SANDIA REPORT

SAND2017-10350
Unlimited Release
Printed September 2017

Supersedes SAND1901-0001
Dated January 1901

A Case Study on Neural Inspired Dynamic
Memory Management Strategies for High
Performance Computing

Craig M. Vineyard, Stephen J. Verzi

Prepared by
Sandia National Laboratories
Albugquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc.,

for the U.S. Department of Energys National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories




Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.




SAND2017-10350
Unlimited Release
Printed September 2017

Supersedes SAND1901-0001
dated January 1901

A Case Study on Neural Inspired Dynamic Memory
Management Strategies for High Performance

Computing
Craig M. Vineyard Stephen J. Verzi
Data-Driven & Neural Computing Sys Research, Analysis, & Apps
Sandia National Laboratories Sandia National Laboratories
P.O. Box 5800 P.O. Box 5800
Albuquerque, NM 87185-9999 Albuquerque, NM 87185-9999
cmviney @sandia.gov sjverzi@sandia.gov
Abstract

As high performance computing architectures pursue more computational power there is a need
for increased memory capacity and bandwidth as well. A multi-level memory (MLM) architecture
addresses this need by combining multiple memory types with different characteristics as varying
levels of the same architecture. How to efficiently utilize this memory infrastructure is an unknown
challenge, and in this research we sought to investigate whether neural inspired approaches can
meaningfully help with memory management. In particular we explored neurogenesis inspired re-
source allocation, and were able to show a neural inspired mixed controller policy can beneficially
impact how MLM architectures utilize memory.
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Summary

As high performance computing architectures pursue more computational power there is a need
for increased memory capacity and bandwidth as well. A multi-level memory (MLM) architecture
addresses this need by combining multiple memory types with different characteristics as varying
levels of the same architecture. How to efficiently utilize this memory infrastructure is an unknown
challenge, and in this research we sought to investigate whether neural inspired approaches can
meaningfully help with memory management.

In particular, we explored neurogenesis inspired resource allocation. Neurogenesis is a pro-
cess by which new neurons are included in existing neural circuits. A mixed coding hypothesis
posits that as an adaptive algorithm the neurogenesis process enables the encoding of novelty. The
neurogenesis process may be applied to MLM management in a variety of ways. Highlighted in
this report, analogous to a mixed coding, a mixed strategy of memory control policies can enable
a more efficient memory mapping. This proof of concept case study on whether neural inspired
approaches can meaningfully impact high performance computing provides a basis for a more
fundamental understanding of the interplay between architectures and programs and additionally
provides motivation for a more advanced reinforcement learning approach to learn sophisticated
strategies. It is also likely that other high performance computing aspects can likewise employ
neural inspired advantages.



Chapter 1

Introduction

As the field of computing has advanced over the last few decades, larger and larger computer
systems have been developed to meet the demands of scientific computing and other fields. Various
computer architectures have been explored to address these needs focusing upon parallelism and
other computational advantages. As modern systems are striving towards exascale (a billion billion
calculations per second), there is an increasing demand on memory bandwidth and capacity in
conjunction with the compute power needed. Multi-level memory (MLM) architectures are being
proposed as an architectural solution. As follows we introduce MLM and the implications this
architecture introduces.

1.1 Multi-Level Memory (MLM)

Multi-Level Memory (MLM) is an architectural configuration which combines different memory
technologies with different characteristics in a single system. For example, main memory can be
comprised of two or more types of memory instead of conventional single-level DDR DRAM-
only main memory. With different capabilities associated with the various memory types, higher-
bandwidth memories are ideally able to serve the majority of accesses and low cost memory types
provide the majority of the capacity. Figure 1.1 illustrates a two level hierarchy concept where the
memory closer to the computational cores is intended to provide quicker access and the further
memory on the right affords a larger capacity. The MLM paradigm is being pursued across a
spectrum of levels of memory.

As proposed MLM architectures become more prominent, MLM partitioning within compute
nodes will become a crucial aspect of achieving high-performance levels. However, simply estab-
lishing the increased capacity does not ensure increased performance. Next we briefly introduce
a game theoretic paradox highlighting this concept and then describe the implications for MLM
architectures.



Figure 1.1. Illustration of a two level MLM hierarchy concept

1.2 Braess’ Pardox

Mathematician Dietrich Braess presented a traffic flow paradox in 1968 [13] which is shown in
Fig 1.2. In the simple scenario show on the left, there are four nodes with two paths (an upper
and lower) to travel from start to end. Some path segments maintain a fixed cost regardless of how
much traffic is present (represented by a cost of 1 as shown in the figure). Other path segments
have costs dependent upon how much traffic the segment experiences. In this scenario, the optimal
strategy is for half of the traffic to take each path so that everyone incurs an average travel delay of
1.5 (this is illustrated by the two dashed red arrows).

The network shown on the right half of the figure represents the same nodes, but includes the
addition of a high bandwidth connection between intermediate nodes a and b. This path segment
incurs zero cost regardless of how much traffic traverses the path (denoted by a cost of zero). The
inclusion of this additional path is intended to improve the overall network infrastructure, but in
reality unintentionally makes the average network flow worse overall. With the inclusion of this
link, the optimal strategy for all network traffic to take the link from start to a, to then use the new
link from a to b, and reach the end by the b to end path. This path shown in red on the right results
in all traffic going through both bandwidth dependent links at the detriment of overall flow. This
is Braess’ paradox where what can be seen as an infrastructure improvement with good intentions
can yield unintended consequences.
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Figure 1.2. Illustration of Braess’s Paradox in a Simple Network
Flow

1.3 MLM Implications & Related Problems

While the inclusion of a variety of memory technologies in an architecture is a means of enabling
immense bandwidth and capacity, as Braess’ pardox identifies, the inclusion of increased capacity
alone does not guarantee increased performance. In the case of MLM, the inclusion of a variety of
memory technologies introduces the challenge of how to make use of the memory technologies as
no established methods to dynamically manage this partitioning exist.

Intrinsically, the operations needed to perform a computation (instruction flow, data required,
etc.) are not knowing a priori or there would be no need to perform the computation. Instead,
this uncertainty introduces a resource allocation challenge as an intrinsic part of computation. In
particular, with respect to MLM management, it is a resource allocation challenge of deciding what
variables should reside in different memories over time.

Several fundamental computer science problems strive to address such challenges pertaining
to resource allocation. For example, the classic Knapsack problem is a combinatorial optimization
problem in which a subset of items with the maximum possible combined value can be collected
within a fixed capacity knapsack [4]. This optimization problem is a NP-Hard computational
complexity problem. But furthermore, in relating the problem to memory management, a MLM
architecture further escalates the challenge to that of a time varying multi-knapsack problem in
which the different knapsacks have different capacities (the different memory types) and the set of
items to optimize over is temporally varying due to the computation program flow.

Another challenging but related problem is the Multi-Armed Bandit (MAB) from game theory
[13]. The notional problem is that of selecting which slot machine to play from k possibilities so
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as to maximize ones revenue. The outcome distributions of the various machines are unknown,
and so it cannot be simply cast as an optimization problem. This resource allocation problem be-
comes selecting which option to select at each point in time. Analogously, selecting from possible
memory controllers to execute or which program variables to store in a given memory location
shows a relationship between MLM management and MAB problems. A common challenge these
problems share is the explore-exploit tradeoff in which in the presence of uncertainty one must
choose between continuing using the same selection (exploit) or to switch and potentially find a
better outcome (explore).

With no obvious tractable solutions to these fundamental computer science resource allocation
problems, instead next we describe exploring neural inspired approaches as a novel alternative
method.

12



Chapter 2

Approach

As many of the canonical computer science approaches to resource allocation have NP-Hard com-
plexity, rather in this research effort we seek to explore whether neural inspired computation can
provide an advantageous approach for high performance computing. The brain intrinsically bal-
ances computation and encoding while incorporating different time scales, memory capacities,
and forms of computation. In particular, neurogenesis, the addition and inclusion of neurons in a
functioning neural circuit is the neuroscience process we are examining in this case study.

As follows, we introduce the neurogenesis process, describe a variety of methods for how
it may impact memory management, and then present a computational modeling and simulation
paradigm to explore the potential impact.

2.1 Neurogenesis

The process of adult neurogenesis in the dentate gyrus (DG) region (shown in Fig. 2.1) is reviewed
extensively in Aimone et al. [2], but we briefly survey it here. Each day, roughly 1,000 new
neurons are born from a stem cell population that resides locally within the DG. This rate is highly
regulated by a number of intrinsic and extrinsic factors, as is the ultimate survival of the neurons
that are born. While numbers differ somewhat from study to study, within several weeks about half
of the neurons that are born no longer exist, most likely due to activation of apoptotic pathways
(an internal gene signaling cellular death mechanism). If a neuron lives to about four to six weeks
old, it most likely will persist indefinitely.

In rodents, new neurons take approximately two months to achieve maturity. During this time,
they progress from a neuroblast cell phenotype, which lacks the projections commonly associated
with neurons, to fully functional granule cells that are indistinguishable from those born at earlier
ages. Once new input and output synapses start to form at about 14 to 16 days old, the cells mature
rapidly, obtaining new synapses at a rapid pace. By about two months old, the neurons have about
5,000 to 6,000 input glutamatergic synapses from both internal and external cortical populations.
A final key observation is that synapses on young neurons are more plastic, i.e., more amenable to
learning, than those on mature neurons.

In addition to this difference in connectivity and synaptic plasticity, young neurons are distinct
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Figure 2.1. Dentate gyrus region (in green) of the hippocampus

from the mature neurons in their basic electrophysiological properties. Young neurons typically
have a higher membrane resistance, which allows individual synapses to have a higher relative
impact than a similar weighted (same maximum conductance) synapse on a mature neuron. The
combination of these properties the physiology, connectivity, and plasticity of young neurons has
led to a widespread acceptance that these cells are more active or hyperexcitable compared to the
mature population [2].

The physiological implications of this maturation process provides evidence for a mixed coding
role described extensively in [1]. As portrayed in Figure 2.2, the general idea is that mature neurons
are tightly tuned to respond to specific stimuli, and conversely immature neurons are more broadly
responsive and able to encode novelty. These response characteristics are portrayed by the blue
and green tuning curves for the mature and immature neurons on parts B and A of the figure
respectively. Existing together in the same system, the mixture of both mature and immature
neurons in effect enables the system to encode known information while also being able to adapt
and encompass novel previously unseen content.

2.2 Insights for Memory Management

There are a variety of ways in which the neurogenesis process can provide insights and potential
advantages for MLM management. One approach is to relate different memory types to mature
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Figure 2.2. Mixed coding paradigm

and immature neurons. In this sense, just as neurons of differing levels of maturity have differ-
ing response characteristics, the different memory types of the MLM architecture have different
characteristics as well. And so one possible mapping methodology is to correlate high bandwidth
memory with mature (tightly tuned) neurons and conversely correlate lower bandwidth but high
capacity memory with immature (broadly tuned) neurons. In this sense, neuron maturity is re-
lated to how readily the variables stored in memory are needed by the program. Conversely, since
immature neurons are believed to encode novelty, the sense of newness and recency associated
with novelty suggests a mapping where the immature neurons correspond to the low bandwidth
proximal memory technologies. Regardless of the mapping, just as there are a spectrum of neu-
ron maturity levels, these mapping paradigms can be distributed across however many levels of
memory are in the MLM architecture.

Alternatively, storage within a given memory type could be allocated analogously to the mixed
coding paradigm of neurogenesis. In this sense, a notion of maturation would reserve a percentage
of memory addresses for program variables meeting that maturation level while simultaneously
reserving some of the memory addresses for less established variables that may meet an emerging
need as the program being computed progresses.

In addition to relating the memory levels and their corresponding characteristics of a MLM
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architecture to neurogenesis, algorithmic approaches may also be taken. Similar to the notion of
inter-memory type address allocation inspired by neurogenesis, a similar approach may be taken at
the algorithmic level in developing a neurogenesis inspired data structure or encoding. Rather than
reserving the most efficient representations solely for the most likely data as Huffman encoding
does, a percentage of the top representations could be reserved for new concepts. Such an approach
has the potential to yield an adaptive representation.

Another algorithmic approach would be to develop the memory controller logic to operate
inspired by principles of the neurogensis process. This approach would operate upon program
flow heuristics to assign maturity levels to the program variables and use that information to decide
what variables should be added and removed from each memory level across time.

However, in the remainder of this manuscript we will focus upon and present results from
exploring mixtures of memory controllers analogous to a mixed coding.

2.3 Computational Model

To explore the impact of mixtures of memory controllers, we developed a computational simulation
model as shown by Figure 2.3.

Processor

Fast p > Slow

Figure 2.3. Two level computational simulation network

In the model represented by the figure, we explored the role of two levels of post cache memory
labeled as fast and slow in the illustration. The “’fast” memory represents a lower capacity higher
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bandwidth memory type and the ”slow” memory represents a higher capacity lower bandwidth
memory type. While only two memory levels are captured here, larger MLM architectures could
also be examined. Each of these memories has finite sizes (denoted by the number of boxes) as well
as access costs associated with transmitting data from the memory types and swapping variables
between memory. In addition to the architectural parameters, the program being executed on
the MLM architecture also imposes additional parameters which impact operation. In particular,
the program length, program flow, and number of unique variables all impact the operation. For
example, if the number of unique variables in a program of interest were smaller than the capacity
of fast memory the trivially optimal memory allocation would be to place everything in the fastest
memory. Next we describe simulation results exploring this model space.

17



18



Chapter 3

Results

The particular program being executed on a high performance computing architecture can result in
significant performance variability. For this case study exploration we focused upon the memory
distributions yielded by a few scientific mini-apps. These mini-apps are program representations
which encapsulate the key computations of a larger scientific application with the intention of
enabling benchmarking without necessitating the full large program be run [9].

In particular, the four primary mini-apps focused upon are: miniFE, rsbench, lulesh, and mini-
Aero. Briefly, miniFE is a mini-app that mimics the finite element generation, assembly and solu-
tion for an unstructured grid problem. Part A of Figure 3.3 illustrates the memory access histogram
of the miniFE mini-app. As shown, this mini-app has a wide number of variables with fairly even
accesses. Rsbench is a molecular dynamics mini-app with considerable variation in the memory
access. The memory access histogram for rsbench is shown in part A of Figure 3.4. Lulesh is
a a hydrodynamics application exhibiting a very unequal distribution of memory accesses. Less
than 5% of pages in main memory account for more than half of the memory accesses and an
additional 15% of pages account for the vast bulk of memory requests. This variability is shown
in part A of Figure 3.5. And lastly, miniAero is an aerodynamics mini-app exhibiting a few well-
defined variables. The miniAero memory access histogram is illustrated in Figure 3.6. For more
detail about these mini-apps see [9]. In the computational simulation experiments explored in this
project, these access histograms were used to generate program distributions of varying lengths
and program flow.

To explore mixtures of memory controllers, we used four common addition controller policies
and four replacement controller policies. Addition policies decide whether or not a variable should
be added to fast memory. The four addition policies and a brief description of their logic are as
follows:

e addMFU (Most Frequently Used): this policy uses a count of how many times each memory
variable has been used and if the candidate memory variable’s count exceeds the min of all
variables in fast memory it is added

e addRand: this policy randomly decides (via a coin toss) whether the candidate memory
variable will be added. Note there are other randomization approaches which also may be
implemented, such as using an n-sided coin toss with n related to memory sizes.

e addMRPU (More Recent Previous Use): this policy uses a history timestamp of each vari-
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ables last use and if the candidate memory variables last use is more recent than the least
previously used variable in memory it is added.

e addMFPRU (More Frequent, More Recent Previous Use): this policy requires that a candi-
date variable must have a greater frequency usage than the least recently used variable to be
added.

Replacement policies decide what should be replaced within fast memory. The four replace-
ment policies and a brief description of their logic are as follows:

e FIFO (First In/First Out): this policy maintains a list of when variables were added to mem-
ory and when a new variable needs to be added the variable at the front of the list is removed
and the new variable is added to the back of the list.

e [LRU (Least Recently Used): this policy uses an ordered list of usage time-stamps and re-
moves the variables used least recently

o LFU (Least Frequently Used): this policy uses the frequency counts of the variables in fast
memory and removes the variable with the lowest usage.

e Rand: this policy randomly selects a variable from fast memory to remove.

To decide whether to add a variable to memory and if so what to remove, both an addition
and replacement policy must be coupled to combined yield a memory controller policy. Using the
addition and replacement policies described above yields 16 addition-replacement policies. Other
addition or replacement policies could also be considered, such as a novel policy implementing
neurogenesis inspired logic as described in Section 2.2. For further details of these and other
policies see [7].

3.1 Analysis of Strategies

To measure the efficiency of memory control policies, while it is desirable to send many variables
from fast memory, the number of fast memory transfers alone is not a sufficient metric as this
could be maximized by routing all variable calls through fast memory. However, there is a cost in
swapping variables in memory, and so the number of swaps must also be accounted for. Thus, by
measuring the number of fast memory transfers minus swaps strives to identify controller policies
which most efficiently place variables in memory.

Examining the fast transfers minus swaps efficiency measure of single memory control policy
over time identifies how well the controllers are suited to different memory access distributions
elicited by the mini-apps as well as temporal effects to their usage. Figure 3.1 and Figure 3.2
illustrate scaled distributions for miniFE and rsbench. In these plots, it may be seen that no single
control policy is ideally suited irrespective of the program domain. And additionally, by looking
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at the policies across time, it may be observed that even within a single mini-app a single policy
is not optimal uniformly across time. Rather, there are temporal intervals where different policies
are locally the most efficient.

miniFE

10

5
0
1 2 3 45 6 7 TEow1L/18 22 23 24

-5

-10
=== 3ddMFU-FIFO === addMFU-LRU addMFU-LFU === 3ddMFU-RAND
==@=3ddRAND-FIFO addRAND-LRU === 2ddRAND-LFU =@ 3 ddRAND-RAND
=== 3ddMRPU-FIFO  e=@=maddMRPU-LRU === addMRPU-LFU === 3zddMRPU-RAND
=== 3ddMFPRU-FIFQ ==@==addMFPRU-LRU addMFPRU-LFU  e=@==addMFPRU-RAND

Figure 3.1. miniFE MiniApp Results

3.2 Impact of Mixed Strategies

Instead of relying upon a single memory control policy, rather, we explored neurogenesis inspired
mixed control policy strategies. In this sense, just as a mixed coding combines mature and imma-
ture neurons to allow for adaptivity, a mixed memory control strategy employs different policies
over time striving for a more efficient memory allocation.

There are exponentially many ways in which memory control policies may be combined. For
this case study, we have considered some two policy combinations. Part B of Figure 3.3, Figure 3.4,
Figure 3.5, and Figure 3.6 each illustrate averaged results of employing two control policies on a
given mini-app. The orange columns provide the baseline of how a single controller performs, and
the blue column combines that single controller with another controller. In the examples shown,
the second controller is the MFU-LFU policy. These results are attained using a 20-80 mix (this
ratio being inspired by neurogenesis ratios) where the first control policy is run for the first 20%
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Figure 3.2. rsbench MiniApp Results

of the program duration and the second control policy for the remaining 80%. As shown, the blue
(mixed policies) are either as good or better than the single policy control establishing a meaningful
benefit to a neural inspired mixed control policy across all the mini-apps considered here.
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Chapter 4

Conclusion

This case study on neural inspired dynamic memory management strategies for high performance
computing successfully established that neural-inspired approaches can beneficially impact how
emerging MLM architectures utilize memory. In doing so, it provides a basis for a more funda-
mental understanding of the interplay between architectures and programs. Rather than simply
employing the most empirically successful memory control policy, a mathematical understand-
ing may be further pursued. For example, in the mathematics of game theory, the implications
of factors such as the number of game iterations or the characteristics of an opponent can yield
insights into the conflict being modeled. Likewise, by further exploring the parameter space and
MLM architecture interactions fundamental understandings of memory control policies may be
possible. Doing so would not only allow for the development of more efficient resource utiliza-
tion, but would also provide insights into how to design more efficient architectures with specific
computational goals in mind.

This successful case study exploration also provides motivation for more advanced reinforce-
ment learning approaches to learn sophisticated strategies. Rather than manually exploring mixed
strategies of control policy combinations, reinforcement learning is a principled learning algorithm
which is able to learn sophisticated strategies given a performance feedback measure. In addition
to pursing the more sophisticated learning approach, a formal computational characterization will
also provide insight into how quickly a policy algorithm may adapt as well as how computation-
ally intensive an adaptive learning policy is. Such characterizations can impact at what level neural
inspired resource management approaches may be employed.

4.1 Future Work

In addition to the future directions mentioned above, other efforts would be to further explore the
additional potential neurogenesis MLM mappings mentioned in Section 2.2. Adaptive algorithm
and data structure advances are a likely outcome in pursuing these alternative approaches. Addi-
tionally, with advances being made in neuromorphic computing hardware, that is computational
devices which mimic the functionality and operation of the brain, there is a opportunity to explore
how these devices may impact high performance computing. Neuromorphic devices could serve
in an accelerator role complementing the computational role of HPC. Or additionally, they could
provide the implementation medium of neural inspired control mechanisms. And finally, other
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HPC operations can likewise be explored for potential neural-inspired advantages beyond simply
the MLM resource management case study examined in this research effort.
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Appendix A

Publications

Included in this appendix are the abstracts and reference citations of the publications associated
with this project. These publications include topics such as understanding neurogensis encodings,
adaptive algorithms, resource allocation models, and neural optimization approaches. For more
information see the full papers.

A.1 Quantifying Neural Information Content: A Case Study of
the Impact of Hippocampal Adult Neurogenesis

Through various means of structural and synaptic plasticity enabling online learning, neural net-
works are constantly reconfiguring their computational functionality. Neural information content
is embodied within the configurations, representations, and computations of neural networks. To
explore neural information content, we have developed metrics and computational paradigms to
quantify neural information content. We have observed that conventional compression methods
may help overcome some of the limiting factors of standard information theoretic techniques em-
ployed in neuroscience, and allows us to approximate information in neural data. To do so we
have used compressibility as a measure of complexity in order to estimate entropy to quantitatively
assess information content of neural ensembles. Using Lempel-Ziv compression we are able to
assess the rate of generation of new patterns across a neural ensembles firing activity over time
to approximate the information content encoded by a neural circuit. As a specific case study,
we have been investigating the effect of neural mixed coding schemes due to hippocampal adult
neurogenesis.

Vineyard, C.M., Verzi, S.J., James, C.D., & Aimone, J.B. (2016) Quantifying Neural Informa-
tion Content: A Case Study of the Impact of Hippocampal Adult Neurogenesis (IJCNN 2016)
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A.2  Overcoming the Static Learning Bottleneck - the Need for
Adaptive Neural Learning

Amidst the rising impact of machine learning and the popularity of deep neural networks, learning
theory is not a solved problem. With the emergence of neuromorphic computing as a means of
addressing the von Neumann bottleneck, it is not simply a matter of employing existing algorithms
on new hardware technology, but rather richer theory is needed to guide advances. In particular,
there is a need for a richer understanding of the role of adaptivity in neural learning to provide a
foundation upon which architectures and devices may be built. Modern machine learning algo-
rithms lack adaptive learning, in that they are dominated by a costly training phase after which
they no longer learn. The brain on the other hand is continuously learning and provides a basis for
which new mathematical theories may be developed to greatly enrich the computational capabili-
ties of learning systems. Game theory provides one alternative mathematical perspective analyzing
strategic interactions and as such is well suited to learning theory.

Vineyard, C.M., & Verzi, S.J. (2016) Overcoming the Static Learning Bottleneck - the Need
for Adaptive Neural Learning (ICRC 2016)

A.3 Flipltis a Game of Chicken

Fliplt is an abstract cyber-security game designed to in- vestigate optimal strategies for managing
security resources in response to Advanced Persistent Threats. In this paper, we establish bounds
on the optimal benefits and rates of play for Fliplt, and show that the best strategy for many variants
of the game involves presenting a credible threat to potential players. Because of this, Fliplt is most
like the game of chicken. We apply our results to the analysis of Advanced Persistent Threats and
discuss the value of Fliplt to cyber security research.

Hobbs, J. & Benson, J. (2016) Fliplt is a Game of Chicken. In Algorithmic Game Theory
workshop at [JCAI 2016

A.4 Computing with Spikes: The Advantage of Finegrained
Timing

Neural-inspired spike-based computing machines often claim to achieve considerable advantages
in terms of energy and time efficiency by using spikes for computation and communication; how-
ever, fundamental questions about spike-based computation remain unanswered. For instance,
how much advantage do spike-based approaches have over conventional methods and under what
circumstances does spike-based computing provide a comparative advantage? Simply implement-
ing existing algorithms using spikes as the medium of computation and communication is not
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guaranteed to yield an advantage. Here, we demonstrate that spike-based communication and
computation within algorithms can increase throughput and in some cases decrease energy cost.
We present several fundamental spiking algorithms, including sorting a set of numbers in ascend-
ing/descending order as well as finding the maximum/minimum or median of a set of numbers.
A formal trade-space analysis of these algorithms with respect to important performance metrics
such as runtime, number of processors and energy consumption, will allow us to optimize operat-
ing conditions of these algorithms with respect to specific neural architectures (e.g., BrainScaleS,
Neurogrid, SpiNNaker, TrueNorth, the Spike-Timing Processing Unit, etc.). In addition an exam-
ple application is provided, a spiking median filtering approach for image processing providing a
low energy, parallel implementation.

Verzi, S.J., Rothganger, F., Parekh, O.D., Quach, T., Miner, N.E., Vineyard, C.M., James, C.D.,
Aimone, J.B. (in preparation) Computing with Spikes: The Advantage of Fine-grained Timing
(Neural Computation Journal)
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Appendix B

Project Summary Poster

As shown on the following page is the project summary poster presented at the 2017 Computing
and Information Science (CIS) External Review Board (ERB).
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Neural-Inspired Algorithms for HPC
a Memory Management Case Study
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ional Laboratories

C.M. Vineyard, J.B. Aimone, M. Galiardi, and S.J. Verzi
Sandia National Laboratories, New Mexico

Problem

Exascale-class supercomputers will require unprecedented amounts of
memory bandwidth and capacity - To satisfy these requirements, vendors
are proposing Multi-Level Memory (MLM) combining different memory
technologies in a single system

= Multi-Level Memory (MLM) — mash-up ( of different technologies )

= Main memory is comprised of two or more types of
memory instead of conventional single-level DDR
DRAM-only main memory

2-level memory

= High-bandwidth memories to serve majority of
accesses

= Low cost memory to provide majority of capacity

= [ntroduces the challenge of - How scientific computing apps
make use of this capability
= Braess’ Paradox: increased capacity not guaranteed to be advantageous
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Adult Neurogenesis

= The incorporation of new neurons into
established, functioning neural circuits

= Extended maturation

= Several weeks to begin integrating into
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= still “immature” several months later
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Significance
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