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Receivers for Concentrating Solar Power
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 Goal is to improve receiver thermal 
efficiency and power block efficiency
– ≥ 700°C          sCO2 cycles
– ≥ 50% power cycle efficiencies

 Thermal efficiency is reduced for 
CSP receivers at high temperatures
– Reflection losses
– Thermal re-radiation in IR

dominates > 650°C

Motivation:  High-Temp CSP Receivers
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~10 m

Conventional cylindrical 
solar receiver

𝜼𝜼𝒕𝒕𝒕𝒕 = α−



 Pyromark has high absorptance (0.95), but also has 
high emittance (0.80)

 Current selective coatings degrade in extended high-
temperature exposure

 Metamaterials can be designed to absorb the visible 
spectrum at near unity, and 
suppress re-radiation in IR
– High temperature materials 

(e.g., refractory metals)
– Broadband and wide range 

of incidence angles

Motivation:  Metamaterials for Enhanced 
Solar Absorption
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 Metamaterials are man-made periodic micro/nano
structures to enhance interaction of light with matter

 Instead of manipulating chemical composition 
materials, the material surface structures are 
engineered and manipulated

Metamaterials Introduction

8http://phys.org/news/2015-01-two-
dimensional-metamaterial-surface.html

Plasmonic solar cells {A. 
Polman]



Plasmonic Brewster Angle
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Conventional Brewster transmission

Brewster angle transmission is inherently broadband - can we 
use the same concept to squeeze energy in small volumes?
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Broadband Impedance Matching
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• Thickness , period 



Broadband Absorbers
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w nm=

d nm=

tapl nm=
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Simulation Background
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Varying: materials (Tungsten, 
refractory materials, Si)
Width, period, thickness, taper/no 
taper

Bandwidth bounds:
• Upper cut-off: period
• Lower cut-off: thickness

The width controls the Brewster 
angle and angular beam width

Taper is chosen carefully to cut off at 2 µm, 
or taper depth of 1.1 µm



Simulation Results –Tungsten
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Simulation Results – Si
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Brewster Angle=41.4˚
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 5 µm PECVD HSUSG

 1.2 µm CVD tungsten on 
25 nm PVD TiN

 CMP touch polish, 75 nm 

 200 nm a-Si/500 nm 
PETEOS hard mask

 ASML 248 nm scanner

 SF6/C4F8 and SF6/O2 dry 
etch options in AMAT “DT” 
DPS Centura deep-Si 
etcher

 Future e-beam litho options

Fabrication Preparation – Mask Development
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Metastructure Array Geometries



 Good stress compensation from compressive HSUSG underlayer
– Net radius of curvature >70 meters

 Short W-CMP polish seems effective at improving surface roughness

 Remaining issues:
– Optical lithography performance on fine-pitch 2D gratings
– Hard mask etch optimization
– High-aspect ratio W etch development.

Fabrication Approach 
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 Optical spectroscopy testing
– Absorption and reflection measurements

 On-sun FTIR 
– Heat the samples to ≥ 700°C and measure emission

Optical Testing Approach
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 At high temperatures (>700°C) CSP receivers suffer 
large thermal losses, which reduce thermal efficiency

 To improve solar absorption and reduce thermal 
losses, we propose using structured receiver surfaces 
using metamaterials

 Simulation of metamaterial geometries showed near 
unity absorption in majority of solar spectrum while 
suppressing re-radiation in the IR

Conclusions
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 Fabrication
– Optimize tungsten dry etch
– Explore e-beam litho options
– Alternate material stacks

• Thicker tungsten
• Thermal/chemical stability at temperature
• Protective coatings

 Perform optical testing on fabricated samples
– Optical spectroscopy
– On-sun FTIR

Future Work
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Questions?
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Extra Slides
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Metamaterials and Plasmonics
Examples
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Sub-diffraction imaging [T. 
Taubner et al., Science 2006]

Sub-diffraction guiding [A. 
Alu, N. Engheta, Opt. Expr. 

2008]

Focusing [D.Y. Lei, et al., 
N. J. Phys. 2010] 

Plasmonic solar cells {A. 
Polman]

Sensing [J.A. Fan, et al. Science 
2010]

Core-shell for biomedical 
treatments [N. Halas]



Broadband Impedance Matching
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iθ = °

i Bθ θ= = °



Experimental Verification at RF
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• = 400 µm
• = 3.6 mm
• / = 11%
• = 2.54 cm

Experiment Theory
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Fix, w = nm →βs + j k

1.Brewster Angle Check

d=24nm

θb =

d=72nm d=600nm

θb = θb =

Brewster Angle goes up
[Absorption]

Tungsten w=6nm, d=24nm, l=100nm Tungsten w=6nm, d=72nm, l=100nm Tungsten w=6nm, d=600nm, l=100nm



1.Brewster Angle Check



1.Brewster Angle Check



1.Brewster Angle Check

Tungsten w=100nm, d=400nm, l=1200nm Tungsten w=200nm, d=800nm, l=1200nm

Tungsten w=250nm, d=500nm, l=1000nm Tungsten w=300nm, d=600nm, l=1000nm



2.Taper & No taper

Tungsten w=300nm, d=600nm, l=1150nm Tungsten w=300nm, d=600nm, l=1150nm, No taper



3. Highly Doped Silicon Compliment



Planned Fabrication Stack

34
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