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Outline

Programmatic motivation and objective

AM fundamentals & Science & Technology maturation activities

Material property investigation for 3-D DED printed 316L prototypes
e Summary
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Programmatic motivation and objective

* Sandia delivers innovative energy and defense product

and engineering systems with an ultimate material
assurance

 AM technology offers revolutionary potential for
building complex components that are impossible to
build using traditional technologies
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Fundamentals of DED & PBF AM printing

Direct energy deposition (DED)- Laser
engineered net shaping (LENS system)
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Powder bed fusion (PBF)
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Both LENS and PBF involve:

* Powder melting

* Molten metal fusion
* Molten metal solidification
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Science & Technology maturation activities

Enable

AM system engineering with ultimate material assurance

ASME 7-17-2016-Ny




~ NN
i SS 316L prototypes printed for R&D & prototyping studies

Today’s focus , :
-D AM material science R&D
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3-D LENS printing parameters and conditions used

Parameters Setting
Laser power ~360 W
Hatch space 0.016 in
Hatch angel 90°
Hatch shrink 0.005 in

Layer thickness 0.010in
Acceleration 6000 in/min

Gas-atomized SS 316L powders,
50um -150um in size
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Parameters
Laser on feed rate
Laser off feed rate

Contour feed rate

Contour number
Contour offset

Powder feed rate

Setting
30 in/min
90 in/min
50 in/min

1

Metal building hatch pattern

/ Hatch space
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Modulated interpass and flying feedstock powder deposition
commonly observed on 3-D LENS print surfaces

3-D LENS printing

SOT PCMLESRER R s uSe i L P R o
i 4 ; e d.'ﬁ@ e ” & Ve -
4 . v O. .“‘3}2.7‘#“ - ‘s.

. = I ~ . s ?hgwol.t :
& N ) : 2 %" %

-
.,
- 5 A o _a #%%50a 0

ASME 7-17-2016-Ny s Laboratories



. AN
The flying feedstock powders fused on free surfaces, top™

& sidewall, along interpasses or metal flow trails
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Surface finish of LENS prototype is less uniform and rougher
relative to those by mechanically machining
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Rz: 37.60 um (Average)
Rt: 58.54 um (Peak —valley)
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Mechanically
machined

Rz: 326.24 um (Average)
Rt: 418.07 um (Peak —valley)

3-D LENS printed
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Chemical etching reveals mesh-like landscape outlining the™

molten metal fusion interfaces of the SS 316L prototypes

Cross section cut

Vertical
interface at
molten metal
flow trails
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100X 400 ym

Horizontal
interface at
multi-layer
interpasses

3-D built direction
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‘ The molten metal fusion induced landscape varies with

print geometry & dimension depending on hatch pattern

Thin disc: Bulk cylinder 3-tier hexagon  Thin wall funnel
~ 4mm thick ~25mm thick Varying width ~1mm wide

3-D built direction
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3—D LENS-induced solidification cell morphology also varied with

geometry depending on hatch pattern and local thermal transport

| Thick wall
disc
EBSP show moderate 8T
preferred orientation

for each pass {\

D built direction

3

* High aspect ratio fine
cells with moderate
preferred orientation

* Interpass confines Cell
growth

rolling direction Phase: kon Gamma.cif
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Thin wall
hexagon

* High aspect ratio
coarse cells
* Cell grows randomly

Thin wall
funnel

High aspect ratio
coarse cell
Bimodal cell growth
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Mesh-like landscape contains interpass HAZ, well-fused metal
flow trails, and extremely fine solidification cell structure (<5um)
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1. lll-define mushy zone

Microstructural features in the
mesh-like landscape

3-D built direction

Interpass heat affected
zone (HAZ) induced by
reheating/remelting

3. Interface at
metal flow trail
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%nmelted powderinclusion, pore, and coarse recrystallized grain
may be part of HAZ depending on local thermal condition

Interpass
Taiok recrystallized
SR S R L, grains
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Interpass pore

ASME 7-17-2016-Ny



> W0
~ @ VA

Nuclear

HAZ with unmelted powders inclusions, pores and coarse
recrystallized grains also observed in the 3-tier hexagon

3-D LENS printed Interpass porosity
hexagon by UCD
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4 /; HAZ with coarse recrystallized grains commonly observed-=*

beneath the fused-on flying powders on the thin wall funnel

Cross

section
2” tall

3-D built direction
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> 3-D LENS hexagon exhibits greater harder but less unlfof'”Fﬁ"’”"‘"""‘”"”"“""”
Vickers microhardness solidification structure

C
2 LENS hexagon (STDEV~15)  Wrought 304L ( STDEV~9)
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Harder and less uniform in Vickers microhardness
attributed to the fine solldlflcatlon cell structure and
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~ 7 systematic decrease in hardness with distance from thel VATA%4

)

" substrate & part thinning attributed to cell coarsening ?

3-D built direction
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Summary

 The metallurgical characteristics of the 3-D LENS SS 316L is print

geometry/size/location dependent due to localized heat transport and
distribution.

* The systematic mesh-like HAZ, impacts the engineering property and behavior, and
possibly local environmental response to corrosion.

* The metallurgical evolution within the HAZ must be understood and controlled in
order to achieve a ultimate material assurance.

* Innovated 3-D LENS process optimization strategy, coupled with model simulation/
validation, is the key to control the physical metallurgy for building a reliable &
robust engineering system.

Funnel 2 1ith thin wall (<1mm)
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