

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-TR-739131

2011.2 Revision of the Evaluated Nuclear Data Library (ENDL2011.2)

B. Beck, M. A. Descalles, C. Mattoon, E.
Jurgenson, I. Thompson

September 28, 2017

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

2011.2 Revision of the Evaluated Nuclear Data Library (ENDL2011.2)

B. Beck, M.-A. Descalle, C. Mattoon, E. Jurgenson, and I. J. Thompson
Lawrence Livermore National Laboratory, Livermore California 94551
(Dated: February 6, 2016)

LLNL's Computational Nuclear Physics Group and Nuclear Theory and Modeling Group have collaborated to create the 2011.2 revised release of the Evaluated Nuclear Data Library (ENDL2011.2). ENDL2011.2 is designed to support LLNL's current and future nuclear data needs and will be employed in nuclear reactor, nuclear security and stockpile stewardship simulations with ASC codes. This database is currently the most complete nuclear database for Monte Carlo and deterministic transport of neutrons and charged particles. This library was assembled with strong support from the ASC PEM and Attribution programs, leveraged with support from Campaign 4 and the DOE/Office of Science's US Nuclear Data Program. This document lists the revisions made in ENDL2011.2 compared with the data existing in the original ENDL2011.0 release and the ENDL2011.1-rc4 release candidate of April 2015. These changes are made in parallel with some similar revisions for ENDL2009.2.

Contents

I. Introduction	2	21. ND-43: Missing $I=3,4$ files for $yo \geq 2$ and $C=40-45$	5
II. Modifications for ENDL2011.1, rc4	2	22. ND-46: missing reaction $^7\text{Be}(n,p)^7\text{Li}^*$ to the $1/2^-$ excited state	5
1. ND-3: Temperature dependent data errors	2	23. ND-50: $t(n,2n)d$ cross section reduced significantly in the ENDF-B/VII.1 evaluation	5
2. ND-4: too many data points in some deuteron cross sections	2	24. ND-52: missing particle angular distributions in ^{19}F	5
3. ND-6: $n+^1\text{H}$ elastic and capture cross section do not sum to total cross section	2	25. ND-60: too much energy in $d \rightarrow n+p$ breakup on protons and α -particles	5
4. ND-11: $t(d,n)\alpha$ angular distribution has a spike a single energy and angle	2	26. ND-61: wrong normalization of elastic distributions for charged-particle scattering	5
5. ND-15: ascii data in release does not match processed data	2	27. ND-62: need consistent $S_{\alpha\beta}$ nuclear data	5
6. ND-17: Unresolved Resonance Region (URR) data removed	2	28. ND-63: missing recoil α particles from ^8Be decay	6
7. ND-18: <code>endep</code> changes to gamma C55 files not in released ascii data	3	III. Modifications for ENDL2011.2	6
8. ND-22: $\text{He}^3(t,t)$ reaction unphysical at low energies	3	IV. Outlook	6
9. ND-26: Some distributions are missing $I=3$ data	3	Acknowledgements	6
10. ND-29: $U^{239}(n,\gamma)$ has poor resonance region	3	A. Known Issues	6
11. ND-30: ^{10}Be evaluation missing	3	1. ND-47: the ^7Be evaluation ends at 8.1 MeV	6
12. ND-31: wrong ^{27}Al evaluation	3	2. ND-63b: multiplicity of recoil α particles from ^8Be decay	6
13. ND-33: errors in gamma multiplicities.	4	3. ND-65: <code>endep</code> should not generate files for decays of isomer states	6
14. ND-36: move all $C=21$ files to $C=20$ when $C=20$ does not exist	4	4. ND-66 Erroneous cross section for $^7\text{Li}(t,n)^9\text{Be}(\text{gs})$ reaction	7
15. ND-37: separate $^{241}\text{Am}(n,\gamma)$ cross section to ground and isomer state in ^{242}Am	4	B. Detailed Test Results	8
16. ND-38: separate $^{45}\text{Sc}(n,\gamma)$ cross section to ground and isomer state in ^{46}Sc	4	C. Release Checklist	12
17. ND-39: EGDL fluorescence data missing	4	D. The README file	14
18. ND-40: Maxwellian averaged cross section $I=80,81,84,89,90,91,92$ for charged particle libraries	4	E. Changes between ENDL2009.2 and ENDL2011.2 for incident neutrons	14
19. ND-41: thresholds for some $I=0$ files higher than other I values	4		17
20. ND-42: no distributions for the α particles after the decay of ^8Be	4		

I. INTRODUCTION

LLNL's Computational Nuclear Physics Group and Nuclear Theory and Modeling Group have collaborated to produce the next iteration of LLNL's evaluated nuclear database ENDL2011. ENDL2011 is the second in a series of major ENDL library releases designed to support LLNL's current and future nuclear data needs. This library contains many new evaluations for radiochemical diagnostics (part of a Campaign 4 L2 milestone), structural materials (part of an ASC Attribution L2 milestone), and thermonuclear reactions (to support NIF diagnostics). In addition, we have striven to keep ENDL2011 at the leading edge of nuclear data library development by reviewing and incorporating new evaluations as they are made available to the nuclear data community. This release is our most highly tested release as we have strengthened our already rigorous testing regime by adding tests against LANL Activation Ratio Measurements and many more new critical assemblies. Our testing is now being incorporated into our development process and is serving to guide library improvements.

The new library can be found on LLNL's Open & Secure Computing facilities. In addition, the data will soon be made available in the Nuclear and Atomic Data System (NADS) data viewer at <http://nuclear.llnl.gov/NADS>.

II. MODIFICATIONS FOR ENDL2011.1, RC4

These are listed according to the ND keys used on the JIRA database at <https://lc.llnl.gov/jira/browse/ND/fixforversion/10807>.

1. ND-3: Temperature dependent data errors

A bug was found in `ndfgen` which caused arrays going out of bounds when processing entire library. This was not an issue with unheated data as they were built one isotope at a time and then merged together.

2. ND-4: too many data points in some deuteron cross sections

The cross section data for reactions $d(d,n)h$, $d(d,p)t$, $d(t,n)$ and $d(t,\gamma n\alpha)$ may have too many points. Using the fudge thinning routine, the number of points in these data sets can be reduced from over 5000 to just over 100, while keeping within a specified accuracy of 0.1%.

Repository revisions 867, 868.

3. ND-6: $n+^1H$ elastic and capture cross section do not sum to total cross section

At low energies below 10 keV, the sum of capture and elastic $n+^1H$ cross sections differed by more than 0.1% from the total cross section given in the evaluation. This problem was found to occur when using `prepro` (SIGMA1) to heat the cross sections to room temperature. When the heating was performed using `FUDGE`, the sum of the partial cross sections matched the total cross sections. We therefore reimported the ENDF evaluation into GND using `FUDGE`, heated the cross sections to room temperature, and used these cross sections to replaced the `prepro` generated cross sections.

The three $yo=I=s=0$ files for $C=1$, 10 and 46 have been updated.

Repository revisions 920, 921, 924, 925.

4. ND-11: $t(d,n)\alpha$ angular distribution has a spike a single energy and angle

The $t(d,n)\alpha$ angular distribution, in file `yi03/za001003/yo01c11i001s000`, for an incident energy of 0.85 MeV there is a spike at outgoing angle $\mu = \cos\theta = 0.96111$ that erroneously increased the angular probability distribution by 0.2 at that one angle. We have replaced that angle's value with mean value of points either side of the spike.

Repository revision 901.

5. ND-15: ascii data in release does not match processed data

In the `endl_official/endl2009.0` directory containing the official release of ENDL2009.0, it was discovered that the `ascii` data did not match the process data found in the `ndf` and `mcf` files. This was evident in the fact that we were unable to process the `ascii` data without crashing the `ndfgen` and `mcfgen`. During the build process, changes must have occurred to the `ascii` data in order to process it, which were not checked into the `svn` repository, and did not make it into the `endl_official` release directory. Care was taken in this new ENDL2009.1 release to keep the `ascii` data in sync with what was processed and released into the `endl_official` directory.

6. ND-17: Unresolved Resonance Region (URR) data removed

For this release the URR $I=20$ data were removed. Due to changes in `NJOY` formatting, these data could not be processed and was therefore removed from the release to keep the `ascii` data in sync with what was processed.

Repository revision 813.

7. ND-18: endep changes to gamma C55 files not in released ascii data

When ENDL2008.2 was processed, `endepC++` (the code that calculates the average energy deposition from the distribution data) did not worry about energy balance. When ENDL2009.0 was processed, `endepC++` (via the `-rescale_c5x_cs` option which is true by default) attempted to balance energy by rescaling the C55 data. That is, if there is too much (little) outgoing energy, the C55 gamma multiplicity is effectively lowered (raised). Changes to C55 data were not checked into svn repository and therefore C55 ascii data did not match processed data.

The reason the rescaled C55 data was not checked into the repo, is that the ENDLBUILDER scripts processed the data in a `tmp` directory, and as part of the build process it ran `endep`. The data were rescaled in the `tmp` directory, but not in the original ascii directory, and therefore this change was lost. We modified the ENDLBUILDER scripts to run `endep` manually first on the ascii data (with the rescaling option) and then process the data afterwards, giving the flag to skip the `endep` stage as it is already done. This way the rescaling happens in the ascii directory and the changes can be saved.

Repository revision 822.

8. ND-22: He3(t,t) reaction unphysical at low energies

The ENDL2011.0 cross section for He3(t,t) was seen to be very large at low energies compared to ENDL2009.0. Investigation showed that the ENDL2009.0 evaluation was obtained from $t(^3\text{He}, ^3\text{He})$ using inverse kinematics, whereas the ENDL2011.0 evaluation was from G. Hale evaluation obtained during R-Matrix fit of ^6Li . Unfortunately, the G. Hale result was unphysical at low energies. Since this was not a main focus of his R-Matrix evaluation but only a by-product, we therefore disregard this cross section. Hence we replaced the $t(^3\text{He}, ^3\text{He})$ cross section in ENDL2011.1 with that from ENDL2009.0.

Repository revision 866.

9. ND-26: Some distributions are missing I=3 data

Whenever there are more than 2 bodies possible in the final state, then $I=1$ angular data has to be supplemented by $I=3$ or $I=4$ double-differential cross section data, not least to enable the processing code to determine that such reactions are not two-body reactions, but have energy distributions in the final state.

ENDF has to be only complete for neutrons, while ENDL need outgoing distributions for all tracked particles (n,p,d,t,h,a,g). In the earlier making of ENDL2011.1, missing distributions not found in ENDF with distributions found from other evaluations were swapped in, or

we made them ourselves from TALYS. It appears this was done incorrectly in some cases, as only the $I=1$ data was included, not the double-differential data.

Our remedy is to find the needed double-differential data from either the original source, or some other plausible evaluation. This affects many targets, principally Ag07, Ar38, Ar40, Au97, Ba30, Ba32, Ba34, Ba35, Ba36, Ba37, Ba38, Ba40, Br79, Br81, Cd06, Cd08, Cd10, Cd11, Cd12, Cd13, Cd14, Cd16, Ce40, Ce41, Ce42, Ce44, Cr50, Cs34, Cs35, Cs36, Cs37, Cu63, Cu65, Er62, Er64, Er66, Er67, Er68, Er70, Eu51, Eu52, Eu53, Eu54, Eu55, Eu56, F19, Fe54, Fe56, Ga69, Ga71, Gd52, Gd53, Gd55, Gd57, Hg00, Hg01, Hg02, Hg04, Hg96, Hg98, Hg99, I29, I31, I35, In13, In15, K39, K40, K41, Kr80, Kr82, Kr83, Kr84, Kr86, La38, La39, Lu75, Lu76, Mg24, Mg25, Mg26, Mn55, Mo00, Mo92, Mo94, Mo95, Mo96, Mo97, Mo98, Mo99, Na22, Nb93, Nb94, Nb95, Nd43, Nd45, Ni58, Ni59, Ni60, Ni62, Ni64, P31, Pd02, Pd07, Pm47, Pm48, Pm49, Pr43, Rb85, Rb87, Rh05, Ru00, Ru02, Ru03, Ru04, Ru05, Ru06, Ru96, Ru98, Ru99, S32, S33, S34, S36, Sb21, Sb23, Sb24, Sb25, Se74, Se76, Se77, Se78, Se79, Se80, Se82, Si28, Sm47, Sm49, Sn12, Sn14, Sn15, Sn16, Sn17, Sn18, Sn19, Sn20, Sn22n+Sn23, Sn24, Sn26, Sr86, Sr87, Sr88, Sr89, Sr90, Tb59, Te20, Te22, Te23, Te24, Te25, Te26, Te28, Te30, Ti46, Ti47, Ti48, Ti49, Ti50, Xe26, Xe28, Xe29, Xe30, Xe32, Xe33, Xe34, Xe35, Xe36, Y91, Yb74, Zr91, Zr92, Zr93, Zr94, Zr95 and Zr96 (where only the modulo 100 A numbers are shown).

Repository revisions 888–895, 914, 934–936, 938.

10. ND-29: U239(n, γ) has poor resonance region

The resonance region for U239(n, γ) does not go down to low enough energy. Dave Brown worked on the resonance region after the ENDL2011.0 release, for the ENDF-B/VII.1 release. We have further updated the evaluation, to the ENDF-B/VII.2 version, for the ENDL2011.1 release.

Repository revisions 870, 930.

11. ND-30: ^{10}Be evaluation missing

The ENDL2011.0 evaluation included a new ^{11}Be evaluation, but missed ^{10}Be . Some ^{10}Be evaluated data was found for ROSFOND (for activation only), and for TENDL. We therefore created a new merged evaluation using estimates from ROSFOND along with the TALYS results in TENDL2013.

Repository revisions 875, 907, 984, 991.

12. ND-31: wrong ^{27}Al evaluation

The wrong evaluation was used for ENDL2011.0. This evaluations should have been the same as ENDL2009.0, namely the ENDF/B-VII.0 evaluation. Somehow it got

changed to that from the TALYS calculations of Thompson and Summers, but this was rejected for use in ENDL2009.0. The poor ^{27}Al (n,α) cross section for ENDL2011 is the main problem with those calculations. So for ENDL2011.1 we used again the entire evaluation from ENDL2009.0.

Repository revisions 858, 862, 864.

13. ND-33: errors in gamma multiplicities.

The gamma multiplicities ($yo=7$, $I=9$ data) have changed for many files between ENDL2009.0 and ENDL2011.0, but the source ENDF evaluation has not changed. This appears to be a problem with the `fete` translation from ENDF to ENDL format, as all the $I=9$ files have only unit multiplicities. For ENDL2011.1, we therefore retranslated these files using revision 2220 of `fete`, instead of the more recent revision 2461 used first for ENDL2011.0.

Repository revisions 869, 871, 876.

14. ND-36: move all $C=21$ files to $C=20$ when $C=20$ does not exist

ENDL has both $C=20$ and $C=21$, to describe the (n,np) and (n,pn) channels respectively, but ENDF only has the sum of both of these channels. Most Hauser-Feshbach codes only calculate the sum. When we have the sum both channels, sometimes this has been put in $C=20$ and sometimes in $C=21$. We now decide put the sum in $C=20$ for uniformity across our databases.

Repository revision 827.

15. ND-37: separate $^{241}\text{Am}(n,\gamma)$ cross section to ground and isomer state in ^{242}Am

In translating $n+^{241}\text{Am}$ evaluation from ENDF/B-VII.0, the (n,γ) $C=46$ cross section was given as the sum of the cross sections to the ground and isomer states in ^{242}Am . The branching to the ground and isomer states was given elsewhere (MT8), and this was not translated by `fete`.

ENDL format has support for cross sections to final isomer states, so a fix was applied by hand to put in two levels in $C=46$ file, corresponding to ground and isomer final states of ^{242}Am respectively. The sum of these two cross sections is what was in ENDL2009.0 and ENDL2011.0. The branching ratio was obtained from ENDF/B-VII.0. The spectra and multiplicities, also from ENDF/B-VII.0, were assumed the same for both levels.

Repository revision 969.

16. ND-38: separate $^{45}\text{Sc}(n,\gamma)$ cross section to ground and isomer state in ^{46}Sc

In translating $n+^{45}\text{Sc}$ evaluation from ENDF/B-VII.0, the (n,γ) $C=46$ cross section was given as the sum of the cross sections to the ground and isomer states in ^{46}Sc . The branching to the ground and isomer states was given elsewhere (MT8), and this was not translated by `fete`.

ENDL format has support for cross sections to final isomer states, so a fix was applied by hand to put in two levels in $C=46$ file, corresponding to ground and isomer final states of ^{46}Sc respectively. The sum of these two cross sections is what was in ENDL2009.0 and ENDL2011.0. The branching ratio was obtained from JEFF 3.1. The spectra and multiplicities, also from JEFF 3.1, were assumed the same for both levels.

Repository revision 969.

17. ND-39: EGDL fluorescence data missing

The nuclear fluorescence data from EGDL, which resides in the $I=30,32$ files for incident gammas, was present in ENDL2008.2 release, but was erroneously not in the ENDL2011.0 release. This data has been included in the ENDL2011.1 release.

Repository revision 817, 948, 951.

18. ND-40: Maxwellian averaged cross section $I=80,81,84,89,90,91,92$ for charged particle libraries

These files have been removed from the library as they are redundant.

Repository revision 945.

19. ND-41: thresholds for some $I=0$ files higher than other I values

`mcfgen` gives errors for the following reactions in ENDL2011, where the thresholds for some $I=0$ files higher than other I values. Our remedy was to increase first $I=4,9$ energy points to that of $I=0$ file, in the problematic nuclides.

Repository version 879–884.

20. ND-42: no distributions for the α particles after the decay of ^8Be

For the reactions $n+^{10}\text{Be} \rightarrow 3n + ^8\text{Be}$ and $n+^{11}\text{Be} \rightarrow 4n + ^8\text{Be}$, the ^8Be residual would not normally be tracked. In `mcfgen` however, the ^8Be (since it is unstable) is replaced with 2 α particles. Since the α is a tracked particle, if there is no distribution given for the alpha particle, it would return a null pointer and crash mercury. We therefore included an α distribution

for the ${}^8\text{Be}$ residual, along the lines which exist already for the $\text{n}+{}^9\text{Be} \rightarrow 2\text{n} + {}^8\text{Be}$. The energy thresholds and Q -values were changed, as based on the assumption of a pure compound nucleus decay mechanism. We produced both $\text{yo}=6$ and $\text{yo}=16$ for the ‘direct’ and ‘recoil’ α particles respectively.

Repository versions 896, 897, 906 for ${}^{10}\text{Be}$, and 932, 933 for ${}^{11}\text{Be}$.

21. ND-43: Missing $I=3,4$ files for $\text{yo} \geq 2$ and $\text{C}=40\text{--}45$

We discovered that many $I=3,4$ files, for incident neutrons and charged-particle products, namely the reactions $\text{C}=40\text{--}45$. These are the files with the double-differential angle and energy distributions, which do not exist for charged particles in ENDF evaluations.

We therefore copied these, where available, from JEFF-3.1.1 or TENDL-2013. Not all the needed files were found, however, but the files are definitely needed in ENDL to distinguish these from purely two-body exit channels. The number of missing files was significantly reduced when we excluded 103 exit reactions with cross sections less than 10 micobarns even at their highest energy of 20 MeV. Some light-ion channels were recognized to be two-body reactions after all, and were relabeled correctly as $\text{s}=1$ data in ENDL.

Repository versions 888–895, 914, 934–936, 938.

22. ND-46: missing reaction ${}^7\text{Be}(\text{n},\text{p}){}^7\text{Li}^*$ to the $1/2^-$ excited state

In the ENDL2009.0 $\text{n}+\text{Be-7}$ evaluation was added a cross section for outgoing proton and gamma for (n,p) reaction going to 1st excited state of ${}^7\text{Li}$ (0.47761 MeV). The file yo00c40i000s001 in ENDL2009.0 contains a second level, but this is missing in ENDL2011.0. The reaction also needs the distribution in yo02c40i001s000 , and the file yo07c40i004,9 for the angular distributions and multiplicity of the eventual γ decay of this excited state. This addition was lost in ENDL2011.0 evaluation, so we reinserted it in ENDL2011.1. Note that this increases the ‘maximum available energy’ (emac) calculated by the processing codes, since no other cross sections were reduced.

Repository revision 902.

23. ND-50: $\text{t}(\text{n},2\text{n})\text{d}$ cross section reduced significantly in the ENDF-B/VII.1 evaluation

The LLNL report LLNL-TR-637152, from Rob Hoffman, examined the status of three nuclear data evaluations for the $(\text{n},2\text{n})$ reaction proceeding on ${}^3\text{H}$, namely $\text{t}(\text{n},2\text{n})\text{d}$. The most recent update to this reaction, based upon a new evaluation by G. Hale, suggests a much

lower peak cross section than the previous two evaluations. The $\text{t}(\text{n},2\text{n})\text{d}$ cross section should therefore be reduced by a factor of about 5. Previous evaluations had ENDL2011.0 = ENDL2009.0 = ENDF-B/VII.0. The ENDF-B/VII.1 reverted $\text{t}(\text{n},2\text{n})$ back to ENDF-B/VI.8. Therefore ENDL2011.1 has been updated to the data of the ENDF-B/VII.1 evaluation.

Repository revision 992.

24. ND-52: missing particle angular distributions in ${}^{19}\text{F}$

The evaluation for the ${}^{19}\text{F}$ target from ENDF/B-VII had (n,d) and (n,t) reactions which do not have $I=4$ exit angular distributions. The $I=4$ data from ENDL99 was used for this data.

Repository revision 1008.

25. ND-60: too much energy in $\text{d} \rightarrow \text{n}+\text{p}$ breakup on protons and α -particles

The $I=4$ files describing the $\text{d} \rightarrow \text{n}+\text{p}$ breakup on protons and α -particles were giving too much energy deposition. This error resulted from an erroneous translation of the previous data in ECPL for the inverse reactions of protons and α -particles on deuterons: the incident energies were scaled as if the breakup distributions depended only on the incident energy in the c.m. frame. However, the $I=4$ files describe data in the laboratory frame, so they should *not* have been changed. This is fixed for ENDL2011.1.

Note that all the described double-differential cross sections are purely phase-space distributions, and await an actual model calculation of breakup.

Repository revisions 985, 987.

26. ND-61: wrong normalization of elastic distributions for charged-particle scattering

The elastic distributions in ENDL are supposed to be normalized to unity for scattering between 20° and above. For some reason, these were normalized instead to 0.522131. This is now fixed for all $\text{yi}=2\text{--}6$.

Repository revision 990.

27. ND-62: need consistent $S_{\alpha\beta}$ nuclear data

The $S_{\alpha\beta}$ data are used to make evaluations with $A \geq 800$ to represent thermal scattering data, as described in the LLNL report UCRL-ID-153656 written in 2003 by D.E. Cullen. These evaluations are based on normal nuclear scattering data, but are changed below some cutoff energy that is between 1 and 4 eV. Previous $S_{\alpha\beta}$ data was based on ENDL99, so we made a new set of $A \geq 800$

datasets starting with our latest ENDL2011.1 data for the needed targets: ^1H , ^2H , ^9Be , ^{12}C and ^{16}O . These new sets do not have xml uncertainty files.

Repository revisions 964, 975, 977.

28. ND-63: missing recoil α particles from ^8Be decay

The reactions $^{10}\text{C}(\text{n},\tau)$ and $^{11}\text{C}(\text{n},\alpha)$ produce ^8Be , which immediately decays into two α -particles. The $\text{yo} = 6$ and 16 distributions ($\text{I}=3$ or 4) are missing for these α particles.

The $^{10}\text{C}(\text{n},\tau)$ reaction was fixed as for ND-42, by shifting the incident energies to the correct threshold.

Repository revision 1000.

The $^{11}\text{C}(\text{n},\alpha)$ reaction was fixed by calculating (for each incident energy and each compound state in ^{12}C) the average energy deposition to ^8Be . An isotropic $\text{I}=4$ file was made to describe distributions with delta-function energy distributions at this mean energy. Strictly speaking, these distributions should have multiplicity 2.0 since 2 alpha particles are being produced, but a suggested $\text{I}=9$ file made was later omitted as it was not handled correctly by the processing codes (but made the processed results worse).

Repository revisions 1000, 1003 and 1007.

III. MODIFICATIONS FOR ENDL2011.2

This release includes a re-translation of gamma output channels by Bret Beck's code FETEPY.PY, using the ENDF source files wherever they are available. This results in modified $\text{yo}=7$ files, for cross sections ($\text{I}=4$), angles ($\text{I}=4$) and multiplicities ($\text{I}=9$), along with $\text{c}=55$ gamma files.

We process with the new-style endep rescaling of all c55 files (including fission Q values). Furthermore, when ndf files were heated for the files, endep was not run again.

These changes completely replace the changes listed above for ND-33.

IV. OUTLOOK

This new library can be found on LLNL's Open and Secure Computing facilities. In addition, the data may be viewed in the Nuclear and Atomic Data System data viewer at <http://nuclear.llnl.gov/NADS>.

Acknowledgements

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Appendix A: Known Issues

1. ND-47: the ^7Be evaluation ends at 8.1 MeV

Our evaluation is from ENDF/B-VII (December 2006). Issue of a low energy limit is being addressed at CSEWG by LANL. See https://ndclx4.bnl.gov/gf/project/endf/tracker/?action=TrackerItemEdit&tracker_item_id=196&start=0. We will update our evaluation with LANL's fixes when they become available.

2. ND-63b: multiplicity of recoil α particles from ^8Be decay

The reaction $^{11}\text{C}(\text{n},\alpha)$ produce ^8Be , which immediately decays into two α -particles.

Strictly speaking, these α $\text{yo}16$ distributions should have multiplicity 2.0 since 2 alpha particles are being produced, but a suggested $\text{I}=9$ file would not be handled correctly by the processing codes.

In the future the processing codes should have this reaction specifically recognized, just as the other reactions which produce ^8Be .

3. ND-65: endep should not generate files for decays of isomer states

The isomer states produced by neutron reactions on the 43 nuclides listed below should *not* have extra files generated by endep for their decay. Those stubs presently give fudge-check warnings of missing $\text{I}=1$ and $\text{I}=9$ files. For these, endep should NOT produce $\text{I}=10,11,13$ files, by implementing properly its input control make.inelastic.endep.if.gamma_- data.missing.

The discrete excited states are at energies given by the X1 values:

```

ZA = 11023, yo07c11i??s001, X1 = 5.955000e+00
ZA = 11023, yo07c11i??s001, X1 = 6.078500e+00
ZA = 11023, yo07c11i??s001, X1 = 6.270000e+00
ZA = 11023, yo07c11i??s001, X1 = 7.110000e+00
ZA = 11023, yo07c11i??s001, X1 = 7.790000e+00
ZA = 20044, yo07c11i??s001, X1 = 3.865000e+00
ZA = 20044, yo07c11i??s001, X1 = 3.922600e+00
ZA = 20044, yo07c11i??s001, X1 = 4.169000e+00
ZA = 20044, yo07c11i??s001, X1 = 4.564900e+00
ZA = 20044, yo07c11i??s001, X1 = 4.584100e+00
ZA = 20044, yo07c11i??s001, X1 = 4.604000e+00
ZA = 20044, yo07c11i??s001, X1 = 4.803700e+00
ZA = 20044, yo07c45i??s001, X1 = 1.635000e+00
ZA = 20044, yo07c45i??s001, X1 = 1.985000e+00
ZA = 20044, yo07c45i??s001, X1 = 2.321000e+00
ZA = 20044, yo07c45i??s001, X1 = 2.569000e+00
ZA = 20044, yo07c45i??s001, X1 = 2.695000e+00
ZA = 20044, yo07c45i??s001, X1 = 2.890000e+00
ZA = 20044, yo07c45i??s001, X1 = 3.122000e+00
ZA = 20044, yo07c45i??s001, X1 = 3.285000e+00

```

```

ZA = 20044, yo07c45i???s001, X1 = 3.386000e+00
ZA = 20044, yo07c45i???s001, X1 = 3.430000e+00
ZA = 20044, yo07c45i???s001, X1 = 3.485000e+00
ZA = 20044, yo07c45i???s001, X1 = 3.568000e+00
ZA = 20044, yo07c45i???s001, X1 = 3.592000e+00
ZA = 20044, yo07c45i???s001, X1 = 3.697000e+00
ZA = 20044, yo07c45i???s001, X1 = 3.732000e+00
ZA = 20044, yo07c45i???s001, X1 = 3.773000e+00
ZA = 20044, yo07c45i???s001, X1 = 3.799000e+00
ZA = 20044, yo07c45i???s001, X1 = 3.838000e+00
ZA = 20044, yo07c45i???s001, X1 = 3.889000e+00
ZA = 20048, yo07c11i???s001, X1 = 5.314000e+00
ZA = 20048, yo07c11i???s001, X1 = 5.461000e+00
ZA = 27059, yo07c11i???s001, X1 = 2.584000e+00
ZA = 27059, yo07c11i???s001, X1 = 3.999990e+00
ZA = 50117, yo07c11i???s001, X1 = 3.145800e-01
ZA = 50119, yo07c11i???s001, X1 = 8.953100e-02
ZA = 82207, yo07c40i???s001, X1 = 1.348100e+00
ZA = 93236, yo07c11i???s001, X1 = 6.000000e-02

```

```

ZA = 93237, yo07c11i???s001, X1 = 9.840000e-01
ZA = 93237, yo07c11i???s001, X1 = 1.013000e+00
ZA = 97248, yo07c11i???s001, X1 = 5.000000e-02

```

4. ND-66 Erroneous cross section for ${}^7\text{Li}(\text{t},\text{n}){}^9\text{Be}(\text{gs})$ reaction

For the reaction ${}^7\text{Li}(\text{t},\text{n}){}^9\text{Be}$, the data on ENDL says it comes from the paper Brune et al PRC 43 (1991)875. The cross section should be taken from Fig. 7 in the paper, however, it appears that the cross section in ENDL is from Fig. 9 or similar source, and is too large. Most of the extra cross sections should probably be moved to the ${}^7\text{Li}(\text{t},\text{n})[{}^9\text{Be}^* \rightarrow \text{n}, 2\alpha]$ channel.

This error dates back at least to ENDL94.

A little bit of history

ENDL2011.2-rc2
Comparison to ENDL2011.0
and
ENDL2009.2-rc2

3/19/16
M.-A. Descalle

Official release: ENDL2011.0

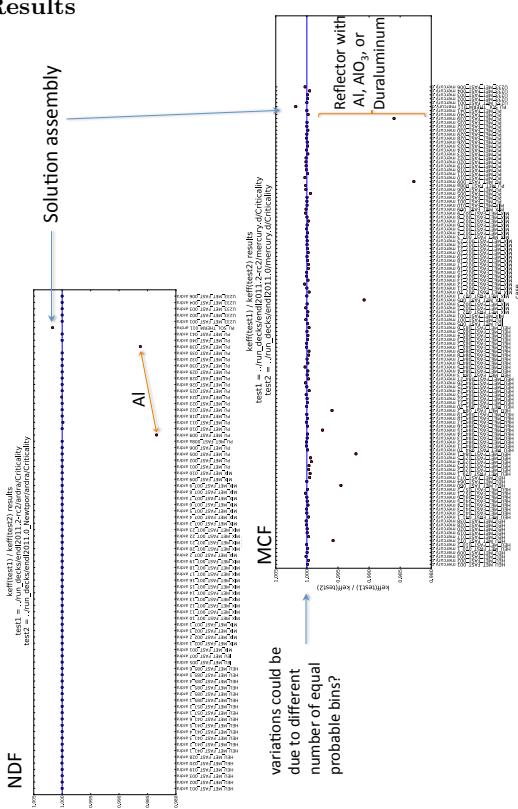
Development release:

- ENDL2011.1-rc4 ->new: Al evaluation from ENDL2009.1

Comparison to ENDL2011.0 and ENDL2009.1-rc8

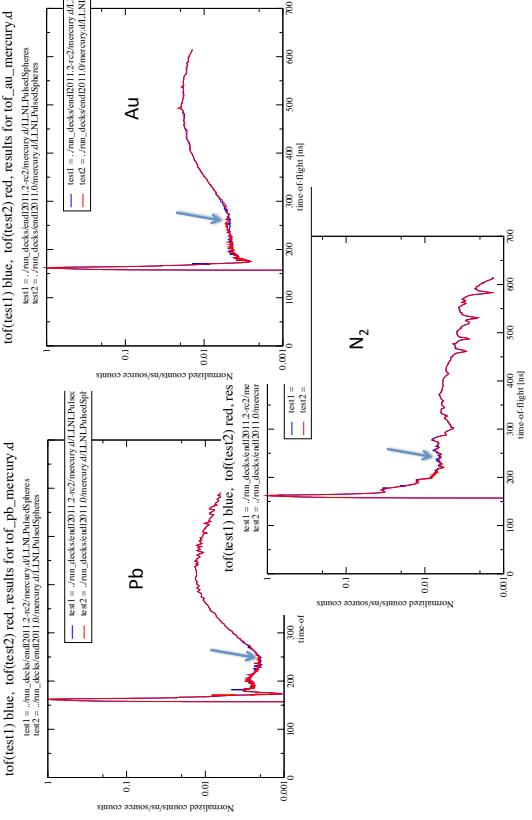
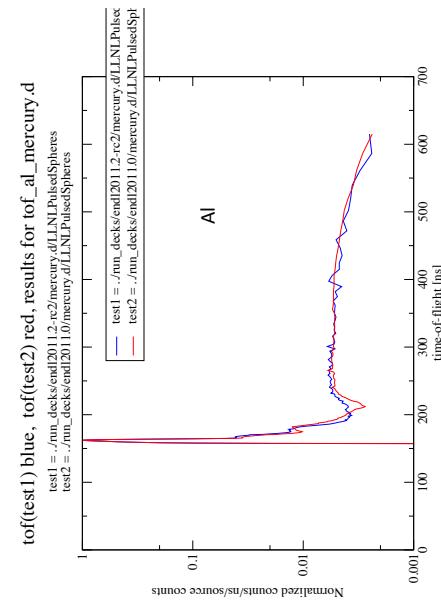
- ENDL2011.2-rc1 (skipped)

- ENDL2011.2-rc2 -> Endep & gamma production

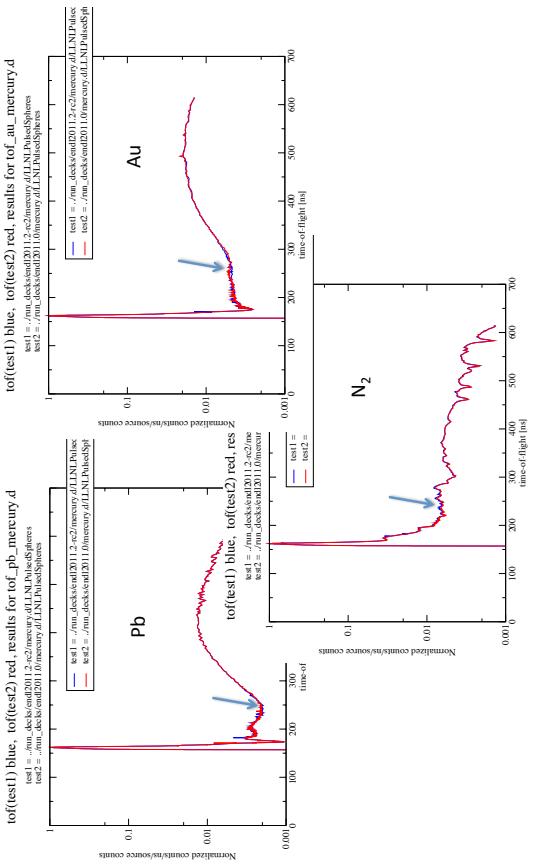

Comparison to ENDL2011.0 and ENDL2009.2-rc2

XS libraries comparison

ENDL2011.0 & ENDL2011.2-rc2



	ENDL2011.0	ENDL2011.2-rc2	Comments/differences
MCF			
Criticality	✓	✓	Large diff. for Al reflected cases Small diff.->number of epb?
Reaction rate ratios	✓	✓	Al (n,p), (n,a) (n,2n) Co59, 189, Au197, Tm169
TOF: LLNL-pulsed spheres	✓	✓	Al, Small differences: Pb, Au, N ₂
gamma production 15 cases	✓	✓	Significant differences for most materials, except Al (4%), and Au, C, Ti (see slide 4)
NDF			
Criticality	✓	✓	Large diff. for Al reflected cases
Reaction rate ratios	✓	✓	(n,g) Br-81, Nb93, I-127, Au197, Tl205, Bi209, (n,2n) Co59, Au197, Tm169
gamma production 15 cases	✓	✓	Significant differences for most materials, except Al (3%), and Au, C, Ti (see slide 4)

Criticality



Appendix B: Detailed Test Results

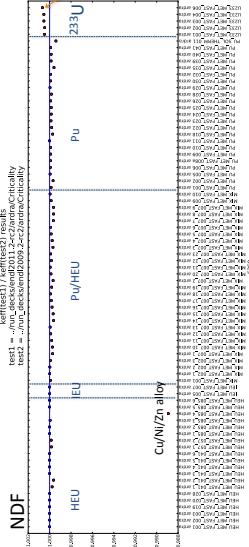
Time of flight

Time of flight

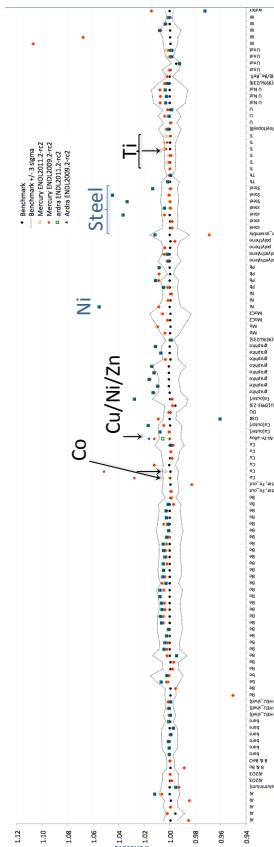
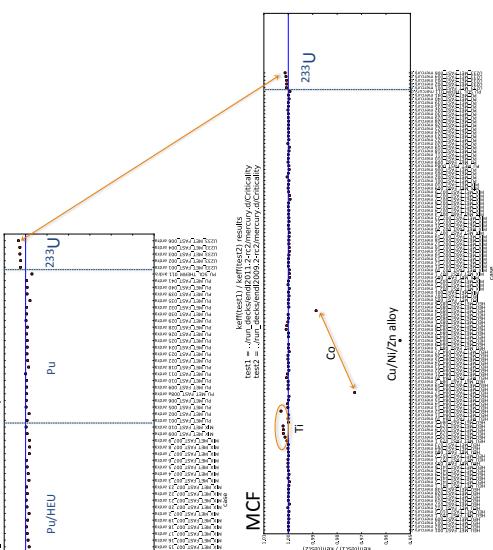
Gamma production

ENDL2011.0& 11.2-rc2

Cumulative Gamma Energy Leaked Ratio ENDL2011.2-rc2 /ENDL2011.0		
Element	Ardra	Mercury
Al	103%	104%
Au	99%	100%
C	101%	100%
C ₂ F ₄	48%	42%
Cu	266%	265%
Fe	247%	248%
H ₂ O	149%	190%
N ₂	234%	232%
Pb	84%	85%
Si	162%	161%
Ta	42%	42%
Th-232	234%	235%
Ti	100%	100%
U-238	130%	189%
W	286%	287%


- Test: 14MeV point source in a 1 mfp thick sphere

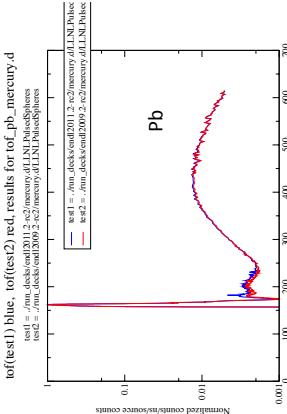
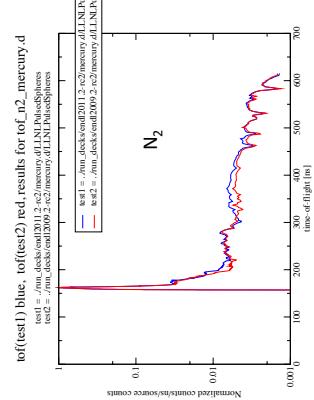
XS libraries comparison



ENDL2011.2-rc2/ENDL2009.2-rc2

MCF	ENDL2009.2-rc2	ENDL2011.2-rc2	Comments/differences
Criticality	✓	✓	Ti, Co, Cu/Ni/Zn ENDL2011.2: larger k_{eff} for U233
Reaction rate ratios	✓	✓	(n,g) Br81, Co59, Nb93, Y89, Zr94-96, I227, Ti205, Bi209, Nd237; (n,a):Co59, Nb93,Mg92; (n,p) Ti148, Co59, Mo92; (n,2n) Co59, Y89, , Nb93, Tm169
TOF: LLNL pulsed spheres	✓	✓	N ₂ , Pb – no difference for Ti
gamma production 15 cases	✓	✓	N ₂ (x2.8), Ti (x100)
NDF	ENDL2009.2-rc2	ENDL2011.2-rc2	Comments/differences
Criticality	✓	✓	Be: ENDL2011.2-rc2, larger k_{eff} for U233 and overall smaller k_{eff} for Pu cases
Reaction rate ratios	✓	✓	(n,g) Nb93, Br81, I227, Ti205, Bi209; (n,2n) Co59, Y89, , Nb93, Tm169
gamma production 15 cases	✓	✓	N ₂ (x2.8), Ti (x100) Cf, F (x20%)

Criticality

Criticality Benchmarks vs ENDL2009.2 and 2011.2 (ndf & mcf)



For the 2 XS libraries, most simulations result in similar $k_{\text{effective}}$.

Better agreement with benchmarks was shown for

- ENDL2011.2-rc2: Co, Ni/Cu/Zn
- ENDL2009.2-rc2: Ti

Large discrepancies between multigroup and continuous energy XS for cases with steel and Ni reflectors

Time of flight

Gamma production

ENDL2011.2-rc2 & ENDL2009.2-rc2

Cumulative Gamma Energy Leaked Ratio ENDL2011.2-rc2 / ENDL2009.2-rc2		
Element	Ardra	Mercury
Al	100%	100%
Au	100%	100%
C	100%	100%
C ₂ F ₄	120%	100%
Cu	100%	100%
Fe	100%	100%
H ₂ O	100%	100%
N ₂	280%	280%
Pb	99%	99%
Si	99%	99%
Ta	100%	100%
Th-232	100%	100%
Ti	11394%	11114%
U-238	100%	100%
W	100%	100%

- Test: 14MeV point source in a 1 mfp thick sphere
- Total particle gamma energy leaked out of the sphere
- For a given element and code, we calculate the ratio

$$R = \text{Tally}_{XS\text{lib}_1}/\text{Tally}_{XS\text{lib}_2}$$
 - Differences ENDL2011.2-rc2 and ENDL2009.2-rc2
 - C2F₄ : 1.2 for NDF
 - N₂ : 2.8
 - Ti : >100

Appendix C: Release Checklist

Here we reproduce the release checklist that accompanies this release.

ENDL2011.2 Data Release Checklist

Basic Tests

Check/Test	Success	Failure	Comments
python checker on ascii data		1	Known issues described in Appendix A of the revision-release document: Emax only 8.1 MeV for ${}^7\text{Be}$.
Check the processing errors/ warning messages	✓		
ndf checker	✓		
mcapm checker	✓		

Amtran Tests (ndf)

Check/Test	Success	Failure	Comments
za-loop	✓		
k_{eff}	✓		
Activation foils	✓		

Mercury Tests (mcf)

Check/Test	Success	Failure	Comments
za-loop	✓		
k_{eff}	✓		
LLNL pulsed spheres	✓		
Oktavian spheres	✓		

Other Release Tasks

	Complete	Comments
Add correct bdfs file	OCF: ✓ SCF: ✓	
Add/Edit README.txt	✓	
Check directory layout	OCF: ✓ SCF: ✓	
Check file permissions	OCF: ✓ SCF:	
Post on NADS	Not yet	
Tag release in svn repo	✗	endl/branches/endl2011.2, #1051
Release documentation	✓	endl2011.2_release.pdf

Release Features

	Present?	Comments
Momentum deposition	✓	
Energy deposition	✓	
Energy-dependent Q-values for (n,f)	✓	
Multi-temperature data	✓	In mcf files
Large-Angle Coulomb Scattering (LACS) data	✓	Not present in ndf files
Thermal scattering ($S_{\alpha\beta}$) data	✓	For p,d, ⁴ He, ¹² C, and ¹⁶ O
Unresolved Resonance (URR) data (probability tables)	x	Removed since codes can't currently use it, but will be possible in the future
Uncertainty/Covariance data	About half	
Isomers	9, 1 processed	ASCII files have 9 isomer targets: ^{58m} Co, ^{110m} Ag, ^{115m} Cd, ^{127m,129m} Te, ^{148m} Pm, ^{166m} Ho, ^{242m,244m} Am. However, only ^{242m} Am is processed: it replaces the ground state

Available Formats

	Present?	Comments
mcf	✓	mcf1.pdb.175 mcf1.pdb.175.32epb mcf1.pdb.230 mcf1.pdb.616 mcf2.pdb mcf3.pdb mcf4.pdb mcf5.pdb mcf6.pdb mcf7.pdb
ndf	✓	ndf1.230 ndf2.063 ndf3.063 ndf4.063 ndf5.063 ndf6.063 ndf7.040
tdf	✓	17 reactions
ENDF/B	some	
gnd	x	
other	x	

Appendix D: The README file

Here we reproduce the README file that accompanies the release.

2011.2 Release of the Evaluated Nuclear Data Library (ENDL2011.2)

B. Beck, M.-A. Descalle, E. Jurgensen, C. Mattoon, and I. J. Thompson
(S&T/NACS/NDTG)

April 2016

LLNL's Computational Nuclear Physics Group and Nuclear Theory and Modeling Group have collaborated to create the 2011.2 revised release of the Evaluated Nuclear Data Library (ENDL2011.2). ENDL2011.2 is designed to support LLNL's current and future nuclear data needs and will be employed in nuclear reactor, nuclear security and stockpile stewardship simulations with ASC codes. This database is currently the most complete nuclear database for Monte Carlo and deterministic transport of neutrons and charged particles. This library was assembled with strong support from the ASC PEM and Attribution programs, leveraged with support from Campaign 4 and the DOE/Office of Science's US Nuclear Data Program. This document lists the revisions made in ENDL2011.2 compared with the data existing in the original ENDL2011.0 release. These changes are made in conjunction with the revisions for ENDL2009.2, so that both the .2 releases are as free as possible of known defects.

The new libraries can be found on LC in:

/usr/gapps/data/nuclear/endl_official/endl2011.2/ascii for the ENDL ASCII formatted data,
/usr/gapps/data/nuclear/endl_official/endl2011.2/ndf for deterministic data and
/usr/gapps/data/nuclear/endl_official/endl2011.2/mcf for Monte-Carlo data.
/usr/gapps/data/nuclear/endl_official/endl2011.2/tdf for thermonuclear data.

In addition, the data may be viewed in the Nuclear and Atomic Data System data viewer at <http://nuclear.llnl.gov/NADS>.

Release Notes

10/10/2008 Release ENDL2008.0:

The new files are posted on the in /usr/gapps/data/nuclear/endl_official/endl2008/. The ascii, mcf and ndf files are present in subdirectories, using the new directory layout.

2/17/2009 Release ENDL2008.1:

The new files are posted on the in /usr/gapps/data/nuclear/endl_official/endl2008.1/. The ascii, mcf and ndf files are present in subdirectories, using the new directory layout.

Resolved Issues:

1. The extra files in the d(n,2n) evaluation which produced a factor of 2 change in the cross-section have been removed.
2. The 232Th nubar has been set to the correct value.
3. The 233Pa nubar has been set to the correct value.
4. The missing energy dependent Q-values for fission was forgotten in the previous release and is now added back into the evaluations for all actinides.
5. A mistake in the 48Ti(n,g) outgoing gamma spectrum (taken from the ENDF/B-VII.0 evaluation) produced several *hundred* MeV worth of outgoing gammas. We replaced this unphysical spectrum with one from Hauser-Feshbach model calculations.

5/15/2009 Release ENDL2008.2:

The new files have been posted in /usr/gapps/data/nuclear/endl_official/endl2008.2. The ascii, mcf and ndf files are present in subdirectories, using the new directory

layout.

New Features:

1. Expected value momentum deposition added
2. Large angle Coulomb scattering for $yi=2-6$ added

Resolved Issues:

1. Addition of the resonance region for $240Am$ and $73As$
2. Fixed unphysical gamma multiplicities in $41Sc$, $103Rh$, $125Sn$ and $240Am$
3. Fixed angular grid miss-match issue in $103Rh$ and $27Al$
4. $I = 3$ data added to $natV$, $nat0s$, $natTl$
5. Added missing triton distributions for $70Zn$, $71Zn$, $63Ni$, $72Ga$, $66Cu$, $61Co$
6. Removed extra $I=4$ files from $9Be$, $11Be$
7. Other minor issues in t , $7Be$

9/30/2009 Release ENDL2009.0:

The new files have been posted in `/usr/gapps/data/nuclear/endl_official/endl2009.0`. The `ascii`, `mcf`, `ndf` and `tdf` files are present in subdirectories, using the new directory layout.

New Features:

1. Unresolved resonance probability tables added to `ascii` data tables
2. `tdf` data now produced directly from `ascii` `endl` files
3. New structural material evaluations for Al , Ta , W , Re , Pt , Pb
4. New radiochemical diagnostic evaluations for Ar , Kr , Xe , Au
5. New evaluations for Cl , K , Mn , Y , Mo , Bi , Po
6. New actinide evaluations for $240Am$, $240Pu$, $239U$
7. Most evaluations also available in `ENDF/B` format in `endf` subdirectory
8. Add uncertainty & covariance data to many evaluations
9. Large-angle Coulomb scattering data added for all targets in charged-particle sublibraries

Resolved Issues:

1. Added resonances to Co evaluations
2. Charged particle data available in forward and inverse kinematics for particles p , d , t , $3He$, a
3. $6Li$ files renamed to get correct two-body kinematics using `mcapm`

2/2012 Release ENDL2011.0:

The new files have been posted in `/usr/gapps/data/nuclear/endl_official/endl2011.0`. The `ascii`, `mcf`, `ndf` and `tdf` files are present in subdirectories, using the new directory layout.

New Features:

1. Contains every stable isotope, every isotope in the gaps between stable isotopes and 2 isotopes on either side of the stable isotopes.
2. 918 neutron evaluations
3. Energy dependent $Q(E)$ values for fission in $I=12$ files
4. New set of light-ion charged-particle evaluations, with `tdf` processing

5. Using TENDL-2009 global TALYS data sets for missing nuclides.
6. Fission neutrons from empirical model FREYA, and with expanded covariances.

4/2015 Release ENDL2011.1:

The new files have been posted in /usr/gapps/data/nuclear/endl_official/endl2011.1. The ascii, mcf, ndf and tdf files are present in subdirectories as for ENDL2011.0

New Features labeled by JIRA record number:

1. ND-3: Fixed Temperature dependent data errors
2. ND-4: Fixed too many data points in some deuteron cross sections
3. ND-6: Fixed that $n+1H$ elastic and capture cross section do not sum to total cross section
4. ND-11: Fixed $t(d,n)\alpha$ angular distribution spike at a single energy and angle
5. ND-15: Ensured that ascii data in release does not match processed data
6. ND-17: Unresolved Resonance Region (URR) data removed
7. ND-18: Ensured that endep changes to gamma C55 files in released ascii data
8. ND-22: Fixed $He3(t,t)$ reaction unphysicality at low energies
9. ND-26: Fixed distributions missing $I=3$ data
10. ND-29: Improved $U239(n,\gamma)$ poor resonance region
11. ND-30: Included a ^{10}Be evaluation
12. ND-31: Fixed wrong ^{27}Al evaluation
13. ND-33: Fixed errors in gamma multiplicities.
14. ND-36: Moved all $C=21$ files to $C=20$ when $C=20$ does not exist
15. ND-37: Made separate $^{241}Am(n,\gamma)$ cross section to ground and isomer state in ^{242}Am
16. ND-38: Made separate $^{45}Sc(n,\gamma)$ cross section to ground and isomer state in ^{46}Sc
17. ND-39: EGDL fluorescence data included
18. ND-40: Redundant Maxwellian averaged cross section $I=80,81,84,89,90,91,92$ for charged particle libraries removed
19. ND-41: Fixed thresholds for some $I=0$ files higher than other I values
20. ND-42: Made distributions for the alpha particles after the decay of ^{8}Be
21. ND-43: Missing $I=3,4$ files for $yo \geq 2$ and $C=40-45$
22. ND-46: Inserted missing reaction $^{7}Be(n,p)^{7}Li^*$ to the $1/2^-$ excited state
23. ND-50: Inserted the $t(n,2n)d$ cross section reduced significantly in the ENDF-B/VII.1 evaluation
24. ND-52: Inserted missing particle angular distributions in ^{19}F
25. ND-60: Fixed too much energy in d to $n+p$ breakup on protons and alpha-particles
26. ND-61: Fixed wrong normalization of elastic distributions for charged-particle scattering
27. ND-62: Inserted consistent $S_{\alpha\beta}$ nuclear data
28. ND-63: Fixed missing recoil alpha particles from ^{8}Be decay

4/2016 Release ENDL2011.2:

The new files have been posted in /usr/gapps/data/nuclear/endl_official/endl2011.2. The ascii, mcf, ndf and tdf files are present in subdirectories as for ENDL2011.0

This release includes a re-translation of gamma output channels by Bret Beck's code fetePy.py, using the ENDF source files wherever they are available. This results in modified $yo=7$ files, for cross sections ($I=4$), angles ($I=4$) and multiplicities ($I=9$), along with $c=55$ gamma files.

We process with the new-style endep rescaling of all c55 files (including fission Q values).

Furthermore, when `ndf` files were heated for the files, `endep` was not run again.

Appendix E: Changes between ENDL2009.2 and ENDL2011.2 for incident neutrons

Here we list, for each nuclide in the ENDL2009.2 target list for neutrons, whether the data has changed in ENDL2011.2. In this list we ignore nuclides which appear for the first time only in ENDL2011. Those with two asterisks (**) were calculated with FETE v.2404 that gives different I=1 angular distributions.

TABLE I: Source of incident neutron evaluations in ENDL2011.2.

Symbol	ZA	(%)	ENDL2009.2	ENDL2011.2
<i>Helium</i>				
³ He	za002003	0.000137	ENDF/B-VII	JENDL-4
⁴ He	za002004	99.999	JENDL-3.3	ENDF/B-VII.1b
<i>Lithium</i>				
⁶ Li	za003006	7.59	ENDL99	ENDF/B-VII.0 (mod)
⁷ Li	za003007	92.41	ENDL99	ENDF/B-VII.0 (mod)
<i>Boron</i>				
¹⁰ B	za005010	19.8	ENDL99	ENDF/B-VII.0
<i>Carbon</i>				
¹³ C	za006013	1.11	ENDL99	ROSFOND (mod)
<i>Nitrogen</i>				
¹⁴ N	za007014	99.634	ENDL99	JENDL-4
¹⁵ N	za007015	0.366	ENDL99	ROSFOND
<i>Oxygen</i>				
¹⁶ O	za008016	99.762	ENDF/B-VII	ROSFOND
<i>Sodium</i>				
²³ Na	za011023	100.0	JENDL-3.3	ROSFOND
<i>Magnesium</i>				
²⁵ Mg	za012025		ENDF/B-VII	TENDL-2009
<i>Aluminium</i>				
²⁸ Al	za013028		LLNL2009	TENDL-2009
²⁹ Al	za013029		LLNL2009	TENDL-2009
<i>Silicon</i>				
²⁹ Si	za014029	4.683	ENDF/B-VII	JENDL-4
³⁰ Si	za014030	3.087	ENDF/B-VII	JENDL-4
<i>Phosphorus</i>				
³¹ P	za015031	100.0	ENDF/B-VII	JENDL-4
<i>Sulphur</i>				
³⁴ S	za016034	4.25	ENDF/B-VII	TENDL-2009
<i>Chlorine</i>				
³⁵ Cl	za017035	75.77	ENDF/B-VII **	ENDF/B-VII
³⁷ Cl	za017037	24.23	ENDF/B-VII **	ENDF/B-VII
<i>Argon</i>				
²⁶ Ar	za018036	0.3365	LLNL2009 **	LLNL2009
<i>Potassium</i>				
⁴¹ K	za019041	6.7302	ENDF/B-VII	TENDL2009
<i>Calcium</i>				
⁴⁴ Ca	za020044	2.09	ENDF/B-VII	JENDL-4
⁴⁷ Ca	za020047		LLNL2005	TENDL2009
⁴⁸ Ca	za020048	0.187	ENDF/B-VII	JENDL-4
<i>Titanium</i>				
⁴⁶ Ti	za022046	8.25	ENDF/A-7.2009	ENDF/B-VII
⁴⁷ Ti	za022047	7.44	ENDF/A-7.2009	ENDF/B-VII

TABLE I: Source of incident neutron evaluations in ENDL2011.2.

Symbol	ZA	(%)	ENDL2009.2	ENDL2011.2
⁴⁸ Ti	za022048	7.44	ENDF/A-7.2009	ENDF/B-VII
⁴⁹ Ti	za022049	5.41	ENDF/A-7.2009	ENDF/B-VII
⁵⁰ Ti	za022050	5.18	ENDF/A-7.2009	ENDF/B-VII
<i>Vanadium</i>				
⁴⁷ V	za023047		LLNL2005	TENDL2009
⁴⁸ V	za023048		LLNL2005	TENDL2009
⁴⁹ V	za023049		LLNL2005	TENDL2009
⁵⁰ V	za023050	0.25	RACS-1.0	JENDL-4
⁵² V	za023052		LLNL2005	TENDL2009
⁵³ V	za023053		LLNL2005	TENDL2009
<i>Chromium</i>				
⁴⁸ Cr	za024048		LLNL2005	TENDL2009
⁴⁹ Cr	za024049		LLNL2005	TENDL2009
⁵¹ Cr	za024051		LLNL2005	TENDL2009
⁵⁴ Cr	za024054	2.365	ENDF/B-VII	JENDL-4
<i>Manganese</i>				
⁵¹ Mn	za025051		LLNL2005	TENDL2009
⁵² Mn	za025052		LLNL2005	TENDL2009
<i>Iron</i>				
⁵² Fe	za026052		LLNL2005	TENDL2009
⁵³ Fe	za026053		LLNL2005	TENDL2009
⁵⁵ Fe	za026055		LLNL2005	TENDL2009
⁵⁹ Fe	za026059		LLNL2005	LLNL2010
<i>Cobalt</i>				
⁵⁸ Co	za027058		LLNL2009	TENDL2009
⁵⁹ Co	za027059	100.0	LLNL2009	JENDL-4
⁶⁰ Co	za027060		LLNL2009	TENDL2009
⁶¹ Co	za027061		LLNL2009	TENDL2009
<i>Nickel</i>				
⁵⁶ Ni	za028056		END99	TENDL2009
⁵⁷ Ni	za028057		END99	TENDL2009
⁶³ Ni	za028063		END99	TENDL2009
⁶⁵ Ni	za028065		END99	TENDL2009
⁶⁷ Ni	za028067		END99	TENDL2009
<i>Copper</i>				
⁶² Cu	za029062		END99	TENDL2009
⁶⁴ Cu	za029064		LLNL2008	JENDL-4
⁶⁶ Cu	za029066		END99	TENDL2009
⁶⁷ Cu	za029067		END99	TENDL2009
⁶⁸ Cu	za029068		END99	TENDL2009
<i>Zinc</i>				
⁶² Zn	za030062		END99	TENDL2009
⁶³ Zn	za030063		END99	TENDL2009
⁶⁴ Zn	za030064	48.63	LLNL2008	JENDL-4
⁶⁵ Zn	za030065		LLNL2008	JENDL-4
⁶⁶ Zn	za030066	27.9	LLNL2008	JENDL-4
⁶⁷ Zn	za030067	4.1	LLNL2008	JENDL-4
⁶⁸ Zn	za030068	18.75	LLNL2008	JENDL-4
⁶⁹ Zn	za030069		END99	TENDL2009
⁷⁰ Zn	za030070	0.62	LLNL2008	TENDL-2009
⁷¹ Zn	za030071		END99	TENDL2009
⁷² Zn	za030072		END99	TENDL2009
⁷³ Zn	za030073		END99	TENDL2009

TABLE I: Source of incident neutron evaluations in ENDL2011.2.

Symbol	ZA	(%)	ENDL2009.2	ENDL2011.2
<i>Gallium</i>				
⁶⁸ Ga	za031068		END99	TENDL2009
⁶⁹ Ga	za031069		END99	TENDL2009
⁷⁰ Ga	za031070		END99	TENDL2009
⁷¹ Ga	za031071	39.892	ENDF/B-VII	JENDL-4
⁷² Ga	za031072		END99	TENDL2009
<i>Germanium</i>				
⁷² Ge	za032071		ENDF/B-VII	TENDL2009
<i>Arsenic</i>				
<i>Selenium</i>				
⁷⁶ Se	za034076	9.37	ENDF/B-VII	JENDL-4
⁷⁸ Se	za034078	23.77	ENDF/B-VII	TENDL2009
⁷⁹ Se	za034079		ENDF/B-VII	TENDL2009
⁸⁰ Se	za034080		ENDF/B-VII	TENDL2009
⁸¹ Se	za034081		LLNL2005	TENDL2009
⁸² Se	za034082	8.73	ENDF/B-VII	JENDL-4
<i>Bromine</i>				
⁷⁵ Br	za035075		LLNL2005	TENDL2009
⁷⁶ Br	za035076		LLNL2005	TENDL2009
⁷⁸ Br	za035078		LLNL2005	TENDL2009
⁸⁰ Br	za035080		LLNL2005	TENDL2009
⁸¹ Br	za035081	49.31	ENDF/B-VII	LLNL2010
⁸² Br	za035082		LLNL2005	TENDL2009
<i>Krypton</i>				
⁷⁸ Kr	za036078	0.35	LLNL-2009	JENDL-4
⁷⁹ Kr	za036079		LLNL2005	TENDL2009
⁸⁰ Kr	za036080		ENDF/B-VII	TENDL2009
⁸¹ Kr	za036081		LLNL2005	TENDL2009
⁸² Kr	za036082	11.593	ENDF/B-VII	TENDL2009
⁸³ Kr	za036083	11.49	ENDF/B-VII	ROSFOND (mod)
⁸⁵ Kr	za036085		ENDF/B-VII	TENDL2009
<i>Rubidium</i>				
⁷⁷ Rb	za037077		LLNL2005	TENDL2009
⁷⁸ Rb	za037078		LLNL2005	TENDL2009
⁷⁹ Rb	za037079		LLNL2005	TENDL2009
⁸⁰ Rb	za037080		LLNL2005	TENDL2009
⁸² Rb	za037082		LLNL2005	TENDL2009
⁸³ Rb	za037083		LLNL2005	TENDL2009
⁸⁴ Rb	za037084		LLNL2005	TENDL2009
<i>Strontium</i>				
⁸⁶ Sr	za038086	9.86	ENDF/B-VII	TENDL2009
⁸⁷ Sr	za038087	7.00	ENDF/B-VII	TENDL2009
⁸⁸ Sr	za038088	82.58	ENDF/B-VII	TENDL2009
⁸⁹ Sr	za038089		ENDF/B-VII	TENDL2009
⁹⁰ Sr	za038090		ENDF/B-VII	TENDL2009
<i>Yttrium</i>				
⁸⁸ Y	za039088		ENDL99	RACS-1.0 (mod)
⁹⁰ Y	za039090		ENDF/B-VII	TENDL2009
⁹¹ Y	za039091		ENDF/B-VII	TENDL2009
<i>Zirconium</i>				
⁹¹ Zr	za040091	11.22	ENDF/B-VII	LLNL2010
⁹³ Zr	za040093		ENDF/B-VII	JENDL-4
⁹⁴ Zr	za040094	17.38	ENDF/B-VII	LLNL2010
⁹⁵ Zr	za040095		ENDF/B-VII	LLNL2010
⁹⁶ Zr	za040096	2.8	ENDF/B-VII	LLNL2010
<i>Niobium</i>				

TABLE I: Source of incident neutron evaluations in ENDL2011.2.

Symbol	ZA	(%)	ENDL2009.2	ENDL2011.2
<i>Niobium</i>				
⁹³ Nb	za041093	100.0	ENDF/B-VII	CENDL-3.1
⁹⁴ Nb	za041094		ENDF/B-VII	TENDL2009
⁹⁵ Nb	za041095		ENDF/B-VII	TENDL2009
<i>Molybdenum</i>				
⁹² Mo	za042092	14.84	ENDF/B-VII	ROSFOND
⁹⁶ Mo	za042096	16.68	ENDF/B-VII	JENDL-4
⁹⁹ Mo	za042099		ENDF/B-VII	TENDL2009
¹⁰⁰ Mo	za042100	9.63	ENDF/B-VII	JENDL-4
<i>Technetium</i>				
⁹⁹ Tc	za043099		JEFF-3.1.1	JENDL-4
<i>Ruthenium</i>				
⁹⁸ Ru	za044098	1.87	ENDF/B-VII	TENDL2009
⁹⁹ Ru	za044099	12.76	ENDF/B-VII	TENDL2009
¹⁰⁰ Ru	za044100	12.60	ENDF/B-VII	TENDL2009
¹⁰¹ Ru	za044101	17.06	ENDF/B-VII	TENDL2009
¹⁰² Ru	za044102	31.55	ENDF/B-VII	TENDL2009
¹⁰³ Ru	za044103		ENDF/B-VII	TENDL2009
¹⁰⁴ Ru	za044104	18.62	ENDF/B-VII	CENDL-3.1
¹⁰⁵ Ru	za044105		ENDF/B-VII	TENDL2009
¹⁰⁶ Ru	za044106		ENDF/B-VII	TENDL2009
<i>Rhodium</i>				
¹⁰³ Pd	za045103	100.0	JEFF-3.1	TENDL2009
¹⁰⁵ Pd	za045105		ENDF/B-VII	TENDL2009
<i>Palladium</i>				
¹⁰² Pd	za046102	1.02	JENDL-3.2	TENDL2009
¹⁰³ Pd	za046103		JENDL-3.2	TENDL2009
¹⁰⁵ Pd	za046105	22.33	ENDF/B-VII	TENDL2009
¹⁰⁶ Pd	za046106	27.33	ENDF/B-VII	TENDL2009
¹⁰⁷ Pd	za046107		ENDF/B-VII	TENDL2009
¹⁰⁸ Pd	za046108	26.46	ENDF/B-VII	TENDL2009
¹¹⁰ Pd	za046110	11.72	ENDF/B-VII	TENDL2009
<i>Cadmium</i>				
¹¹⁰ Cd	za048110	12.49	JENDL-3.3	JENDL-4
¹¹¹ Cd	za048111	12.8	ENDF/B-VII	JENDL-4
¹¹² Cd	za048112	24.13	ENDF/B-VII	JENDL-4
¹¹³ Cd	za048113	12.22	ENDF/B-VII	JENDL-4
<i>Tin</i>				
¹¹² Tin	za050112	0.97	ENDF/B-VII	JENDL-4
¹¹⁴ Tin	za050114	0.66	ENDF/B-VII	JENDL-4
¹¹⁵ Tin	za050115	0.34	ENDF/B-VII	JENDL-4
¹¹⁶ Tin	za050116	14.54	ENDF/B-VII	JENDL-4
¹¹⁷ Tin	za050117	7.68	ENDF/B-VII	JENDL-4
¹¹⁸ Tin	za050118	24.22	ENDF/B-VII	JENDL-4
¹¹⁹ Tin	za050119	8.59	ENDF/B-VII	JENDL-4
¹²⁰ Tin	za050120	32.58	ENDF/B-VII	JENDL-4
¹²² Tin	za050122	4.63	ENDF/B-VII	JENDL-4
¹²³ Tin	za050123		ENDF/B-VII	TENDL2009
¹²⁴ Tin	za050124	5.79	ENDF/B-VII	JENDL-4
¹²⁶ Tin	za050126		ENDF/B-VII	TENDL2009
<i>Antimony</i>				
¹²⁴ Sb	za051124		ENDF/B-VII	TENDL2009
¹²⁵ Sb	za051125		ENDF/B-VII	TENDL2009
<i>Iodine</i>				
¹²⁴ I	za053124		LLNL2005	TENDL2009
¹²⁵ I	za053125		LLNL2005	TENDL2009
¹²⁶ I	za053126		LLNL2005	TENDL2009

TABLE I: Source of incident neutron evaluations in ENDL2011.2.

Symbol	ZA	(%)	ENDL2009.2	ENDL2011.2
^{127}I	za053127	100.0	ENDF/B-VII	JENDL-4
<i>Xenon</i>				
^{132}Xe	za054132	26.909	ENDF/B-VII	ROSFOND (mod)
^{133}Xe	za054133		ENDF/B-VII	TENDL-2009 (mod)
^{134}Xe	za054134	10.435	ENDF/B-VII	TENDL-2009 (mod)
^{136}Xe	za054136	8.857	ENDF/B-VII	TENDL-2009 (mod)
<i>Cesium</i>				
^{136}Cs	za055136		ENDF/B-VII	TENDL-2009
^{137}Cs	za055137		ENDF/B-VII	TENDL-2009
<i>Barium</i>				
^{130}Ba	za056130	0.106	ENDF/B-VII	CENDL-3.1
^{133}Ba	za056133		ENDF/B-VII	TENDL-2009
^{134}Ba	za056134	2.417	ENDF/B-VII	TENDL-2009
^{135}Ba	za056135	6.592	ENDF/B-VII	TENDL-2009
^{136}Ba	za056136	7.854	ENDF/B-VII	TENDL-2009
^{137}Ba	za056137	11.232	ENDF/B-VII	TENDL-2009
^{140}Ba	za056140		JENDL-3.3	TENDL-2009
<i>Cerium</i>				
^{138}Ce	za058138	0.251	ENDF/B-VII	CENDL-3.1
^{140}Ce	za058140	88.45	ENDF/B-VII	CENDL-3.1
^{144}Ce	za058140		ENDF/B-VII	TENDL-2009
<i>Praseodymium</i>				
^{141}Pr	za059141	100.0	ENDF/B-VII	CENDL-3.1
^{143}Pr	za059143		ENDF/B-VII	JENDL-4
<i>Europium</i>				
^{151}Eu	za063151	47.81	ENDF/B-VII	LLNL-2010
^{155}Eu	za063155		ENDF/B-VII	TENDL-2009
^{156}Eu	za063156		ENDF/B-VII	TENDL-2009
^{157}Eu	za063157		ENDF/B-VII	TENDL-2009
<i>Gadolinium</i>				
^{152}Gd	za064152	0.2	ENDF/B-VII	JENDL-4
^{153}Gd	za064153		ENDF/B-VII	LLNL2010
^{154}Gd	za064154	2.18	ENDF/B-VII	LLNL2010
<i>Thulium</i>				
^{169}Tm	za069169	100.0	TENDL2008	LLNL-2010
^{171}Tm	za069171		TENDL2008	TENDL-2009
<i>Ytterbium</i>				
^{168}Yb	za070168	0.123	TENDL2008	JENDL-4
^{169}Yb	za070169		TENDL2008	TENDL-2009
^{170}Yb	za070170	2.982	TENDL2008	JENDL-4
^{171}Yb	za070171	14.28	TENDL2008	JENDL-4
^{172}Yb	za070172	21.68	TENDL2008	JENDL-4
^{173}Yb	za070173	16.103	TENDL2008	JENDL-4
^{174}Yb	za070174	32.026	TENDL2008	JENDL-4
^{176}Yb	za070176	12.996	TENDL2008	JENDL-4
<i>Lutetium</i>				
^{175}Lu	za071175		ENDF/B-VII	TENDL-2009
^{176}Lu	za071176	2.599	ENDF/B-VII	TENDL-2009
<i>Hafnium</i>				
^{176}Hf	za072176	5.26	JEFF-3.1	TENDL-2009
^{177}Hf	za072177	18.60	ENDF/B-III	TENDL-2009
^{178}Hf	za072178	27.28	JEFF-3.1	TENDL-2009
^{179}Hf	za072179	13.62	ENDF/B-III	TENDL-2009
^{180}Hf	za072180	35.08	JEFF-3.1	TENDL-2009
<i>Osmium</i>				
^{184}Os	za076184	0.02	TENDL-2008	TENDL-2009

TABLE I: Source of incident neutron evaluations in ENDL2011.2.

Symbol	ZA	(%)	ENDL2009.2	ENDL2011.2
^{187}Os	za076187	1.96	TENDL-2008	TENDL-2009
^{188}Os	za076188	13.24	TENDL-2008	TENDL-2009
^{189}Os	za076189	16.15	TENDL-2008	TENDL-2009
^{190}Os	za076190	26.26	TENDL-2008	TENDL-2009
^{191}Os	za076191		TENDL-2008	TENDL-2009
^{192}Os	za076192	40.93	TENDL2008	JENDL-4
^{193}Os	za076193		TENDL-2008	TENDL-2009
<i>Platinum</i>				
^{190}Pt	za078190	0.012	TENDL-2008	TENDL-2009
^{192}Pt	za078192	0.782	TENDL-2008	TENDL-2009
^{194}Pt	za078194	32.86	TENDL-2008	TENDL-2009
^{195}Pt	za078195	33.78	TENDL-2008	TENDL-2009
^{198}Pt	za078198	7.36	TENDL-2008	TENDL-2009
<i>Gold</i>				
^{197}Au	za079197	100.0	ENDF/B-VII	ENDF/B-VII.1 β 0
<i>Mercury</i>				
^{196}Hg	za080196	0.15	ENDF/B-VII	TENDL-2009
^{198}Hg	za080198	9.97	ENDF/B-VII	TENDL-2009
^{199}Hg	za080199	16.87	ENDF/B-VII	TENDL-2009
^{200}Hg	za080200	23.10	ENDF/B-VII	TENDL-2009
^{201}Hg	za080201	13.18	ENDF/B-VII	TENDL-2009
^{202}Hg	za080202	29.86	ENDF/B-VII	TENDL-2009
^{204}Hg	za080204	6.87	ENDF/B-VII	TENDL-2009
<i>Thallium</i>				
^{205}Tl	za081205	70.476	TENDL2008	TENDL-2009
<i>Lead</i>				
^{204}Pb	za082204	1.4	ENDL2009	JENDL-4
^{202}Pb	za082202		LLNL2009	TENDL-2009
^{203}Pb	za082203		LLNL2009	TENDL-2009
^{205}Pb	za082205		LLNL2009	TENDL-2009
^{206}Pb	za082206	24.1	LLNL2009	JEFF-3.2
^{207}Pb	za082207	22.1	LLNL2009	JEFF-3.2
^{209}Pb	za082209		LLNL2009	TENDL-2009
^{210}Pb	za082210		LLNL2009	TENDL-2009
<i>Bismuth</i>				
^{209}Bi	za083209	100.0	JEFF-3.1	TENDL-2009
<i>Polonium</i>				
^{209}Ra	za084209		TENDL-2008	TENDL-2009
<i>Radium</i>				
^{223}Ra	za088223		ENDF/B-VII	TENDL-2009
^{224}Ra	za088224		ENDF/B-VII	TENDL-2009
^{225}Ra	za088225		ENDF/B-VII	TENDL-2009
^{226}Ra	za088226		ENDF/B-VII	TENDL-2009
<i>Actinium</i>				
^{225}Ac	za089225		JENDL/AC-2008	JENDL-4
^{226}Ac	za089226		JENDL/AC-2008	JENDL-4
^{227}Ac	za089227		JENDL/AC-2008	JENDL-4
<i>Thorium</i>				
^{227}Th	za090227		JENDL/AC-2008	JENDL-4
^{228}Th	za090228		JENDL/AC-2008	JENDL-4
^{229}Th	za090229		JENDL/AC-2008	JENDL-4
^{230}Th	za090230		JENDL/AC-2008	JENDL-4
^{231}Th	za090231		JENDL/AC-2008	JENDL-4
^{233}Th	za090233		ENDF/B-VII	JENDL-4
^{234}Th	za090234		JENDL/AC-2008	JENDL-4
<i>Protactinium</i>				

TABLE I: Source of incident neutron evaluations in ENDL2011.2.

Symbol	ZA	(%)	ENDL2009.2	ENDL2011.2			
^{229}Pa	za091229		JENDL/AC-2008	JENDL-4	^{240}Am	za095240	LLNL2009 JENDL-4
^{230}Pa	za091230		JENDL/AC-2008	JENDL-4	^{244}Am	za095244m	ENDF/B-VII JENDL-4
^{231}Pa	za091231		JENDL/AC-2008	ENDF/B-VII.1 β 0	<i>Curium</i>		
^{232}Pa	za091232		JENDL/AC-2008	JENDL-4	^{240}Cm	za096240	JENDL/AC-2008 JENDL-4
^{233}Pa	za091233		ENDF/B-VII	ENDF/B-VII.1 β 0	^{241}Cm	za096241	JENDL/AC-2008 JENDL-4
<i>Uranium</i>					^{242}Cm	za096242	JENDL/AC-2008 JENDL-4
^{230}U	za092230		JENDL/AC-2008	JENDL-4	^{243}Cm	za096243	JENDL/AC-2008 JENDL-4
^{231}U	za092231		JENDL/AC-2008	JENDL-4	^{244}Cm	za096244	JENDL/AC-2008 JENDL-4
^{236}U	za092236		ENDF/B-VII **	ENDF/B-VII	^{245}Cm	za096245	JENDL/AC-2008 JENDL-4
^{239}U	za092239		ENDF/B-VII	ENDF/B-VII.1	^{246}Cm	za096246	JENDL/AC-2008 JENDL-4
<i>Neptunium</i>					^{247}Cm	za096247	JENDL/AC-2008 JENDL-4
^{234}Np	za093234		JENDL/AC-2008	JENDL-4	^{248}Cm	za096248	JENDL/AC-2008 JENDL-4
^{235}Np	za093235		JENDL/AC-2008	JENDL-4	^{249}Cm	za096249	JENDL/AC-2008 JENDL-4
^{236}Np	za093236		JENDL/AC-2008	JENDL-4	^{250}Cm	za096250	JENDL/AC-2008 JENDL-4
^{237}Np	za093237		JENDL/AC-2008	ENDF/B-VII.1 β 0	<i>Berkelium</i>		
^{238}Np	za093238		JENDL/AC-2008	JENDL-4	^{245}Bk	za097245	JENDL/AC-2008 JENDL-4
^{239}Np	za093239		JENDL/AC-2008	JENDL-4	^{246}Bk	za097246	JENDL/AC-2008 JENDL-4
<i>Plutonium</i>					^{247}Bk	za097247	JENDL/AC-2008 JENDL-4
^{236}Pu	za094236		JENDL/AC-2008	JENDL-4	^{248}Bk	za097248	JENDL/AC-2008 JENDL-4
^{237}Pu	za094237		JENDL/AC-2008	JENDL-4	^{249}Bk	za097249	JENDL/AC-2008 JENDL-4
^{240}Pu	za094240		ENDF/B-VII.1 **	ENDF/B-VII.1	^{250}Bk	za097250	JENDL/AC-2008 JENDL-4
^{241}Pu	za094241		JENDL/AC-2008	JENDL-4	<i>Californium</i>		
^{242}Pu	za094242		JENDL/AC-2008	JENDL-4	^{249}Cf	za098249	JENDL/AC-2008 JENDL-4
^{243}Pu	za094243		ENDL99	CENDL-3.1	^{250}Cf	za098250	JENDL/AC-2008 JENDL-4
^{244}Pu	za094244		JENDL/AC-2008	JENDL-4	^{252}Cf	za098252	JENDL/AC-2008 JENDL-4
^{245}Pu	za094245		JENDL/AC-2008	CENDL-3.1	^{253}Cf	za098253	JENDL/AC-2008 JENDL-4
^{246}Pu	za094246		JENDL/AC-2008	JENDL-4	^{254}Cf	za098254	JENDL/AC-2008 JENDL-4
<i>Americium</i>							