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Nomenclature

Einstein notation is used extensively throughout this report to imply summation over re-
peated indices, primarily for multiple directions in integral equations. Indices are also used to
denote chemical species in a gas mixture. When dealing with notation for chemical species,
Einstein notation is not implied. When summation over chemical species is required, we will
use a summation operator.

English Character Symbols

𝐸 total internal energy

𝐻 total enthalpy

𝑘 kinetic energy

𝑀 Molecular Weight

𝑃 pressure

𝑞 heat conduction

𝑅 universal gas constant

𝑡 time

𝑇 temperature

𝑢 velocity

𝑥 Cartesian coordinates

Greek Character Symbols

𝜅 thermal conductivity

𝜇 viscosity

𝜑 limiter
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𝜌 density

𝜎 turbulent stress tensor

𝜏 viscous stress tensor

Superscript Character Symbols

𝑖 indicial notation for species number

𝑛 iteration or time step number

𝑟 indicial notation for reaction number

′ fluctuating quantity with respect to time average

′′ fluctuating quantity with respect to Favre average

˜ Favre-averaged quantity

¯ Reynolds-averaged quantity

Subscript Character Symbols

air property associated with air

T Turbulent modeled quantity

Dimensionless Groups

Pr Prandtl number, the ratio of viscous and thermal diffusivities

Re Reynolds number, the ratio of inertial and viscous forces
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Chapter 1

Introduction

SIERRA/Aero is a two and three dimensional, node-centered, edge-based finite volume code
that approximates the compressible Navier-Stokes equations on unstructured meshes. It is
applicable to inviscid and high Reynolds number laminar and turbulent flows. Currently, two
classes of turbulence models are provided: Reynolds Averaged Navier-Stokes (RANS) and
hybrid methods such as Detached Eddy Simulation (DES). Large Eddy Simulation (LES)
models are currently under development. The gas may be modeled either as ideal, or as a
non-equilibrium, chemically reacting mixture of ideal gases.

This document describes the mathematical models contained in the code, as well as
certain implementation details. First, the governing equations are presented, followed by
a description of the spatial discretization. Next, the time discretization is described, and
finally the boundary conditions. Throughout the document, SIERRA/ Aero is referred to
simply as Aero for brevity.

11



12



Chapter 2

Governing Equations for an Ideal Gas

Many flows of engineering interest may be modeled as a calorically perfect gas. (In this work,
we use the term ideal gas synonymously with calorically perfect.) In this case, the following
assumptions are made:

∙ the gas is in thermodynamic equilibrium

∙ the gas is not chemically reacting

∙ the internal energy and enthalpy are functions only of temperature

∙ the specific heat at constant pressure and constant volume is constant.

In this chapter, the resulting governing equations are presented. In Section 2.1 we discuss
the laminar and inviscid flow cases, and in Section 2.2 we consider turbulent flows.

2.1 Laminar equations

For an ideal gas, the flow is governed by the compressible Navier-Stokes equations in Carte-
sian coordinates. We do not derive these equations here. We present them in divergence form
using Einstein notation, which implies summation over repeated indices. For a derivation of
the Navier-Stokes equations in Einstein notation, see [1]. Conservation of mass, momentum
and energy are given by (2.1), (2.2), and (2.3), respectively.

𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢𝑗
𝜕𝑥𝑗

= 0 (2.1)

𝜕𝜌𝑢𝑖
𝜕𝑡

+
𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖𝑢𝑗 + 𝑃𝛿𝑖𝑗) =

𝜕𝜏𝑖𝑗
𝜕𝑥𝑗

(2.2)

𝜕𝜌𝐸

𝜕𝑡
+
𝜕𝜌𝑢𝑗𝐻

𝜕𝑥𝑗
= − 𝜕𝑞𝑗

𝜕𝑥𝑗
+
𝜕𝑢𝑖𝜏𝑖𝑗
𝜕𝑥𝑗

(2.3)

The first term on the left side of the above equations indicates the local, instantaneous rate of
change of the conserved quantity. The second term on the left is the divergence of the Euler
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(also called the advective) fluxes. The terms that appear on the right are the divergence of
the viscous fluxes. The symbol 𝛿𝑖𝑗 indicates the Kronecker delta, which has a value of zero
if 𝑖 ̸= 𝑗 and one otherwise.

The primitive variables are the velocity components, 𝑢𝑖, the pressure, 𝑃 , and the tem-
perature 𝑇 . The viscous stress tensor is denoted as 𝜏𝑖𝑗, the heat flux vector as 𝑞𝑖, the total
enthalpy as 𝐻, the total internal energy as 𝐸, and the density as 𝜌. The equations are closed
using the ideal gas law, the stress tensor for a Newtonian fluid, and Fourier’s Law for heat
conduction, which results in the following relations,

𝑃 =
𝜌𝑅𝑇

𝑀
(2.4)

𝐻 = ℎ+
1

2
𝑢𝑘𝑢𝑘 (2.5)

𝐸 = 𝐻 − 𝑃/𝜌 (2.6)

𝜏𝑖𝑗 = 𝜇

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)︂
− 2

3
𝜇
𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗 (2.7)

𝑞𝑖 = −𝜅 𝜕𝑇
𝜕𝑥𝑖

(2.8)

where 𝜇 denotes the dynamic viscosity and the thermal conductivity is denoted as 𝜅. We
remark that the inviscid Euler equations are obtained by setting the right hand side of
(2.1)-(2.3) to zero.

2.2 Turbulent equations

The Navier-Stokes equations (2.1)-(2.3) are, strictly speaking, valid for laminar and turbulent
flows. However, once the equations are discretized, current technology does not provide
sufficient computer resources to resolve the length and time scales over which turbulent
fluctuations occur. Nor are these resources expected to be available in the foreseeable future.
Hence many important phenomena occur at sub-grid scales and must be modeled. This is
the motivation for Reynolds averaging the conservation equations. We begin this section by
discussing the averaging process in Section 2.2.1. Next, we present the averaged equations
and briefly discuss the closure problem in Section 2.2.2. In Sections 2.3 through 2.5 we
discuss the specific RANS turbulence models and their DES extensions, respectively.

2.2.1 Reynolds and Favre Averaging

To begin, each variable is decomposed as a time-averaged average quantity plus a fluctuating
quantity, e.g.

𝜑 = 𝜑+ 𝜑′′ (2.9)
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where the Reynolds average is defined as:

𝜑 =
1

𝑡𝑓

∫︁ 𝑡𝑓

0

𝜑𝑑𝑡 (2.10)

over some time scale 𝑡𝑓 , and the fluctuation is denoted 𝜑′′. Because some terms in the
Navier-Stokes equations appear as products with the fluid density, it is helpful to introduce
the Favre average, which is defined as

𝜑 =
𝜌𝜑

𝜌
(2.11)

Some useful identities associate with Favre Averaging are:

𝜑′′ ̸= 0 (2.12)

𝜑′′ = 𝜌𝜑′′ = 0 (2.13)

𝜌𝜑𝜓 = 𝜌̃︁𝜑𝜓 = 𝜌𝜑𝜓 + 𝜌̃︂𝜑′′𝜓′′ (2.14)

𝜌̃︂𝜑′′𝜓′′ = 𝜌(̃︁𝜌𝜓 − 𝜑𝜓) (2.15)

2.2.2 Turbulent Averaged Equations

After performing the Reynolds averaging of the compressible Navier-Stokes equations (2.1) -
(2.3) over some time scale, and performing some considerable algebra, it may be shown that
the result may be expressed as

𝜕𝜌

𝜕𝑡
=
𝜕𝜌𝑢̄𝑗
𝜕𝑥𝑗

= 0 (2.16)

𝜕𝜌𝑢𝑖
𝜕𝑡

+
𝜕

𝜕𝑥𝑗
[𝜌𝑢̃𝑖𝑢̃𝑗 + 𝑝𝛿𝑖𝑗 − 𝜏𝑖𝑗 − 𝜎̄𝑖𝑗] = 0 (2.17)

𝜕𝜌𝐸̃

𝜕𝑡
+

𝜕

𝜕𝑥𝑗

[︁
𝜌̃︂𝐻𝑢𝑗 + 𝑞𝑗 − 𝑢𝑖𝜏𝑖𝑗

]︁
= 0 (2.18)

In the momentum equations, the averaged stress term is

𝜏𝑖𝑗 = 2𝜇̄

(︂
𝑆𝑖𝑗 −

1

3
𝑆𝑘𝑘𝛿𝑖𝑗

)︂
where 𝑆𝑖𝑗 =

1

2

(︂
𝜕𝑢̃𝑖
𝜕𝑥𝑗

+
𝜕𝑢̃𝑗
𝜕𝑥𝑖

)︂
(2.19)

The turbulent stress term is

𝜎̄𝑖𝑗 = −𝜌 (̃︂𝑢𝑖𝑢𝑗 − 𝑢̃𝑖𝑢̃𝑗) = −𝜌
(︁̃︂𝑢′′𝑗𝑢′′𝑖 )︁ (2.20)
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The energy can be rewritten as:

𝜕𝜌𝐸̃

𝜕𝑡
+

𝜕

𝜕𝑥𝑗

[︁
𝜌𝐻̃𝑢̃𝑗 + 𝑞𝑗 − 𝑢𝑖𝜏𝑖𝑗 − 𝜌

(︁ ̃︂𝐻 ′′𝑢′′𝑗

)︁]︁
= 0 (2.21)

In the above equations, there are two terms that require closure, the turbulent stress term,
𝜎̄𝑖𝑗, and the turbulent transport of total enthalpy, 𝜌( ̃︂𝐻 ′′𝑢′′𝑗 ). Both terms are modeled using
the eddy viscosity hypothesis. Consequently, the turbulent stress tensor is approximated in
terms of the strain tensor and an eddy viscosity, and may be written as

𝜎̄𝑖𝑗 = −𝜌 (̃︂𝑢𝑖𝑢𝑗 − 𝑢̃𝑖𝑢̃𝑗) = 2𝜇𝑇

(︂
𝑆𝑖𝑗 −

1

3
𝑆𝑘𝑘𝛿𝑖𝑗

)︂
− 2

3
𝜌𝑘𝛿𝑖𝑗 (2.22)

Similarly, the turbulent transport of total enthalpy may be written as

𝜌 ̃︂𝐻 ′′𝑢′′𝑗 =
𝜇𝑇𝐶𝑝

𝑃𝑟𝑇

𝜕𝑇

𝜕𝑥𝑗
− 1

2
𝜌 ( ̃︂𝑢𝑖𝑢𝑖𝑢𝑗 − ̃︂𝑢𝑖𝑢𝑖𝑢̃𝑗) (2.23)

Next, we describe the specific models for the turbulent viscosity and turbulent kinetic energy
that have been implemented in Aero.

2.3 SST turbulence model

SST (Shear Stress Transport) is a variant of a 𝑘-𝜔 model. Accordingly, a transport equation
is solved for the turbulent kinetic energy 𝑘 and the specific dissipation rate 𝜔̃. We do
not derive these equations here. The interested reader should consult the excellent text by
Pope[2] for a broad discussion of turbulence models, and Menter [3] for the details of the
specific model that has been implemented in Aero.. The transport equations for 𝑘 and 𝜔̃
can be written as

𝜕𝜌𝑘

𝜕𝑡
+

𝜕

𝜕𝑥𝑗

[︃
𝜌𝑘𝑢̃𝑗 −

(︂
𝜇̄+

𝜇𝑇

𝑐𝑘

)︂
𝜕𝑘

𝜕𝑥𝑗

]︃
= 𝜎̄𝑖𝑗

𝜕𝑢̃𝑖
𝜕𝑥𝑗

− 𝛽⋆𝜌𝑘𝜔̃ (2.24)

and
𝜕𝜌𝜔̃

𝜕𝑡
+

𝜕

𝜕𝑥𝑗

[︂
𝜌𝜔̃𝑢̃𝑗 −

(︂
𝜇̄+

𝜇𝑇

𝑐𝜔̃

)︂
𝜕𝜔̃

𝜕𝑥𝑗

]︂
= 𝛾

𝜔̃

𝑘
𝜎̄𝑖𝑗

𝜕𝑢̃𝑖
𝜕𝑥𝑗

− 𝛽⋆𝜌𝜔̃2, (2.25)

respectively. The eddy viscosity is defined in terms of these two model quantities

𝜇𝑇 = 𝜌
𝑘

𝜔̃
(2.26)

We explain the parameters 𝑐𝑘 and 𝑐𝜔̃ below in Section 2.3.1.

To summarize, the governing equations for the Reynolds Averaged Navier Stokes (RANS)
equations consist of (2.24) and (2.25), together with the RANS equations for conservation
of mass, momentum and energy, viz.
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𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢̄𝑗
𝜕𝑥𝑗

= 0 (2.27)

𝜕𝜌𝑢𝑖
𝜕𝑡

+
𝜕

𝜕𝑥𝑗
[𝜌𝑢̃𝑖𝑢̃𝑗 + 𝑝𝛿𝑖𝑗 − 𝜏𝑖𝑗 − 𝜎̄𝑖𝑗] = 0 (2.28)

𝜕𝜌𝐸̃

𝜕𝑡
+

𝜕

𝜕𝑥𝑗

[︁
𝜌̃︂𝐻𝑢𝑗 + 𝑞𝑗 − 𝑢̃𝑖 (𝜎̄𝑖𝑗 + 𝜏𝑖𝑗) − 𝑇𝑗

]︁
= 0 (2.29)

𝜎̄𝑖𝑗 = 2𝜇𝑇

(︂
𝑆𝑖𝑗 −

1

3
𝑆𝑘𝑘𝛿𝑖𝑗

)︂
− 2

3
𝜌𝑘𝛿𝑖𝑗(2.30)

𝑇𝑗 =
𝜇𝑇𝐶𝑃

𝑃𝑟𝑇

𝜕𝑇

𝜕𝑥𝑗
+

(︂
𝜇̄+

𝜇𝑇

𝑐𝑘

)︂
𝜕𝑘

𝜕𝑥𝑗
(2.31)

𝜇𝑇 = 𝜌
𝑘

𝜔̃
(2.32)

We remark that, in the form of the turbulent kinetic energy transport equation presented
above as (2.24), the turbulent kinetic energy due to Reynolds stresses is not included in the
turbulent transport. This is a modeling choice, and the physical argument for not including
this term is as follows: this term describes the generation of heat due to viscous work. Unlike
the viscous stresses, the turbulent stresses do not directly produce heat, they only cause a
cascade of energy down to the viscous scales where the energy can be converted to heat by
the viscous stresses.

To simplify the implementation of the RANS equations, the turbulent kinetic energy
transport equation can be subtracted from the energy equation. This manipulation avoids
any modifications to the calculation of the internal energy from the conserved total energy
variable. Recall that the conservation of energy and turbulent kinetic energy equations may
be written as

𝜕𝜌𝐸̃

𝜕𝑡
+

𝜕

𝜕𝑥𝑗

[︁
𝜌̃︂𝐻𝑢𝑗 + 𝑞𝑗 − 𝑢̃𝑖 (𝜎̄𝑖𝑗 + 𝜏𝑖𝑗) − 𝑇𝑗

]︁
= 0 (2.33)

𝜕𝜌𝑘

𝜕𝑡
+

𝜕

𝜕𝑥𝑗

[︃
𝜌𝑘𝑢̃𝑗 −

(︂
𝜇̄+

𝜇𝑇

𝑐𝑘

)︂
𝜕𝑘

𝜕𝑥𝑗

]︃
= 𝜎̄𝑖𝑗

𝜕𝑢̃𝑖
𝜕𝑥𝑗

− 𝛽⋆𝜌𝑘𝜔̃ (2.34)

By definition,

𝜌𝐸̃ = 𝜌

(︂
𝑒+

𝑢̃𝑖𝑢̃𝑖
2

+ 𝑘

)︂
Therefore (2.33) may be written as

𝜕
[︁
𝜌
(︁
𝑒+ 𝑢̃𝑖𝑢̃𝑖

2
+ 𝑘
)︁]︁

𝜕𝑡
+

𝜕

𝜕𝑥𝑗

[︂
𝜌 ̃︀𝑢𝑗 (︂𝑒+

𝑢̃𝑖𝑢̃𝑖
2

+
𝑃

𝜌
+ 𝑘

)︂
+ 𝑞𝑗 − 𝑢̃𝑖 (𝜎̄𝑖𝑗 + 𝜏𝑖𝑗) − 𝑇𝑗

]︂
= 0 (2.35)
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Now, (2.34) may be subtracted from (2.35) to obtain

𝜕
[︀
𝜌
(︀
𝑒+ 𝑢̃𝑖𝑢̃𝑖

2

)︀]︀
𝜕𝑡

+

𝜕

𝜕𝑥𝑗

[︃
𝜌 ̃︀𝑢𝑗 (︂𝑒+

𝑢̃𝑖𝑢̃𝑖
2

+
𝑃

𝜌

)︂
+ 𝑞𝑗 − 𝑢̃𝑖 (𝜎̄𝑖𝑗 + 𝜏𝑖𝑗) − 𝑇𝑗 +

(︂
𝜇̄− 𝜇𝑇

𝑐𝑘

)︂
𝜕𝑘

𝜕𝑥𝑗

]︃
=

−𝜎̄𝑖𝑗
𝜕𝑢̃𝑖
𝜕𝑥𝑗

+ 𝛽⋆𝜌𝑘𝜔̃ (2.36)

Upon substituting the expression for 𝑇𝑗 given in (2.31), and the heat flux given in (2.8), the
energy conservation equation may now be written as

𝜕
[︀
𝜌
(︀
𝑒+ 𝑢̃𝑖𝑢̃𝑖

2

)︀]︀
𝜕𝑡

+

𝜕

𝜕𝑥𝑗

[︃
𝜌 ̃︀𝑢𝑗 (︂𝑒+

𝑢̃𝑖𝑢̃𝑖
2

+
𝑃

𝜌

)︂
− 𝑢̃𝑖 (𝜎̄𝑖𝑗 + 𝜏𝑖𝑗) −

(︂
𝜅+

𝜇𝑇𝐶𝑃

𝑃𝑟𝑇

)︂
𝜕𝑇

𝜕𝑥𝑗

]︃
=

−𝜎̄𝑖𝑗
𝜕𝑢̃𝑖
𝜕𝑥𝑗

+ 𝛽⋆𝜌𝑘𝜔̃

(2.37)

Finally, if we redefine 𝐸 to be the total specific energy minus the turbulent kinetic energy,
and 𝐻 to be the corresponding total specific enthalpy without the turbulent kinetic energy,
the RANS equations may be expressed as

𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢𝑗
𝜕𝑥𝑗

= 0 (2.38)

𝜕𝜌𝑢𝑖
𝜕𝑡

+
𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖𝑢𝑗 + 𝑝𝛿𝑖𝑗) =

𝜕

𝜕𝑥𝑗

[︂
𝜇eff

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

− 2

3

𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗

)︂
− 2

3
𝜌𝑘𝛿𝑖𝑗

]︂
(2.39)

𝜕𝜌𝐸

𝜕𝑡
+
𝜕𝜌𝐻

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗

[︂
𝑢̃𝑖 (𝜎𝑖𝑗 + 𝜏𝑖𝑗) + 𝜅eff

𝜕𝑇

𝜕𝑥𝑗

]︂
− 𝜎𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

+ 𝛽⋆𝜌𝑘𝜔 (2.40)

𝜕𝜌𝑘

𝜕𝑡
+
𝜕𝜌𝑘𝑢𝑗
𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑗

[︂(︂
𝜇+

𝜇𝑇

𝑐𝑘

)︂
𝜕𝑘

𝜕𝑥𝑗

]︂
+ 𝜎𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝛽⋆𝜌𝑘𝜔 (2.41)

𝜕𝜌𝜔

𝜕𝑡
+
𝜕𝜌𝜔𝑢𝑗
𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑗

[︂(︂
𝜇+

𝜇𝑇

𝑐𝜔

)︂
𝜕𝜔

𝜕𝑥𝑗

]︂
+ 𝛾

𝜔

𝑘
𝜎𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝛽⋆𝜌𝜔2 (2.42)
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with

𝐸 = 𝑒𝑖 +
𝑢𝑘𝑢𝑘

2
(2.43)

𝐻 = 𝐸 +
𝑃

𝜌
(2.44)

𝜇𝑇 =
𝜌𝑘

𝜔
(2.45)

𝜇eff = 𝜇+ 𝜇𝑇 (2.46)

𝜅eff =
𝜇𝐶𝑃

𝑃𝑟

+
𝜇𝑇𝐶𝑃

𝑃𝑟𝑇

(2.47)

where, for the sake of brevity in later developments, we have dropped the (̄) and (̃). It
should be clear from this form of the 𝑘-𝜔 model that the implementation in a laminar
code is simplified because it is not necessary to subtract the turbulent kinetic energy term
from the degree of freedom 𝜌𝐸 everywhere the internal energy is needed. Furthermore,
the flux Jacobian matrices are also simplified because the advective fluxes do not involve
the turbulent kinetic energy. However, the turbulent kinetic energy affects the total energy
through a source term, as indicated in (2.40).

2.3.1 Variants of the 𝑘-𝜔 Model

There are several variants of the 𝑘-𝜔 model, which are defined, for example, by various
definitions of the parameters such as 𝛽⋆, 𝛾, and 𝜇𝑇 . In this section, we show how four
of these variants, namely the 1988 model of Wilcox [4], the 2006 model of Wilcox [5], the
baseline (BSL) model due to Menter [3], and the shear stress transport (SST) model due to
Menter [3] are related. In order to discriminate among these models it is helpful to rewrite
the turbulent transport equations as

𝜕𝜌𝑘

𝜕𝑡
+
𝜕𝜌𝑘𝑢𝑗
𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑗

[︂
(𝜇+ 𝜎𝑘𝜇𝑇 )

𝜕𝑘

𝜕𝑥𝑗

]︂
+ 𝑃𝑘 −𝐷𝑘 + 𝑆𝑘 (2.48)

𝜕𝜌𝜔

𝜕𝑡
+
𝜕𝜌𝜔𝑢𝑗
𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑗

[︂
(𝜇+ 𝜎𝜔𝜇𝑇 )

𝜕𝜔

𝜕𝑥𝑗

]︂
+ 𝑃𝜔 −𝐷𝜔 + 𝑆𝜔 (2.49)

Here, 𝑃𝑘 and 𝑃𝜔 denote the production terms for turbulent kinetic energy and dissipation
rate, 𝐷𝑘 and 𝐷𝜔 denote the dissipation, or destruction terms, and 𝑆𝑘 and 𝑆𝜔 denote the cross
production source terms. The parameters that define each of the four models, Wilcox88,
Wilcox06, BSL and SST are given in Table 2.1.
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Wilcox88 Wilcox06 BSL SST
𝜇𝑇

𝛾⋆𝜌𝑘
𝜔

𝛾⋆𝜌𝑘
𝜔

𝛾⋆𝜌𝑘
𝜔

𝑎1𝜌𝑘
max (𝑎1𝜔,Ω𝐹2)

𝜎𝑘
1
2

3
5

𝐹1𝜎𝑘1 + (1− 𝐹1)𝜎𝑘2 𝐹1𝜎𝑘1 + (1− 𝐹1)𝜎𝑘2

𝑃𝑘 𝜎𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

𝜎𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

𝜎𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

𝜎𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

𝐷𝑘 𝛽⋆𝜌𝜔𝑘 𝛽⋆𝜌𝜔𝑘 𝛽⋆𝜌𝜔𝑘 𝛽⋆𝜌𝜔𝑘
𝑆𝑘 0 0 0 0
𝛾⋆ 1 1 1 1
𝜎𝜔

1
2

1
2

𝐹1𝜎𝜔1 + (1− 𝐹1)𝜎𝜔2 𝐹1𝜎𝜔1 + (1− 𝐹1)𝜎𝜔2

𝑃𝜔
𝛾𝜔
𝑘
𝑃𝑘

𝛾𝜔
𝑘
𝑃𝑘

𝛾𝜔
𝑘
𝑃𝑘

𝛾𝜌
𝜇𝑇

𝑃𝑘

𝐷𝜔 𝛽𝜌𝜔2 𝛽𝜌𝜔2 𝛽𝜌𝜔2 𝛽𝜌𝜔2

𝑆𝜔 0 𝜎𝑑
𝜌
𝜔

𝜕𝑘
𝜕𝑥𝑗

𝜕𝜔
𝜕𝑥𝑗

𝜎𝑑
𝜌
𝜔

𝜕𝑘
𝜕𝑥𝑗

𝜕𝜔
𝜕𝑥𝑗

𝜎𝑑
𝜌
𝜔

𝜕𝑘
𝜕𝑥𝑗

𝜕𝜔
𝜕𝑥𝑗

𝛽⋆ 0.09 0.09 0.09 0.09

𝛾 5
9

13
25

13
25

𝐹1𝛾1 + (1− 𝐹1) 𝛾2
𝛽 3

40
𝛽0𝑓𝛽 𝐹1𝛽1 + (1− 𝐹1)𝛽2 𝐹1𝛽1 + (1− 𝐹1)𝛽2

𝜔⋆ - max

(︂
𝜔,𝐶lim

√︁
2𝑆𝑖𝑗𝑆𝑖𝑗

𝛽⋆

)︂
- -

𝐶lim - 7
8

- -
𝛽0 - 0.0708 - -
𝑓𝛽 - 1+85𝜒𝜔

1+100𝜒𝜔
- -

𝜒𝜔 -
⃒⃒⃒⃒
Ω𝑖𝑗Ω𝑗𝑘

^𝑆𝑘𝑖

(𝛽⋆𝜔)3

⃒⃒⃒⃒
- -

𝑆𝑘𝑖 - 1
2

(︁
𝜕𝑢𝑘
𝜕𝑥𝑖

+ 𝜕𝑢𝑖
𝜕𝑥𝑘

− 𝜕𝑢𝑚
𝜕𝑥𝑚

𝛿𝑘𝑖

)︁
- -

𝜎𝑑 -

{︃
0 : 𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔
𝜕𝑥𝑗

≤ 0
1
8

: 𝜕𝑘
𝜕𝑥𝑗

𝜕𝜔
𝜕𝑥𝑗

> 0
2(1− 𝐹1)𝜎𝜔2 2(1− 𝐹1)𝜎𝜔2

𝜎𝑘1 - - 1
2

0.85
𝜎𝑘2 - - 1 1
𝜎𝜔1 - - 1

2
1
2

𝜎𝜔2 - - 0.856 0.856
𝛽1 - - 0.075 0.075
𝛽2 - - 0.0828 0.0828

𝛾1 - - 𝛽1
𝛽⋆ − 0.5531𝜎𝜔1𝜅

2
√
𝛽⋆

𝛽1
𝛽⋆ − 𝜎𝜔1𝜅

2
√
𝛽⋆

𝛾2 - - 𝛽2
𝛽⋆ − 0.44035𝜎𝜔2𝜅

2
√
𝛽⋆

𝛽2
𝛽⋆ − 𝜎𝜔2𝜅

2
√
𝛽⋆

𝐹1 - - tanh
(︀
arg41

)︀
tanh

(︀
arg41

)︀
arg1 - - min

(︁
max

(︁ √
𝑘

𝛽⋆𝜔𝑑
, 500𝜈

𝑑2𝜔

)︁
, 4𝜌𝜎𝜔2𝑘
𝐶𝐷𝑘𝜔𝑑2

)︁
min

(︁
max

(︁ √
𝑘

𝛽⋆𝜔𝑑
, 500𝜈

𝑑2𝜔

)︁
, 4𝜌𝜎𝜔2𝑘
𝐶𝐷𝑘𝜔𝑑2

)︁
𝐶𝐷𝐾𝜔 - - max

(︁
2𝜎𝜔2

𝜌
𝜔

𝜕𝑘
𝜕𝑥𝑘

𝜕𝜔
𝜕𝑥𝑘

, 10−20
)︁

max
(︁
2𝜎𝜔2

𝜌
𝜔

𝜕𝑘
𝜕𝑥𝑘

𝜕𝜔
𝜕𝑥𝑘

, 10−20
)︁

𝐹2 - - - tanh
(︀
arg22

)︀
arg2 - - max

(︁
2
√
𝑘

𝛽⋆𝜔𝑑
, 500𝜈

𝑑2𝜔

)︁
𝑎1 - - - 0.31

Table 2.1. Definition of parameters for Wilcox88,
Wilcox06, BSL, and SST variants of the 𝑘-𝜔 models. Ω𝑖𝑗

denotes the vorticity tensor, Ω its magnitude, and 𝑑 is the
minimum distance to the wall.
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2.3.2 Detached eddy simulation (DES)

Detached Eddy Simulation is a hybrid RANS-LES approach that can be used for flows with
massive separation[6]. RANS models cannot capture the large scale eddies in the separated
region accurately but are efficient and accurate for thin shear layers. LES is expensive in
attached boundary layers and thin shear layers but accurately captures the large scale motion
of separated flows. Detached Eddy Simulation combines RANS and LES by using an LES
subgrid based model in the parts of the domain where the grid resolution is fine enough for
LES. Elsewhere a RANS model is used. The switch between the two modes is determined
by comparing an integral turbulent length scale and the local grid spacing. The approach
is nonzonal and the RANS equations are still solved in all regions. For the 𝑘-𝜔 model, this
is done by modifying the dissipative term in the turbulent kinetic energy equation. The
dissipation term is modified from

𝐷𝑘 = 𝛽⋆𝜌𝜔𝑘 (2.50)

to

𝐷𝑘 =
𝜌𝑘3/2

𝑙
(2.51)

where we have introduced the length scale

𝑙 = min(𝑙𝑘−𝜔, 𝐶DES∆), 𝑙𝑘−𝜔 =
𝑘1/2

𝛽⋆𝜔
(2.52)

𝐶DES is a constant whose default value is 0.65 and ∆ is a grid spacing measure. This measure
is defined at each node as the maximum value over all edges of:

∆ = max(𝛿𝑥, 𝛿𝑦, 𝛿𝑧), (2.53)

where, e.g. 𝛿𝑥 is the absolute value of the change in the 𝑥 coordinate across an edge. Equation
(2.53) is designed so that the computation is limited by the coarsest spacing for each node.

2.3.3 Linearization of implicit terms

The turbulent transport equations require careful treatment in order to obtain a stable and
robust solution algorithm. The basic method that we follow is that the time derivative,
convective flux terms, and diffusion terms are treated in a way that is consistent with the
rest of the Navier-Stokes equations. The source/sink terms are treated according to the
following rules:

∙ sensitivities are computed so that only diagonal matrix entries are generated

∙ only sensitivities to turbulent dissipation terms are generated; sensitivities to produc-
tion terms are ignored.
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The source terms for the turbulent kinetic energy equation given in (2.41) may be written
as

𝒮𝑘 = 𝜎𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝛽⋆𝜌𝑘𝜔

Then we only compute the sensitivity according to

𝜕𝒮𝑘

𝜕𝜌𝑘
= −𝛽⋆𝜌𝜔

and ignore the sensitivities to 𝜌, 𝜌𝑢𝑗, 𝜌𝐸 and 𝜌𝜔.

Similarly, the source terms given in the specific dissipation rate equation (2.42) may be
written as

𝒮𝜔 = 𝛾
𝜔

𝑘
𝜎𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝛽⋆𝜌𝜔2

We compute the sensitivity to 𝜌𝜔 according to

𝜕𝒮𝜔

𝜕𝜌𝜔
= −2𝛽⋆𝜔

2.4 𝑘-𝜖 model

If instead of solving a transport equation for the specific dissipation rate 𝜔, a transport
equation for the dissipation rate

𝜖 = 𝑘𝜔 (2.54)

is solved, the resulting turbulence model belongs to the class of models known as 𝑘-𝜖. The
𝑘-𝜖 model implemented in Aero is described in So et al [7] and Brinkman et al [8]. This
model is described by the following equations

𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢𝑗
𝜕𝑥𝑗

= 0 (2.55)

𝜕𝜌𝑢𝑖
𝜕𝑡

+
𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖𝑢𝑗 + 𝑝𝛿𝑖𝑗) =

𝜕

𝜕𝑥𝑗

[︂
𝜇eff

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

− 2

3

𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗

)︂
− 2

3
𝜌𝑘𝛿𝑖𝑗

]︂
(2.56)

𝜕𝜌𝐸

𝜕𝑡
+
𝜕𝜌𝐻

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗

[︂
𝑢̃𝑖𝜏𝑖𝑗 + 𝜅eff

𝜕𝑇

𝜕𝑥𝑗

]︂
− 𝜎𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

+ 𝛽⋆𝜌𝑘𝜔 (2.57)

𝜕𝜌𝑘

𝜕𝑡
+
𝜕𝜌𝑘𝑢𝑗
𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑗

[︂(︂
𝜇+

𝜇𝑇

𝜎𝑘

)︂
𝜕𝑘

𝜕𝑥𝑗

]︂
+ 𝑃𝑘 − 𝜌𝜖 (2.58)

𝜕𝜌𝜖

𝜕𝑡
+
𝜕𝜌𝜖𝑢𝑗
𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑗

[︂(︂
𝜇+

𝜇𝑇

𝜎𝜖

)︂
𝜕𝜖

𝜕𝑥𝑗

]︂
+
𝜖

𝑘
[(𝐶1𝑓1𝑃𝑘 − 𝐶2𝑓2𝜌𝜖) + 𝑆𝜖] ,

(2.59)

where
𝑃𝑘 = 𝜎𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

, (2.60)
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𝑆𝜖 =
14

9
𝐶2𝜇

𝜕𝑘
1
2

𝜕𝑥𝑗

𝜕𝑘
1
2

𝜕𝑥𝑗
, (2.61)

𝜎𝑘, 𝜎𝜖, 𝐶1 and 𝐶2 are modeling constants, the turbulent viscosity is defined as

𝜇𝑇 = 𝐶𝜇𝑓𝜇𝜌
𝑘2

𝜖
(2.62)

and 𝑓1, 𝑓2, and 𝑓𝜇 are empirical modeling functions designed to account for low Reynolds
number effects that occur near the walls. These functions approach unity as the distance
from the wall is increased, and may be written as

𝑓1 = 1 − exp

[︃
−
(︂

Re𝑡
40

)︂2
]︃

+
0.20

cosh
[︁
log
(︁

Re𝑘

100

)︁]︁
𝑓2 = 1 − 2

9
exp

[︀
− (Re𝑡)

2]︀
𝑓𝜇 =

(︁
1 + 4Re−3/4

𝑡

)︁
tanh

(︂
Re𝑘
125

)︂
,

where

Re𝑡 =
𝜌𝑘2

𝜇𝜖

Re𝑘 =
𝜌𝑑

√
𝑘

𝜇

and 𝑑 is the nearest distance to the wall. The model is completed with the following constants:

𝑐𝜇 𝜎𝑘 𝜎𝜖 𝑐1 𝑐2
0.09 1 1.3 1.43 1.92

2.4.1 Detached eddy simulation (DES)

The hybrid RANS-LES model for the 𝑘-𝜖 model differs from that of the SST and Spalart-
Allmaras models in the sense that the method is applied to the turbulent viscosity instead of
through the source terms for the turbulent transport equations. We begin the explanation
of this approach by exploiting the observation that the turbulent kinetic energy statistics at
every point in the flow field satisfies a turbulent spectrum. If each point in the flow field is
treated as a realization of these statistics, then a model can be formulated which provides
a method to estimate total, resolved and unresolved portions of the kinetic energy in any
simulation. This information can be used to formulate a hybrid RANS-LES model. The
starting point for this approach is a turbulent kinetic energy spectrum. Here, the Karman-
Pao spectrum is used. This form is parameterized by the energy-containing wave number,
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𝑘𝑒, the turbulent kinetic energy dissipation rate, 𝜖, and the Kolmogorov scale, 𝜂, and can be
written as

𝐸(𝑘) = 𝐶𝑒𝜖
−2/3

(︂
𝑘

𝑘𝑒

)︂4
[︃

1 +

(︂
𝑘

𝑘𝑒

)︂2
]︃−17/6

exp

(︂
−3

2
𝛼 (𝑘𝜂)4/3

)︂
(2.63)

where 𝑘 is the wave number, 𝛼 = 1.5, and the constant 𝐶𝜖 = 1.67, which calibrates the
dissipation spectrum, 𝐷(𝑘) = 2𝜈𝑘2𝐸(𝑘) to the turbulence dissipation rate. (As a matter of
notation, throughout this section, 𝑘 refers to a wave number, not to the turbulent kinetic
energy, unless indicated otherwise.) This spectrum can be nondimensionalized using the
Kolmogorov length scale 𝜂 =

(︀
𝜈
𝜖

)︀1/4. The nondimensional spectrum is defined as

𝐸̂(𝑘) = 𝐸(𝑘)/
(︀
𝜈5𝜖
)︀1/4

which may be written as

𝐸̂(𝑘) = 𝐶𝑒𝑘
−5/3
𝑒

(︃
𝑘

𝑘𝑒

)︃4
⎡⎣1 +

(︃
𝑘

𝑘𝑒

)︃2
⎤⎦−17/6

exp

(︂
−3

2
𝛼𝑘4/3

)︂
, (2.64)

where 𝑘 = 𝑘𝜂, and 𝜈 is the kinematic viscosity. The spectrum and various Taylor micro-scale
Reynolds numbers is shown in Figure 2.1, along with the location of the energy-containing
wave number for each Reynold number.

	
  

Figure 2.1. The non-dimensional Karman-Pao spectrum
at several Taylor micro-scale Reynolds numbers.

The turbulent kinetic energy, 𝐾RANS (denoting the total turbulent kinetic energy or the
RANS turbulent kinetic energy) is formally related to this energy spectrum as

𝐾RANS =

∫︁ ∞

0

𝐸(𝑘)𝑑𝑘 =

∫︁ 𝑘𝜂

𝑘min

𝐸(𝑘)𝑑𝑘
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where 𝑘𝜂 represents the Kolmogorov wave number and 𝑘min is the smallest wave number in
the flow field, typically taken as 0.1𝑘𝑒. The sub-grid kinetic energy is given by

𝐾SGS =

∫︁ 𝑘𝜂

𝑘Δ

𝐸(𝑘)𝑑𝑘 (2.65)

Original model based on the one equation 𝐾SGS model

In the original approach [?], the sub-grid kinetic energy 𝐾SGS is obtained at every point in
the flow field from the solution of a transport equation for 𝐾SGS using a one equation sub-grid
scale model. Then (2.65) can be solved to determine 𝑘𝑒, the energy containing wave number
at that location. However, since 𝑘𝜂 is a function of the total dissipation rate, 𝜖, which is not
known, (2.65) must be solved iteratively. Once 𝑘𝑒 is known, the eddy viscosity is computed
based on the sub-grid kinetic energy and the dissipation rate from the unresolved portion of
the spectrum using

𝜈T,Hyb = 𝑓𝜇𝐶𝜇
(𝐾SGS)2

𝜖SGS
(2.66)

𝐾SGS =

∫︁ 𝑘𝜂

𝑘Δ

𝐸(𝑘)𝑑𝑘 (2.67)

𝜖SGS =

∫︁ 𝑘𝜂

𝑘Δ

2𝜈𝑘2𝐸(𝑘)𝑑𝑘 (2.68)

The sub-grid quantities can be obtained by analytically integrating the known spectrum
given by (2.63) from the smallest scales to the local mesh resolution scale. Thus, the model
not only ensures that the local total range of scales is accounted for, but also that the eddy
viscosity used in the momentum equations is consistent with the local mesh resolution and
the range of scales. The underlying steps in the above procedure can be summarized as
follows

1. From the local values of total turbulent kinetic energy 𝐾 and the local mesh size ∆,
compute the energy-containing wave number 𝑘𝑒 by iteratively solving (2.65).

2. Given 𝑘𝑒, analytically integrate the spectrum to compute the sub-grid (unresolved)
turbulent kinetic energy 𝐾SGS and sub-grid dissipation rate 𝜖SGS.

3. Compute the eddy viscosity, which is used in the momentum equation from (2.66).

2.4.2 Linearization of implicit terms

The source terms for the turbulent kinetic energy equation given in (2.41) may be written
as

𝒮𝑘 = 𝑃𝑘 − 𝜌𝜖 (2.69)
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Since 𝑃𝑘 is a production term, we ignore its sensitivities. Now there is a difficulty, because
this expression for 𝒮𝑘 does not depend directly on 𝜌𝑘, and there will be no contribution to
the diagonal block of the Jacobian matrix. To circumvent this difficulty, use (2.62) to express
𝜖 in terms of 𝑘

𝜖 = 𝐶𝜇𝑓𝜇𝜌
𝑘2

𝜇𝑇

(2.70)

and substitute this into (2.69) to obtain

𝒮𝑘 = 𝑃𝑘 −
𝐶𝜇𝑓𝜇
𝜇𝑇

(𝜌𝑘)2 (2.71)

Now, differentiate (2.71) with respect to 𝜌𝑘 to obtain
𝜕𝒮𝑘

𝜕𝜌𝑘
= −2𝐶𝜇𝑓𝜇

𝜇𝑇

𝜌𝑘

Finally, use (2.62) to remove the explicit dependence of this result on the turbulent viscosity.
Hence, we obtain

𝜕𝒮𝑘

𝜕𝜌𝑘
= −2𝜖

𝑘

The source terms for the dissipation rate equation may be written as

𝒮𝜖 =
𝜖

𝑘
𝐶1𝑓1𝑃𝑘 − 𝐶2𝑓2𝜌

𝜖2

𝑘
+ 𝑆𝜖

Following the approach described in Section 2.3.3, we ignore sensitivities to production terms
and the gradient magnitude 𝑆𝜖 to obtain

𝜕𝒮𝜖

𝜕𝜌𝜖
= −2𝐶2𝑓2𝜖

𝑘

2.5 Spalart-Allmaras turbulence model

The Spalart-Allmaras class of turbulence models adds a single transport equation to the
Reynolds averaged Navier-Stokes equation. The complete set of conservation equations for
this model may be written as

𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢𝑗
𝜕𝑥𝑗

= 0 (2.72)

𝜕𝜌𝑢𝑖
𝜕𝑡

+
𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖𝑢𝑗 + 𝑝𝛿𝑖𝑗) =

𝜕

𝜕𝑥𝑗

[︂
𝜇eff

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

− 2

3

𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗

)︂]︂
(2.73)

𝜕𝜌𝐸

𝜕𝑡
+
𝜕𝜌𝐻

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗

[︂
𝑢̃𝑖𝜏𝑖𝑗 + 𝜅eff

𝜕𝑇

𝜕𝑥𝑗

]︂
− 𝜎𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

(2.74)

𝜕𝜌𝜈

𝜕𝑡
+
𝜕𝜌𝜈𝑢𝑗
𝜕𝑥𝑗

= 𝜌𝑐𝑏1𝑆𝜈 − 𝜌𝑐𝑤1𝑓𝑤

(︂
𝜈

𝑑

)︂2

+
𝜌𝑐𝑏2
𝜎

𝜕𝜈

𝜕𝑥𝑗

𝜕𝜈

𝜕𝑥𝑗
+

1

𝜎

𝜕

𝜕𝑥𝑗

[︂
(𝜇+ 𝜌𝜈)

𝜕𝜈

𝜕𝑥𝑗

]︂
(2.75)
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where 𝜈 denotes the so-called ’working variable’, 𝑐𝑏1, 𝑐𝑤1, 𝑐𝑏2 and 𝜎 are model constants, 𝑑
is the nearest distance to the wall. The turbulent viscosity is defined as

𝜇𝑇 = 𝜌𝜈𝑓𝑣1, (2.76)

where

𝑓𝑣1 =
𝜒3

𝜒3 + 𝑐3𝑣1

𝜒 =
𝜌𝜈

𝜇

𝑆 = Ω +
𝜈

𝜅2𝑑2
𝑓𝑣2,

Ω is the vorticity magnitude, and 𝜅 is another model constant. The model also contains the
definitions

𝑓𝑣2 = 1 − 𝜒

1 + 𝜒𝑓𝑣1

𝑓𝑤 =

(︂
1 + 𝑐6𝑤3

𝑔6 + 𝑐6𝑤3

)︂ 1
6

𝑔 = 𝑟 + 𝑐𝑤2

(︀
𝑟6 − 𝑟

)︀
𝑟 = min

(︂
𝜈

𝑆𝜅2𝑑2
, 10

)︂

and the following table provides the values for the model constants.

𝑐𝑏1 𝑐𝑤1 𝑐𝑏2 𝜎 𝑐𝑣1 𝜅 𝑐𝑤2 𝑐𝑤3

0.1355 𝑐𝑏1
𝜅2 + 1+𝑐𝑏2

𝜎
0.622 2

3
7.1 0.41 0.3 2

2.5.1 Detached eddy simulation (DES)

The approach for implementing detached eddy simulation in the Spalart-Allmaras model is
to replace the nearest distance to the wall, 𝑑, with 𝑑, where

𝑑 = min (𝑑, 𝐶DES∆) , (2.77)

where ∆ is given by (2.53). This simple modification makes the turbulence model behave
like Large Eddy Simulation away from the walls, and RANS near the walls.
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2.5.2 Linearization of implicit terms

The source term for the turbulent transport equation (2.75) may be written as

𝒮 = 𝜌𝑐𝑏1𝑆𝜈 − 𝜌𝑐𝑤1𝑓𝑤

(︂
𝜈

𝑑

)︂2

+
𝜌𝑐𝑏2
𝜎

𝜕𝜈

𝜕𝑥𝑗

𝜕𝜈

𝜕𝑥𝑗

We ignore the sensitivities of the first and last terms, since they are production. Hence we
obtain

𝜕𝒮
𝜕𝜌𝜈

= −2𝑐𝑤1𝑓𝑤
𝑑2

𝜈

28



Chapter 3

Governing equations for a chemically
reacting gas

For flows at Mach numbers higher than about Mach 8, the ideal gas model produces temper-
atures that are unreasonably high. In this regime, the ideal gas approximation breaks down,
and we model the gas as a chemically reacting mixture. The conservation of mass can be
expressed as a series of equations for the number of species considered in the gas mixture.

𝜕𝜌𝑠
𝜕𝑡

+
𝜕

𝜕𝑥𝑖
(𝜌𝑠𝑢𝑖) +

𝜕

𝜕𝑥𝑖

(︂
𝜌𝒟𝑠

𝜕𝑦𝑠
𝜕𝑥𝑖

)︂
= 𝜔𝑠 (3.1)

In (3.1), 𝜌𝑠 is the density of species 𝑠, 𝒟𝑠 is the species diffusion coefficient (discussed in
section ??), 𝑦𝑠 is the mass fraction (𝜌𝑠/𝜌) of species 𝑠, and 𝜔𝑠 is the rate of production of
species 𝑠 due to chemical reactions.

The energy equations for a fluid in thermal non-equilibrium may be expressed for each of
the possible energy modes of a molecule. Hence, energy equations may exist for translational,
rotational, vibrational, and electronic states, which each governed by its own separate tem-
perature. A two-temperature model, however, is a common approach for describing thermal
nonequilibrium of re-entry aerodynamics with one temperature modeling the translational
and rotational energy states and another temperature modeling the vibrational and elec-
tronic energy of the molecule. The translational and rotational energy equation is thus
expressed as

𝜕𝜌𝐸

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝜌𝑢𝑖 (𝐸 + 𝑝/𝜌))− 𝜕

𝜕𝑥𝑖
(𝜏𝑖𝑗𝑢𝑗)+

𝜕

𝜕𝑥𝑖

(︀
𝑞𝑡,𝑟𝑖 + 𝑞𝑣𝑖

)︀
+

𝜕

𝜕𝑥𝑖

(︃
𝜌

NS∑︁
𝑠=1

ℎ𝑠𝒟𝑠
𝜕𝑦𝑠
𝜕𝑥𝑖

)︃
= 0 (3.2)

The vibrational equation is expressed as

𝜕𝜌𝐸𝑣

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝜌𝐸𝑣𝑢𝑖) +

𝜕

𝜕𝑥𝑖
(𝑞𝑣𝑖 ) +

𝜕

𝜕𝑥𝑖

(︃
𝜌

NS∑︁
𝑠=1

𝑒𝑣𝑠𝒟𝑠
𝜕𝑦𝑠
𝜕𝑥𝑖

)︃
= 𝜔̇𝑣 (3.3)

where 𝐸𝑣 is the vibrational total energy and 𝑒𝑣𝑠 is the vibrational total energy per unit mass
of species 𝑠. The last term on the left side of (3.2) and (3.3) represents an energy flux that
arises due to the transport of enthalpy that occurs when one species diffuses into another.
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3.1 Equations of State

The total energy of the gas is defined by

𝜌𝐸 =
NS∑︁
𝑠=1

𝜌𝑠𝐶
𝑡,𝑟
𝑣𝑠 𝑇 + 𝜌𝐸𝑣 +

NS∑︁
𝑠=1

𝜌𝑠ℎ
0
𝑠 +

1

2
𝜌𝑢𝑖𝑢𝑖 (3.4)

where 𝐶𝑡,𝑟
𝑣𝑠 is the combined translational and rotational specific heat at constant volume.

The specific heats are given by

𝐶𝑡,𝑟
𝑣𝑠 = 𝐶𝑡

𝑣𝑠 + 𝐶𝑟
𝑣𝑠 (monatomic and polyatomic species)

𝐶𝑡,𝑟
𝑣𝑠 = 𝐶𝑡

𝑣𝑠 (polyatomic species)
(3.5)

The individual translational and rotational specific heats are

𝐶𝑡
𝑣𝑠 = 3

2
𝑅𝑢𝑛𝑖𝑣

𝑀𝑠
(monatomic and polyatomic species)

𝐶𝑟
𝑣𝑠 = 𝑅𝑢𝑛𝑖𝑣

𝑀𝑠
(polyatomic species)

(3.6)

where 𝑅𝑢𝑛𝑖𝑣 is the universal gas constant and 𝑀𝑠 is the species molecular weight.

The total vibrational energy 𝜌𝐸𝑣 appearing in (3.4) is computed by the vibration energy
equation, (3.3), and is a function of the vibrational temperature 𝑇 𝑣 according to the equation

𝜌𝐸𝑣 (𝑇 𝑣) =
NS∑︁
𝑠=1

𝜌𝑠𝑒
𝑣
𝑠 (𝑇 𝑣) (3.7)

Here, the vibrational energy per unit mass can be expressed as

𝑒𝑣𝑠 = 𝑅𝑢𝑛𝑖𝑣

𝑚𝑠

𝜃𝑣𝑠
exp(𝜃𝑣𝑠/𝑇

𝑣)−1
(polyatomic species)

𝑒𝑣𝑠 = 0 (monatomic species)
(3.8)

The thermodynamic pressure of the gas is computed using a perfect gas law and Dalton’s
law of partial pressures

𝑝 =
NS∑︁
𝑠=1

𝑝𝑠 (3.9)

where the partial pressure for species 𝑠 is

𝑝𝑠 = 𝜌𝑠
𝑅𝑢𝑛𝑖𝑣

𝑀𝑠

𝑇 (3.10)

and 𝑇 is the is the translational-rotational temperature as computed from (3.4).

The species enthalpy per unit mass ℎ𝑠 appearing in (3.2) is computed according to

ℎ𝑠 = 𝐶𝑣𝑠𝑇 +
𝑝𝑠
𝜌𝑠

+ 𝑒𝑣𝑠 + ℎ0𝑠 (3.11)
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3.2 Diffusion Terms

Recall that the viscous stress tensor that appears in the conservation of momentum equation,
(2.2), may be written as

𝜏𝑖𝑗 = 𝜇

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)︂
− 2

3
𝜇

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

)︂
𝛿𝑖𝑗 (3.12)

This equation requires that mixture viscosity 𝜇 be computed from individual species viscosi-
ties.

The translational-rotational heat flux vector in (3.2) is expressed as

𝑞𝑡,𝑟𝑖 = −
(︀
𝜅𝑡 + 𝜅𝑟

)︀ 𝜕𝑇
𝜕𝑥𝑖

(3.13)

and the vibrational heat flux vector appearing in equations 3.2 and 3.3 is

𝑞𝑣𝑖 = −𝜅𝑣 𝜕𝑇
𝑣

𝜕𝑥𝑖
(3.14)

These constitutive relations require the calculation of 𝜅𝑡, 𝜅𝑟, 𝜅𝑣, the translational, rotational,
and vibrational thermal conductivities, respectively, of the mixture. These mixture transport
properties for viscosity and thermal conductivity can be computed in a number of ways. One
popular approach is to use Blotter curve fits for computing the species viscosities 𝜇𝑠 according
to the relation

𝜇𝑠 = 0.1 𝑒𝑥𝑝 ((𝐴𝑠ln𝑇 +𝐵𝑠)ln𝑇 + 𝐶𝑠) (3.15)

with the constants 𝐴𝑠, 𝐵𝑠, 𝐶𝑠 having been determined by Blottner [] for a number of species
relevant to high-speed reacting flows. The thermal conductivities for the various energy
modes can be computed from an Eucken relation [] in conjunction with the Blottner species
viscosities (3.15) and the species specific heats (3.5) according to

𝜅𝑡𝑠 = 5
2
𝜇𝑠𝐶

𝑡
𝑣𝑠

𝜅𝑟𝑠 = 𝜇𝑠𝐶
𝑟
𝑣𝑠

𝜅𝑣𝑠 = 𝜇𝑠𝐶
𝑣
𝑣𝑠

(3.16)

The translational and rotational specific heats 𝐶𝑡
𝑣𝑠 and 𝐶𝑟

𝑣𝑠 were previously defined in (3.6).
The vibrational specific heat is then computed according to the equation

𝐶𝑣
𝑣𝑠 =

𝜕𝑒𝑣𝑠
𝜕𝑇 𝑣

(3.17)

The mixture viscosity and thermal conductivities are then computed using Wilke’s semi-
empirical mixing rule

𝜇 =
∑︀NS

𝑠=1
𝑋𝑠𝜇𝑠

𝜑𝑠

𝜅 =
∑︀NS

𝑠=1
𝑋𝑠𝜅𝑠

𝜑𝑠

(3.18)
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where

𝑋𝑠 = 𝑦𝑠 𝑀
𝑀𝑠

𝑀 =
(︁∑︀NS

𝑠=1
𝑦𝑠
𝑀𝑠

)︁−1

𝜑𝑠 =
∑︀NS

𝑟=1𝑋𝑟

[︂
1 +

√︁
𝜇𝑠

𝜇𝑟

(︁
𝑀𝑟

𝑀𝑠

)︁1/4]︂2 [︂√︂
8
(︁

1 + 𝑀𝑠

𝑀𝑟

)︁]︂−1
(3.19)

The Blottner curve fits for species viscosities are generally accepted to be accurate up
to 10,000 K. Above 10,000 K, the Yos approximate mixing rule is the preferred method for
computing the mixture viscosity and thermal conductivity.

The species diffusion coefficients 𝒟𝑠 appearing in equations 3.1 and 3.2 must be defined.
Accurate treatment of the species diffusion coefficients has received much attention in the
literature. The simplest approach is to assume that all species have the same diffusion
coefficient (𝒟 = 𝒟𝑠). This is only valid if the molecular weights of the species are similar.
The single binary diffusion coefficient 𝒟 can be computed assuming a constant Lewis number
according to the relation

𝒟 =
Le𝜅

𝜌𝐶𝑡𝑟
𝑝

(3.20)

In the event the molecular weights of the species are disparate, determining the individual
species diffusion coefficient is necessary. Species specific binary diffusion coefficients can be
computed via Gupta and Yos curve fits [] or Ramshaw’s Self-Consistent Effective Binary
Diffusion method [].

3.3 Source Terms

The source terms for the mass conservation equations must be computed given a gas model
(such as a 5-species or 11-species air model). Cantera, a general toolkit for chemical kinetics,
can be used to compute the reaction rates and hence the chemical source terms needed in
(3.1).

The vibrational energy source term appearing in (3.3) is computed as follows

𝜔̇𝑣 = 𝑄̇𝑣 + 𝑄̇𝑡,𝑟−𝑣 (3.21)

where 𝑄̇𝑣 is the vibrational energy production rate and 𝑄̇𝑡,𝑟−𝑣 is the translational-vibrational
and rotational-vibrational energy exchange rate. All other energy exchange mechanisms are
typically neglected when a two-temperature (translation-rotation and vibration) model are
used.
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The vibrational energy production rate is computed according to

𝑄̇𝑣 =
NS∑︁
𝑠=1

𝜔̇𝑠 (𝑒𝑣𝑠) (3.22)

and the translational-vibrational and rotational-vibrational energy exchange rate is given by

𝑄̇𝑣 =
NS∑︁
𝑠=1

𝜌𝑠
𝑒𝑣𝑠 (𝑇 ) − 𝑒𝑣𝑠 (𝑇 𝑣)

𝜏 𝑣𝑠
(3.23)

where 𝑒𝑣𝑠 is the specific vibrational internal energy for species 𝑠 given in (3.8) and 𝜏 𝑣𝑠 is the
vibrational relaxation time. 𝜏 𝑣𝑠 is typically computed via the Landau-Teller inter-species
relaxation time given by Millikan-White.
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Chapter 4

Spatial Discretization

The discretization of the governing equations (2.38) - (2.42) may be facilitated by recasting
the conservation equations into vector form. For an ideal gas, let

𝑈 =

⎛⎜⎜⎜⎜⎝
𝜌
𝜌𝑢𝑖
𝜌𝐸
𝜌𝑘
𝜌𝜔

⎞⎟⎟⎟⎟⎠ (4.1)

𝐹 𝑗(𝑈 ) =

⎛⎜⎜⎜⎜⎝
𝜌𝑢𝑗

𝜌𝑢𝑖𝑢𝑗 + 𝑃𝛿𝑖𝑗
𝜌𝐻𝑢𝑗
𝜌𝑘𝑢𝑗
𝜌𝜔𝑢𝑗

⎞⎟⎟⎟⎟⎠ (4.2)

𝐺𝑗(𝑈 ) =

⎛⎜⎜⎜⎜⎜⎜⎝
0

𝜇eff

(︁
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
− 2

3
𝜕𝑢𝑙

𝜕𝑥𝑙
𝛿𝑖𝑗

)︁
− 2

3
𝜌𝑘𝛿𝑖𝑗

𝑢𝑙𝜏𝑙𝑗 + 𝜅eff
𝜕𝑇
𝜕𝑥𝑗(︀

𝜇+ 𝜎𝑘𝜌𝑘
𝜔

)︀
𝜕𝑘
𝜕𝑥𝑗(︀

𝜇+ 𝜎𝜔𝜌𝑘
𝜔

)︀
𝜕𝜔
𝜕𝑥𝑗

⎞⎟⎟⎟⎟⎟⎟⎠ (4.3)

𝒮(𝑈 ) =

⎛⎜⎜⎜⎜⎝
0
0𝑗

−𝜎𝑙𝑚 𝜕𝑢𝑚

𝜕𝑥𝑙
+ 𝛽⋆𝜌𝑘𝜔

𝑃𝑘 −𝐷𝑘 − 𝑆𝑘

𝑃𝜔 −𝐷𝜔 − 𝑆𝜔

⎞⎟⎟⎟⎟⎠ (4.4)

In the above definitions, the subscript ()𝑗 denotes the coordinate direction associated with
each flux vector 𝐹 𝑗 and 𝐺𝑗. The subscript ()𝑖 denotes the component of the momentum
equation, which expands the length of each vector according to the spatial dimension: e.g., for
two spatial dimensions, 𝑈 , 𝐹 𝑗, 𝐺𝑗, and 𝒮 are each of length six: one continuity equation,
two momentum equations, a total energy equation, and two turbulence model equations.
Because some variables use 𝑘 as a subscript to indicate the quantity is associated with the
turbulent kinetic energy, to avoid confusion we will not use 𝑘 as a Cartesian index subscript.
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Now, the conservation equations may be written as

𝜕𝑈

𝜕𝑡
+
𝜕𝐹 𝑗(𝑈 )

𝜕𝑥𝑗
=
𝜕𝐺𝑗(𝑈)

𝜕𝑥𝑗
+ 𝒮(𝑈), (4.5)

Currently, we discretize the equations exclusively using a node-centered finite-volume
approach. Figure 4.1 illustrates a typical finite volume, or cell, associated with node 𝑝. Let

p

e

Ω
Ω∂

Figure 4.1. Illustration of two-dimensional dual mesh for
node p. The dual volume, Ω, is the polygon defined by the
edge midpoints to the element centroids.

such a cell be denoted, Ω. If we integrate (4.5) over Ω and apply the Gauss Divergence
Theorem, the result may be written as∫︁

Ω

𝜕𝑈

𝜕𝑡
𝑑𝒱 +

∮︁
𝜕Ω

(𝐹 𝑗 −𝐺𝑗) 𝑑𝒜𝑗 =

∫︁
Ω

𝒮𝑑𝒱 (4.6)

where 𝜕Ω indicates the boundary of Ω and 𝑑𝒜𝑗 denotes an infinitesimal area vector on the
surface 𝜕Ω, Next, the integrals in (4.6) are approximated by numerical quadrature. The
volume integral is approximated simply by multiplying the nodal value times the size of the
control volume for that node. Hence, for node 𝑝, we may write∫︁

Ω

𝜕𝑈

𝜕𝑡
𝑑𝒱 ≃ 𝜕𝑈 𝑝

𝜕𝑡
𝒱𝑝 (4.7)∫︁

Ω

𝒮𝑑𝒱 ≃ 𝒮𝑝𝒱𝑝 (4.8)
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The surface integral is approximated by evaluating the fluxes at the midpoint of each edge
where it is intersected by 𝜕Ω and computing the inner product of the flux and the area
vector, viz. ∮︁

𝜕Ω

(𝐹 𝑗 −𝐺𝑗) 𝑑𝒜𝑗 ≃
NE∑︁
𝑒=1

(𝐹 𝑒
𝑛 −𝐺𝑒

𝑛)𝒜𝑒 (4.9)

where 𝐹 𝑒
𝑛 = 𝐹 𝑗𝑛𝑗, 𝑛𝑗 is the unit vector in the direction of the area vector, and 𝒜𝑒 is the

area of the dual cell face that is intersected by edge 𝑒. After substituting (4.7) - (4.9) into
(4.6), we may write the semidiscrete residual for node 𝑝 as

𝜕𝑈 𝑝

𝜕𝑡
𝒱𝑝 +

NE∑︁
𝑒=1

(𝐹 𝑒
𝑛 −𝐺𝑒

𝑛)𝒜𝑒 − 𝒮𝑝𝒱𝑝 = 0 (4.10)

4.1 Advective Flux Evaluation

In this section, we consider the details of evaluating the advective fluxes at the edge midpoint.
Consider the arbitrary edge shown in Figure 4.2. The points 𝑝 and 𝑞 are the nodes defining
the edge. 𝐿 and 𝑅 illustrate that the at the edge midpoint, which is the interface between the
dual volumes around 𝑝 and 𝑞, the solution is discontinuous. To construct a conservative flux
at this interface, we currently use Roe’s numerical flux function [9] or the Steger-Warming
flux function [10].

4.1.1 Roe’s flux function

The Roe flux at each edge midpoint is defined by

𝐹 𝑒
𝑛 =

1

2
(𝐹 𝐿 + 𝐹𝑅) −

⃒⃒
𝐴𝑛

⃒⃒
(𝑈𝑅 −𝑈𝐿) , (4.11)

where 𝐹 𝐿 = 𝐹 (𝑈𝐿), 𝑈𝐿 is the solution value sampled from the left volume. This dissipation
matrix is defined as ⃒⃒

𝐴𝑛

⃒⃒
= 𝑅𝑛

⃒⃒⃒
Λ̂𝑛

⃒⃒⃒
𝑅−1

𝑛 , (4.12)

where
𝐴𝑛 = 𝑅𝑛Λ𝑛𝑅

−1
𝑛 =

𝜕𝐹 𝑛

𝜕𝑈
(4.13)

is evaluated at the Roe average state such that,

𝐹 𝑛(𝑈𝐿) − 𝐹 𝑛(𝑈𝑅) = 𝐴̄𝑛(𝑈𝐿 −𝑈𝑅). (4.14)

When the eigenvalues of the flux Jacobian are equal to zero, then the dissipation of
certain characteristic waves vanishes. This can lead to issues with the numerical solution.
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L

p

q

n

R

Figure 4.2. The edge is defined by left node p and right
node q, with unit normal vector n associated with the area
facet, which may not be aligned with the edge

To keep eigenvalues away from zero, we employ an entropy fix. The eigenvalues in our
implementation are

𝜆1 = 𝑢𝑛 + 𝑐, 𝜆2 = 𝑢𝑛 − 𝑐, 𝜆𝑘 = 𝑢𝑛, 𝑘 = 3, . . . , 𝑁𝑞, (4.15)

where 𝑁𝑞 is the number of conserved variables in the system of equations. One approach to
the entropy fix is to modify the eigenvalues with

𝜆̂𝑘 =
𝜆2𝑘 + 𝜖2𝜆2max

2𝜖𝜆max
if |𝜆𝑘| < 𝜖𝜆max, 𝜆max = |𝑢𝑛| + 𝑐, (4.16)

where 𝜖 is a user defined value that defaults to 𝜖 = 0.1. We refer to this as the scaled entropy
fix. An alternative approach is to modify the eigenvalues as

𝜆̂𝑘 =
√︁
𝜆2𝑘 + 𝜖2𝜆2max if |𝜆𝑘| < 𝜖𝜆max, (4.17)

which we refer to as the unscaled entropy fix. The modified eigenvalues are used in 4.12.
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4.1.2 Steger-Warming flux function

The Steger-Warming flux-vector splitting method separates the inviscid fluxes into positive
and negative parts based on the eigenvalues of the flux Jacobian matrix

𝐹 𝑒
𝑛 = 𝐹+

𝑛 + 𝐹−
𝑛 = 𝐴+

𝑛𝑈 + 𝐴−
𝑛𝑈 (4.18)

The flux Jacobians are defined

𝐴+
𝑛 = 𝑅−1Λ+𝑅 and 𝐴−

𝑛 = 𝑅−1Λ−𝑅 (4.19)

where 𝑅 is the column matrix of right eigenvectors of 𝐴𝑛, and Λ± are the diagonal matrices
of the positive and negative eigenvalues of 𝐴𝑛. The flux Jacobians 𝐴+ and 𝐴− are clearly
defined in [11].

The original Steger-Warming method computes the flux at a face/edge using states at
the left cell/node and right cell/node according to

𝐹 𝑓 = 𝐴+
𝐿𝑈𝐿 + 𝐴−

𝑅𝑈𝑅 (4.20)

However, while the original Steger-Warming scheme works well in the vicinity of shocks it is
too dissipative to be used elsewhere in the flow. A modification to the original scheme can
be introduced by changing the evaluation of the 𝐴+ and 𝐴− matrices to some average of
the left and right cell/node states. Hence, the modified scheme can be represented as

𝐹 𝑓 = 𝐴+
𝑓+𝑈𝐿 + 𝐴−

𝑓−𝑈𝑅 (4.21)

where the subscripts 𝑓+ and 𝑓− indicate that the Jacobians are evaluated at the averaged
states 𝑈 𝑓+ and 𝑈 𝑓−, respectively. Druguet, Candler, and Nompelis [10] introduced the
following pressure weighted averaging which has since become popular for high-speed flows

𝑈 𝑓+ = (1 − 𝑤)𝑈𝐿 + 𝑤𝑈𝑅 and 𝑈 𝑓− = 𝑤𝑈𝐿 + (1 − 𝑤)𝑈𝑅 (4.22)

where
𝑤 = 1 − 0.5

(𝑔𝛿𝑝)2 + 1
and 𝛿𝑝 =

𝑝𝑅 − 𝑝𝐿
𝑚𝑖𝑛(𝑝𝑅, 𝑝𝐿)

(4.23)

An additional aspect of the Steger-Warming scheme is that the eigenvalues of the Λ+ and
Λ− matrices are corrected according to

𝜆± = 0.5
(︁
𝜆±

√
𝜆2 + 𝜖2

)︁
(4.24)

where 𝜆 is the original eigenvalue of 𝐴 and 𝜖 is usually computed as 𝜖 = 0.3𝑐, where 𝑐 is the
speed of sound. We can compute the flux Jacobians using an expansion

𝐴± = 𝑉𝐴 ⊗𝐾𝐴 + 𝑉𝐵 ⊗𝐾𝐵 + 𝜆±3 𝐼, (4.25)
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where for thermochemical transport with turbulence the expansion vectors are

𝑉𝐴 =
1

𝑐

(︂
𝜌𝑖
𝜌
, 𝑢𝑗, 𝐻, 𝑘, 𝜔

)︂𝑇

, 𝑉𝐵 = (0, 𝑛𝑗, 𝑢𝑛, 0, 0)𝑇 ,

𝐾𝐴 =

(︂(︂
𝜕𝑃

𝜕𝜌𝑖

𝜇±
1

𝑐
− 𝑢𝑛𝜇

±
2

)︂
,

(︂
𝑛𝑗𝜇

±
2 +

𝜕𝑃

𝜕𝜌𝑢𝑗

𝜇±
1

𝑐

)︂
,

(︂
𝜕𝑃

𝜕𝐸

𝜇±
1

𝑐

)︂
, 0, 0

)︂𝑇

,

𝐾𝐵 =

(︂(︂
𝜕𝑃

𝜕𝜌𝑖

𝜇±
2

𝑐
− 𝑢𝑛𝜇

±
1

)︂
,

(︂
𝑛𝑗𝜇

±
1 +

𝜕𝑃

𝜕𝜌𝑢𝑗

𝜇±
2

𝑐

)︂
,

(︂
𝜕𝑃

𝜕𝐸

𝜇±
2

𝑐

)︂
, 0, 0

)︂𝑇

,

(4.26)

where
𝜇±
1 =

1

2

(︀
𝜆±1 + 𝜆±2 − 2𝜆±3

)︀
, 𝜇±

2 =
1

2

(︀
𝜆±1 − 𝜆±2

)︀
. (4.27)

The expansion vectors simplify easily for ideal gases or laminar flows.

4.1.3 Steger-Warming Central + Dissipation Form

Delineating the above scheme into clearly defined central and dissipative parts can be advan-
tageous when it comes to modifying the central fluxes to increase the stability or accuracy
of the scheme. In this section, the modified Steger-Warming method will be re-written in
this form.

Beginning from the modified Steger-Warming expression (equation 4.21) and the defi-
nition of the 𝐴+ and 𝐴− matrices (equation 4.19), we recognize that Λ+ and Λ− can be
expanded to

Λ+ =
1

2
(Λ + |Λ|) and Λ− =

1

2
(Λ− |Λ|) (4.28)

Expanding all of these expressions give us

𝐹 𝑓 =
1

2

(︀
𝑅−1Λ𝑅

)︀
𝑓+ 𝑈𝐿 +

1

2

(︀
𝑅−1|Λ|𝑅

)︀
𝑓+ 𝑈𝐿 +

1

2

(︀
𝑅−1Λ𝑅

)︀
𝑓− 𝑈𝑅 − 1

2

(︀
𝑅−1|Λ|𝑅

)︀
𝑓− 𝑈𝑅

(4.29)
or written more compactly as

𝐹 𝑓 =
1

2
𝐴𝑓+𝑈𝐿 +

1

2
𝐴𝑓−𝑈𝑅 +

1

2
𝐴𝑑𝑖𝑠𝑠

𝑓+ 𝑈𝐿 − 1

2
𝐴𝑑𝑖𝑠𝑠

𝑓− 𝑈𝑅 (4.30)

The previous equation indicates that we must evaluate the central Jacobian matrices 𝐴
and the dissipation Jacobian matrices at both the 𝑓+ and 𝑓− average states. Listed explicitly,
these four Jacobian matrices are:

𝐴𝑓+ =
1

2

(︀
𝑅−1Λ𝑅

)︀
𝑓+ (4.31)

𝐴𝑓− =
1

2

(︀
𝑅−1Λ𝑅

)︀
𝑓− (4.32)

𝐴𝑑𝑖𝑠𝑠
𝑓+ =

1

2

(︀
𝑅−1|Λ|𝑅

)︀
𝑓+ (4.33)

𝐴𝑑𝑖𝑠𝑠
𝑓− =

1

2

(︀
𝑅−1|Λ|𝑅

)︀
𝑓− (4.34)
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where we must compute Λ and |Λ| at both the 𝑓+ and 𝑓− average states. We can get
expressions for these matrices by solving the original definition of Λ+ and Λ−, given by
(4.28) for Λ and |Λ|. This yields

Λ = Λ+ + Λ− and |Λ| = Λ+ −Λ− (4.35)

4.1.4 Kinetic Energy Preserving

The kinetic energy preserving flux [12] is a nondissipative flux algorithm that in the limit of
incompressible flow does not produce any spurious kinetic energy due to the nonlinearity of
the flux terms,

𝐹 𝑓 (𝑈𝐿,𝑈𝑅) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 [(𝜌𝑢𝑘𝑛𝑘)𝐿 + (𝜌𝑢𝑘𝑛𝑘)𝑅]
1
4 [(𝜌𝑢𝑘𝑛𝑘)𝐿(𝑢1)𝑅 + (𝜌𝑢𝑘𝑛𝑘)𝑅(𝑢1)𝐿 + (𝜌𝑢𝑘𝑛𝑘𝑢1)𝐿 + (𝜌𝑢𝑘𝑛𝑘𝑢1)𝑅]
+1

2 [(𝑝𝑛1)𝐿 + (𝑝𝑛1)𝑅]
1
4 [(𝜌𝑢𝑘𝑛𝑘)𝐿(𝑢2)𝑅 + (𝜌𝑢𝑘𝑛𝑘)𝑅(𝑢2)𝐿 + (𝜌𝑢𝑘𝑛𝑘𝑢2)𝐿 + (𝜌𝑢𝑘𝑛𝑘𝑢2)𝑅]
+1

2 [(𝑝𝑛2)𝐿 + (𝑝𝑛2)𝑅]
1
4 [(𝜌𝑢𝑘𝑛𝑘)𝐿(𝑢3)𝑅 + (𝜌𝑢𝑘𝑛𝑘)𝑅(𝑢3)𝐿 + (𝜌𝑢𝑘𝑛𝑘𝑢3)𝐿 + (𝜌𝑢𝑘𝑛𝑘𝑢3)𝑅]
+1

2 [(𝑝𝑛3)𝐿 + (𝑝𝑛3)𝑅]
1
2 [(𝜌𝑢𝑘𝑛𝑘𝐻)𝐿 + (𝜌𝑢𝑘𝑛𝑘𝐻)𝑅]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.36)

The nondissipative part of the flux can be combined with the dissipation from Roe where
needed. This is handled in the hybrid flux approach, discussed below.

4.1.5 Honein and Moin

Another nondissipative algorithm in Aero comes from Honein and Moin [13], which was
heuristically designed to exhibit more robustness for compressible flows than the kinetic
energy preserving flux,

𝐹 𝑓 (𝑈𝐿,𝑈𝑅) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

[(𝜌𝑢𝑘𝑛𝑘)𝐿 + (𝜌𝑢𝑘𝑛𝑘)𝑅]
1
4

[(𝜌𝑢𝑘𝑛𝑘)𝐿(𝑢1)𝑅 + (𝜌𝑢𝑘𝑛𝑘)𝑅(𝑢1)𝐿 + (𝜌𝑢𝑘𝑛𝑘𝑢1)𝐿 + (𝜌𝑢𝑘𝑛𝑘𝑢1)𝑅]
+1

2
[(𝑝𝑛1)𝐿 + (𝑝𝑛1)𝑅]

1
4

[(𝜌𝑢𝑘𝑛𝑘)𝐿(𝑢2)2 + (𝜌𝑢𝑘𝑛𝑘)𝑅(𝑢2)𝐿 + (𝜌𝑢𝑘𝑛𝑘𝑢2)𝐿 + (𝜌𝑢𝑘𝑛𝑘𝑢2)𝑅]
+1

2
[(𝑝𝑛2)𝐿 + (𝑝𝑛2)𝑅]

1
4

[(𝜌𝑢𝑘𝑛𝑘)𝐿(𝑢3)2 + (𝜌𝑢𝑘𝑛𝑘)𝑅(𝑢3)𝐿 + (𝜌𝑢𝑘𝑛𝑘𝑢3)𝐿 + (𝜌𝑢𝑘𝑛𝑘𝑢3)𝑅]
+1

2
[(𝑝𝑛3)𝐿 + (𝑝𝑛3)𝑅]

1
4

[(𝜌𝑢𝑗𝑢𝑘𝑛𝑘)𝐿(𝑢𝑗)𝑅 + (𝜌𝑢𝑗𝑢𝑘𝑛𝑘)𝑅(𝑢𝑗)1]
+1

4
[(𝜌𝑢𝑘𝑛𝑘𝑒)𝐿 + (𝜌𝑢𝑘𝑛𝑘𝑒)𝑅 + (𝜌𝑢𝑘𝑛𝑘)𝐿(𝑒)𝑅 + (𝜌𝑢𝑘𝑛𝑘)𝑅(𝑒)𝐿]

+1
2

[(𝑝)𝐿(𝑢𝑘𝑛𝑘)𝑅 + (𝑝)𝑅(𝑢𝑘𝑛𝑘)𝐿]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(4.37)
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4.1.6 Entropy Preserving

For the compressible Euler equations, the entropy of the system should only change due to
the boundary conditions. It is possible to construct a two-point flux that maintains this
property [9],

𝐹 𝑓 (𝑈𝐿,𝑈𝑅) =
(︁
𝜌𝑢̂𝑗, 𝜌𝑢̂𝑗𝑛𝑗𝑢̂1 + 𝑛1𝑝, 𝜌𝑢̂𝑗𝑛𝑗𝑢̂2 + 𝑛2𝑝, 𝜌𝑢̂𝑗𝑛𝑗𝑢̂3 + 𝑛3𝑝, 𝜌𝑢̂𝑗𝑛𝑗𝐻̂)

)︁𝑇
,

𝑢̂𝑖 =

(𝑢𝑖)𝐿√
𝑇𝐿

+ (𝑢𝑖)𝑅√
𝑇𝑅

1√
𝑇𝐿

+ 1√
𝑇𝑅

, 𝑝 =

𝑝𝐿√
𝑇𝐿

+ 𝑝𝑅√
𝑇𝑅

1√
𝑇𝐿

+ 1√
𝑇𝑅

,

ℎ̂ = 𝑅
log
(︁√

𝑇𝐿𝜌𝐿√
𝑇𝑅𝜌𝑅

)︁
1√
𝑇𝐿

+ 1√
𝑇𝑅

⎛⎝ √
𝑇𝐿𝜌𝐿 +

√
𝑇𝑅𝜌𝑅(︁

1√
𝑇𝐿

+ 1√
𝑇𝑅

)︁ (︀√
𝑇𝐿𝜌𝐿 −

√
𝑇𝑅𝜌𝑅

)︀
+
𝛾 + 1

𝛾 − 1

log
(︁√︁

𝑇𝑅

𝑇𝐿

)︁
log
(︁√︁

𝑇𝐿

𝑇𝑅

𝜌𝐿
𝜌𝑅

)︁(︁
1√
𝑇𝐿

− 1√
𝑇𝑅

)︁
⎞⎠ ,

𝐻̂ = ℎ̂+
1

2
𝑢̂ℓ𝑢̂ℓ, 𝜌 =

(︁
1√
𝑇𝐿

+ 1√
𝑇𝑅

)︁ (︀√
𝑇𝐿𝜌𝐿 −

√
𝑇𝑅𝜌𝑅

)︀
2
(︀
log(

√
𝑇𝐿𝜌𝐿) − log(

√
𝑇𝑅𝜌𝑅)

)︀ .

(4.38)

4.1.7 First order spatial accuracy

The first order scheme is defined by a constant value of 𝑈 over each control volume. In this
case, 𝑈𝐿 and 𝑈𝑅 are defined by the two nodal values of the edge.

4.1.8 Second order spatial accuracy

The second order scheme uses MUSCL extrapolation [?] to reconstruct a linear variation of
𝑈 over each control volume. This reconstruction is accomplished by going outside the cell
to construct nodal gradients, which are then used to extrapolate the state variables along
each edge from the node to the cell face.

4.1.9 Low-dissipation MUSCL-based fluxes

For Large Eddy Simulations (LES) or Detached Eddy Simulations (DES), fully upwinded
methods are known to exhibit too much damping of turbulent eddies, resulting in low effi-
ciency calculations for this class of flow. Toward reducing the dissipation in the implemented
schemes and thus improving the efficiency of LES and DES, Aero has a hybrid algorithm
that utilizes the MUSCL states. Near shocks, the fully dissipative flux is used. Away from
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shocks, we use a sensor function to blend a non-dissipative flux with a dissipative flux,

𝐹 𝑓 (𝑈̃𝐿, 𝑈̃𝑅) = 𝛼𝐹 𝑛𝑜𝑑𝑖𝑠𝑠
𝑓 (𝑈̃𝐿, 𝑈̃𝑅) + (1 − 𝛼)𝐹 𝑑𝑖𝑠𝑠

𝑓 (𝑈̃𝐿, 𝑈̃𝑅), (4.39)

where 𝛼 is determined by limiter values and 𝑈̃ denotes the MUSCL extrapolation. Any
nondissipative flux can be chosen, but the Kinetic Energy Preserving, Honein and Moin, or
Entropy Preserving fluxes are preferred.

4.1.10 High-resolution hybrid fluxes

An alternative low-dissipation method utilizes multiple flux evaluations and results in a
higher resolution algorithm on smooth grids,

𝐹 𝑓 (𝑈̂𝐿𝐿,𝑈𝐿,𝑈𝑅, 𝑈̂𝑅𝑅) =
4

3
𝑓𝑔(𝑈𝐿,𝑈𝑅) − 1

6

(︁
𝑓𝑔(𝑈̂𝐿𝐿,𝑈𝑅) + 𝑓𝑔(𝑈𝐿, 𝑈̂𝑅𝑅)

)︁
, (4.40)

where 𝑓𝑔 is a two-point function with the same form as described previously. 𝑈̂𝐿𝐿 and 𝑈̂𝑅𝑅

are extrapolated states, where we extrapolate in primitive variables,

𝑉 = (𝜌, 𝑢1, 𝑢2, 𝑢3, 𝑇 )𝑇 . (4.41)

using
𝑉 𝐿𝐿 = 𝑉 𝑅 − 2𝛿𝑟 · ∇𝑉 |𝐿, 𝑉 𝑅𝑅 = 𝑉 𝐿 + 2𝛿𝑟 · ∇𝑉 |𝑅, (4.42)

where 𝛿𝑟 = 𝑥𝑅 − 𝑥𝐿 and ∇𝑉 represents the reconstructed nodal gradients of the primitive
variables. The form of the phantom states may seem non-intuitive, but it recovers the
structured definitions of a higher order stencil in one-dimension [14], thus ensuring that in
one dimension the secondary preservation properties will be satisfied.

For hybrid fluxes, a very similar form to above is utilized,

𝐹 𝑓 = 𝛼𝐹 𝑛𝑜𝑑𝑖𝑠𝑠
𝑓 𝐹 𝑓 (𝑈̂𝐿𝐿,𝑈𝐿,𝑈𝑅, 𝑈̂𝑅𝑅) + (1 − 𝛼)𝐹 𝑑𝑖𝑠𝑠

𝑓 (𝑈̃𝐿, 𝑈̃𝑅). (4.43)

Note that the dissipative part again utilizes the MUSCL states. However, near shocks simple
upwinding is used.

4.2 Hybrid Sensors

To compute the sensor value in the hybrid fluxes described above, we first must determine
if and where shocks occur in the domain. To do this, we utilize the modified Ducros sensor
[15],

𝜑 =
1 − tanh

(︀
5
2

+ 20Δ𝜃
𝑎

)︀
2

𝜃2

𝜃2 + 𝜔 · 𝜔 + 𝜖
,

𝜃 =
𝜕𝑢𝑘
𝜕𝑥𝑘

, 𝜖 = 10−6, ∆ = 𝒱1/𝑑,

(4.44)
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where 𝜔 is the vorticity and 𝑑 is the number of dimensions. When the maximum of phi over
the stencil of a given node is greater than a specified tolerance (1.0e-03), we set 𝛼 = 1 for
the hybrid algorithm.

The value of 𝛼 used in the hybrid algorithm is simply the average of left and right
state for a given edge. Away from a shock, we may still require dissipation where the grid
is nonsmooth or the solution contains underresolved features that lead to oscillations and
noise. Thus, if a limiter is used, we add the average edge value of the limiter to 𝛼. This
greatly increases the robustness of the simulations utilizing hybrid fluxes. More advanced
sensors will be explored in the future.
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Chapter 5

Time Marching

Both implicit and explicit time marching methods are included in Aero. Time-accurate and
steady-state calculations may be made with implicit techniques, which allow large time steps
but require LHS (left-hand-side) sensitivities. Explicit methods do not require sensitivities
and have lower memory usage because a linear system is not needed, at the cost of stricter
stability limits on timestep size.

The governing equations after the spatial discretization can be written in the semi discrete
form

𝑑𝑈

𝑑𝑡
= 𝑅(𝑡,𝑈(𝑡)) , 𝑈 (𝑡𝑜) = 𝑈 𝑜, (5.1)

where 𝑅(𝑡,𝑈 (𝑡)) contains the advection, diffusion, and source terms.

5.1 Explicit Methods

The explicit schemes in Aero can all be cast as low-storage Runge-Kutta (LSRK) schemes[16].
Low-storage schemes require 2𝑁 units of storage where 𝑁 is the dimension of the system of
ODEs.

A multistage low-storage Runge-Kutta scheme can be written as:

𝑡𝑗 = 𝑡𝑛−1 + 𝑐𝑗∆𝑡, (5.2)
∆𝑈 𝑗 = 𝐴𝑗∆𝑈 𝑗−1 + ∆𝑡𝑅(𝑡𝑗−1,𝑈 𝑗−1), (5.3)
𝑈 𝑗 = 𝑈 𝑗−1 +𝐵𝑗∆𝑈 𝑗, (5.4)

... (5.5)
𝑈𝑛 = 𝑈 𝑠 (5.6)

where the subindex 𝑗 denotes the stage number, 𝑠 is the number of stages, and the su-
perscripts denote the time level. The coefficients 𝐴𝑗, 𝐵𝑗, and 𝑐𝑗 are designed for many
constraints, primarily to maintain order of accuracy and to give a large stability region.
Carpenter and Kennedy[16] give details of how to determine these coefficients for third- and
fourth-order schemes. Two low-storage Runge-Kutta schemes are included in Aero, based
order of accuracy and stability limits of the schemes.
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5.1.1 Forward Euler

The simplest explicit time marching scheme is the single-stage Forward Euler method. This
is the cheapest consistent integration method, although it is only first-order accurate and
has very strict stability requirements. Its LSRK coefficients are found in Table 5.1.

𝐴1 = 0 𝐵1 = 1 𝑐1 = 0

Table 5.1. LSRK coefficients for the Forward Euler method

5.1.2 5-stage RK4

A fourth-order LSRK scheme can be obtained with five stages. Several solutions exist - Aero
uses solution three from Carpenter and Kennedy[16]. The coefficients for this method are
found in Table 5.2.

𝐴1 = 0 𝐵1 = 0.1496590219993 𝑐1 = 0
𝐴2 = −0.4178904745 𝐵2 = 0.379210312999 𝑐2 = 0.1496590219993
𝐴3 = −1.192151694643 𝐵3 = 0.8229550293869 𝑐3 = 0.3704009573644
𝐴4 = −1.697784692471 𝐵4 = 0.6994504559488 𝑐4 = 0.6222557631345
𝐴5 = −1.514183444257 𝐵5 = 0.1530572479681 𝑐5 = 0.9582821306748

Table 5.2. Coefficients for 5-stage RK4 explicit time march-
ing scheme

5.2 Point Implicit

A point implicit algorithm is used to solve both the steady-state and time-accurate versions
of the implicit algorithm. In the steady-state case, the solution is still marched in time to
drive the steady-state residuals to zero but the solution is not time accurate because the
residual does not include the time term. For the time-accurate case, the time terms are
added to the residual and at each timestep the total residual is driven towards zero using
Newton’s method for solving nonlinear equations.

In all cases, a non-linear equation is solved using Newton’s method which requires a series
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of linear solves and an update of the conserved variables:

𝐴𝑗∆𝑈 𝑗 = 𝑅𝑗, (5.7)
𝑈𝑛+1

𝑗+1 = 𝑈𝑛+1
𝑗 + ∆𝑈 𝑗 (5.8)

where n denotes timestep and j denotes nonlinear iteration, and the LHS matrix 𝐴𝑗 is slightly
different for each time-marching method and defined below for each one.

The solution to the linear system is obtained through a relaxation method. 𝐴𝑗 is split
into diagonal and off-diagonal terms

𝐴𝑗 = 𝐷𝑗 + 𝑂𝑗 (5.9)

A Jacobi iteration is used and the off-diagonal terms are moved to the RHS(right hand side)
and are evaluated using the previous subiteration value of 𝑈 𝑖 where i denotes the linear
subiteration. The resulting scheme is then

𝐷𝑗∆𝑈 𝑖+1
𝑗 = 𝑅𝑗 −𝑂𝑗∆𝑈 𝑖

𝑗 (5.10)

The matrices 𝐷𝑗, 𝑂𝑗, and 𝑅𝑗 are updated at each nonlinear iteration for the time-
accurate case and only a single nonlinear iteration is typically used for steady-state problems.

Depending on the solution a full update taken for each nonlinear iteration may result in
negative temperatures or negative densities and lead to failure of the nonlinear solver. This
is mitigated in Aero by combining a local relaxation approach with a line search algorithm.

5.2.1 Local Relaxation

The local relaxation algorithm is used to limit updates at the nodal level to avoid poten-
tial stability problems due to a poor initial guess or unknown/unrealistic initial conditions.
Effectively, a coefficient matrix Ω ≤ 𝐼 is applied in 5.8,

𝑈𝑛+1
𝑗+1 = 𝑈𝑛+1

𝑗 + Ω∆𝑈 𝑗, (5.11)

where at each node the local relaxation factor is calculated when Δ𝑃
𝑃

≥ 𝑐 or Δ𝑇
𝑇

≥ 𝑐,

Ω𝑖 = min

(︂
𝑃𝑐

∆𝑃
,
𝑇𝑐

∆𝑇

)︂
, (5.12)

where Ω𝑖 reduces the update of the full conservative vector at the node uniformly. Because
of the nonlinear dependence of 𝑃 and 𝑇 on 𝑈 , this will not necessarily result in Δ𝑃

𝑃
≤ 𝑐 or

Δ𝑇
𝑇

≤ 𝑐, but will give a close approximation.

Local relaxation is also used to avoid updating the pressure and temperature below user
specified minimum values. The predicted pressure and temperatures of the full update, 𝑃 ′

and 𝑇 ′, respectively, are limited using,

Ω𝑖 = min

(︂
𝑃𝑚𝑖𝑛 − 𝑃

2∆𝑃
,
𝑇𝑚𝑖𝑛 − 𝑇

2∆𝑇

)︂
. (5.13)
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As discussed above, because of the nonlinear nature of 𝑃 and 𝑇 with respect to the update,
this limiting procedure may fail when 𝑃 and 𝑇 are near their respective minimum values
relative to the update size.

5.2.2 Line Search

The line search algorithm ensures that the composite residual of the nonlinear solver de-
creases after the update. In other words,

𝑅*(𝑈𝑛+1
𝑗 + 𝜔Δ𝑈) < 𝑅*(𝑈𝑛+1

𝑗 ), (5.14)

where 𝜔 is the global relaxation factor for the line search. Initially, 𝜔 = 1 is used. If equation
5.14 is not satisfied, then 𝜔 = 1

2
𝜔 is used until equation 5.14 is satisfied. In Aero, if 𝜔 = 1

16
,

then the update is taken anyway.

5.2.3 Steady-State

Steady-state time advancement is based on the linearized backward-Euler time marching
scheme.

𝑑𝑈

𝑑𝑡
=

𝑈𝑛+1 −𝑈𝑛

∆𝑡
= 𝑅(𝑡,𝑈𝑛(𝑡)). (5.15)

In this case the time-term is not included in the residual but is included in the sensitivities.
Only a single linearization is done for each time step.

𝐴0 =
𝑉

∆𝑡
𝐼 − 𝜕𝑅

𝜕𝑈𝑛 (5.16)

5.2.4 Time accurate Backward Euler

For time-accurate backward Euler, the time derivative is approximated as:

𝑑𝑈

𝑑𝑡
=

𝑈𝑛+1 −𝑈𝑛

∆𝑡
(5.17)

The time-derivative term is included in the residual term. The modified residual is now

𝑅*(𝑈𝑛+1
𝑗 ) = 𝑅(𝑈𝑛+1

𝑗 ) −
𝑈𝑛+1

𝑗 −𝑈𝑛

∆𝑡
(5.18)

where j denotes the nonlinear iteration and 𝑈𝑛+1
0 = 𝑈𝑛. The resulting nonlinear equation,

𝑅*(𝑈𝑛+1
𝑗 ) = 0, (5.19)
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is solved using Newton’s method. The LHS is:

𝐴𝑗 = −
𝜕𝑅*

𝑗(𝑈
𝑛+1
𝑗 )

𝜕𝑈𝑛+1
𝑗

=
𝑉

∆𝑡
𝐼 −

𝜕𝑅𝑗(𝑈
𝑛+1
𝑗 )

𝜕𝑈𝑛+1
𝑗

(5.20)

5.2.5 Time accurate BDF2

BDF2 is very similar to time-accurate backward Euler except the time derivative is approx-
imated as:

𝑑𝑈

𝑑𝑡
=

1

∆𝑡

(︂
3

2
𝑈𝑛+1 − 2𝑈𝑛 +

1

2
𝑈𝑛−1

)︂
(5.21)

The above formulation assumes constant timestep.

The time-derivative term is included in the residual term. The modified residual is now

𝑅*(𝑈𝑛+1
𝑗 ) = 𝑅(𝑈𝑛+1

𝑗 ) − 1

∆𝑡

(︂
3

2
𝑈𝑛+1

𝑗 − 2𝑈𝑛 +
1

2
𝑈𝑛−1

)︂
(5.22)

where j denotes the nonlinear iteration and 𝑈𝑛+1
0 = 𝑈𝑛. The resulting nonlinear equation,

𝑅𝑛
* (𝑈𝑛+1

𝑗 ) = 0, (5.23)

is solved using Newton’s method. The LHS is:

𝐴𝑗 = −
𝜕𝑅*

𝑗(𝑈
𝑛+1
𝑗 )

𝜕𝑈𝑛+1
𝑗

=
3

2

𝑉

∆𝑡
𝐼 −

𝜕𝑅𝑗(𝑈
𝑛+1
𝑗 )

𝜕𝑈𝑛+1
𝑗

(5.24)

5.3 Diagonally Implicit Runge Kutta

Diagonally implicit Runge Kutta schemes are useful for numerically stiff problems where
time accuracy is important. Diagonally implicit Runge Kutta schemes are similar to explicit
Runge Kutta schemes in that multiple stages are needed for each time step. However, for
the implicit scheme, the solution at the current stage is implicitly solved for and therefore a
nonlinear solve is needed for each stage. A general Runge Kutta scheme to solve the semi-
discrete equation 5.1 can be written as a series of stage calculations and a solution update.
The stage calculation is:

𝑈 𝑖 = 𝑈𝑛 + ∆𝑡
𝑠∑︁

𝑗=1

𝑎𝑖,𝑗𝑅(𝑡𝑛 + 𝑐𝑗∆𝑡,𝑈
𝑗) (5.25)

where the i index denotes stage and the n index denotes timestep. This equation must be
solved nonlinearly if there are non-zero values on the diagonally of 𝑎𝑖,𝑗.
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The update to the solution for the next timestep is:

𝑈𝑛+1 = 𝑈𝑛 + ∆𝑡
𝑠∑︁

𝑖=1

𝑏𝑖𝑅(𝑡𝑛 + 𝑐𝑖∆𝑡,𝑈
𝑖) (5.26)

These schemes can be expressed in a Butcher tableau format and includes extra coeffi-
cients (𝑏̃𝑖) that give a solution one order lower than the coefficients 𝑏𝑖. These extra coefficients
are useful in determining the time discretization error and can be used for adaptive time
stepping.

𝑐𝑖 𝑎𝑖,𝑗
𝑏𝑖
𝑏̃𝑖

Table 5.3. Butcher tableau format for Runge Kutta meth-
ods.

In Aero, the following six stage fourth order diagonally implicit Runge Kutta scheme is
used.

0 0 0 0 0 0 0
1
2

1
4

1
4

0 0 0 0
83
250

8611
62500

− 1743
31250

1
4

0 0 0
31
50

5012029
34652500

− 654441
2922500

174375
388108

1
4

0 0
17
20

15267082809
155376265600

− 71443401
120774400

730878875
902184768

2285395
8070912

1
4

0
1 82889

524892
0 15625

83664
69875
102672

−2260
8211

1
4

𝑏𝑖
82889
524892

0 15625
83664

69875
102672

−2260
8211

1
4

𝑏̃𝑖
4586570599
29645900160

0 178811875
945068544

814220225
1159782912

− 3700637
11593932

61727
225920

Table 5.4. Coefficients for six stage fourth order Diagonally
Implicit Runge Kutta.

5.4 Adaptive Time-Stepping & Temporal Error Control

This section details the adaptive temporal error control methodology in Aero. Consider the
first step of a numerical solution, resulting in an approximate solution 𝑣𝑛+1. Given an exact
solution 𝑢(𝑡), the local temporal error, ℓ𝑛+1, is

ℓ𝑛+1 ≡ 𝑢(𝑡𝑛 + ∆𝑡𝑛) − 𝑣𝑛+1. (5.27)
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Suppose the numerical method has order of accuracy 𝑝. Then the error of a single step is

ℓ𝑛+1 ≡ (∆𝑡)𝑝+1𝜑𝑛 + higher order terms, (5.28)

where 𝜑𝑛 is the principal error function. An estimation, ℓ̂𝑛+1, of the local error is found with
a method of order 𝑞 > 𝑝 that gives approximation 𝑣𝑛+1.

ℓ̂𝑛+1 ≡ 𝑣𝑛+1 − 𝑣𝑛+1 = (∆𝑡)𝑝+1𝜑𝑛 + higher order terms. (5.29)

The objective is to control the local temporal error by adjusting the time step. A target
error 𝜀 is specified, towards which we drive a norm of the estimate, 𝑟𝑛+1 ≡ ‖ℓ̂𝑛+1‖ (an
error-per-step (EPS) criterion). To avoid risking step rejection we drive the error norm to
Θ𝜀, where Θ = 0.8 is a factor of safety.

To compute the error norm, we first compute the relative difference, 𝛿𝑛+1
𝑗 = ℓ̂𝑛+1/𝑆𝑗,

where 𝑆𝑗 is a rough scale of the degree of freedom 𝑗. The L2-norm of this relative error is
integrated over the domain volume,

(𝑟𝑛+1)2 =
1

𝑉

∫︁
𝑉

(𝛿𝑛+1)2𝑑𝑉 ≈ 1

𝑉

𝑛elem∑︁
𝑖=1

𝑛var∑︁
𝑗=1

(𝛿𝑛+1
𝑗 )2𝑉𝑖, (5.30)

in which 𝑛𝑣𝑎𝑟 is the number of variables in the local state vector.

There are several popular means of controlling the time step in response to the error
sequence. In Aero we provide three digital feedback controllers - the common ’elementary’
controller, a PI (proportional-integral) scheme, and a PID (proportional-integral-derivative)
controller. In all of these controllers we use a limiter of the form ∆𝑡𝑛+1 ≤ 𝑅∆𝑡𝑛 where𝑅 = 2.0
is the ’maximum ramp’ that prevents unreasonable step size increases. The controller is
disengaged only when limiting the step increase, modifying ∆𝑡 for FSI coupling, or enforcing
the termination time. We do not employ deadzones (cut-outs) wherein the time step is fixed
until a substantial change is necessary.

5.4.1 Elementary Control

The elementary controller is derived by first assuming that the time step is in the asymptotic
range of the numerical method (the higher order terms can be neglected). Then our error
norm is exactly 𝑟𝑛+1 = (∆𝑡)𝑝+1‖𝜑𝑛‖. Adjusting the time step by an amount 𝜂(∆𝑡) and
equating the error to Θ𝜀 yields 𝜂 = ∆𝑡𝑛+1/∆𝑡𝑛 = (Θ𝜀/𝑟𝑛+1)1/𝑝+1. Thus the elementary
controller modifies the time step according to

∆𝑡𝑛+1 = ∆𝑡𝑛
(︂

Θ𝜀

𝑟𝑛+1

)︂1/𝑝+1

. (5.31)

The elementary controller is very common and straightforward to derive. It has first-
order dynamics and its single pole is at the origin (so-called ‘deadbeat’ control), giving it the
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best intrinsic stability properties. However it has several shortcomings. It is based entirely
upon the process model of 𝑟𝑛+1 = (∆𝑡)𝑝+1‖𝜑𝑛‖, which requires that ∆𝑡 is in the asymptotic
range. This assumption is not always met - for instance when numerical stability limits the
step size or when stiff problems are solved with L-stable implicit methods and large time
steps. It is well-known that this controller tends to oscillate around stability boundaries,
affecting the smoothness of the resultant numerical solution [17].

A particular challenge with the elementary controller is exposed by its frequency response
- there is no attenuation of high frequencies in the stepsize transfer map, meaning that the
spectral properties of ‖𝜑𝑛‖, which represents the ‘physics’ of the underlying solution, are
transmitted without attenuation to the stepsize. If the problem is noisy, then the resultant
stepsize sequence will be just as noisy. Designing controllers via ’noise-shaping’ and moving
away from deadbeat control (placing poles away from the origin) allows us to obtain smoother
stepsize sequences, as discussed in [18].

5.4.2 PI and PID Control

Gustafsson et al. [19] approached the problem of adaptive time-stepping from a control-
theoretic perspective, and derived PI controllers as straightforward improvements to the
elementary controller. These methods modify the time step as

∆𝑡𝑛+1 = ∆𝑡𝑛
(︂

𝑟𝑛

𝑟𝑛+1

)︂𝑘𝑃
(︂

Θ𝜀

𝑟𝑛+1

)︂𝑘𝐼

, (5.32)

where 𝑘𝑃 and 𝑘𝐼 are the proportional and integral gains, respectively. Comparing this
formula to Equation (5.31) shows that the elementary controller is an I-controller (𝑘𝑃 = 0)
with gain 𝑘𝐼 = 1/(𝑝+ 1).

Observe that the integral mode changes ∆𝑡 according to its distance from the target,
while the proportional mode modifies the step by a trend of increasing or decreasing er-
ror. In specifying 𝑘𝑃 and 𝑘𝐼 , we can optimize controller dynamics for stability and mono-
tonic/oscillatory/deadbeat control (pole placement), frequency response, and the ’aggressive-
ness’ of the adaptation. [19] and [18] focus on the problem of obtaining smoothed stepsize
histories. The controllers of [18] struggle to operate near the stability boundary of the time-
stepping methods because they have extremely low responsiveness to high-frequency forcing.
Aero provides one PI controller, custom-tuned for aggressive time-stepping near the stability
boundary, with some of the stepsize-smoothing property of controllers in [18]. The gains of
this controller are 𝑘𝐼 = 0.6 and 𝑘𝑃 = −0.1.

It is common to utilize derivative mode control, as is used by [20] and discussed by [18].
Here the stepsize control structure is

∆𝑡𝑛+1 = ∆𝑡𝑛
(︂

𝑟𝑛

𝑟𝑛+1

)︂𝑘𝑃
(︂

Θ𝜀

𝑟𝑛+1

)︂𝑘𝐼
(︂

𝑟𝑛𝑟𝑛

𝑟𝑛+1𝑟𝑛−1

)︂𝑘𝐷

, (5.33)

where 𝑘𝐷 is the derivative gain. Aero provides the controller with the tuning of [20], with
𝑘𝑃 = 0.14, 𝑘𝐼 = 0.25, and 𝑘𝐷 = 0.10.

52



5.4.3 Adaptive Explicit Methods

Calculation of the error estimate requires a pair of discretizations. For implicit calculations,
the pair contained in the DIRK method is provided in §5.3. Aero provides three different
pairs of embedded explicit low-storage Runge-Kutta methods. The Forward Euler method
(Table 5.1) and the second-order explicit trapezoidal method form two of these methods.
ERK1(2) uses Forward Euler to update the solution and trapezoidal to estimate the error,
while ERK2(1) is the same pair run in local extrapolation mode wherein the higher-order
method (trapezoidal) is used for the update.

The fourth-order method given in Table 5.2 can be paired with an embedded third-order
method. The 𝐴 and 𝑐 coefficients are identical, but the update coefficients [21] are given by
𝐵̂5 = 𝐵5 and 𝐵̂𝑖 = 𝐵𝑖−𝐴𝑖+1𝐵𝑖+1 for 𝑖 ∈ 1, 2, 3, 4. This gives the ERK4(3) scheme, a fourth-
order accurate method with a third-order error estimate. The coefficients of the third-order
scheme are not designed for time integration and can only be used for error estimation.
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Chapter 6

Boundary Conditions

The enforcement of boundary conditions is important for any numerical solution of partial
differential equations. Below, the enforcement of boundary conditions is detailed for the
currently supported boundary types in Aero.

6.1 Solid Wall

6.1.1 Dirichlet no slip wall

On a no slip wall, velocity is set to the prescribed value of the wall. For the continuity
equation, this means that there is no mass flux across the wall. This condition is applied
weakly. The residual for the momentum equation is replaced by

𝑢𝑗 − 𝑔𝑗 = 0

where 𝑔𝑗 is the specified velocity at the wall. For a no-slip wall, 𝑔𝑗 = 0. The rows in the
iterative matrix for the Newton system are similarly removed and replaced by the Jacobian of
this new residual. For example, for a three dimensional flow, the matrix equations associated
with the momentum equation for a node on a no slip wall are replaced by

⎛⎝ −𝑢1

𝜌
1
𝜌

0 0 0
−𝑢2

𝜌
0 1

𝜌
0 0

−𝑢3

𝜌
0 0 1

𝜌
0

⎞⎠⎛⎝ 𝛿𝑢1
𝛿𝑢2
𝛿𝑢3

⎞⎠ =

⎛⎝ 𝑢1 − 𝑔1
𝑢2 − 𝑔2
𝑢3 − 𝑔3

⎞⎠
For an isothermal wall, the energy equation is also removed and temperature is specified.
On an adiabatic wall, temperature is allowed to float, and the specification of zero heat flux
is automatically handled because the contribution to the flux balance of the viscous flux
through an adiabatic no slip wall is zero. balance is again zero. Turbulence equations are
also removed and the turbulent variables are set to a specified state.
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SST 𝑘-𝜔 turbulence model

The turbulent kinetic energy is simply set to zero,

(𝜌𝑘)wall = 0 (6.1)

Its specific dissipation rate is set to

(𝜌𝜔)wall =
60𝜇

𝛽1𝑑2
(6.2)

where 𝛽1 is obtained from Table 2.1. Since the limit of (6.2) as 𝑑→ 0 is infinity, (6.2) cannot
be evaluated directly at the wall. Instead, the right hand side of (6.2) is evaluated at a
nearby location. The residual and matrix entries for the rows associated with the turbulence
equations are replaced by(︂

1 0
0 1

)︂(︂
𝛿(𝜌𝑘)
𝛿(𝜌𝜔)

)︂
=

(︂
𝜌𝑘

𝜌𝜔 − (𝜌𝜔)wall

)︂

𝑘-𝜖 turbulence model

At a solid wall, the turbulent kinetic energy is simply set to zero.

(𝜌𝑘)wall = 0

Its dissipation rate is set to

(𝜌𝜖)wall =
2𝜇𝑘

𝑑2
(6.3)

Since the limit of (6.3) as 𝑑 → 0 is infinity, (6.3) cannot be evaluated directly at the wall.
Instead, the right hand side of (6.3) is evaluated at a nearby location. The residual and
Jacobian matrix rows associated with the solid walls are replaced by the following matrix
system (︂

1 0
0 1

)︂(︂
𝛿(𝜌𝑘)
𝛿(𝜌𝜖)

)︂
=

(︂
𝜌𝑘

𝜌𝜖− (𝜌𝜖)wall

)︂
,

where we have neglected the sensitivities of(𝜌𝜖)wall.

Spalart-Allmaras turbulence model

At a solid wall, the working variable is set to zero.

(𝜌𝜈)wall = 0 (6.4)

The residual and Jacobian matrix rows associated with the solid walls are replaced by

𝛿(𝜌𝜈) = (𝜌𝜈)wall
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6.1.2 Weak no slip wall

It is often advantageous to impose the no slip conditions in a weak sense instead of forcing
the solution to be equal to the boundary condition at the wall. In the limit of infinite
resolution, the weak boundary condition gives the same solution as a strongly enforced
boundary condition. However, in practical cases weak boundary conditions typically result
in more accurate solutions for the same resolution [22]. Furthermore, the solution at the
wall for a weakly enforced no slip condition can be used to estimate the error in the overall
solution. As flow features such as the boundary layer become better resolved, the error in
the no slip condition decreases. In the asymptotic range of the numerical method used for
the simulation, the error at the boundary will decrease by the designed order of accuracy
as the grid is refined. This specification is similar to that of a cell-centered finite volume
approach.

To enforce the no slip condition weakly, we specify the total flux at the boundary using
the difference between the computed solution and the specified wall condition:

F𝑏 = −F𝑛(U,U𝑏) + G(U, ̃︂∇V(U)), (6.5)

where ̃︂∇V(U) is a modified projected nodal gradient at the boundaries. The modifications
for the velocity gradients are

̃︂𝜕𝑥𝑗
𝑢𝑖 = 𝜕𝑥𝑗

𝑢𝑖 −
𝑢𝑖 − (𝑢wall)𝑖

𝑑
𝑛𝑗, (6.6)

where 𝑑 is the some measure of the normal wall spacing. For isothermal walls the modified
temperature gradient is ̃︂𝜕𝑥𝑗

𝑇 = 𝜕𝑥𝑗
𝑇 −

𝑇 − 𝑇wall
𝑑

𝑛𝑗, (6.7)

and for specified heat flux walls, the modified temperature gradient is̃︂𝜕𝑥𝑗
𝑇 = 𝜕𝑥𝑗

𝑇 + (𝑔wall − 𝜕𝑥𝑘𝑇𝑛𝑘)𝑛𝑗, 𝑔wall = −
𝑞wall
𝜅

, (6.8)

where 𝑞wall is the specified wall heat flux.

The flux reconstruction, F𝑛 can use any dissipative reconstruction function. The bound-
ary state used in the reconstruction is defined as

U𝑏 =

⎛⎝ 1 0 0
0 𝛿𝑖𝑗 − 2𝑛𝑖𝑛𝑗 0
0 0 1

⎞⎠U, (6.9)

which reverses the normal velocity, but does not modify any slip velocity, density, or energy.

SST 𝑘-𝜔 turbulence model

For the SST model, the same wall conditions as above are used:

(𝑘)wall = 0,
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(𝜔)wall =
60𝜇

𝛽1𝜌𝑑2
.

The modified gradients are

̃︂𝜕𝑥𝑗
𝑘 = 𝜕𝑥𝑗

𝑘 −
𝑘 − 𝑘wall

𝑑
𝑛𝑗,

̃︂𝜕𝑥𝑗
𝜔 = 𝜕𝑥𝑗

𝜔 −
𝜔 − 𝜔wall

𝑑
𝑛𝑗.

(6.10)

𝑘-𝜖 turbulence model

For the 𝑘-𝜖 model, wall conditions are:

(𝑘)wall = 0,

(𝜖)wall =
2𝜇𝑘

𝜌𝑑2

The modified gradients are ̃︂𝜕𝑥𝑗
𝑘 = 𝜕𝑥𝑗

𝑘 −
𝑘 − 𝑘wall

𝑑
𝑛𝑗,

̃︂𝜕𝑥𝑗
𝜖 = 𝜕𝑥𝑗

𝜖−
𝜖− 𝜖wall

𝑑
𝑛𝑗.

(6.11)

Spalart-Allmaras turbulence model

For the Spalart-Allmaras model, wall conditions are

𝜈wall = 0.

The modified gradients are ̃︂𝜕𝑥𝑗
𝜈 = 𝜕𝑥𝑗

𝜈 −
𝜈 − 𝜈wall

𝑑
𝑛𝑗. (6.12)

6.1.3 Turbulent Wall Function

For a turbulent boundary layer at high Reynolds number, the minimum wall spacing required
to resolve the turbulent boundary layer can be quite small. Wall functions can be used to
reduce this wall spacing requirement by modeling wall shear stress and heat transfer using
the law of the wall[23]. The assumptions of using the law of the wall for the wall function
boundary condition are:

∙ local equilibrium of turbulent kinetic energy production and dissipation
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∙ constant shear stress within the log-law region

Wall functions are used to modify the contribution of the wall shear stress and wall heat
flux

∫︁
𝜏𝑖𝑗𝑛𝑗𝑑𝑆 = 𝐹𝑤𝑖,

∫︁
𝑞𝑗𝑛𝑗𝑑𝑆 (6.13)

The velocity parallel to the wall is used as the velocity for all quantities. It can be
calculated by projecting the velocity vector onto the surface plane

𝑢𝑖‖ = (𝛿𝑖𝑗 − 𝑛𝑖𝑛𝑗)𝑢𝑗 (6.14)

where 𝑛𝑖 is the surface unit normal.

The law of the wall for compressible flow [24] can be written as

𝑈𝑐

𝑢𝜏
= 𝑈+

𝑐 =
1

𝜅
ln 𝑦+ + 𝐶, (6.15)

𝑢𝜏 =

√︂
𝜏𝑤
𝜌𝑤

=
𝑢‖
𝑢+
, 𝑦+ =

𝑢𝜏𝑦

𝜈𝑤
(6.16)

with 𝐶 = 5.1 and 𝜅 = 0.41 by default. This law of the wall is similar to the incompressible
version except velocity is transformed using the Van Driest transformation[23]

𝑈𝑐 =
1

𝑎

[︂
sin−1

(︂
2𝑎2𝑢‖ − 𝑏

𝑄

)︂
+ sin−1

(︂
𝑏

𝑄

)︂]︂
(6.17)

where

𝑎 =

√︃(︂
𝑃𝑟𝑇

2𝐶𝑝𝑇𝑤

)︂
, 𝑏 =

𝑇𝑎𝑤 − 𝑇𝑤
𝑇𝑤𝑢𝑒

, 𝑄 =
√
𝑏2 + 4𝑎2 (6.18)

The adiabatic wall temperature is computed assuming that the recovery factor, 𝑟 is equal
to the turbulent Prandtl number, 𝑃𝑟𝑇

𝑇𝑎𝑤 = 𝑇1 +
𝑟𝑢2‖
2𝐶𝑝

(6.19)

The wall temperature is set to the adiabatic wall temperature for an adiabatic wall. For
an isothermal wall it is set to the specific wall temperature. The quantities with a subscript
of 1 are the value at the first point off the wall. In the case of edge-based Aero, this point is
actually at the wall and the wall value is at a fictitious location. The wall values of density
and viscosity are computed using the wall temperature and assuming that the pressure does
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not vary between the wall and the first point off the wall. The shear velocity, 𝑢𝜏 is determined
by solving equation 6.15 using Newton’s method. After 𝑢𝜏 is determined the wall shear stress
for each component is

𝜏𝑤,𝑖 = 𝜌𝑤𝑢𝜏
𝑢𝑖‖
𝑢+

(6.20)

The calculation for obtaining the wall heat flux follows Huang et al[24]. If near a solid
surface convection is neglected and 𝜏 = 𝜏𝑤 is assumed then the energy equation can be
integrated resulting in

𝑞 = 𝑞𝑤 + 𝑢‖𝜏𝑤 (6.21)

The heat transfer and wall shear stress are written as

𝑞 = −𝜇𝑇𝐶𝑝

𝑃𝑟𝑇

𝜕𝑇

𝜕𝑦
, 𝜏𝑤 = 𝜇𝑡

𝜕𝑢‖
𝜕𝑦

(6.22)

Integrating the above equation with respect to 𝑢‖ results in

𝑇 = 𝑇𝑤 −
𝑃𝑟𝑡𝑞𝑤𝑢‖
𝐶𝑝𝜏𝑤

−
𝑃𝑟𝑇𝑢

2
‖

2𝐶𝑝

(6.23)

By using 𝑟 = 𝑃𝑟𝑇 and solving for 𝑞𝑤, the above equation can be written

𝑞𝑤 =
𝜏𝑤𝐶𝑝

𝑟𝑢‖
(𝑇𝑤 − 𝑇𝑎𝑤) (6.24)

which gives the flux boundary condition on the energy equation at the wall. If the first point
is too close to the wall and no longer in the log layer typically for 𝑦+ < 12, then the viscous
wall shear stress and heat flux are given by:

𝜏𝑤 = 𝜇
𝑢‖
𝑦
, 𝑞𝑤 = 𝜅

𝑇𝑤 − 𝑇1
𝑦

(6.25)

The turbulence quantity model for the SST model are specified as

𝑘wall =

𝜌𝑤
𝜌1
𝑢2𝜏√
𝛽* , 𝜔wall =

𝑢𝜏

𝜅
√
𝛽*𝑦

. (6.26)

For the 𝑘-𝜖 model, the turbulence quantities are

𝑘wall =
𝑢2𝜏
𝐶𝜇

, 𝜖wall =
𝑢3𝜏
𝜅𝑦
. (6.27)

The working variable for the Spalart-Allmaras model is

𝜈wall = 𝜅𝑢𝜏𝑦. (6.28)

The turbulence quantities for the above models are imposed weakly at the wall using equa-
tions ??, ??, and ??, respectively.
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6.1.4 Slip wall

For slip walls, see the tangent flow boundary conditions described below.

6.2 Tangent Flow

A tangent flow condition is typically applied for underresolved or slip walls or as a symmetry
condition. In Aero, two methods can be used to apply this condition, one based on reflecting
the velocity and one based on a pressure integral. The enforcement of additional required
boundary conditions for viscous flows is independent of whether velocity reflection or pressure
integration is used.

6.2.1 Velocity Reflection

The primary condition for a tangent flow boundary is that the velocity normal to the bound-
ary is zero. In Aero, this is enforced using a flux through the boundary face. To calculate
the flux, first the flow state at the boundary is copied into a boundary state, 𝑈𝑏. The normal
velocity of boundary state is then reflected,

𝑢𝑏𝑖 = 𝑢𝑖 − 2𝑢𝑘𝑛𝑘𝑛𝑖. (6.29)

The boundary flux follows simply as

𝐹𝑏 = 𝐹𝑅(𝑈,𝑈𝑏, 𝑛), (6.30)

where 𝐹𝑅 is a dissipative reconstruction, such as Roe or Steger-Warming.

6.2.2 Pressure Integration

Another way to impose that the velocity normal to the boundary is zero is to simply construct
the boundary flux such that all terms multiplied by the normal velocity are zero. Thus, only
the pressure force in the momentum equation is included. For a turbulent ideal gas, the form
of the flux is

𝐹𝑏 =

∫︁
𝜕Ω

⎛⎜⎜⎜⎜⎝
0
𝑃𝑛𝑖

0
0
0

⎞⎟⎟⎟⎟⎠ 𝑑𝐴. (6.31)

In Aero, a first order approximation to the integral is used, where the pressure value at the
boundary node is multiplied by the area of the boundary face.

The two approaches give different results. For a more strict enforcement of zero normal
velocity, the reflection condition is preferred.
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6.2.3 Viscous Conditions

The Navier-Stokes equations are incompletely parabolic and require (𝑁𝑞 − 1) linearly inde-
pendent boundary conditions for tangent flow, where

𝑁𝑞 = 𝑁𝑒 +𝑁𝑠 +𝑁𝑑 +𝑁𝑇

is the number of differential equations in the system, 𝑁𝑒 is the number of energy equations,
𝑁𝑠 is the number of species, 𝑁𝑑 is the number of physical dimensions, and 𝑁𝑇 is the number
of turbulence equations. In Aero, this requirement is satisfied by

1. Requiring that the viscous traction force has no component parallel to the boundary,
and

2. Requiring no species mass diffusion, heat flux, or turbulent diffusion through the
boundary.

The first condition yields (𝑁𝑑−1) linearly independent conditions, and the second condition
yields (𝑁𝑠 + 𝑁𝑇 ) independent conditions. The velocity reflection or pressure integration
condition yields the final needed condition. For a turbulent ideal gas, the boundary viscous
flux takes the form

𝐺𝑏 =

∫︁
𝜕Ω

(︀
0, 𝑇𝑖, 0, 0, 0

)︀
𝑑𝐴, (6.32)

where 𝑇𝑖 is the modified traction vector,

𝑇𝑖 = 𝑇𝑛𝑛𝑖, 𝑇𝑛 = 𝜏𝑘𝑗𝑛𝑗𝑛𝑘. (6.33)

Note that there is no contribution of the viscous heating to the energy equation because
𝑢𝑖𝑇𝑖 = 0.

6.3 Open Boundaries

Open boundaries are used to specify inflows, outflows, and farfield conditions. Aero has many
methods of specifying open boundaries, which are detailed below. As for tangent flows, the
additional needed conditions for viscous flows are always enforced in the same manner when
required for outflows and farfields.

The boundary conditions for open boundaries in Aero are set up with an inviscid part,
which will be applied to both the Euler and Navier Stokes equations, and a viscous part,
which is only applied to the Navier Stokes equations. The number of inviscid boundary
conditions required for an open boundary depends on the number of incoming eigenvalues
of the flux Jacobian,

𝜕𝐹

𝜕𝑈
= 𝑆Λ𝑆−1, (6.34)
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where 𝑆 denotes the matrix of right eigenvectors and Λ denotes the diagonal matrix of
eigenvalues,

Λ = 𝐴

⎛⎜⎜⎜⎝
𝑢𝑘𝑛𝑘 + 𝑐 0 0 . . .

0 𝑢𝑘𝑛𝑘 − 𝑐 0 . . .
0 0 𝑢𝑘𝑛𝑘 0
...

... 0
. . .

⎞⎟⎟⎟⎠ . (6.35)

Since the normal vector is oriented to point outward from the domain, incoming eigenvalues
will always be negative.

6.3.1 Viscous Conditions

Open boundaries with one or zero nonzero eigenvalues require additional conditions for well-
posedness of the viscous equations.

In Aero, this requirement for open boundaries is satisfied by

1. Requiring that the viscous traction force has no component normal to the boundary,
and

2. Requiring no species mass diffusion, heat flux, or turbulent diffusion through the
boundary.

The first condition yields one linearly independent condition, and the second condition yields
(𝑁𝑠 + 𝑁𝑇 ) independent conditions. Thus, for some inviscid outflow conditions in Aero, the
linear well-posedness may not be met. However, in numerical experiments, the boundary
conditions used exhibit correct and robust behavior.

For a turbulent ideal gas, the boundary viscous flux takes the form

𝐺𝑏 =

∫︁
𝜕Ω

(︀
0, 𝑇𝑖, 𝑢𝑘𝑇𝑘, 0, 0

)︀
𝑑𝐴, (6.36)

where 𝑇𝑖 is the modified traction vector,

𝑇𝑖 = 𝜏𝑖𝑗𝑛𝑗 − 𝑇𝑛𝑛𝑖, 𝑇𝑛 = 𝜏𝑘𝑗𝑛𝑗𝑛𝑘. (6.37)

These viscous conditions are applied to all open boundary conditions unless a Dirichlet
condition is specified.

6.3.2 Extrapolation

For a flow with no negative eigenvalues, no inviscid condition should be specified. One
method to accomplish this is to simply use the flux calculated from the state at the boundary
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to specify the boundary flux,
𝐹𝑏 = 𝐹 (𝑈). (6.38)

For flows that may be transonic at the boundary, this is not an appropriate choice. The
extrapolation boundary condition is an instance in the viscous case where not enough data
is imposed for linear well-posedness to be satisfied.

6.3.3 Farfield

In Aero, farfield enforcement is a general open boundary condition that automatically han-
dles all combinations of eigenvalues. In the case of a supersonic outflow (strictly positive
eigenvalues), the extrapolation boundary condition is recovered.

For a supersonic inflow (strictly negative eigenvalues), the entire boundary state is cal-
culated from a user-specified flow state, and a flux reconstruction is used to specify the
boundary flux,

𝐹𝑏 = 𝐹𝑅(𝑈,𝑈𝑏). (6.39)

For subsonic boundary regions, the boundary states are calculated based on Riemann
invariants,

𝑅(−)
𝑠 = 𝑢𝑠𝑗𝑛𝑗 −

2

𝛾 − 1
𝑐𝑠, 𝑅(+) = 𝑢𝑗𝑛𝑗 +

2

𝛾 − 1
𝑐, (6.40)

where the subscript 𝑠 denotes the user specified state. These Riemann invariants are used
to compute the normal velocity as:

𝑢𝑏𝑗𝑛𝑗 =
𝑅

(−)
𝑠 +𝑅(+)

2
. (6.41)

To compute the full velocity tangent velocity vectors are defined for the specified and com-
puted states,

𝑢𝑡1𝑖 = 𝑢𝑗𝑡1𝑗𝑡1𝑖, 𝑢𝑡2𝑖 = 𝑢𝑗𝑡2𝑗𝑡2𝑖,

𝑢𝑠𝑡1𝑖 = 𝑢𝑠𝑗𝑡1𝑗𝑡1𝑖, 𝑢𝑠𝑡2𝑖 = 𝑢𝑠𝑗𝑡2𝑗𝑡2𝑖,
(6.42)

where 𝑡1 and 𝑡2 denote vectors that are orthogonal to each other and the normal. The full
boundary state velocity is then calculated as

𝑢𝑏𝑖 = 𝑢𝑏𝑗𝑛𝑗𝑛𝑖 +
1

2

(︁
1 − 𝑢𝑗𝑛𝑗

𝑐

)︁
(𝑢𝑠𝑡1𝑖 + 𝑢𝑠𝑡2𝑖) +

1

2

(︁
1 +

𝑢𝑗𝑛𝑗

𝑐

)︁
(𝑢𝑡1𝑖 + 𝑢𝑡2𝑖) . (6.43)

The Riemann invariants are additionally used to specify the square of the speed of sound:

𝑐2𝑏 =
(𝛾 − 1)2

16

(︀
𝑅(+) −𝑅(−)

𝑠

)︀2
. (6.44)

The speed of sound is used to specify the temperature as

𝑇𝑏 =
𝑐2𝑏
𝛾𝑅

. (6.45)
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For a subsonic inflow, the density is

𝜌𝑏 =

(︂
𝑐2𝑏
𝛾𝑆𝑠

)︂ 1
𝛾−1

, 𝑆𝑠 =
𝑃𝑠

𝜌𝛾𝑠
, (6.46)

and for a subsonic outflow, the density is

𝜌𝑏 =

(︂
𝑐2𝑏
𝛾𝑆

)︂ 1
𝛾−1

, 𝑆 =
𝑃

𝜌𝛾
. (6.47)

In other words, the entropy is used from the specified state for an inflow and from the
computed state for an outflow to specify the density. This fully specifies the boundary state
and the boundary flux is computed using a flux reconstruction.

6.3.4 Characteristic Projection

In Aero, three boundary conditions are applied through characteristic projection, which
involves a nonlinear solve to compute the boundary state appropriate for each boundary
condition. This boundary state is then computed using a flux reconstruction.

For a subsonic outflow specifying only backpressure, the left eigenvectors, 𝑆−1 for the
current boundary state are computed. The difference between the boundary state and the
computed state are then transformed to characteristic space,

𝛿𝑈̂ = 𝑆−1 (𝑈 − 𝑈𝑏) . (6.48)

The difference corresponding to the incoming eigenvalue is replaced by 𝑃 − 𝑃𝑠. A linear
system

𝑀𝛿𝑈 = −𝛿𝑈̃ , (6.49)

where 𝑀 is equivalent to the left eigenmatrix, except that the eigenvector corresponding
to the incoming eigenvalue is replaced by the Jacobian of the pressure with respect to the
boundary state, 𝜕𝑃/𝜕𝑈𝑏. The boundary state is subsequently updated by

𝑈𝑏 = 𝑈𝑏 + 𝛿𝑈, (6.50)

and the procedure is iterated until the 𝐿1 norm of 𝛿𝑈̃ is less than a specified tolerance.

For a subsonic inflow specifying velocity and temperature, the same procedure is followed.
A subsonic inflow has 𝑁𝑞−1 incoming eigenvalues. Values of 𝛿𝑈̃ corresponding to the first 𝑁𝑑

incoming eigenvalues are replaced by 𝑢𝑖 − 𝑢𝑠𝑖 and the corresponding rows in 𝑀 are replaced
by 𝜕𝑢𝑖/𝜕𝑈 . Similarly, the difference values and row corresponding to the next incoming
eigenvalue are replaced by 𝑇 − 𝑇𝑠 and 𝜕𝑇/𝜕𝑈 , respectively. For multicomponent flows, the
next 𝑁𝑠 − 1 values would also be specified.

For a subsonic inflow (pressure reservoir) specifying total pressure, total temperature,
and the flow direction, we again follow the same procedure. The incoming differences are
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replaced by 𝑃 0 − 𝑃 0
𝑠 , 𝑇 0 − 𝑇𝑠, 𝑢𝑣𝑡1 , and 𝑢𝑣𝑡2 , respectively. 𝑢𝑣𝑡 denotes the velocity tangent

to the specified velocity direction, not the velocity tangent to the boundary. The rows
corresponding to incoming eigenvalues are replaced by 𝜕𝑃 0/𝜕𝑈 , 𝜕𝑇 0/𝜕𝑈 , 𝜕𝑢𝑣𝑡1/𝜕𝑈 , and
𝜕𝑢𝑣𝑡2/𝜕𝑈 , respectively.

6.4 Supersonic Inflow

At a supersonic inflow, all inviscid quantities are directly specified and the equations are
not computed at the boundary nodes. However, the boundary fluxes are still computed for
post-processing.

6.4.1 𝑘-𝜔 turbulence model

At an inflow boundary, the turbulent kinetic energy is typically computed from an estimate
of the turbulence intensity, 𝑇𝑢

𝑘∞ =
3

2
(𝑇𝑢𝑈∞)2 (6.51)

Typically, 𝑇𝑢 ∼ 0.01. The symbol 𝑈∞ denotes the free stream flow speed. The turbulent
kinetic energy specific dissipation rate is specified as

𝜔∞ = 𝐶𝜇
𝜌∞𝑘∞
𝑟𝜇∞

(6.52)

where 𝑟𝑡 is the specified ratio of the turbulent viscosity to laminar viscosity, and 𝜇∞ is the
free stream value of the laminar viscosity. Typically, 𝑟 ∼ 0.1.

6.4.2 𝑘-𝜖 turbulence model

At an inflow boundary, the turbulent kinetic energy is typically computed from an estimate
of the turbulence intensity, 𝑇𝑢

𝑘∞ =
3

2
(𝑇𝑢𝑈∞)2 (6.53)

Typically, 𝑇𝑢 ∼ 0.01. The symbol 𝑈∞ denotes the free stream flow speed. The turbulent
energy dissipation rate is specified as

𝜖∞ = 𝐶𝜇
𝜌∞𝑘

2
∞

𝑟𝜇∞
(6.54)

where 𝑟𝑡 is the specified ratio of the turbulent viscosity to laminar viscosity, and 𝜇∞ is the
free stream value of the laminar viscosity. Typically, 𝑟 ∼ 0.1.
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6.4.3 Spalart-Allmaras turbulence model

At an inflow boundary, the working variable is set to a value computed from the incoming
values of the kinematic viscosity, namely

𝜈∞ = 4
𝜇∞

𝜌∞
(6.55)
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Chapter 7

Adaptivity

7.1 Error Indicators

Error indicators are used to mark the mesh for refinement or unrefinement. This section
describes the available error indicators in Aero.

7.1.1 Limiter

Limiters are active at shocks and in regions of high gradients where the mesh resolution
is insufficient. Both of these properties make the limiter values a good error indicator for
marking regions for refinement. One downside to using limiters as error indicators is that
they are noisy.

In Aero, an elemental error indicator is needed for refinement. First, for each node the
minimal value of the limiter is taken over all of the variables.

𝑒𝑖𝑛𝑜𝑑𝑎𝑙 = min
𝑈

(𝜑) (7.1)

For the elemental error indicator, a low value indicates low error and a high value indicates
high error. For the limiter-based error indicator, a lower limiter value indicates higher error
and the limiter is between zero and 1. Therefore, for the element error indicator, 1 - the
minimal limiter value over all nodes is used, i.e.,

𝑒𝑖𝑒𝑙𝑒𝑚𝑒𝑛𝑡 = 1 − min
𝑛𝑜𝑑𝑒𝑠

(𝑒𝑖𝑛𝑜𝑑𝑎𝑙) (7.2)

7.1.2 High Low Flux

One good measure of the discretization error is the difference between a low order discretiza-
tion and a higher order discretization of the inviscid flux. The nodal error indicator is a sum
over conserved variable flux differences.
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𝑒𝑖𝑛𝑜𝑑𝑎𝑙 =
∑︁
𝑗

1

𝑈 𝑗
𝑠𝑐𝑎𝑙𝑒

∫︁
𝜕Ω

(𝐹 (𝑈 𝑗
𝐻)𝐻𝑂 − 𝐹 (𝑈 𝑗

𝐻)𝐿𝑂) · ˆ⃗𝑛 𝑑𝐴 (7.3)

where j denotes the conserved variable indices and 𝑈 𝑗
𝑠𝑐𝑎𝑙𝑒 is a scale factor usually based

on the freestream quantities.

The elemental error indicator is simply the sum of the nodal error indicator over all of
the element’s nodes.

𝑒𝑖𝑒𝑙𝑒𝑚𝑒𝑛𝑡 =
∑︁
𝑛𝑜𝑑𝑒𝑠

(𝑒𝑖𝑛𝑜𝑑𝑎𝑙) (7.4)
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