Multiscale characteristics of
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properties in Mancos shale
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Shale Poromechanics: Multiscale
Heterogeneity in Compositions, Pore
structure, and Mechanical Properties
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scales and provide physical basis
for core-scale measured
deformational and transport
constitutive behavior

» Develop novel and cutting edge
techniques and workflow for a
linked imaging, experimental, and
modeling-based advancement of
shale poromechanics
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Multiscale Approach

¢ 40 cm diameter core of Mancos Shale

e Mineralogical and textural characterization
— Macroscopic
— Optical petrography/microscopy
— Micro-CT
— FIB-SEM
— BSE, X-ray mapping
— MAPS Mineralogy

e Mechanical tests
— Uni-/Tri-axial compression (1x2”)
— Brazilian Test (1x0.5%)
— Nano-indentation

e Mechanical modeling




Cretaceous Mancos Shale (Macro-lithofacies)

» Heterolithic facies [Grigg, MS thesis, 2016]
— Interlaminated fine mud,
medium/coarse mud (Lazar et al.,
2015), and very fine sand
— 1-3 mm laminae
— Parallel lamina, wavy lenticular
lamina, ripple forms, and bioturbation
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“Micro-lithofacies” Interpretation:
Optical Petrography
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Mechanical Testing: Brazil or Cylinder
Splitting Tests with Phase Field Model

Paint markers: Digital Image Correlation
to estimate 2D strain on the surface
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Axial Stress (MPa)

Indirect Tension Results
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Tensile Strain Distribution
(Digital Image Correlation)
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Conceptual Model of Layered System




= Phase field model for crack ~60 %
representation (Heister et al,2015) - ~40 %
=  Shale is modeled as two- Stiff Stiff
constituent brittle materials layeg Soft (%)
with stiff and soft layers: 62.5%
37.5%
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Shear Syess (NPa)

Axisymmetric Testing Results
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MAPS Mineralogy

e FEI developed a new spatial mineralogy platform

e SEM-based automated mineralogical measurement,
analysis, interpretation, data integration
— Collection, overlay and re-registration of
multiple images from different modalities
— SEM, SEM-EDS, optical, CL, EBSD
— QEMSCAN measurement algorithms

v Quartz [Silica)
K.-feldzpar
Albite

e Mineral identification

— Spectral matching

— Each pixel can be a single
mineral or multiple minerals L —

— Ideal for minerals that show 4
elemental substitutions

— Simultaneous mineral,
element and count maps
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Mineralogy Mapping &

Nanoindentation
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Nano-indentation Results

Polished quartz area, 20 indents Polished Clay-rich area, 64 indents

W Quartz (Giica)
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Nano-indentation Results




Summary

e Texture/mineralogical characterizations

— Considerable heterogeneity within macroscopic and sometimes
microscopic facies

— Relationship with grain size: finer facies have more clay and less quartz,
suggesting that coarser facies should be stronger than finer

e Mechanical tests

— Macroscopic and microscopic lithofacies have distinctively different
mechanical properties

— Bulk properties may be misleading as they can represent averages of
mechanically heterogeneous rock

— Microscopic heterogeneity controls the spatial distribution of fractures
— This heterogeneity should be taken into account for realistic mechanical
modeling and can scale up by examining other common lithofacies

e |Integrated multiscale imaging and mechanical testing with
numerical simulation provides a robust approach to advancing
our understanding of shale poro-mechanics
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