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Choosing	the	best	partition	of	the	
output	from	a	large-scale	simulation	
Chelsea	Challacombe	and	Emily	Casleton,	CCS-6	

1. Introduction	
Data	partitioning	becomes	necessary	when	a	large-scale	simulation	produces	more	data	
than	can	be	feasibly	stored.		The	goal	is	to	partition	the	data,	typically	so	that	every	
element	belongs	to	one	and	only	one	partition,	and	store	summary	information	about	
the	partition,	either	a	representative	value	plus	an	estimate	of	the	error	or	a	
distribution.		Once	the	partitions	are	determined	and	the	summary	information	stored,	
the	raw	data	is	discarded.	This	process	can	be	performed	in-situ;	meaning	while	the	
simulation	is	running.		

When	creating	the	partitions	there	are	many	decisions	that	researchers	must	make.		For	
instance,	how	to	determine	once	an	adequate	number	of	partitions	have	been	created,	
how	are	the	partitions	created	with	respect	to	dividing	the	data,	or	how	many	variables	
should	be	considered	simultaneously.		In	addition,	decisions	must	be	made	for	how	to	
summarize	the	information	within	each	partition.		Because	of	the	combinatorial	number	
of	possible	ways	to	partition	and	summarize	the	data,	a	method	of	comparing	the	
different	possibilities	will	help	guide	researchers	into	choosing	a	good	partitioning	and	
summarization	scheme	for	their	application.	

In	this	work	we	will	present	a	metric	that	was	created	to	balance	the	tradeoff	between	
accuracy	and	storage	cost.		These	competing	factors	are	demonstrated	in	the	
hypothetical	scenario	of	Figure	1.		Here	the	accuracy	error	of	the	partition,	or	the	ability	
of	the	summarized	information	to	recreate	the	raw	data,	is	depicted	on	the	y-axis	with	
the	size	of	the	summarized	information	on	the	x-axis.		If	only	size	is	of	interest,	the	best	
partitioning	scheme	would	be	that	highlighted	in	red	on	the	far	left,	where	if	only	
accuracy	is	considered,	the	partitioning	scheme	represented	by	the	point	on	the	far	
right	would	be	preferred.		However,	at	the	optimal	partition	for	size,	the	accuracy	is	at	a	
minimum,	and	optimizing	with	respect	to	only	accuracy	leads	to	the	largest	partitions.		
Therefore,	if	both	criteria	were	important,	the	best	partitioning	scheme	would	be	that	
which	corresponds	to	the	green	circle,	or	size-error	tradeoff.		Moving	away	from	this	
point	in	either	direction	on	the	curve	represents	a	degradation	of	one	of	the	criteria.			

This	idea	of	balancing	competing	criteria	appears	in	other	disciplines	as	well.	In	design	
of	experiments,	the	quality	of	a	design	is	measured	by	its	ability	to	estimate	or	predict	
precisely	but	also	protecting	against	bias	from	model	misspecification	is	desired	(Lu,	
Anderson-Cook,	&	Robinson,	2011).	Other	examples	include	a	manufacturing	company	
choosing	a	supplier	by	balancing	cost	and	quality	of	the	product	(Anderson-Cook	&	Lu,	
2012)	or	balancing	the	effectiveness	of	a	pharmaceutical	drug	for	treating	a	disease	
against	the	side	effects.		
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Figure	1-Demonstration	of	the	tradeoff	between	accuracy	error	and	the	size	of	the	partition.	

Three	datasets	will	be	partitioned	by	various	means,	and	the	resulting	summarizations	will	
be	compared	with	the	pAIC	to	determine	the	most	appropriate	partitioning	scheme.	Each	
data	set	is	a	subset	of	the	total	output	from	a	large-scale	simulation	to	manage	the	dataset	
size	and	more	easily	facilitate	testing.		The	first	data	set	was	obtained	from	a	MC2	(Mesh-
based	Cosmology	Code)	dark	matter	simulation	(Woodring,	Ahrens,	Figg,	Wendelberger,	
Habib,	&	Heitmann,	2011)	and	will	be	referred	to	as	the	cosmology	data.		The	next	data	set	
will	be	referred	to	as	the	ocean	data	and	was	obtained	from	the	Model	for	Prediction	Across	
Scales-Ocean	(MPAS-O)	simulation	(Ringler,	Petersen,	Higdon,	Jacobsen,	Jones,	&	Maltrud,	
2013).	Lastly,	the	asteroid	data	is	a	simulation	of	an	asteroid	entering	the	atmosphere	
(Gisler	G.	R.,	Weaver,	Mader,	&	Gittings,	2004)	(Gisler,	Weaver,	&	Gittings,	2011)	obtained	
from	xRage	simulation	code.	Table	1	describes	the	size	of	each	dataset	and	the	variable	of	
interest.	

	 Variable	of	Interest	to	be	summarized	 Size	of	raw	data	
(number	of	rows)	

Cosmology	
data	

Velocity	in	the	x-direction	 32,	768	

Ocean	data	 Temperature	of	the	water	 57,536	

Asteroid	data	 Temperature	of	asteroid	in	electron	volts	 13,253,253	

Table	1-Variables	of	interest	to	be	summarized	for	each	of	the	three	datasets.	

These	particular	data	sets	were	chosen	because	they	represent	a	broad	range	of	subject	
areas	and	motivations.	For	instance,	a	main	goal	of	the	cosmology	data	is	to	identify	halos,	
or	a	clustering	of	dark-matter	particles,	while	the	ocean	simulation	output	is	used	to	study	
anthropogenic	climate	change,	and	one	purpose	of	the	asteroid	simulation	is	to	study	the	
ablation	of	the	asteroid	as	it	flies	through	the	atmosphere.	In	addition,	each	dataset	contains	
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three-dimensional	spatial	information,	allowing	the	partitioning	to	be	performed	on	the	
spatial	dimensions.	

The	rest	of	the	report	is	organized	as	follows.	The	partitioning	schemes	explored	in	this	
report	are	described	in	Section	2.		Various	error	metrics,	including	the	metric	developed	
specifically	for	assessing	partitions,	are	discussed	in	Section	3.		Sections	4-6	demonstrate	
the	usage	of	the	metrics	on	the	three	data	sets.		Sections	7	and	8	explore	further	
considerations	for	the	proposed	metric:	the	choice	of	weights	and	the	conclusions	drawn	
from	the	summarized	data,	respectively.	Finally,	Section	9	concludes	the	paper	and	
discusses	future	work.			

2. Partitioning	Details	
A	brief	description	is	provided	below	on	how	the	partitions	under	consideration	are	
created,	and	what	choices	need	to	be	made	within	the	process	to	create	partitions	
representing	a	large	amount	of	raw	data.	Note	that	we	will	refer	to	the	combination	of	
choices	as	a	partitioning	scheme	and	that	comparing	different	schemes	is	the	main	goal	of	
this	work.		

The	algorithm	used	to	create	the	partitions	is	a	top-down	kd-tree	algorithm	(Nouanesengsy,	
Woodring,	Patchett,	Myers,	&	Ahrens,	2014),	where	each	split	is	axis-aligned	so	that	the	
dividing	line	is	always	parallel	to	one	axis	and	each	split	is	binary,	so	that	each	node	in	the	
tree	is	subdivided	into	two	leaves	(see	an	example	in	Figure	4).		For	this	report,	the	
partitions	were	created	using	three	spatial	variables,	and	the	summarization	within	each	
final	partition	will	be	on	a	separate	variable	of	interest,	such	as	temperature	or	pressure.		
Because	the	partitioning	variables	represent	spatial	locations,	the	resulting	partitions	form	
an	irregular	grid	over	the	data.	Figure	2	displays	resulting	partitions	for	two-dimensional	
spatial	data,	where	the	points	represent	the	location	of	data	collection,	and	the	variable	of	
interest	is	measured	at	each	location.		

	
Figure	2	-	Irregular	grid	over	two-dimensional	data.		The	points	represent	the	location	of	data	values	and,	the	
partitioning	is	performed	by	recursively	splitting	the	subset	with	the	largest	variance.		
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The	following	is	a	list	of	the	choices	that	define	a	partitioning	scheme;	a	detailed	description	
of	each	will	follow.	

1. Define	the	partitioning	variables	
2. Determine	how	to	cycle	through	the	partitioning	variables	
3. Determine	where	to	divide	the	partitioning	variables	
4. How	to	decide	when	the	final	partitions	have	been	reached	
5. Choose	a	representative	value	of	the	final	partitions	
6. Choose	a	representation	of	the	error	in	the	final	partitions	

2.1	Partitioning	Variables		
In	the	three	example	datasets	examined	here,	the	partitioning	variables	represent	spatial	
locations,	so	that	the	partitioning	results	in	an	irregular	grid	over	the	data.		When	spatial	
data	is	available,	this	choice	is	intuitive,	as	you	would	expect	areas	of	similarity	to	be	
spatially	co-located.		For	example,	the	variable	of	interest	for	the	ocean	data	is	water	
temperature,	and	it	is	intuitive	that	there	are	regions	of	water	with	similar	temperature.		
Although	not	considered	here,	creating	partitions	over	spatial	locations	may	not	always	be	
the	most	informative;	however,	the	use	of	a	metric	will	quantify	any	differences	between	
various	choices	of	partitioning	variables.		

2.2	Cycling	through	partitioning	variables	
Given	that	there	is	more	than	one	partitioning	variable,	one	will	need	to	decide	which	
variable	to	partition	at	any	given	step	in	the	algorithm.	Under	current	consideration	is	to	
cycle	through	the	variables,	so	that	if	the	partitioning	variables	are	x,	y,	and	z,	the	algorithm	
will	partition	x,	then	y,	then	z,	then	x,	etc.	until	some	stopping	criteria	has	been	met.	

Another	possibility	would	be	to	split	on	whichever	variable	has,	for	example,	the	largest	
variance.		After	each	step	of	the	algorithm,	the	variance	of	all	current	partitions	is	
calculated,	and	the	one	partition	with	the	largest	variance	is	then	partitioned.		Similarly,	
another	possibility	would	be	to	choose	the	partition	with	the	most	points.		Again,	although	
only	one	possibility	is	considered	here,	the	introduction	of	a	metric	will	allow	for	a	
quantification	of	different	options	for	a	given	set	of	data.	

2.3	Partition	Location	
Once	it	is	determined	which	variable	will	be	partitioned	in	the	algorithm,	another	choice	is	
how	to	perform	the	partition.		Because	the	algorithm	performs	splits	that	are	binary	and	
axis-aligned,	this	decision	is	equivalent	to	choosing	where	to	draw	a	vertical	or	horizontal	
line	(or	plane)	through	the	data.		Consider	the	two	dimensional	projection	of	the	ocean	data,	
shown	as	points	in	Figure	3.	If	Latitude	is	the	variable	to	be	partitioned,	the	current	options	
are	to	partition	at	the	mean,	median,	or	midpoint	of	the	range	of	the	splitting	variable.		
Figure	3	shows	where	the	partition	would	occur	for	each	option.	Note	that	if	the	
partitioning	variables	are	relatively	symmetric,	the	mean	and	median	partitioning	will	
produce	similar	results.			
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Figure	3-Demonstration	of	the	difference	between	splitting	at	the	mean,	median,	or	midpoint	of	the	latitude	
variable	for	the	ocean	data.	

2.4	Stopping	Criteria	
Determining	when	to	terminate	the	partitioning	algorithm	is	the	last	decision	to	be	made	
with	respect	to	creating	partitions.		The	stopping	criteria	will	define	when	the	algorithm	has	
arrived	at	the	final	partitions.		In	this	work	there	are	four	criteria	that	will	be	considered	for	
stopping	the	partitioning	algorithm,	and	individual	criterion	can	also	be	used	together	in	
combination.		Note	that	for	the	first	two	criteria	listed,	it	is	the	variable	of	interest	that	is	
examined,	not	the	partitioning	variables.		

1. Variable	Range—This	method	will	examine	the	variable	of	interest,	(e.g.,	
temperature)	within	the	current	partitions	and	compare	each	range	value	to	some	
specified	number,	say	5.		After	each	iteration	of	the	algorithm,	the	temperature	
range	is	computed	within	each	partition,	and	if	there	is	at	least	one	with	a	range	
greater	than	5,	the	algorithm	will	continue.			

2. Variable	variance—similar	to	1.,	but	with	the	variance.	
3. Cell	count—This	stopping	criterion	defines	the	maximum	number	data	values	in	

each	final	partition.		Before	each	split	is	performed	the	number	of	data	values	in	the	
partition	is	checked,	and	if	this	number	is	more	than	the	user-defined	cell	count,	the	
algorithm	will	continue.	

4. Number	of	levels—This	is	easiest	to	describe	with	a	tree,	like	the	one	shown	in	
Figure	4.		Each	branch	represents	a	partition,	so	the	circle	at	the	top	denotes	all	the	
data.	A	binary	partition	is	defined	on	variable	x	at	0.1,	so	the	orange	circle	to	the	left	
is	data	less	than	0.1,	and	the	pink	circle	on	the	right	is	all	the	data	greater	than	0.1.	
The	number	of	levels	criterion	examines	the	deepest	branch	within	the	tree,	so	in	
this	example	there	are	6	levels.	
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Figure	4-An	example	tree	used	to	describe	the	number	of	levels	stopping	criterion.	

2.5	Partition	Representation	
Once	the	final	partitions	are	created,	the	variable	of	interest	will	be	summarized	within	each	
partition	with	a	single,	representative	value.		In	the	current	work,	the	representative	value	
will	be	the	mean,	median,	or	midpoint.		Future	work	includes	preserving	a	distributional	
representation	of	the	variable	of	interest,	rather	than	a	single	value;	however,	this	will	
require	an	extension	of	the	metrics	defined	in	the	following	section.	

2.6	Error	Representation	
An	important	aspect	to	consider	when	discarding	the	raw	data	is	the	amount	of	information	
lost	by	representing	a	collection	of	potentially	variable	data	with	only	a	single,	
representative	value.		The	error	representation	is	a	summary	of	the	distribution	of	errors	
between	the	chosen	representative	value	and	each	value	of	the	raw	data	within	the	
corresponding	partition.		Under	consideration	are	four	representations	of	the	error	
distribution:	the	mean	or	median	of	the	error	distribution,	the	maximum	error,	or	a	
percentile	from	the	error	distribution	(1-99%),	which	represents	the	value	for	which	p%	of	
the	errors	are	smaller	(100%	percentile	is	the	same	as	the	maximum	error,	50%	is	
equivalent	to	the	median	error).	

Figure	5	displays	a	flow	chart	summarizing	the	steps	of	the	partitioning	approach	used	in	
this	work.		Not	all	decisions	discussed	above	are	displayed	in	this	figure.	
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Figure	5-	Flow	chart	displaying	the	partitioning	approach.	

3. Metrics	

3.1	pAIC	
The	metric	developed	to	balance	the	competing	criteria	of	size	and	accuracy	was	inspired	
by	the	AIC	(Akaike	Information	Criteria),	a	common	measure	used	in	statistics	to	choose	an	
appropriate	model	for	a	given	dataset.		The	AIC	balances	the	tradeoff	between	goodness	of	
fit	of	a	model	and	model	complexity,	and	thus	has	a	similar	goal	in	selecting	an	appropriate	
fit.	In	addition,	the	partitioning	scheme	can	be	interpreted	as	a	model	of	the	raw	data.		

Our	metric	is	called	the	pAIC	(partition-AIC)	and	is	computed	with	the	following	formula:	
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𝑝𝐴𝐼𝐶 =  𝜔!
𝑘
𝑁

+ 𝜔!
𝑛!

(𝑦!" − 𝑦!)!
𝑛!!∈!

!
!!!

𝜎!

+ 𝜔!
𝑛!

[ 𝑦!" − 𝑦! − 𝑒!]!
𝑛!!∈!

!
!!!

0.5 ∗ 𝑟𝑎𝑛𝑔𝑒 ! 	

Equation	1-pAIC	

where	the	N	values	of	the	raw	data	are	represented	as	𝑦!" , 𝑝 = 1,… , 𝑘	where	the	
partitioning	scheme	has	𝑝 partitions;	the	𝑛!	raw	values	in	partition	𝑝	are	summarized	with	
representative	value	𝑦!	and	error	𝑒!.		The	𝜔!,𝜔!,𝜔!	are	weights	that	sum	to	1	and	place	
relative	importance	on	each	term.		In	words,	the	first	term	is	a	penalty	for	the	number	of	
partitions	scaled	by	the	square	root	of	N;	the	second	term	is	the	mean	of	squared	errors	
(MSE),	or	a	measure	of	the	average	accuracy	of	the	representative	value	within	partition	p,	
which	is	then	scaled	by	the	variance.	The	final	term	is	a	measure	of	the	average	accuracy	of	
the	estimated	error,	which	is	scaled	by	half	of	the	range	squared.		The	denominators	in	each	
term	are	intended	to	scale	the	term	by	the	worst-case	scenario	so	that	each	term	
contributes	to	the	overall	metric	on	a	comparable	scale.		

As	with	the	original	AIC,	smaller	values	of	the	pAIC	indicate	a	better	tradeoff	of	accuracy	
and	size,	while	the	magnitude	of	the	metric	values	are	irrelevant.		Thus,	the	pAIC	is	not	
appropriate	for	comparing	partitioning	schemes	across	datasets	or	variables	within	the	
same	dataset.		

The	performance	of	the	pAIC	will	be	compared	to	four	other	commonly	used	metrics	within	
the	statistics	and	computer	science	literature:		root	mean	squared	error	(RMSE),	signal	to	
noise	ration	(SNR),	JPEG	precision,	and	the	correlation	coefficient.		Each	metric	will	be	
described	in	turn.			

3.2	RMSE	
The	RMSE	is	a	commonly	used	metric	in	computer	science	literature	to	compare	differences	
between	two	sets	of	data;	often,	one	of	which	is	observed	and	the	other	is	estimated.			RMSE	
is	a	good	estimate	of	accuracy,	but	depends	on	the	scale	of	the	original	data.		So,	as	with	the	
pAIC,	RMSE	should	not	be	used	to	compare	across	different	datasets.	The	formula	for	RMSE:		

𝑅𝑀𝑆𝐸 =  𝑛!
(𝑦!" − 𝑦!)!

𝑛!!∈!

!

!!!

	

Equation	2-RMSE	

which	is	the	square	root	of	the	second	term	from	the	pAIC.	Smaller	values	of	RMSE	indicate	
a	more	accurate	partitioning	scheme.	Notice	that	the	RMSE,	as	well	as	all	other	metrics	
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discussed	in	this	section,	do	not	include	a	penalty	term	for	size,	and	thus	take	only	one	
aspect	of	the	size-accuracy	tradeoff	into	consideration.		The	RMSE	will	tend	to	be	a	non-
increasing	function	of	the	number	of	partitions	as	a	result.		

3.3	SNR	
Another	popular	metric,	particularly	in	engineering,	is	the	signal	to	noise	ratio,	which	
compares	the	amount	of	discernable	signal	in	the	data	to	the	amount	of	background	noise.		
The	comparison	is	accomplished	through	a	proportion,	so	values	greater	than	1	indicate	
more	signal	than	noise,	while	SNR	values	less	than	1	imply	more	noise	than	signal.		
Particular	applications	will	compute	signal	and	noise	differently,	but	for	the	partitioning	
scheme,	we	will	compute	SNR	as	

𝑆𝑁𝑅 =  
𝜎!

𝑛!
(𝑦!" − 𝑦!)!

𝑛!!∈!
!
!!!

	

Equation	3-SNR	

where	𝜎!,	the	signal,	or	numerator,	is	the	amount	of	variability	in	the	raw	data	and	the	
noise,	or	denominator,	is	represented	by	the	MSE.		The	numerator	will	be	constant	across	
all	partitioning	schemes	of	a	given	dataset,	thus	the	SNR	is	a	scaled	inverse	of	the	RMSE.		
Unlike	the	previous	two	metrics,	a	larger	value	of	SNR	indicates	a	more	accurate	
representation.		This	is	also	the	inverse	of	the	second	term	of	the	pAIC.		

3.4	JPEG	Precision	
The	next	metric	was	developed	in	conjunction	with	work	on	JPEG	2000	compression	
(Woodring,	Mniszewski,	Brislawn,	DeMarle,	&	Ahrens,	2011)	and	was	named	precision.		
Because	precision	typically	refers	to	the	inverse	of	the	variance	in	statistics,	this	metric	will	
be	referred	to	as	JPEG	precision	in	this	work.		This	metric	is	computed	as	follows:	

𝐽𝑃𝐸𝐺 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑛!

𝑦!"
𝑛!!∈!

!
!!!

max
!

max
!∈!

𝑦!" − 𝑦!
	

Equation	4-JPEG	precision.	

Thus,	the	metric	represents	a	ratio	of	the	average	magnitude	of	the	data	to	maximum	error	
over	all	partitions.		The	JPEG	precision	metric	differs	from	those	previously	discussed	
because	it	contains	the	maximum	error,	rather	than	an	average	error.		The	advantage	of	
using	an	average	error	is	that	it	is	a	summary	of	the	entire	error	distribution,	where	the	
maximum	error	represents	only	one	value	in	the	extreme.		However,	an	extreme	error	may	
be	diminished	and	not	evident	if	examining	an	average	error,	particularly	when	
summarizing	a	large	number	of	partitions,	while	the	maximum	error	will	highlight	if	this	
extreme	value	exists.	As	with	SNR,	more	desirable	partitioning	schemes	will	have	larger	
values	of	JPEG	precision.	
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3.5	Pearson	Correlation	Coefficient	
The	last	metric	examined	in	this	work	is	the	Pearson	product-moment	correlation	
coefficient,	or	correlation	coefficient,	𝑟 ∈ [0,1].	This	metric	measures	the	strength	of	the	
linear	relationship	between	two	sets	of	data.		Here,	we	take	those	sets	of	data	to	be	the	raw	
data	and	corresponding	predicted	value.		The	formula	is	as	follows				

𝑟 =  
𝑦!" − 𝑦 𝑦! − 𝑦!∈!

!
!!!

𝑦!" − 𝑦
!

!∈!
!
!!! 𝑦! − 𝑦

!
!∈!

!
!!!

	

Equation	5-Pearson	correlation	coefficient	

where	𝑦	is	the	average	of	the	raw	data,	and	𝑦	is	the	average	of	the	predicted	values	over	all	
partitions.	If	all	the	representative	values,	𝑦!,	were	exactly	equal	to	all	the	raw	data	values,	
𝑦!",	then	the	correlation	coefficient	will	be	its	maximum	value	of	1.		However,	if	there	is	a	
systematic	additive	bias	in	the	representative	values,	this	maximum	could	also	be	attained.		
In	general,	the	closer	the	correlation	coefficient	is	to	1,	the	more	accurately	the	
representative	values	are	estimating	the	raw	data.		

As	previously	mentioned,	the	metrics	described	in	sections	4.2-4.5	do	not	include	a	penalty	
term	for	the	size	of	the	partition.		In	addition,	none	of	these	metrics	consider	the	quality	of	
the	error	estimate	within	each	partition.		Each	examines	only	how	well	the	representative	
value	estimates	the	raw	data.	

4. Cosmology	Data	Results	
The	cosmology	datasets	consists	of	a	large-N	body	simulation	of	dark	matter	physics	from	
the	Road-Runner	Universe	MC3	(Habib,	et	al.,	2009).		One	time	step	consists	of	40003,	or	
about	64	billion,	particles	with	36	bytes	per	particle,	resulting	in	a	dataset	of	2.3	TB	per	time	
step.		The	specific	dataset	analyzed	here	was	obtained	through	in-situ	subsampling	
(Woodring,	Ahrens,	Figg,	Wendelberger,	Habib,	&	Heitmann,	2011)	and	consists	of	only	
32,768	points	in	space	and	one	time	step.		The	three-dimensional	spatial	locations	of	the	
subsampled	points	are	displayed	in	Figure	6.		The	plot	on	the	left	displays	the	particles	
colored	by	their	value	on	the	x-axis.		Even	with	only	a	small	fraction	of	the	data,	the	space	is	
still	dense.	Coloring	of	the	plot	on	the	right	corresponds	to	the	variable	of	interest,	the	
velocity	of	x,	or	vx.		This	plot	indicates	that	there	are	regions	of	similar	values	of	velocity	
and	that	this	dataset	could	benefit	from	spatial	partitioning	on	the	velocity.		It	should	be	
noted	that	if	this	method	were	to	be	used	in	practice,	the	partitioning	would	be	performed	
on	the	64	billion	particles;	however,	for	demonstration	and	testing	purposes,	the	small	
subset	is	examined	here.	
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(a)	Spatial	locations	of	cosmology	points	colored	by	x.	

	
(b)	Spatial	locations	of	cosmology	points	colored	by	
the	variable	of	interest,	vx.	

Figure	6-Three-dimensional	spatial	locations	of	the	particle	data	from	the	cosmology	dataset.	

Through	the	pAIC,	the	effect	of	splitting	location	and	how	to	summarize	the	resulting	
partitions	can	be	examined.		These	correspond	to	decisions	number	3	and	5.	In	addition,	
different	partition	numbers	result	from	using	various	maximum	cell	count	as	stopping	
criteria	(decision	4).	All	decisions	that	were	made	to	arrive	at	these	partitions	are	
summarized	in	Table	2.	As	the	maximum	cell	count	increases,	the	number	of	partitions	
decreases,	as	demonstrated	in	Figure	7	for	the	partitioning	schemes.	The	number	of	
partitions	is	plotted	on	a	log	scale	to	better	highlight	the	trend.		Notice	that	for	the	median,	
there	are	only	five	distinct	partitions	(i.e.,	multiple	values	of	the	maximum	cell	count	
produced	identical	resulting	partitions),	in	contrast	to	the	mean	and	midpoint,	which	
resulted	in	19	unique	partitionings.			

	
Figure	7-Plot	of	minimum	cell	count	against	the	log	of	the	number	of	partitions.	

Figure	8	shows	the	pAIC	against	the	log	of	the	number	of	partitions	resulting	from	a	
particular	partition	scheme.		Again,	the	log	is	used	for	visualization	purposes	only.	Because	
the	splitting	is	done	on	the	spatial	locations,	the	differences	between	the	various	curves	of	
Figure	8	result	from	a	non-symmetric	distribution	of	points	in	the	raw	data	in	each	
dimension.		Figure	9	displays	the	distributions	of	the	three	dimensions	of	spatial	locations.		
Notice	how	the	x-dimension	distribution	is	relatively	symmetric,	but	points	in	the	y	and	z	
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dimensions	are	not,	which	leads	to	differing	partitions	based	on	where	the	splitting	is	
performed.			

	 Mean	Partitioning	
Scheme	

Median	Partitioning	
Scheme	

Midpoint	Partitioning	
Scheme	

1.	Splitting	variables	 x,y,z	 x,y,z	 x,y,z	

2.		Cycle	through	 Round	robin	 Round	robin	 Round	robin	

3.	Partition	Location	 Mean	 Median	 Midpoint	

4.	Stopping	Criteria	 Cell	Count	(100,	200,	
.	.	.,	2000)	

Cell	Count	(100,	200,	
.	.	.,	2000)	

Cell	Count	(100,	200,	
.	.	.,	2000)	

5.	Partition	
Representation	

Mean	 Median	 Midpoint	

6.	Error	
Representation	

Mean	 Mean	 Mean	

7.	ω1,	ω2,	ω3	 0.25,	0.25,	0.5	 0.25,	0.25,	0.5	 0.25,	0.25,	0.5	

Table	2-Decisions	from	section	2,	as	well	as	the	pAIC	parameters,	used	to	create	the	partitions	summarized	in	Figure	
7,	Figure	8,	and	Figure	10.	 	

The	most	appropriate	partition,	as	indicated	by	the	pAIC,	is	that	which	produces	the	
minimum	pAIC.		Therefore,	if	the	mean	partition	and	representation	is	desired,	the	
minimum	pAIC	occurs	for	27	partitions,	which	results	from	setting	the	minimum	cell	count	
stopping	criteria	to	1700.		For	the	median	representation	and	partition	location	the	most	
desirable	partitioning	scheme	results	from	32	partitions	or	when	the	stopping	criteria	is	
between	1100	and	2000,	and	for	midpoint,	36	partitions	which	result	with	a	minimum	cell	
count	of	1400	is	preferred.		Note	that	for	mean	and	midpoint,	the	minimum	pAIC	does	not	
occur	with	the	smallest	partition	size,	but	rather	the	fourth	and	sixth	smallest	number	of	
partitions.	If	a	particular	representation	and	partition	location	is	not	specified,	the	most	
appropriate	partitioning	scheme	according	to	pAIC	is	to	use	the	mean	because	it	produced	
the	smallest	pAIC	of	the	three	options.	
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Figure	8-Effect	of	varying	how	to	split	and	how	to	summarize	on	the	pAIC	when	applied	to	the	cosmology	data.	

	

	 	 	
Figure	9-Distribution	of	the	three	dimensions	of	spatial	locations	for	the	cosmology	data	

	

A	comparison	between	the	various	partitioning	metrics	is	displayed	in	Figure	10.	Because	
some	metrics	are	on	a	different	scale,	the	values	within	each	metric	and	for	each	
partitioning	scheme	have	been	standardized	so	that	all	values	lie	between	0	and	1.		The	
standardization	occurs	by	dividing	the	metrics	by	the	maximum,	so	that	for	each	scheme	
and	each	metric,	there	is	at	least	one	value	of	1.		From	Figure	10	it	can	be	seen	that	the	
partitioning	scheme	that	minimizes	the	RMSE	and	maximizes	the	SNR,	precision,	and	
correlation,	is	the	scheme	with	the	largest	number	of	partitions.		The	only	exception	is	the	
SNR	for	the	median	partitioning	scheme,	which	favors	a	smaller	number	of	partitions.			
Because	of	the	penalty	of	the	number	of	partitions,	the	pAIC	actually	choses	a	partitioning	
scheme	that	would	be	much	smaller	to	store.		
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(a)	Mean	Partitioning	Scheme	

	
(b)	Median	Partitioning	Scheme	

	
(c)	Midpoint	Partitioning	Scheme	

Figure	10-Number	of	partitions	plotted	against	the	five	normalized	metrics	for	the	three	partition	criteria	
summarized	in	Table	2.	

Figure	11	compares	the	partitioning	schemes	determined	to	be	the	best	by	pAIC	and	the	
other,	non-penalized	metrics.		The	points	on	the	left	are	colored	by	partition	and	represent	
only	27	partitions.		On	the	right	the	points	are	colored	by	the	490	partitions	that	were	most	
desirable	given	the	more	traditional	metrics.	Both	plots	show	the	points	projected	into	the	
x-y	plane	because	it	resulted	in	a	better	visualization.	

	
(a)	Points	projected	onto	x-y	plane	and	colored	
according	to	most	desirable	partitioning	scheme	with	
respect	to	pAIC.	

	
(b)	Points	projected	onto	x-y	plane	and	colored	
according	to	most	desirable	partitioning	scheme	with	
respect	to	RMSE,	SNR,	Precision,	and	r.	

Figure	11-Comparison	of	the	"best"	partitioning	schemes	with	respect	to	different	metrics	by	projecting	the	3d	
points	into	the	x-y	plane.	

5.	Ocean	Data	Results	
The	ocean	data	was	simulated	using	the	Models	for	Prediction	Across	Scales-Ocean	(MPAS-
O).		MPAS	is	set	of	environmental	simulation	codes	jointly	developed	at	the	National	Center	
for	Atmospheric	Research	and	Los	Alamos	National	Laboratory	for	the	purpose	of	studying	
anthropogenic	climate	change.	Simulation	of	the	ocean	is	done	across	many	spatial	and	time	
scales.		The	advance	MPAS-O	provides	over	other	global	ocean	models	is	its	ability	to	
resolve	various	resolutions	in	a	single	simulation,	allowing	it	to	accurately	reproduce	
mesoscale	ocean	activity	(Ringler,	Petersen,	Higdon,	Jacobsen,	Jones,	&	Maltrud,	2013).		The	
points	of	interest	that	we	will	be	partitioning	are	displayed	in	Figure	12	colored	on	the	left	
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by	value	of	latitude	(x-dimension)	and	colored	on	the	right	by	the	variable	of	interest,	the	
temperature.		The	z-dimension	is	ocean	depth,	and	this	plot	displays	that	there	is	more	
variation	in	water	surface	temperature	than	temperature	along	the	depth.		

	
(a)	Spatial	locations	of	points	from	the	ocean	
simulation	colored	by	the	x	variable,	latitude.	

	
(b)	Spatial	locations	of	ocean	data	points	colored	by	the	
variable	of	interest,	temperature.	

Figure	12-Three-dimensional	spatial	locations	of	the	particle	data	from	the	ocean	dataset.	

As	with	the	cosmology	data,	the	points	analyzed	here	represent	only	a	subset	of	a	single	
simulation.		The	57,536	points	are	located	around	the	equator	in	the	Gulf	of	Guinea	off	the	
coast	of	Central	Africa	(see	Figure	13).			

	
	

	
Figure	13-Spatial	location	of	points	analyzed	as	the	ocean	data.		Land	mass	picture	is	Central	Africa.	Horizontal	
line	represents	the	equator.	

The	effect	of	where	to	split	and	how	to	summarize	the	resulting	partitions	(decisions	3	and	
5)	can	be	examined	over	varying	minimum	cell	count	stopping	criteria	(decision	4)	creating	
a	varying	number	of	partitions.	The	specific	decisions	used	in	the	analysis	are	shown	in	
Table	3.		
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	 Mean	Partitioning	
Scheme	

Median	Partitioning	
Scheme	

Midpoint	Partitioning	
Scheme	

1.	Splitting	variables	 latitude,	longitude,	
ocean	depth	

latitude,	longitude,	
ocean	depth	

latitude,	longitude,	
ocean	depth	

2.		Cycle	through	 Round	robin	 Round	robin	 Round	robin	

3.	Partition	Location	 Mean	 Median	 Midpoint	

4.	Stopping	Criteria	 Cell	Count:	(100,150,	
.	.	.,	500,1000,1500,	.	.	
.,5000)	

Cell	Count	(100,150,	
.	.	.,	500,1000,1500,	.	.	
.,5000)	

Cell	Count	(100,150,	
.	.	.,	500,1000,1500,	.	.	
.,5000)	

5.	Partition	
Representation	

Mean	 Median	 Midpoint	

6.	Error	
Representation	

Mean	 Mean	 Mean	

7.	ω1,	ω2,	ω3	 0.1,	.01,	0.8	 0.1,	.01,	0.8	 0.1,	.01,	0.8	

Table	3	-	Decisions	from	section	2,	as	well	as	the	pAIC	parameters,	used	to	create	the	partitions	summarized	in	Figure	
14	and	Figure	15.	 	

The	resulting	pAIC	against	the	log	of	the	number	of	partitions	is	shown	in	Figure	14.		Note	
the	J	shape	for	all	curves.		This	pattern	indicates	the	pAIC	decreases	(and	thus,	performance	
of	the	partitions	increases)	as	more	partitions	are	added	up	to	a	point.		After	this	point,	the	
cost	of	adding	more	partitions	does	not	outweigh	the	added	precision,	and	thus	the	pAIC	
begins	to	increase.		For	the	mean	curve,	the	minimum	pAIC	occurred	for	1500	minimum	cell	
count,	which	resulted	in	61	partitions.		Minimum	for	the	median	curve	occurred	with	the	16	
partitions	created	when	the	minimum	cell	count	was	4000,	and	the	midpoint	occurred	
when	the	minimum	cell	count	was	set	to	2500	for	42	partitions.	Note	that	for	the	various	
partition	location	and	representation,	different	values	of	the	stopping	criteria	led	to	
different	number	of	partitions.		Again,	splitting	with	the	mean	of	the	distribution	and	
summarizing	the	resulting	partitions	with	the	mean	lead	to	the	minimum	pAIC.				
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Figure	14	-	Effect	of	varying	how	to	split	and	how	to	summarize	on	the	pAIC	when	applied	to	the	ocean	data.	

Figure	15	compares	all	the	metrics	under	consideration	for	the	three	partitioning	scenarios	
described	in	Table	3.		A	similar	pattern	as	was	seen	in	the	cosmology	data	is	seen	here	in	
that	most	metrics	in	all	three	plots,	other	than	the	pAIC,	are	either	maximized	or	minimized	
by	the	scheme	with	the	most	partitions.	The	one	exception	is	JPEG	precision,	which	does	not	
indicate	that	the	largest	number	of	partitions	is	the	most	desirable.		This	metric	is	also	the	
only	one	to	consider	the	maximum	error.	

	
(a)	Mean	Partitioning	Scheme	

	
(b)	Median	Partitioning	Scheme	

	
(c)	Midpoint	Partitioning	Scheme	

Figure	15-	Number	of	partitions	plotted	against	the	five	metrics	for	the	three	partition	criteria	summarized	in	
Table	3.	

Note	that	the	value	of	the	ω1,	ω2,	ω3	in	the	last	line	of	Table	3.		These	numbers	were	chosen	
through	trial	and	error	with	the	goal	that	each	of	the	three	terms	contributed	to	the	pAIC	
and	that	one	term	did	not	dominate	the	metric.	To	further	explore	this	concept,	consider	
Figure	16.	This	plots	the	percentage	of	the	pAIC	metric	each	of	the	three	terms	contributed	
to	the	pAIC	metric	against	the	number	of	partitions	for	the	mean	partitioning	scheme(first	
column	in	Table	3	with	results	displayed	in	Figure	15	(a)).		As	the	number	of	partitions	
increases,	the	first	term,	which	represents	the	number	of	partitions,	begins	to	dominate	the	
metric.		The	black,	dashed	vertical	line	indicates	the	point	at	which	the	pAIC	is	minimized.		
At	this	location	the	percentage	contribution	for	each	term	is	0.46,	0.32,	and	0.20,	
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respectively.	Preventing	the	dominance	of	a	single	term	more	generally	is	an	area	of	future	
work	and	the	choice	of	weights	will	be	discussed	further	in	Section	7.	

	
Figure	16-Percentages	each	of	the	three	terms	in	the	pAIC	contributes	to	the	overall	metric,	plotted	against	the	
log	of	the	number	of	resulting	partitions.	

6.	Asteroid	Data	Results	
Seventy-one	percent	of	the	earth	is	covered	by	water	and	of	that,	96.5%	of	the	water	is	
contained	in	an	ocean	(United	States	Geological	Survey,	2016).	If	an	asteroid	is	to	enter	the	
earth’s	atmosphere,	it	will	most	likely	crash	into	an	ocean.		The	large	amount	of	kinetic	
energy	of	the	asteroid	is	transferred	to	the	atmosphere	and	water,	forcing	water	and	water	
vapor	into	the	air	(Patchett,	et	al.,	2016)	in	addition	to	hurricane-force	winds	and	air	
temperatures	in	excess	of	100	C.	Tsunamis	are	also	likely	to	result	from	such	an	event,	
although	worldwide	devastation	is	not	a	probable	as	once	thought	(Gisler,	Weaver,	&	
Gittings,	2011).		Costal	communities	near	a	point	of	impact	would	be	in	grave	danger	as	the	
resulting	waves	could	reach	heights	that	are	significant	fractions	of	the	total	ocean	depth	
(Gisler,	Weaver,	&	Gittings,	2011).	Long-term,	global	weather	and	climate	consequences	
could	occur	if	water	were	to	reach	the	stratosphere.	The	residence	time	in	this	atmospheric	
level	is	decades	(in	contrast	to	weeks	in	the	lower,	troposphere),	but	the	resulting	effects	
are	undetermined	to	be	warming	because	of	greenhouse	effects	or	cooling	from	the	
formation	of	ice	clouds	(Gisler,	Weaver,	&	Gittings,	2011).		

The	mechanism	of	asteroids	crashing	into	oceans	of	most	interest	is	the	transfer	of	kinetic	
energy	from	asteroid	to	atmosphere	and	water	(Patchett,	et	al.,	2016).	Parameters	that	
affect	this	exchange	is	asteroid	size	and	mass,	the	angle	the	asteroid	enters	the	atmosphere,	
and	if	the	asteroid	burst	and	at	what	elevation	the	airburst	occurred	(Samsel,	Rogers,	
Patchett,	&	Tsai,	2017).	The	entry	of	the	asteroid	under	various	parameter	settings	can	be	
simulated	using	xRage,	a	multi-physics,	parallel	Eulerian	hydrodynamics	code	(Patchett,	
Nouanesengsy	,	Gisler,	Ahrens,	&	Hagen,	2017),	which	was	developed	and	is	maintained	by	
the	Advanced	Scientific	Computing	program	at	Los	Alamos	National	Laboratory	(Patchett,	et	
al.,	2016).	The	simulation	is	run	on	a	computational	mesh,	where	the	cell	size	and	placement	
are	adaptive	so	that	at	each	time	step	more,	smaller	cells	are	placed	where	more	is	
occurring	in	the	simulation.	



	 19	

The	parameter	of	asteroid	size,	angle	impact,	and	airburst	or	no,	were	initially	varied	to	
determine	the	lower	bound	of	dangerous	asteroids	that	NASA	needed	to	track	(Samsel,	
Rogers,	Patchett,	&	Tsai,	2017).	A	secondary	mechanism	is	to	study	the	ablation	of	the	
asteroid	before	it	hits	the	water	(Patchett,	Nouanesengsy	,	Gisler,	Ahrens,	&	Hagen,	2017).	
Because	the	behavior	of	the	asteroid	before	it	hits	the	water	is	of	interest	the	output	of	the	
simulation	has	been	subsetted	to	only	those	cells	with	a	partial	asteroid	density	greater	
than	0.	Therefore,	at	time	steps	before	the	asteroid	impacts	the	water,	this	eliminates	the	
cells	that	include	only	water	or	atmosphere	a	distance	away	from	the	asteroid.	The	cells	of	
the	output	that	will	be	partitioned	in	this	study	are	shown	in	Figure	17.	The	plot	on	the	left	
is	colored	by	location	in	the	y	direction,	while	the	plot	on	the	right	is	colored	by	the	variable	
of	interest,	which	is	temperature.	Note	that	the	asteroid	is	hottest	at	the	front	as	it	is	
blasting	through	the	atmosphere	and	the	tail	that	is	ablating	off	is	cooler.	

	
(a)	Spatial	locations	colored	by	y.	

	
(b)	Spatial	locations	colored	by	the	variable	of	
interest,	temperature.	

Figure	17-	Three-dimensional	spatial	locations	of	the	particle	data	from	the	asteroid	dataset.	

As	in	the	previous	examples,	the	effect	of	where	to	split	and	how	to	summarize	the	resulting	
partitions	(decisions	3	and	5)	are	set	at	the	three	possibilities	of	mean,	median,	and	
midpoint.	Instead	of	minimum	cell	count,	the	algorithm	is	terminated	with	a	stopping	
criteria	of	a	minimum	range	(decision	4)	over	the	sequence	of	(0.7,	0.75,	.	.	.,	1.7).		All	
decisions	used	to	create	the	partitions	are	shown	in	Table	4.	
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	 Mean	Partitioning	
Scheme	

Median	Partitioning	
Scheme	

Midpoint	Partitioning	
Scheme	

1.	Splitting	variables	 x,y,z	 x,y,z	 x,y,z	

2.		Cycle	through	 Round	robin	 Round	robin	 Round	robin	

3.	Partition	Location	 Mean	 Median	 Midpoint	

4.	Stopping	Criteria	 Maximum	Range	
(0.7,	0.75,	.	.	.,	1.7)	

Maximum	Range	
(0.7,	0.75,	.	.	.,	1.7)	

Maximum	Range	
(0.7,	0.75,	.	.	.,	1.7)	

5.	Partition	
Representation	

Mean	 Median	 Midpoint	

6.	Error	
Representation	

Mean	 Mean	 Mean	

7.	ω1,	ω2,	ω3	 0.1,	0.1,	0.8	 0.1,	0.1,	0.8	 0.1,	0.1,	0.8	

Table	4-	Decisions	from	section	2,	as	well	as	the	pAIC	parameters,	used	to	create	the	partitions	summarized	in	Figure	
19	and	Figure	20.	 	

The	various	values	of	the	maximum	range	within	a	single	partition	leads	to	a	varying	
number	of	partitions.	The	resulting	number	of	partitions	is	plotted	against	the	maximum	
range	value	in	Figure	18.	As	the	maximum	range	increases,	the	number	of	partitions	
decreases,	so	as	the	maximum	range	within	each	partition	must	be	smaller,	more	partitions	
are	needed.	In	contrast	to	the	analysis	of	the	cosmology	data	in	Section	5,	each	partitioning	
scheme	on	the	asteroid	data	created	a	unique	number	of	partitions,	although	this	could	be	a	
result	of	the	fact	that	the	asteroid	dataset	is	roughly	400	times	larger	than	the	cosmology	
dataset.	

	
Figure	18-The	effect	of	changing	the	maximum	range	on	the	resulting	number	of	partitions	for	the	mean,	
median,	and	midpoint	partitioning	schemes	on	the	asteroid	data.	

The	resulting	pAIC	values	for	each	of	the	partitioning	scenarios	are	plotted	in	Figure	19.	
Again,	for	each	partitioning	scheme	there	is	the	J-shape,	indicating	that	at	some	number	of	
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partitions,	the	increase	in	accuracy	does	not	outweigh	the	increase	in	storage.	For	the	mean	
partitioning	scheme,	the	minimum	occurs	when	the	maximum	range	is	set	to	1.35	resulting	
in	455	partitions,	the	median	is	close	with	a	maximum	range	of	1.4	and	394	partitions,	and	
the	minimum	of	the	midpoint	partitioning	scheme	occurs	at	the	maximum	range	value	of	1	
for	2065	partitions.	As	can	be	clearly	seen,	the	overall	minimum	occurs	for	the	mean	
partitioning	scheme.		

	
Figure	19	-Effect	of	varying	how	to	split	and	how	to	summarize	on	the	pAIC	when	applied	to	the	asteroid	data.	

An	interesting	characteristic	of	the	midpoint	plot	in	Figure	19	is	the	drop	in	the	curve	that	
occurs	when	the	number	of	partitions	is	2065	(or	log 2065 = 7.63).	This	interesting	
behavior	is	also	seen	in	the	other	metrics	for	the	midpoint	at	this	location,	as	shown	in	
Figure	20.	The	general	interpretation	of	the	three	plots	in	Figure	20	is	the	same	as	before:	
The	pAIC	balances	competition	criteria,	while	the	other	metrics	consider	only	a	single	
criterion	and	thus	always	recommend	adding	more	partitions.	

	
(a)	Mean	Partitioning	Scheme	

	
(b)	Median	Partitioning	Scheme	

	
(c)	Midpoint	Partitioning	Scheme	

Figure	20	-Number	of	partitions	plotted	against	the	five	metrics	for	the	three	partition	criteria	summarized	in	
Table	4.	
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7.	Weights		
When	comparing	partitioning	schemes	with	the	pAIC,	one	choice	the	researcher	must	make	
is	the	choice	of	the	three	weights,	{ω1,	ω2,	ω3}	on	the	terms	that	represent	number	of	
partition	or	size	of	resulting	summarization,	accuracy	through	the	mean	square	error,	and	
precision	through	the	accuracy	of	the	estimated	error.	This	choice	should	be	driven	by	
which	of	the	three	criteria	is	important	to	the	researcher,	as	the	weights	represent	the	
relative	importance	of	each	term	of	the	pAIC.	However,	choosing	the	weights	appropriately	
requires	expert	knowledge	about	the	process	and	a	prior	knowledge	about	the	possible	
values	each	term	can	take	(Lu,	Anderson-Cook,	&	Robinson,	2011).	In	addition,	multiple	
experts	could	have	multiple	opinions	on	ranking	the	importance	the	terms.	

The	pAIC	metric	is	similar	to	a	desirability	function	in	design	of	experiments.	Both	are	linear	
combinations	of	multiple	criteria,	where	the	intent	is	to	make	a	decision	based	on	one	
collection	of	user-defined	weights	(Lu	&	Anderson-Cook,	2012).	One	disadvantage	identified	
for	the	desirability	function	approach	is	the	sensitivity	of	the	solution	(here	chosen	design)	
to	the	specified	weights.	One	computationally	expensive	resolution	is	to	minimize	the	
desirability	function	for	many	sets	of	weights.	Lu,	Anderson-Cook	and	Robinson	2011	
present	the	Pareto	Front	approach,	which	adds	rigor	and	structure	to	decision-making	
when	constrained	by	a	choice	in	weights	(Chapman,	Lu,	&	Anderson-Cook,	2014),	and	is	
directly	applicable	to	the	pAIC	discussion.	

The	Pareto	frontier	approach	is	a	two-step	procedure	developed	to	determine	an	
appropriate	design	for	an	experiment.	The	first	step	is	the	objective	step	(Chapman,	Lu,	&	
Anderson-Cook,	2014)	where	inferior	designs	are	removed	from	consideration.	Those	still	
considered	are	designs	on	the	Pareto	front,	which	represent	designs	such	that	no	design	can	
improve	a	single	criterion	without	decreasing	at	least	one	other	criterion	(Lu,	Anderson-
Cook,	&	Robinson,	2011).	This	concept	is	demonstrated	for	two	criteria	in	Figure	21,	which	
was	directly	copied	from	(Lu,	Anderson-Cook,	&	Robinson,	2011).	In	this	example,	the	goal	
is	to	maximize	both	criteria,	so	larger	values	are	better.	The	Utopia	point	represents	the	
best	possible	solution,	as	both	criteria	are	simultaneously	maximized;	however,	this	point	is	
often	unattainable.	The	Criterion	Space	demonstrates	all	possible	solutions.	The	Pareto	
Front	is	shown	as	the	set	of	points	within	the	criterion	space	that	are	equidistant	to	the	
Utopia	point.	Moving	away	from	the	Pareto	front	represents	a	decrease	in	at	least	one	of	the	
criteria.	Once	the	Pareto	front	has	been	identified,	the	second,	subjective,	step	of	the	Pareto	
front	approach	involves	a	detailed	examination	of	each	contending	solutions	in	terms	of	the	
trade-offs	between	criteria	and	sensitivity	to	weights	to	finally	arrive	at	one	single	solution.			
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Figure	21-Pareto	front	in	two-dimensions	where	two	criteria	are	to	be	maximized.	The	Utopia	point	is	the	best	
possible	point,	but	often	unattainable.	Figure	copied	from	(Lu,	Anderson-Cook,	&	Robinson,	2011).	

One	way	to	examine	and	compare	the	Pareto	front	solutions	proposed	by	(Lu,	Anderson-
Cook,	&	Robinson,	2011)	is	with	a	mixture	plot.	An	example	for	the	asteroid	analysis	is	
shown	in	Figure	22.	Because	the	sum	of	the	three	weights	is	1,	each	point	in	a	mixture	plot	
represents	one	combination	of	the	three	weights.	The	vertices	of	the	mixture	plot	represent	
only	one	term,	where	the	edges	represent	only	two	terms.	The	larger	the	area	a	specific	
partitioning	scheme	represents	in	the	mixture	plot,	the	more	robust	the	scheme	is	to	
changes	in	the	weights.		

In	the	application	of	the	Pareto	front	approach	to	the	asteroid	dataset,	the	partitioning	
approaches	under	consideration	are	the	three	partitioning	schemes	(Mean-Median-
Midpoint)	summarized	in	Table	4	for	the	stopping	criteria	of	maximum	range	from	(1,	1.05,	
1.1,	.	.	.,	1.7)	and	the	same	three	partitioning	schemes	for	the	maximum	cell	count	of	(5k,	
10k,	.	.	.,	100k).	Thus,	there	are	105	(=	3*(20	cell	counts	values)	+	3*(15	range	values))	
possible	partitioning	schemes	under	consideration.	The	criterion	space	is	in	three	
dimensions;	representing	the	three,	unweight	terms	of	the	pAIC,	with	the	goal	of	each	to	be	
minimized.	Therefore,	the	Utopia	point	is	the	point	(0,0,0).	The	Pareto	front	approach	
identified	29	of	the	105	schemes	as	plausible	and	that	should	be	considered	further.	

The	partitioning	scenario	with	the	largest	area	of	the	mixture	plot	is	scenario	86,	which	
represents	15%	of	the	triangle.	This	partitioning	scheme	was	obtained	by	setting	the	
stopping	criteria	to	a	maximum	value	count	of	5000	with	a	midpoint	partitioning	scheme.	In	
fact,	the	midpoint-cell	count	partitioning	schemes	(labeled	86-105,	representing	the	various	
values	of	maximum	cell	count)	represent	51%	of	the	triangle.	This	result	is	interesting	in	
contrast	to	those	found	in	Section	7,	where	the	midpoint	showed	the	least	favorable	results	
for	one	specific	weight	combination;	although,	the	results	of	Section	7	and	for	when	range	
was	used	as	a	stopping	criteria.	In	general,	the	midpoint-cell	count	partitioning	schemes	
perform	well	when	terms	1	and	3	are	weighted	more	heavily,	but	other	partitioning	
schemes	are	more	appropriate	if	term2	has	larger	weights	(scenarios	47-51	are	from	a	
maximum	cell	count,	mean	partitioning	scheme	and	1-11	are	maximum	range,	mean	
partitioning	scheme).		
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Figure	22	-Mixture	plot	for	the	asteroid	analysis	showing	which	partitioning	scenarios	minimize	the	pAIC	for	
different	combinations	of	weights,	{ω1,	ω2,	ω3}.	

8.	Hypothesis	testing		
A	main	area	of	concern	for	the	research	scientists	interested	in	analyzing	the	cosmology,	
ocean,	and	asteroid	datasets	is,	“will	the	summarized	data	give	me	the	same	conclusions	to	
questions	of	interest,	as	the	raw	data	would	have?”		The	pAIC	attempts	to	quantify	an	
answer	to	this	question	by	balancing	precision,	error	estimation,	and	subsample	size.		
Researchers	are	hesitant	to	commit	to	any	specific	set	of	research	questions,	as	they	fear	
they	may	discover	an	interesting	feature	during	an	analysis	and	would	like	the	ability	to	dig	
further	into	any	potential	future	considerations.	However,	until	raw	storage	increases	at	the	
same	pace	as	computation	ability,	data	will	need	to	be	discarded.		In	addition,	the	ability	to	
process	the	data	and	digest	and	plot	it	to	arrive	at	meaningful	conclusions	becomes	more	
difficult	the	larger	the	dataset.	Therefore,	the	pAIC	allows	researchers	to	choose	an	
intelligent	subset	of	the	data	while	retaining	the	ability	to	draw	conclusions	from	the	data.	

For	the	ocean	data,	three	of	the	six	top	diagnostics	identified	by	subject	matter	experts	are	
averages	over	space,	(e.g.,	Laborador	Sea	average	temperature),	time	(e.g.,	average	ocean	
temperature	in	June),	or	weighted	global	averages.	Therefore,	we	will	explore	the	
conclusions	drawn	from	tests	of	the	mean	on	the	summarized	data	and	the	raw	data.		

Figure	23	shows	the	resulting	p-value	when	performing	a	test	of	the	mean	for	various	null	
values	of	the	mean,	𝜇!,	when	testing	with	the	raw	data	and	separately	the	summarized	data.	
The	summarized	data	was	obtained	from	the	partitioning	scheme	chosen	by	the	pAIC	as	the	
most	appropriate:	the	mean	partitioning	scheme	with	a	maximum	cell	count	of	1500.		The	
black	horizontal	line	indicates	a	p-value	of	0.05,	the	most	common	level	of	significance.		For	
the	summarized	data,	the	result	of	the	hypothesis	test	would	be	to	fail	to	reject	for	all	
hypothesized	means	in	the	range	because	all	points	fall	above	the	0.05	cut-off.	The	
hypothesis	test	for	the	raw	data	would	be	rejected	for	values	that	are	far	away	from	sample	
mean	of	8.976.	Therefore,	different	conclusions	are	reached	for	the	majority	of	the	
examined	range	when	using	the	raw	versus	the	summarized	data.	
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Figure	23-Resulting	p-value	from	the	test	of	H0:	μ	=	μ0	for	various	values	of	μ0	for	the	raw	data	and	summarized	
data.		The	black	horizontal	line	is	at	0.05.	

The	results	shown	in	Figure	23	are	discouraging,	but	are	largely	driven	by	the	difference	in	
sample	size,	rather	than	the	difference	in	the	dataset’s	ability	to	describe	the	temperature	of	
the	ocean.	The	sample	size,	𝑛,	of	the	raw	data	is	57,536,	and	the	summarized	data	contains	
only	61	data	values.	The	test	statistic	for	the	hypothesis	test	of	the	mean	is	shown	in	
Equation	6,	where	𝑠	is	the	sample	standard	deviation.		

𝑍 =
𝑋 − 𝜇!
𝑠
𝑛

	

Equation	6-Test	statistic	for	the	hypothesis	test	of	the	mean.	

Because	the	sample	size	appears	in	the	denominator	of	the	test	statistic,	large	values	of	𝑛	
will	cause	the	test	statistic	to	be	small,	resulting	in	a	small	p-value	and	thus	the	conclusion	
to	reject	the	null	hypothesis.	This	does	not	imply	that	the	summarized	data	is	a	poor	
indication	of	the	raw	data,	because	any	large	sample	size	will	cause	a	significant	difference.	
Sullivan	and	Feinn,	2012	recommend	also	examining	the	effect	size,	which	they	define	to	be	
the	“magnitude	of	the	difference	between	groups”.	This	definition	is	directed	at	medical	
education	research	studies,	and	should	be	amended	for	our	situation.	Here	we	are	not	
directly	interested	in	the	difference	between	the	raw	and	the	summarized	data,	but	rather,	
if	we	had	only	the	summarized	data	and	not	the	raw,	would	we	make	the	same	conclusions?	
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Figure	24-	Resulting	effect	size	for	various	values	of	μ0	for	the	raw	data	and	summarized	data.	

Instead	of	the	p-value,	the	effect	size	is	examined	in	Figure	24,	for	the	same	sequence	of	
possible	hypothesized	means.	The	effect	size	is	computed	as:	

𝑋 − 𝜇!
𝑠

	

The	sharp	elbow	of	both	curves	occurs	at	the	sample	mean	for	each,	which	is	8.887	and	
8.976	for	the	summarized	and	raw	data,	respectively.	This	plot	indicates	that	the	effect	size	
is	similar	for	the	raw	and	summarized	values,	and	that	the	summarized	data,	with	only	0.1%	
of	the	size,	is	able	to	describe	the	mean	behavior	of	the	data.		

9.	Conclusions	and	Future	Work	
In	conclusion,	we	have	developed	and	presented	a	novel	approach	to	quantifying	the	size-
precision	trade-off	for	comparing	partitioning	schemes.	This	approach	was	demonstrated	
on	three	example	datasets	of	output	from	large	simulation	codes.	Small	subset	examples	of	
simulations	of	the	universe,	the	ocean,	and	an	asteroid,	were	used	to	illustrate	the	
procedure.	Although	each	example	demonstrated	partitioning	of	three-dimensional	spatial	
variables,	the	pAIC	can	be	used	to	compare	partitioning	in	any	number	and	type	of	
dimensions.		

Further	considerations	related	to	the	pAIC	were	also	discussed.	First	was	the	issue	of	how	
to	choose	the	weights	on	the	terms	of	the	pAIC,	which	will	directly	affect	the	choice	of	
partitioning	scheme.	The	recommendation	is	to	examine	each	plausible	(as	defined	by	a	
Pareto	frontier)	partitioning	scheme’s	robustness	to	the	choice	of	the	three	weights	using	
the	approach	presented	in	(Lu,	Anderson-Cook,	&	Robinson,	2011).	Effect	size	was	also	
examined	to	explore	what	results	would	be	drawn	from	the	summarized	values,	and	
compared	to	the	results	from	the	raw	data.		

The	pAIC	is	a	good	start	to	comparing	partitioning	schemes	in	a	quantitative	manner;	
however,	there	are	many	areas	of	future	work.	First,	the	summarized	and	raw	data	
conclusions	were	compared	with	the	single	value	of	effect	size.	The	representative	value	
from	each	partition	was	used	to	compute	the	effect	size	of	the	summarized	data.	In	addition	
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to	saving	the	representative	value	for	each	partition,	an	estimate	of	the	error	is	also	saved;	
however,	incorporating	this	information	into	the	effect	size	is	not	straightforward.		One	task	
is	to	modify	the	effect	size	to	incorporate	an	error	for	each	data	value.	Also,	the	work	
presented	here	tested	results	for	the	mean	of	the	distribution.	Other	possibilities	include	
the	variance	or	different	quantiles	of	interest.		

The	partitioning	schemes	described	considered	in	this	work	and	the	pAIC	only	summarize	
one	variable	of	interest	(e.g.,	water	temperature	in	the	ocean	dataset).	However,	the	
simulations	often	produce	many	outputs	(e.g.,	water	salinity,	displaced	density,	potential	
density,	kinetic	energy,	etc.)	that	are	most	likely	correlated.	Therefore,	partitioning	schemes	
(and	comparison	metrics)	that	consider	multiple	variables	simultaneously	are	also	an	area	
of	future	work.	

Lastly,	the	partitioning	is	to	be	performed	in-situ,	or	while	the	simulation	is	running.	
Producing	and	comparing	multiple	schemes	in-situ	is	most	likely	not	tractable,	as	creating	
the	partitions	and	computing	the	pAIC	is	computationally	expensive.	The	current	thought	
for	how	to	include	the	pAIC	into	this	framework	is	to	run	a	small	suite	of	runs	of	the	
simulation	and	use	the	pAIC	to	choose	an	appropriate	partitioning	scheme	off-line	(in	a	
manner	similar	to	what	was	presented	here).	As	the	simulation	is	running,	the	pAIC	could	
be	computed	for	the	chosen	partitioning	scheme,	as	a	check	to	ensure	the	partitioning	
scheme	is	still	appropriate,	in	a	manner	similar	to	how	control	charts	ensure	manufacturing	
processes	are	in-line	with	expected	behavior.	Work	is	in	progress	to	speed	up	the	pAIC	
computation	and	understand	the	distribution	of	the	pAIC	metric,	both	of	which	are	
necessary	to	implement	this	procedure	in	practice.		
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