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Abstract

Simulation of viscous three-dimensional fluid flow typically in-
volves a large number of unknowns. lVhen free surfaces are included,
the number of unknowns increases dramatically. Consequently, this
class of problem is an obvious application of parallel high perfor-
mance computing. Jve describe parallel computation of viscous, in-
compressible, free surface, Newtonian fluid flow problems that include
dynamic contact fines. The Ga.lerkin finite element method was used
to discretize the fully-coupled governing conservation equations and
a “pseudo-solid” mesh mapping approach was used to determine the
shape of the free surface. In this approach, the finite element mesh
is allowed to deform to satisfy quasi-static solid mechanics equations
subject to geometric or kinematic constraints on the boundaries. .$s a
result, nodal displacements must be included in the set of unknowns.
Other issues discussed are the proper constraints appearing along the
dynamic contact line in three dimensions.

Issues affecting efficient parallel simulations include problem de-
composition to equally distribute computational work among a SPMD
computer and determination of robust, scalable preconditioners for
the distributed matrix systems that must be solved. Solution contin-
uation strategies important for serial simulations have an enhanced
relevance in a parallel coquting environment due to the difficulty of
solving large scale systems.

Parallel computations will be demonstrated on an example taken
from the coating flow industry: flow in the vicinity of a slot coater
edge. This is a three d~mensional free surface problem possessing a
contact line that advzmces at the web speed in one region but tran-
sitions to static behavior in another region. As such, a significant
fraction of the computational time is devoted to @%cessing boundary
data. Discussion focusses on parallel speed ups for fixed problem size,
a class of problems of immediate practicaf importance.
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1 Introduction

Many durable goods and electronic devices in use today exploit material

features related to surface characteristics over parts of the product. Re-

gardless of whether these surface characteristics are of a decorative or truly
functional nature, the manufacture of these items begins with the applica-
tion of thin liquid layers over a large surface area of substrate. The desired
material features are obtained by controlling the shape and thickness of the
layers to produce a optimum surface characterization during a subsequent

curing or drying phase. Application of the fluid layers is often complicated
by a number of factors affecting the free surfaces bounding the fluid layer
that include fluid viscosity, gravity, surface tension, the liquid flow rate, the

substrate motion, and curing or drying rates. Although these factors are
well recognized, the techniques and procedures used in the manufacture of

these goods still rely heavily upon experience rather than a purely analyt-
ical design approach. Realistically, an analytical design approach is often

not feasible due to the large number of factors governing the fluid layer flow
and the manner in which competing interactions affect the flow. In recent
years there has been an increased interest in using a numerical modeling
approach to develop and optimize new product designs. The approach used
herein is to employ a finite element method for this class of numerical sim-
ulations. In particular, we employ the Sandia NTational Laboratories (S3-L)
finite-element computer code GOM.4 [1] for this purpose.

GOMA is a two-dimensional and three-dimensional finite element com-
puter program incorporating original algorithms that make it especially

suited for the analysis of certain manufacturing processes and free-surface
flows. The program includes a full-h-ewton coupling of heat, mass, momen-

tum, and pseudo-solid mesh motion algorithm that facilitates the simulation
of processes in which the bulk fluid transport is strongly coupled to inter-
racial physics, even when the coupling is only implicit. Capabilities of the
code are enhanced by its ability to treat not only fixed boundaries but
also free and moving boundaries, including boundaries moving with speci-
fied kinematics. These features make it suitable to the study of problems

in which the boundary position or boundary motion is a function of the

problem physics, geometrical design studies, and fluid-structure interaction
problems.

Numerical simulations o&viscous three-dimensional fluid flow typically
involve a large number of unknowns. When free surfaces are included, the

number of unknowns increases dramatically. Consequently, this class of

problem is a candidate for the application of parallel high performance com-

puting primarily because a larger number of compute nodes might allow one
to solve larger problems. In the past, the GOMA code has been used pri-
marily as a serial code but more recently we hav~dertaken the task of
carrying out a paraHel implementation of the code.
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Issues affecting efficient parallel simulations include problem decompo-
sition to equally distribute computational work among a SPMD computer

and determination of robust, scalable preconditioners for the distributed
matrix systems that must be solved. Solution continuation strategies im-
portant for serial simulations have an enhanced relevance in a parallel com-

puting environment due to the difficulty of solving large scale systems.

This paper describes some issues surrounding the use of the parallelized

GOMA code to analyze a nontrivial fluid flow problem. After presenting the
governing equations and the numerical method used in this analysis. The
model problem, an industrial slot coater flow including dynamic fluid/solid

contact lines, is described. Some aspects of the solution procedure are
presented along with a discussion on the appropriate boundary conditions
for free-surface flow problems. Finally we provide comparisons of results for
parallel simulations of the slot coater flow for various numbers of processors.
Parallel speedups for fixed problem size will be discussed.

2 Governing Equations

In addressing problems of coating flow we solve the equations for conserva-
tion of mass and conservation of momentum for the incompressible fluid

V.v=o (1)

a
P% = –p(v–vm)-Vv+g+VT (2)

along with the constitutive equation for a A-ewtonian fluid

T=/xD-pI and D = ;(VV + ~VT) (3)

where p is the fluid density, v is the fluid velocity, Vm is the mesh velocity, g
is the body force acting on the fluid, T is the total stress tensor in the fluid,
D is the rate-of-strain tensor, p is the fluid pressure, and I is the identity
tensor.

Capturing the motion and shape of the free surface is a difficult prob-
lem and there are a variety of%pproaches that can be used. In this work we
adopt a boundary-fitted or “pseudo-solid” mesh mapping approach. In this

technique the domain itself is modeled as a solid material capable of deform-
ing under the action of various boundary constraints that are translated into
suitable normal traction loads on the pseudo solid. The displacements of

this pseudo-solid material are obtained by solving the quasi-static equilib-
rium requirement for a solid material occupying the&4 entical domain as the
fluid,

V. T.+g. =0 (4)
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along with any convenient constitutive equation for the pseudo-solid, for

example,

T. = 2jJ.E + A.eI and E = ;(Vd + Vd~) (5)

where:

T. is the total stress pseudo-solid,

gs is the body force per unit volume acting on the pseudo-solid,

E is the small deformation strain tensor,

d is pseudo-solid displacement,

e is volumetric strain, and

p., AS are the Lame elastic coefficients.

Other constitutive equations for the pseudo-solid are possible, see [10].
Within the context of modelling the free-surface motion, application of

this technique amounts to applying normal tractions on the fixed geome-
try boundaries of the domain so that they remain at their initial positions
(though the mesh may slide tangentially along such boundaries) together
with normal tractions on the pseudo-solid that are derived from the essen-

tial physics at the as-yet undetermined interface location, in particular, the
kinematic constraint.

nf~-v=O (6)

establishes the interface as a material surface. Details of applying such
distinguishing conditions are in [2].

3 Numerical Method

Multiplying equations (1-2,4), by weighting functions, integrating over the

problem domain volume and applying conventional finite element method
discretizations we obtain the Galerkin FEM equations. .4 number of dif-
ferent element interpolations are available in GOMA but for the problem

studied here we employ eight%ode hexahedral elements. .4s in many FEM
applications the type of element used in the model is often dictated by a de-
sire to control the total number of unknowns. For the class of problem stud-
ied here the numerical model yields seven unknown variables per node, three
velocity components, three displacement components and the fluid pressure.

In our model we employ trilinear interpolations for each of the field variables.
This choice of elements violates the Ladysherzka, l%%uska & Brezzi (LBB)

stabiIity condition (see [3]) and so additional measures must be taken to
produce problem solutions. Here we use the Galerkin least-squares pressure
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stabilization technique of Droux & Hughes [5] to circumvent this difficulty.

This technique involves the adding a weighted momentum equation resid-

ual to the weak form of the continuity equation to introduce a stabilizing

diagonal into the system matrix. While convergent for creeping flows [4],

practical implementations of this stabilization technique neglect the small
higher order viscous stress terms with some slight mass balance error, de-

pending upon the amount of stabilization employed, the Reynolds number
and whether inflow and outflow boundaries are present. Those small errors
diminish with increased mesh refinement and are acceptable here until such
time as the preconditioners for iterative matrix solution of an LBB-based
system are sufficient to the task.

Parallel solution of GOMA problems is effected by statically decompos-
ing the finite element mesh using problem information to properly weight

the equivalent corresponding unstructured graph. The problem graph is
based largely on the mesh, but with vertex and edge weights apportioned
according to the computational load and communications overhead incurred
by placing the full multiphysics governing equations at each finite eIement
node. The objective of the graph partition is to divide the graph into a -
specified number of pieces of equal computational work with a minimum of
communications required when data must be exchanged between the proces-
sors that are responsible for each of the subdomains. Once the GOM.\ mul-
tiphysics problem description and the finite element mesh have been used to
construct the equivalent graph, we use Chaco 2.0 [6} to partition the graph.
While many options are available to select among the heuristic algorithms
implemented within Chaco, the problems here have been decomposed us-

ing an initial, inertial partion followed by a Iocal Kernighan-Lin refinement.
For the problem sizes presented here, the partition took less than a minute
and did not exceed 1 GB of physical memory. For much larger problems

running on 0(103) processors, it is possible that the memory requirements
to store and divide the original monolithic graph could exceed what is easily
available on a single processor. Our decomposition utility has not yet been
extended to run on a SPMD system which could handle the decomposition
of very large problem graphs, although such extensions to graph portioners
have been implemented [7].

Once the problem has been decomposed each subdomain treats its prob-
lem as if it were global in all but a few instances. During the course of the
Newton iteration and during The course of the iterative matrix solution the

unknown vector must be updated to include the latest estimates from ad-

jacent subdomains. Within GOMA, this communication is accomplished
using the MPI message-passing library [12] and by categorizing degrees of
freedom according to whether their associated finite element node is one of
three kinds:

+=
internal owned by this processor exclusively;



boundary owned by this processor, but needed as an external node by one

or more other processors;

external owned by another processor, but needed by this processor as an

external node.

MPI user-derived datatypes are used to conveniently access the needed data

structures, which remain static through the course of the calculation. V’ser-
defined datatypes are also used to facilitate the broadcast of a large reper-
toire of initialization information (over 550 distinct pieces, not counting
array multiplicities. )

The solution of a linear matrix system in G03LA running in parallel
entails the management of non-square systems that are both sparse, un-
symmetric and unstructured. A generalization of the modified sparse row
(MSR) format to distributed platforms is part of the Aztec matrix solver
package that GOM.4 employs. .4ztec provides a convenient means for de-

scribing distributed matrix systems as well as a wealth of preconditioners
and solvers that the user may activate depending on the problem. In ad-

dition, a block-based Variable Block Row (VBR) format is available within
Aztec that permits more efficient solution of problems with many degrees-
of-freedom per node [13].

By applying appropriate velocity, displacement, and traction boundary
conditions that depend on the problem being solved, these discretized equa-
tions comprise a set of nonlinear algebraic equations to be solved. l~ithin
GOMA the governing residual equations are solved using successive h:ewton-
Raphson iterations that update all of the unknowns simultaneously. A fully
analytic representation of all of the .Jacobian matrix entries provides for the
most robust convergence of this scheme, despite the computational overhead
of computing sensitivities with respect to mesh displacement unknowns.
The Aztec linear solver package is used to solve the linear systems at each
stage of the h-ewton iteration. In particular, for the example problem dis-
cussed here we employ a GMRES algorithm in conjunction with incomplete
LU (ILU) preconditioning.

4 Three-Dimensional Free-Surface Test Prob-

lem *

In this example problem we describe an application of GOMA’s three-
dimensional free surface modeling abilities to study fluid motion near the
terminal edge portion of a slot coating device. Slot coating devices are
widely used for applying thin films to long rolls of substrate material, e.g.

photographic films or adhesive. The devices often consist of of a long, nar-
row fluid feed slot with its exit a short distance @?.ky from the substrate
to be coated. The substrate moves past the exit of the feed slot perpen-

dicular to the slot’s long dimension. Fluid injected through the feed slot is
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entrained by the moving substrate eventually becoming a
the substrate.

Because the length of the feed slot perpendicular to
substrate motion is usually much greater than its width in

thin coating on

the direction of
the direction of

substrate motion this process is often modeled as a two-dimensional prob-
lem. Most interest lies in the behavior of the bulk film layer overlying a
large area of substrate, where the two-dimensional approximation is valid.

Nonetheless, the coating flow in the vicinity of the feed slot edge can play
an important role in determining the quality of the final film coating. ~-ear
this edge there exists a complicated three-dimensional free-surface fluid flow
with b~th static and dynamic contact lines, where the fluid exits the slot

and where the fluid impinges the web, respectively. G03LI is unique in its
ability to contend with problems of this nature and the slot coater edge flow
provides a setting in which these capabilities can be demonstrated.
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Figure 1: SIot coater edge flow geometry.

I

A representative geometry for the slot coater device is shown in Fig-
ure 1. This geometry was created and meshed using the SA”L three-dimensional
meshing tool, CUBIT [9]. Depicted is the initial undeformed geometry prior

to solving for the shape of the free surface. The g-e%rnetry represents only
the region near the end of the sIot coater. The rest of the assumed variation

along the slot coater would join with the edge geometry on the plane labelled
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“Symmetry” where it is assumed variation along the slot coater’s length, in

this case the x-axis, are zero. Coating fluid enters the domain at the “inlet”

region, travels clown the slot and exits onto the substrate. Note that the
end of the slot does not represent the beginning of the free surface. Instead
there is a flat region, perpendicular to the slot which separates its exit from

the free surface. This region represents the portion of the confining, exterior
walls of the slot itself that are in contact with the fluid. On the outer edges

of this region the fluid is assumed to adhere on a static contact line that is
fixed in space. The underside of the geometry represents the region where
the moving substrate contacts the coating flow. The substrate is moving in
the negative z direction only. The substrate is not modeled explicitly but

its presence is manifest via the velocity boundary conditions it imposes on
the coating fluid. The dynamic contact line is labeled in Figure 1 and is the

curve where the fluid, the moving substrate, and the surrounding gas phase
all meet.

.klong a small narrow region of the flow adjacent to the contact line and

surrounding the large area where the fluid contacts the moving substrate.
the no-slip condition between web and fluid is not so strongly enforced. A
Navier slip condition is used to allow the velocity field to transition from
conditions imposed by the wetting line physics to the substrate speed.

These wetting line velocity conditions have been discussed elsewhere [11].
Briefly, it is assumed that the wetting line physics impose the requirement

that the velocity of fluid at the contact line is everyw-here tangent to the
contact line. Thus, if ncl is a unit vector normal to the contact line in the
plane of the substrate and tcl is a unit vector tangent to the contact line in
the same plane, then the two conditions imposed are,

ncl. v=O, and tc] v = tcl.VW (7)
.4n essential condition on the vertical velocity component (VY) is used to im-
pose impenetrability at the contact line. A fixed contact angle was applied
at the contact line. The angle is determined from the relation

nw . nf~ = cos d~ (8)

The static Contact angle, 0,, was set to 11.47°, which was the initial contact

angle occurring in the meshing solid model. A more complicated model for
the dynamic contact angle which allows the contact angle to vary depending
upon the local rate at which the contact line advances in its normal direction
along the substrate is discussed in [11]. Over the remainder of the free

surface the kinematic constraint,

nf~. v=O

was imposed as noted above. Surface tension forc~were
the fluid momentum equations applied to the free surface,

~ambient – %% : Tlfluid = zm~,

(9)

also included in
viz. ,

(lo)
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where

. pambi~nt is the ambient gas pressure,

● v is the surface tension at the i3uid/air interface,

● 2’H is the mean curvature of the surface.

In this simulation the shear stress contributions in the gas phase are ne-

glected, consistent with the low viscosity and density, while the ambient
pressure pa~bien~ is taken as constant throughout the domain, though this
latter condition is by no means a necessary one.

In general, except for the nodes on the free surface, all other nodes were
fixed at their original positions. This was relaxed somewhat in the case of
the substrate plane and the exit plane where the nodes were permitted
to move within their initial plane but not normal to it. This allowed for
appropriate deformation of the free surface and the dynamic contact line.

5 Analysis and Discussion

The finite element discretization model containing roughly 50,000 unknowns

of the slot coater test problem previously described was created using the
CUBIT utility. This model was in turn used to generate the submodel
decompositions required for parallel processing. The slot coater problem was
analyzed using 1, 2, 4, 8, 16 and 32 processes on the ASCI Red Teraflops
computer at SNL. Reconstructed results indicate that the solutions from
each of the analysis were indistinguishable.
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Figure 2: Speedup VS. number of processors for the slot coater test problem.
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For this fixed problem size, a plot of speedup versus number of proces-

sors for these analyses is shown in Figure 2. Recall that the speedup on n
processors, Sn, is defined simply as the ratio of the time taken to complete
the simulation on a single processor, T1, to the time taken to complete the
simulation on many processors, T~, neglecting the time taken to decompose
and recompose the monolithic problem, which is small in any event,

(11)

The speedup, S~, will typically increase with the number of processors,
linearly in an ideal situation, depending on the algorithm and the commu-

nications overhead. .4 linear increase in S~ is equivalent to obtaining perfect
paralle~ eficiency, En, defined as

s.
En=—

715’1 ‘
(12)

which will be unity if the problem scales linearly.

From Figure 2 we find that less than linear speedup is obtained for the
analyses performed. Reasonable speedup was obtained in going from one to
up to 16 processors with the 32 processor result showing no speeclup at all

beyond 16 processors.
.4s in most parallel problems we expect that the best speedup is ob-

tained when a large amount of the time on each processor is spent doing
calculation rather than communicating with other processors or spent idling
due to an imbalanced workload.

There are many ways to characterize the ratio of communication time
to computation time, where the former may include message start-up costs
as well as costs proportional to message length.

As a rough estimate of the relative cost of communication to compu-

tation we have plotted the normalized ratio of degrees of freedom owned
by the processor (owned DOF) versus degrees of freedom communicated

between processors (comm DOF) in Figure 3.

Ninternal + Nbounclary
T,-- = (13)

~bound.,~ + l~externai

Using the information from Fi~ures 2 and 3 we can conclude that the parallel
efficiency remains above 50% until n x 16 and TCCx 1.

We note that while the same types of trends can be observed in other
classes of problems it is difficult to arrive at universally optimal Tcc ratios.
In a context of the GOMA code this issue becomes clouded since the code

deals with multiphysics problems and it is entirely, possible that different
processors will be solving different governing equat%%s.

The most important underlying factor that contributes to a loss of
parallel efficiency as the number of processors increases is shown in Table 1.
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test problem.

h-umber of Processors

1121418116132
Number of iterations 150 I 142 I 165 I 180 I 216 I 410

Table 1: Linear solve iterations for various number of processors.

Here we find that the number of iterations required to solve the linear system
at each Newton iteration increases with the number of processors. Basically,
the more finely decomposed the global problem becomes,
convergence becomes for a simple additive Schwarz scheme

6 Summary

the slower the
[14].

The parallel GOLIA code has been used to analyze a free-surface incom-

pressible flow problem. Base~ upon the preliminary scaling analyses per-
formed here the usefulness of the parallel GOMA code has been demon-

strated for problems run on up to about 8 processors, with the useful num-
ber of processors likely growing as the problem size increases beyond the

50,000 degrees of freedom in this case study. Significantly hampering the
use of many processors for this class of problem is the concomitant growth
in the number of iterations required to solve the lit?%r system of equations
at each Newton iteration. In future work we expect to reduce the iteration

count by exploring optional overlapping preconditioners available in Aztec



and, possibly, multilevel methods.
Practically, the parallel version of GOMA will provide a tool for study-

ing much larger problems than previously addressed and should also prove

useful for developing designs in which fully three-dimensional analysis of
the flow is required due to the decreased turnaround time for analysis.
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