
LA-UR-17-28787
Approved for public release; distribution is unlimited.

Title: Activation Product Inverse Calculations with NDI

Author(s): Gray, Mark Girard

Intended for: Memorandum

Issued: 2017-09-27



Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.  By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes.  Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy.  Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.



memorandum
Computational Physics
XCP–8

To/MS: Julianna E. Fessenden, T082
From/MS: Mark G. Gray, F663

Phone/FAX: 7-5341, 5-2879
Symbol: XCP–8:17–010(U)

Date: August 21, 2017

Activation Product Inverse Calculations with NDI

Summary

NDI based forward calculations of activation product concentrations can be systematically used to infer
structural element concentrations from measured activation product concentrations with an iterative algo-
rithm. The algorithm converges exactly for the basic production-depletion chain with explicit activation
product production and approximately, in the least-squares sense, for the full production-depletion chain
with explicit activation product production and nosub production-depletion chain. The algorithm is suit-
able for automation.

Background

In the previous memo[1] I described how NDI’s ENDF/B based and benchmarked neutron reaction data
could be used with its nosub or full production-depletion chains to calculate activation product con-
centrations given initial nuclide concentrations and time dependent neutron scalar fluxes. The suggested
solution method provides estimates of the end-of-chain biases of importance to activation products, and
solves the forward calculation problem to the accuracy of the underlying data.

For activation products the inverse problem is of greater interest: given the measured amounts of activation
products produced by a specified time dependent neutron scalar flux irradiation, infer the initial concentra-
tions of the elements that produced those activation products.

In this memo I briefly review the formal forward and inverse production-depletion solutions and use them
as the basis for an iterative algorithm, using the capabilities in NDI in a series of forward calculations, for
the approximate solution of the inverse problem.
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Investigation

Formal Solution: The time rate of change of a vector of nuclide amounts is given by the total production-
depletion rate equation:

d
−→
|N |
dt

= R
−→
|N |, (1)

where |N | is the amount of nuclide N and R is the production-depletion matrix. The entries in the
production-depletion matrix R are given by:

RP,T
.=
∑

g

φg

 ∑
r/∈{n,n′}

σT (n,r)P,g − δP,T

∑
X 6=P

∑
r/∈{n,n′}

σP (n,r)X,g

 , (2)

where φg is the neutron scalar flux in group g and σT (n,r)P,g is the microscopic cross section for reaction
n + T −→ r + P in group g subject to the constraints of charge and nucleon balance. An NDI call
to ndi2 get float64 vec x with the keyword NDI TOT PROD XS and ndi2 get float64 vec
with the keyword NDI TOT DEPL XS provides the production and depletion sum terms in the production-
depletion matrix, respectively. The NDI full production-depletion library for mtmg01ex contains 181
targets.

If the production-depletion matrix is approximately constant over a small time step, ∆ti
.= ti+1 − ti, then

Equation 2 can be solved to first order for that time step:

−→
|N |(ti+1) '

−→
|N |(ti) + ∆tiR(ti)

−→
|N |(ti). (3)

This forward Euler approximation is efficient for a large production-depletion chain and is the forward
solution method typically used in codes.

If the production-depletion matrix is actually constant in time then a finite time interval t can be divided into
n equal time steps and Equation 3 can be iterated; in the limit:

−→
|N |(tf ) = lim

n→∞

{
I +

tR
n

}n−→
|N |(t0)

= etR
−→
|N |(t0), (4)

where eX .=
∑∞

i=0
Xi

i! is the matrix exponential. Physically, the i = 1 term in the exponential matrix
expansion is the single reaction production of the Ni’s from their parents and destruction to their children,
the i = 2 term is the two step reaction production of Ni’s including its destruction followed by subsequent
production, etc.

If the production-depletion matrix varies in time, the formal solution can still be expressed through the limit
of iterated Equations 3 as a matrix exponential:

−→
|N |(tf ) = lim

n→∞
∆ti→0

[
n∏

i=1

{I + ∆tn−iR(tn−i)}

]
−→
|N |(t0)

= eΩ(tf ,t0)−→|N |(t0), (5)
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where Ω(tf , t0) .=
∑∞

i=1 Ωk(tf , t0) is the Magnus expansion[3] of R(t) on the interval [tf , t0]. The first
few terms of the Magnus expansion are:

Ω1(tf , t0) .=
∫ tf

t0

dt1 R(t1),

Ω2(tf , t0) .=
1
2

∫ tf

t0

dt1

∫ t1

t0

dt2 [R(t1),R(t2)] ,

Ω3(tf , t0) .=
1
6

∫ tf

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3 [R(t1), [R(t2),R(t3)]] + [R(t3), [R(t2),R(t1)]] ,

where [A,B] .= AB−BA is the matrix commutator of A and B. The second and higher order terms in the
Magnus expansion correct for the non-commutative nature of the product of production-depletion matrices
evaluated at different times.

Given the general forward solution in Equation 5, which gives final nuclide concentrations in terms of initial
nuclide concentrations, the inverse problem specifying initial nuclide concentrations given final nuclide
concentrations is easily solved: −→

|N |(t0) = e−Ω(tf ,t0)−→|N |(tf ). (6)

Approximate Solution: Equation 6, typical of formal solutions, is nearly useless for actually comput-
ing the inverse solution, because the former requires that:

1. the forward solution is known

2. the forward solution provides either Ω or eΩ

3. the large (181 × 181 in the case of mtmg01ex’s full chain) matrix Ω or eΩ is exponentiable or
invertable, respectively

And, of course, if the forward solution is known, then the initial concentrations are already known, too,
making the inverse problem moot.

However, the formal solution does suggest a possible iterative approach for activation products: use a trial
forward solution like Equation 5 and approximate inverse like Equation 6 of a reduced production-depletion
set like Figure 1 to iterate to the inverse solution.

Consider the four activation products of Iron and Cobalt shown in Figure 1 as a subset of the “Chart of
the Nuclides”[2] with the reactions available in the NDI mtmg01ex neutron transport library. This is the
nearest neighbor sub-chain, corresponding to mtmg01ex full chain with explicit daughter production,
for these activation products.

If we restrict both the matrix exponential and Magnus expansions in Equation 5 to first order we get:

−→
|N |(tf ) '

{
I +

∫ tf

t0

dt1 R(t1)
}−→
|N |(t0). (7)
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Figure 1: The Activation Products of Iron and Cobalt with Their Parents. Stable nuclides are shown in
gray with their natural isotopic abundance and thermal capture cross section below their symbol and mass

number. Activation products are shown in green (100 d < t1/2 ≤ 10 a) or yellow (10,d < t1/2 ≤ 100 d)
with their half-life and thermal capture cross section below their symbol and mass number. The capture
((n, γ)), low threshold ((n, p), (n, α)), and high threshold ((n, np), (n, 2n)) arrows indicate the production
reactions for the activation products.

Projecting this matrix equation to the outgoing subspace containing only the activation products in Figure 1
and reducing the system to only the non-zero, i.e. parent, matrix entries on the right, we obtain a reduced
approximation to the forward equation that is suitable for an iterative solve of the inverse problem:

∆
−→
|P | '

∫ tf

t0

dt1 R(t1)
−→
|I|(t0), (8)

where ∆
−→
|P | .=

−→
|P |(tf )−

−→
|P |(t0) are the change in concentrations of the four activation products, and

−→
|I|(t0)

are the initial concentrations of the nine stable nuclides in Figure 1.

This reduced chain is exact provided the sub-chain in Figure 1 includes all the first order production-
depletion reactions available in the chain and the parent populations are unchanged, which is exactly the case
for NDI’s basic production-depletion chain for the mtmg01ex library with explicit daughter production[1].

We can construct initial nuclide concentrations from initial element concentrations, assuming only natural
abundances, by using the natural abundance matrix:

−→
|I|(t0) = A

−→
|E|(t0), (9)

where Aj,k is the natural isotopic abundance of isotope Ij in element Ek. Thus:

∆
−→
|P | 'M

−→
|E|(t0), (10)

where M .=
∫ tf
t0
dt1 R(t1)A.
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1. Given ∆
−→
|P |E guess

−→
|E|(t0), where |Ei|(t0) 6= 0

2.
−→
|I|(t0)← A

−→
|E|(t0); forward calculate |I(n, r)P|(tf ) and ∆

−→
|P |

3. If ∆
∣∣∣∆−→|P | −∆

−→
|P |E

∣∣∣ < ε
∣∣∣∆−→|P |E∣∣∣ then stop

4. Mi,k ←
∑

Ij∈Ek

|Ij(n,r)Pi|(tf )
|Ij |(t0) Aj,k

5.
−→
|E|(t0)←M+∆

−→
|P |E

6. Goto 2

Figure 2: Activation Product Inverse Calculation Algorithm. Use an initial guess of element concentra-
tions and forward calculation of activation product concentrations to approximate the projected production-
depletion matrix; iterate to solution. Step 2 in this algorithm corresponds to the forward solve of Equation 5
with trial initial concentrations, while Step 5 corresponds to the inverse solve, in the least squares sense with
a generalized inverse M+, of Equation 10 as approximation to Equation 6 with measured activation product
concentrations.

Because the forward solution with the basic or full chains must explicitly calculate the total number
of reactions which produce activation products from each source[1], we have the data to approximate the
matrix M:

Mi,k '
∑

Ij∈Ek

|Ij(n, r)Pi|(tf )
|Ij |(t0)

Aj,k, (11)

where |Ij(n, r)Pi|(tf ) is the total number of n+ Ij → r+ Pi reactions1, provided the initial stable nuclide
concentrations are not zero.

This suggests the iterative algorithm shown in Figure 2 for finding initial element concentrations given mea-
sured activation product concentrations. For the basic chain with explicit activation product production,
Equations 10 and 11 are exact and the scheme should converge for a good initial guess; for the full chain
with explicit activation product production these equations are approximate and ε needs to be larger than the
error introduced by ignoring the higher order contributions.

We use the generalized inverse of M in Step 5 both because of the approximations made and to avoid
problems with under (more activation products than structural elements) and over (more structural elements
than activation products) constraints in the system. In any case, Step 5 returns the best fit, in the least-squared
residual sense, to the available data.

1Since ∆
−→
|P | .

= |Ij(n, r)Pi|(tf ), it includes all terms in the exponential and Magnus expansions, including the production of
activation products by second and higher order reactions in the case of full and nosub chains. Since activation products are
primarily produced by their parents in the full and nosub chains, and only produced by them in the basic chain, it suffices as
an approximation.

An Equal Opportunity Employer/Operated by Los Alamos National Security LLC for DOE/NNSA



XCP–8:17–010(U) -6- August 21, 2017

Conclusion

The inverse problem of finding structural element concentrations from measured activation product concen-
trations can be solved systematically by iterating on an initial guess through a series of forward calculations
of activation product concentrations with a least squares fit of structural element concentrations to mea-
sured activation product concentrations at each iteration. The algorithm converges exactly for the basic
production-depletion chain with explicit activation product production, and approximately, in the least-
squares sense, for the full chain with explicit activation product production and the nosub production-
depletion chain. The algorithm is suitable for automation.

The algorithm is similar to Jabobi iteration[4, p. 506] scheme in its outer iteration, but in this case the
matrix is (weakly) dependent on the solution vector through its effects on the scalar neutron flux and the
outer iteration converges the matrix while the inner explicit solve finds a consistent right hand side for the
current matrix approximation.

Although the algorithm follows the manual steps one might intuitively use to solve the inverse problem,
its rate of convergence and stability have not been formally established. The rate might be accelerated or
potential oscillations damped by the introduction of a relaxation parameter which mixes old and new iterates
in Step 5, but this modification requires more experience with this algorithm or a more rigorous derivation.

If the time averaged scalar neutron flux for a problem is approximately known, it could be used in Equa-
tions 11 and 10 to estimate initial element concentrations for the first step in the algorithm. The TD weight
function[5] available from the NDI call ndi2 get float64 vec with the keyword NDI WGTS could be
suitably scaled to provide a generic initial guess in the absence of more problem specific information.

Because the algorithm converges exactly for the basic production-depletion chain and the forward calcu-
lation with the basic chain is faster than using either the full or nosub chains, iterating first with the
basic chain to converge only the first order reactions in the chain, followed by refinement with the full
or nosub chain to include the remaining terms might provide the best results.
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