
LLNL-TR-739012

Milestone Completion Report STCO04-1
AAPS: engagements with code teams,
vendors, collaborators, developers

E. W. Draeger

September 27, 2017

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

	

 1

Milestone Completion Report

1.3.8.04 ATDM LLNL AAPS Engagements

STCO04-1 AAPS: engagements with code teams, vendors,
collaborators, developers

Erik W. Draeger

Lawrence Livermore National Laboratory

September 30, 2017

	

 2

EXECUTIVE SUMMARY

The Advanced Architecture and Portability Specialists team (AAPS) worked with a select set of LLNL
application teams to develop and/or implement a portability strategy for next-generation architectures.
The team also investigated new and updated programming models and helped develop programming
abstractions targeting maintainability and performance portability. Significant progress was made on
both fronts in FY17, resulting in multiple applications being significantly more prepared for the next-
generation machines than before.

	

 3

1. INTRODUCTION

The Advanced Architecture and Portability Specialists team (AAPS) at LLNL was formed to help
facilitate the transfer and dissemination of hands-on advanced architecture expertise to code teams across
ASC. Rather than relying upon each code team to independently stay abreast of the latest developments in
architecture, programming models and kernel optimization needed to make efficient use of new hardware,
ASC code developers have access to an agile labor pool of computational scientists and computer
scientists skilled in scaling applications on new, cutting-edge hardware. The team shares knowledge
through a code repository and wiki as well as seminars, hackathons, and publications. The team includes
specialists in key areas such as GPGPU programming, many-core programming, I/O, and parallel
application development.

2. MILESTONE OVERVIEW

The AAPS team will work with select LLNL application teams to evaluate their codes, help to develop a
portability strategy for next-generation architectures and help implement the chosen strategy. For FY17,
the target application teams are the Ares multiphysics hydrodynamics code, deterministic transport codes
Teton and ARDRA, and the MSlib EOS package. The team will also investigate new and updated
programming models and will develop programming abstractions targeting maintainability and
performance portability. Lastly, the team will perform co-design activities by developing and evaluating
proxy applications in collaboration with vendors.

Milestone execution plan:

• Assist Ares team in their refactoring effort to target heterogeneous architectures using RAJA with
Unified Memory. Work with RAJA developers to improve performance and robustness of
performance-critical operations, e.g. reductions. Evaluate performance on early-access Sierra
hardware and optimize Unified Memory performance where possible.

• Work with deterministic transport team to identify and implement portability strategy for Fortran
code Teton. Collaborate with Nvidia to implement and compare OpenMP, OpenACC and CUDA
performance for key kernels. Apply nested-loop RAJA constructs developed within Kripke
proxy application to full ARDRA code.

• Assist MSlib team in profiling code and developing a refactoring strategy for heterogeneous
architectures. Initial performance assessments will be carried out on Sierra early-access hardware.
Different algorithms will be tested in a simplified proxy application to measure the extent to
which existing code structure can be maintained.

• As limitations in the existing model are identified, the team will work with RAJA developers to
extend the programming model to better support application needs. The CHAI interface will
continue to be developed to simplify and automate data locality and movement within
heterogeneous environments. Regular interactions with vendors will continue to identify
bottlenecks and limitations in hardware and programming models/compilers.

	

 4

3. TECHNICAL WORK SCOPE, APPROACH, RESULTS

In FY17, AAPS worked with the ARES code team to help implement their unified memory porting
strategy. Team members worked to provide RAJA support and developed better error handling and
unified reductions. Interoperability issues surrounding OpenMP 3, OpenMP 4.5, MPI, CUDA and RAJA
were also explored and detailed performance analysis performed, working with tool developers in some
cases to get access to alpha versions for tools not yet available on the Minksy architecture. An AAPS
team member found a critical build error that was preventing compilation on early access Minksy nodes.
Clang compiler plugins were developed to detect and warn on otherwise opaque RAJA and ARES
implementation errors to speed development and limit debugging, as code developers are able to encode
expert knowledge into the build process to inform future programmers of best practices through clear
compiler warnings rather than obscure template compilation errors or run-time faults. These plugins were
developed to be easily distributed and have already been extended to other codes, including ALE3D and
ARDRA. AAPS worked in collaboration with the ATDM ProTools team to integrate the newly-
developed Umpire hierarchical memory abstraction into Ares. All Ares allocations are now made through
Umpire, including a device memory pool hidden behind the Umpire interface.

AAPS also assisted the deterministic transport codes ARDRA and Teton to help develop and implement
porting strategy. For ARDRA, we continued to develop and improve the nested loop abstraction within
RAJA, ultimately developing a new C++ 11 metaprogramming library CAMP that supports more
compilers (including nvcc) than existing capabilities. AAPS contributed significantly to a major
refactoring of the ARDRA code to make use of RAJA and CHAI. This required modification of the data
structures throughout the code and modifying all loops to be compatible with the RAJA nested-loop
construct, as well as rewriting the large problem setup portion of the code to consolidate and
compartmentalize the data allocation and re-allocation. For Teton, we worked in coordination with
Nvidia and IBM to resolve compiler and programming model (CUDA Fortran and OpenMP 4.5)
interoperability issues between KULL (C++) and Teton (Fortran) on the early access Minsky nodes, then
helped devise and begin implementing a strategy for parallelism and data movement. New GPU kernels
have been integrated into the Teton mainline branch, including a non-linear solve kernel that yields a 3x
speedup.

The AAPS team continues to work with code teams devise a heterogeneous architecture strategy for
physics packages used by multiphysics applications. Working with the MSlib team and Nvidia and IBM
vendor representatives, the team ported multiple versions of MSlib to use OpenMP 4.5 on the Minsky
nodes in order to evaluate the performance and identify the current suitability of OpenMP 4.5 as a
portable programming model. Numerous compiler and OpenMP 4.5 bugs were identified and reported to
IBM, and initial profiling helped identify several kernels that can be optimized for improved performance.
The team also completed development of the Cheetah proxy application Cheep. In addition to serving as
a proxy app, Cheep will allow prototyping and evaluation of major refactoring strategies for several
different single-physics applications to determine the extent to which the existing code base can be
preserved and estimate performance tradeoffs associated with different approaches.

	

 5

4. CONCLUSIONS AND FUTURE WORK

The AAPS model of multi-team engagements continues to prove successful. In addition to providing
expertise and effort to code teams to help prepare them for new architectures, the team is gaining valuable
experience in real-world multiphysics use cases and issues. The team is also closely involved with the
development of the RAJA, CHAI and Umpire programming and data abstractions used to help large
codes achieve maintainable portability. This combination is proving highly valuable to code teams and
the broader ECP community.

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of
the U.S. Department of Energy Office of Science and the National Nuclear Security Administration. This
work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

