponential.  For convenience we 

equate the length of the lower x-axis plateau to the width of the square wells along the transverse 

axes.  (Minute adjustment to achieve zero amplitude at the outer boundary is unnecessary for 

large L. ) 

The idealized x-axis potential profile used for the scattering calculations departs from 

physical reality with increasing distance from the tunneling region of interest.  The assumed 

extent of the low-energy plateau exceeds by decades the actual width of structural features such 

as the base of HBTs, and also exceeds the scattering-limited coherence distance of the carriers, 

which may be in the nanometer range [3].   At the end of this section and in Sect. 3, we discuss 
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arguments and computational results supporting the insensitivity of pertinent carrier probability 

densities Nb(E,xt) to such idealizations at the periphery.

Discretizing the derivative in Eq. (3) yields a form suitable for numerical integration:

(8)

where superscript j identifies the energy eigenvalue, subscript i is the position index for 

discretized x, and Δx is the corresponding increment.  Subscripts denoting the x axis have been 

omitted from the discretized wave-function amplitudes for convenience.  Pending normalization, 

 is equated to 1.  Within the higher-energy plateau, where ψx increases exponentially with  1
j

increasing x, one has [8]

(9) 2
j  1

j exp Ax 

where

  . (10)

After numerical integration to obtain the , the wave functions are normalized so that the   i
j

average squared amplitude over one oscillation in the lower-energy plateau is equal to 1/L, 

making the probability integrated over the entire interval L equal to 1.  This numerical 

determination of the x-axis wave functions is computationally limiting, and is performed only for 

a single, representative eigenvalue  within each of the discretization intervals ΔEx to be  Ex
j

discussed.

The tunneled probability density at depth xt for an individual 3-D eigenstate Ψ having 

total energy E and x-axis energy Ex ≤ E can be written

(11)
 
(E,Ex ,x t ) 

2
 x (Ex ,x t  

2 1
L2

where the average squared amplitude 1/L is used for the y and z axial components of the wave 

function.  Here, and in the following, it is sufficient and convenient to identify the eigenstates in 
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terms of continuum energies rather than indices because, at large L, any chosen value is 

negligibly distant from an actual eigenvalue. The combined energy-dependent probability DOS 

for tunneled carriers, Nb(E,xt), is obtained by summing the probability densities given by Eq. 

(11) for all states with total energies in a small interval from E-ΔE/2 to E+ΔE/2, and then 

dividing by ΔE.  This summation is visualized as extending over one eighth of a spherical shell 

in the space of positive axial wave numbers {Kx,Ky,Kz}, wherein the coordinates of the 

eigenstates are uniformly distributed with axial spacing π/L, corresponding to a volume density 

of (L/π)3.  (Since the axial coordinates in wave-number space have units of reciprocal meters, 

the subject volume density is given as meters cubed.  There are analogous inversions for area and 

distance.)  The xy plane is depicted in Fig. 2, which shows a bounded element, with K-space area 

ΔAK , that is determined by K, ΔK, Kx and ΔKx where   

  . (12)
 
K  Kx

2  Ky
2  Kz

2

The corresponding ΔE and ΔEx , related to ΔK and ΔKx through Eqs. (6) and (7), are chosen to 

be invariant and equal.  When the above planer element is projected a distance DK along an arc 

about the x axis so as to traverse an angle of π/2, the number ΔS of contained eigenstate 

coordinates is given for small increments by

  . (13)

 

S  L








3
DKAK


L








3

2

K2  Kx
2 1/2









KKKx

K2 Kx
2 1/2




















L3

22
KKKx

A change of variables using Eqs. (6) and (7) gives

  (14)
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where the equality of ΔE and ΔEx is assumed.  Multiplying ΔS by the single-state probability 

density in Eq. (11), dividing by ΔE, and adding a factor of 2 for spin degeneracy gives the 

contribution ΔNb(E,Ex,xt) to the tunneled DOS Nb(E,xt) from the interval ΔEx at x-axis energy 

Ex ≤ E :   

  . (15)

As explained above, the normalization of the wave function is such that its squared amplitude is 

proportional to 1/L, so that ΔNb is independent of L.  It is therefore permissible to use L = 1 

meter in the calculation.

In Refs. 2 and 3 we reported calculations of  Nb(E,xt) in which the x-axis envelope 

equation, Eq. (3) above, was solved for locally bound potential wells having microscopic 

dimensions Lx comparable to or even smaller than the region of varying U(x) near the 

heterojunction.  The fewer eigenstates, with energy eigenvalues not independently available, 

were obtained using an iterative eigensolver.  This more computationally intensive method 

facilitates examination of the influences of model configuration and wave-function termination 

on the extracted DOS.  

It is illuminating to compare the above Eq. (15) with the summation terms for Nb(E,xt) in 

the eigensolver approach, where each energy interval ΔEx contains a single eigenvalue.  Relative 

to Eq. (13) of Ref. 3, Eq. (15) has the additional factor

  (16)

(except in the particular case of Ex = E with Ey = Ez = 0).  This expression can be shown to be 

the number of x-axis scattering eigenvalues Ex within the interval ΔEx, which is consistent with 

the following physical insight.  If the numerous x-axis scattering eigenstates within ΔEx are 

replaced by a single state near the center of the interval, and if that state is artificially assigned a 

degeneracy equal to the actual number of states, then the summation of Ref. 3 should become 

applicable and yield results in accord with the present approach.
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Pursuant to an optimal outcome from coarse energy discretization, we adopt a procedural 

detail from the earlier study [2,3].  In computing Nb(E,xt), the uppermost ΔEx interval of the 

summation is centered on E, and the associated term is one-half of that given in Eq. (15).  One 

then has

  . (17)

 

Nb(E,x t ) 
1
2
Nb(E,Ex  E,x t ) Nb(E,Ex ,x t )

ExE


In practice the lower limit of the summation is the higher of Umin or the energy of the trapped 

state.

The above scattering approach is based on the impingement of plane waves with 

independently known eigenvalues; as already noted, it implies an extended potential plateau not 

actually present in bipolar devices.  When the plateau dimension L is large compared to the 

range of varying U(x), the number of states per unit energy and the amplitudes of the normalized 

wave functions near a given energy vary oppositely with L, compensating to produce an 

invariant probability density Nb as detailed above.  These opposing dependences persist when L 

is comparable to the range of the varying potential, as can be shown using the WKB 

approximation of the wave function.  In the following section and in Ref. 3, comparison of 

computational results between the scattering approach and the eigensolver method, combined 

with eigensolver calculations for multiple widths of the potential well, show good consistency 

indicative of accurate compensation for conditions of interest.

3. CALCULATIONS AND DISCUSSION

The scattering method discussed in Sect. 2 was applied to the problem represented in Fig. 

1, with results shown in Fig. 3. The potential ramp corresponds to a field magnitude of 10 

MV/m, typical of HBTs, while the step amplitude of 0.5 eV is near the upper end of values 

encountered in Sandia devices.  The normalized effective mass m/m0 is 0.1, roughly 

representative of  electrons and light holes in GaAs.  The dimension of the three axial potential 

wells L is 1 meter.  The numerical solution of Eq. (3) was carried to x = 500 nm, sufficient for 

characterization of the oscillatory wave function in the lower-energy plateau.  Also shown is the 

result without the potential step, where the linear ramp is continued uninterrupted down to zero 



14

potential.  The large difference in the DOS illustrates the substantial influence of the band offset 

and the resultant need for a realistic description.

An equivalent problem was solved using the eigensolver approach of Refs. 2 and 3, with 

results included in Fig. 3.  The potential profile in the localized well, with a width of 1000 nm 

rather than 1 meter, is shown in Fig. 4.  The extent of the ramp is several times larger than in Fig. 

1 in order to produce a suitable distribution of eigenstates, but relevant conditions near the step 

are identical.  The execution time for the eigensolver calculation is about two orders of 

magnitude greater than for the scattering treatment, for reasons that were discussed in Sect. 2.  

The consistency in Fig. 3 between the different methodologies and potential 

configurations is a favorable indication for the correctness of the results and their insensitivity to 

computational details.  In this regard we also note a calculation reported in Refs. 2 and 3, where 

a potential well similar to that in Fig. 4 was narrowed to the point where the left wall intersected 

the ramp and was only 40 nm from the trap.  While the energy separation of the x-axis 

eigenstates was greatly increased, sufficient resolution remained to demonstrate quantitative 

consistency of the tunneled DOS.  This reflects the accurately compensating variations of wave-

function normalization and number of states per unit energy that was discussed in Sect. 2.

As indicated above, our treatment of the energy-dependent probability density is believed 

to remain valid when the energies of the carrier states extend above that of the band edge at the 

location of the trap.  While the local influence of tunneling ceases, the findings are pertinent to 

recombination by direct trapping, and also to the number of states contributing to transport by 

drift and diffusion.  The bulk DOS is routinely considered to remain applicable in the regions of 

bipolar devices where the bands vary, and the accuracy of this approximation warrants 

examination.  In Fig. 5 we show Nb(E,xt) in the non-tunneling regime under three conditions:  

the uniform bulk in zero field [9]; an extended potential ramp in a representative field of  

magnitude 10 MV/m; and, the same ramp interrupted by a 0.5 eV step located 0.05 eV down-

slope from the trap.  The small energy range of the plot is chosen to emphasize the region of 

significant thermal occupancy near room temperature.  Inspection suggests modest errors in 

predicted device operating characteristics that can be offset through parameter calibration.



15

4. CONCLUSION

We have developed an efficient numerical method based on the scattering approach for 

calculating the combined probability density of tunneled carrier states in planer bipolar devices.  

This facilitates the description of band-to-trap tunneling under arbitrary longitudinal potential 

profiles, and is particularly useful in modeling carrier recombination in irradiated heterojunction 

bipolar transistors.  The approach is also applicable to non-tunneled carriers, and could be used 

to refine descriptions of direct carrier reactions and transport via drift-diffusion.

In present form our calculation treats carriers impinging from a single direction, and 

employs the one-band envelop equation with the effective-mass approximation.  We have found 

these simplifications to be acceptable in modeling HBTs.  The scattering approach can 

accommodate incidence from two directions, including circumstances where the carrier chemical 

potentials on the two sides are different, but such a calculation is substantially more complicated.  

Also feasible is implementation of the two-band Flietner model [10], which is expected to 

describe tunneling far from the band edge more realistically than the effective-mass 

approximation.
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Figure 1.  Profile of carrier potential energy U versus depth x for an idealized heterojunction 
having a uniform internal field of magnitude 10 MV/m and a band offset of 0.5 eV, which is 
used to calculate the tunneled probability density of states at a trap by the scattering approach.  
The trap is located at 30 nm, with tunneling occurring from the band region on the right.
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Figure 2.  Diagram of the xy plane in {Kx,Ky,Kz} space used to formulate the summation over 
carrier eigenstates.  All coordinates within each x-axis interval ΔKx connect to a single 
numerical evaluation of ψx(Ex,xt).
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Figure 3.  Tunneled probability densities of carrier states at the trap, Nb(E,xt), obtained by the 
scattering approach for the conditions of Fig. 1 with and without the potential-energy step.  The 
band edge at the location of the trap is at 0.8 eV, corresponding to the right margin.  A 
corresponding result from the eigensolver method is included for comparison.  These results 
illustrate the large influence of the band offset.
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Figure 4.  Potential-energy profile used to calculate the tunneled density of states in Fig. 3 by the 
eigensolver method.  The potential well dimension of 1000 nm, and the elongated ramp below 
the step, are chosen to produce a suitable distribution of eigenstates and x-axis discretization.  
The region of interest near the step is equivalent to that in Fig. 1.
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Figure 5.  Densities of states at energies above the band edge for a constant potential; for a ramp 
corresponding to a field magnitude of 10 MV/m; and for a ramp with a 0.5 eV step located 0.05 
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