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Abstract

Microstructural variabilities are among the predominant sources of uncertainty in structural
performance and reliability. We seek to develop efficient algorithms for multiscale calcu-
lations for polycrystalline alloys such as aluminum alloy 6061-T6 in environments where
ductile fracture is the dominant failure mode. Our approach employs concurrent multiscale
methods, but does not focus on their development. They are a necessary but not sufficient
ingredient to multiscale reliability predictions. We have focused on how to efficiently use
concurrent models for forward propagation because practical applications cannot include
fine-scale details throughout the problem domain due to exorbitant computational demand.

Our approach begins with a low-fidelity prediction at the engineering scale that is sub-
sequently refined with multiscale simulation. The results presented in this report focus on
plasticity and damage at the meso-scale, efforts to expedite Monte Carlo simulation with mi-
crostructural considerations, modeling aspects regarding geometric representation of grains
and second-phase particles, and contrasting algorithms for scale coupling.
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Summary

The primary goal of this research is to develop tools and capabilities for efficient multiscale
uncertainty propagation (UP) using finite elements (FE) for tractable multiscale structural
reliability calculations and uncertainty quantification (UQ). Recognizing many sources of
uncertainty, this work focuses on materials-scale variability and its fundamental importance
to failure governed by localization processes such as fracture. Homogenization techniques
or hierarchical multiscale techniques are insufficient for a high-fidelity representation of the
requisite physical processes and when the mission requires ultra-high reliability, e.g., failure
probability < 1 × 10−6. We do not develop a new multiscale numerical method (MNM),
but we employ domain decomposition and multipoint constraints to achieve a continuum-
to-continuum coupling of our engineering-scale domain with a polycrystalline, meso-scale
domain. The tools and capabilities developed by this program are non-intrusive and strive
to readily leverage ongoing developments in coupled multiscale calculations in the future.

We propose a hierarchical, multifidelity solution that systematically focuses computa-
tional resources at hotspots identified by engineering-scale simulations and combines the
results from multiscale analyses to maximize efficiency. We have developed a Git repository
of multiscale UP/UQ tools that strive to make Monte Carlo Simulation (MCS) tractable us-
ing stochastic reduced-order models (SROMs). The present work focuses on two length scales
of a common engineering aluminum alloy 6061-T6: the engineering scale and the materials
microstructural length scale. We employ the tools in our repository for reliability predictions
of an aluminum engineering structure in which the primary ductile failure mechanism is void
nucleation through fracture or pull-out of iron-bearing second-phase particles.

Our engineering-scale simulations used Hill anisotropic plasticity and damage. The multi-
scale simulations conducted for this project focused on the variability associated with random
grain orientation, including spatial correlation to capture grain misorientation, and its in-
fluence on fracture load in second-phase particles. Apparently, including misorientation in
microstructural models has an important effect on the probability distribution of particle
loading. During research to prepare our microstructural finite element models for multiscale
analysis, we explored the effect of a convenient simplification for the geometric represen-
tation of grain boundaries. We employed the newly developed Sandia tool Sculpt [2] to
develop FE meshes of microstructures whose mesh boundaries conformed to the material’s
idealized grain boundaries. A simpler approach is to overlay grain orientation onto an ex-
isting background mesh resulting in grain boundaries that are not smooth and that have
sharp corners introduced by the background mesh. For the problems that we considered
for AA 6061-T6 and that explicitly include a second-phase in the microstructure, it appears
less important to carefully treat the grain boundary. Further, an important contribution of
this work was the development of random-field reduced order models (RFROMs) to expedite
MCS of polycrystalline materials.
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Our experimental efforts made developments towards a multiscale digital image corre-
lation (DIC) technique for use in model validation, and through high-resolution electron
backscatter diffraction (EBSD) measurements and serial section, identified key relationships
between microstructural features and dislocation density leading to damage and crack nu-
cleation. The multiscale DIC attempted to capture two distinctly different length scales
of strain data in situ, so that engineering-scale and microstructural strain fields could be
simultaneously observed. While ultimately unsuccessful in the lifespan of this project, many
speckle patterns were ruled out and a thin-film remodeling method was identified as a strong
candidate. Work on the topic will continue and the data will be useful for validating mul-
tiscale calculations. The high-resolution EBSD work was achieved through the Academic
Alliance LDRD program and collaboration with Professor Josh Kacher at Georgia Institute
of Technology (GT). The Kacher contract was extremely productive with the only regret
being it was a one-year contract in the final year of this project. The GT data captured
dislocation accumulations occurring in the presence of a strong gradient caused by a sharp
notch at grain boundaries, grain boundary triple junctions, and second-phase particles. This
information is measured at the surface of a specimen and at a multiple serial-sectioned depths
below the surface approaching the midplane of the specimen. This data is very informative
about ranking the importance of microstructural features for damage processes and can be
use in the future for calibrating damage models at the microstructural length scale. The
work also demonstrated dislocation accumulation near a broken second-phase particle near
the tip of a sharp crack and suggested the accumulation caused the particle to fracture.

In summary, the following itemizes our findings and newly developed capabilities:

• a tool to model random fields, calibrated to data, that generates statistically equivalent
samples for Monte Carlo simulation;

• a reduced-order model for random fields and it was shown to be accurate and efficient
for propagating uncertainty;

• understanding of the impacts of modeling assumptions about grain boundaries in the
presence of a material’s second phase and concluded that overlay microstructures are
sufficient in some cases, despite leading to artificially roughened grain boundaries;

• understanding of the effects of microtexture on particle breaking load in second-phase
particles and found that microtexture broadens the probability density function for
crack nucleating load in the particle;

• multiscale simulations coupling the engineering scale to the material microstructural
scale concurrently and with one-way submodel coupling and noting various differences
in the particle breaking load;

• concurrently coupling the engineering scale with a microstructure that contains a crack
nucleating agent (second-phase), in 3D and with Monte Carlo simulation for estimates
of probability;
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• using a combined EBSD/in situ SEM deformation approach, it was shown that dis-
location accumulation occurs preferentially near intermetallic particles, in particular
those that are located in small grains.

This list falls short of our ambitious goals at the outset of the project, which hoped to have
a coherent tool for multiscale UQ. Nevertheless, the state of understanding and capability
for multiscale uncertainty quantification has significantly progressed over the coarse of the
investigation.

This report provides details on the progress, archives the code capabilities, and identifies
the future steps to continue the success of the work.
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Chapter 1

Introduction

The primary goal of this research is to develop tools and capabilities for efficient multi-
scale uncertainty propagation (UP) using finite elements (FE) for tractable multiscale struc-
tural reliability calculations and uncertainty quantification (UQ). The outcomes will impact
Sandia’s safety and security mission, which requires ultra-high reliability, e.g., failure prob-
ability < 1 × 10−6. There are many sources of aleotoric and epistemic uncertainty that
impact the S&S mission, e.g., environment, boundary conditions, materials processing, per-
sonnel handling, constitutive model error, and discretization errors. This work focuses on
materials-scale variability and its fundamental importance to failure governed by localization
processes such as fracture, a very complex and stochastic phenomena as illustrated by the
image in Figure 1.1.

Figure 1.1: High resolution SEM image of crack propagation at the tip of a sharp notch
demonstrating the complex and stochastic nature of fracture in polycrystalline materials
(Kacher Lab.)

Philosophically, we believe that homogenization techniques or hierarchical multiscale
techniques are insufficient for a high-fidelity representation of the requisite physical processes
and mechanisms present during a localization event, especially when ultra-high reliability
requirements exist. We do not develop a new multiscale numerical method (MNM). Rather,
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the focus of this work is on what we consider to be the larger aspect of multiscale UQ: how
to effeciently make use of a MNM for reliability predictions. Practical applications cannot
include fine-scale details throughout the problem domain due to exorbitant computational
demand. A concurrent MNM is necessary but not sufficient.

Example: A multiscale FE analysis including a polycrystalline subdomain at one hotspot
in a component can easily require the solution to tens of millions of equations or more for
one realization of the microstructure a very computationally expensive endeavor. However,
this solution represents only one data point for the conditional probability of failure assuming
failure occurs at that hotspot. There are presumably many hotspots. To complete the reliabil-
ity assessment, Monte Carlo simulation (MCS) is necessary at each hotspot, requiring many
thousands of such analyses - this is intractable.

We introduce an novel hierarchical approach for multiscale reliability that employs stochas-
tic reduced-order models (SROMs) as a surrogate to perform MCS at multilple length scales,
and a multifidelity algorithm to leverage results from both low- and high-fidelity physics cal-
culations [3, 4]. The core of this hierarhcy is discussed below in Section1.1, and the entire re-
port supports the framework with important details. Brute force direct numerical calculation
cannot generate sufficient Monte Carlo samples for prediction of ultra-high reliability, i.e.,
probability of failure less than 1×10−6, when the analyses are as cumbersome as described in
the above example. SROMs provide a reduced-order representation of the uncertain inputs
that enable construction of a response surface for rapid Monte Carlo sampling [5]. For proof
of concept, we focus on localization in an idealized “component” constructed from polycrys-
talline aluminum alloy 6061-T6 rolled sheet, which is commonly used in nuclear weapons
(NW) and aerospace applications. However, the developments remain sufficiently general
that future applications could be extended to address other multiscale problems of interest,
e.g., failure of bolted structures.

Our hierarchical multiscale approach requires a model at the engineering scale, which we
do not focus on in this report. The engineering scale would follow the developments of [6]
closely. We do present some engineering scale calculations with the numerical examples to
motivate the multiscale example. There we use Hill plasticity [7] and damage [8] to model
the physical behavior. In the hierarchical framework, SROMs [9, 5] following [6] would be
used to propagate uncertainty in constitutive model parameters calibrated to available test
data. For our microstructural models, we explore several options for geometry and mesh
modeling, we include a material second-phase particle, and we use a common crystal plas-
ticity formulation to relate deformation to stress [10]. These models are discussed at length
in Chapter 3. To connect the length scales – reiterating that we were not focused on the
development of a new MNM – we employ a rather unsophisitcated domain decomposition
method with multipoint constraints (MPC) to achieve continuum-to-continuum coupling of
our engineering-scale domain with a polycrystalline, meso-scale domain [11]. Further, we
make some simple comparisons between the MPC approach and a traditional sub-modeling
approach, which achieves only one-way coupling. These preliminary findings support our
emphasis on concurrent coupling and are discussed in Chapter 4. The computational efforts
are summarized through numerical examples in Chapter 6, which demonstrate the a num-
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ber of elements of the hierarchical approach. The tools and capabilities developed by this
program are non-intrusive and strive to readily leverage ongoing developments in coupled
multiscale calculations in the future [12].

Our experimental efforts made developments towards a multiscale digital image corre-
lation (DIC) technique for use in model validation, and through high-resolution electron
backscatter diffraction (EBSD) measurements and serial section, identify key relationships
between microstructural features and dislocation density leading to damage and crack nu-
cleation. Chapter 5 outlines the multiscale DIC method, which attempted to capture two
distinctly different length scales of strain data in situ, so that engineering-scale and mi-
crostructural strain fields could be simultaneously observed. While ultimately unsuccessful
in the lifespan of this project, significant progress on development of the multiscale speckle
pattern was made. Several speckle patterns with a variety of methods were ruled out and a
thin-film remodeling method was identified as a strong candidate. Work on the topic will con-
tinue and the data will be useful for validating multiscale calculations. The high-resolution
EBSD work, summarized in Chapter 7, was achieved through the Academic Alliance LDRD
program and collaboration with Professor Josh Kacher at Georgia Institute of Technology
(GT). The Kacher contract was extremely productive with the only regret being it was a
one-year contract in the final year this project. The GT data captures dislocation accu-
mulations occurring in the presence of a strong gradient caused by a sharp notch at grain
boundaries, grain boundary triple junctions, and second-phase particles. This information
is measured at the surface of a specimen and at a multiple serial-sectioned depths below
the surface approaching the midplane of the specimen. This data is very informative about
ranking the importance of microstructural features for damage processes and can be use in
the future for calibrating damage models at the microstructural length scale.

1.1 Hierarchical multiscale simulation

We propose a hierarchical methodology for multiscale uncertainty quantification, shown
with the notional flowchart in Figure 1.2. The present report is focused on crack nucleation
in AA 6061-T6 but the methodology is readily adaptable to other multiscale problems. In
fact, the lower-fidelity modeling approach is based on prior research to propagate uncertainty
for estimates of probability of system failure due to laser welds in abnormal mechanical envi-
ronments [6]. Crack nucleation in AA 6061-T6 and the laser weld problem differ only subtly
in the material ductility, form and polycrystalline properties, but in general the hierarchical
approach could be applied to vastly different types of multiscale problems. Each level in
the hierarchy takes a set of random inputs (left) and results in a probabilistic prediction of
system performance (right). The random inputs can include all known sources of aleatoric
uncertainties, e.g. materials properties and boundary conditions. In addition, each successive
level in the hierarchy has two additional inputs, the prediction from the preceding model and
model specific inputs. The prediction from the preceding level is used to focus the higher
level model on specific “hot spots”, and outcomes of the performance predictions from each
level are synthesized by some multifidelity modeling technique, c.f. [13, 14, 15]. Model spe-
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cific inputs at each level may include probabilistic descriptions that are likely related to the
improved physics model. The hierarchy can continue to burrow down in length scale as long
as there is sufficient value in adding more layers. This follows the development of a similar
tool, called DDSim, that was designed to make fatigue life predictions [3, 4]. The intent is
to start with relatively low-cost computational tools and gradually increase the fidelity by
improving the physical models, presumably at greater cost. Thus, Level I sacrifices accu-
racy, emphasizing speed and volume, while the finest length scale considered, Level XX, is
computationally heavy yet very physically accurate.

Random Inputs

Level I 
Model

Level I 
Performance Prediction

e.g, engineering length scale

Level II
Inputs Level II 

Model

Level II 
Performance Prediction

e.g., microstructural length scale 

Level III
Inputs Level III 

Model
Level III 

Performance Prediction
e.g., dislocation length scale... ...

continued as appropriate
~

Figure 1.2: Schematic flowchart of the hierarchical multiscale approach.

To illustrate the application of the hierarchy to our solid mechanics problem, consider
Figure 1.3, which illustrates an arbitrary solid defined on spatial domain D ⊂ R3 subjected to
applied load q. It is of interest to determine, for example, the load q at which the solid fails.
In reality, the material makeup of the solid has random defects, spatial inhomogeneities, and
other variabilities that lead to general uncertainty in the material behavior. Because of this,
the load at which failure occurs is uncertain and treated as a random variable, denoted by Q.
Our objective is to determine the probability law of Q. There are many choices of models
to account for the materials defects, but in this work we consider modes at two distinct
length scales: the Engineering length scale, S, which assumes spatial homogeneity, and the
Microstructural length scale M , which includes details of the materials’ microstructure.

Ideally, we would use the fine scale M model everywhere in D, and perform direct Monte
Carlo simulation by drawing many random samples of M and computing the corresponding
samples of Q, the load at failure. This approach is not feasible for two reasons. First, the
computational cost associated with using the fine scale material model is so great that its
use must be limited to a small spatial subset of the domain DM ⊂ D. Second, performing
this type of calculation thousands of times as needed for traditional Monte Carlo is also not
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Figure 1: Arbitrary solid subjected to applied load.

Figure 2: Spatial partition of solid into n regions.

3

Figure 1.3: Arbitrary solid subjected to applied load.

feasible. The first reason can be addressed by multiscale calculations while utilizing the fine
scale material model at a carefully chosen and finite number of spatial subdomains, perhaps
one location at a time. The use of stochastic reduced order models (SROMs) has been shown
previously to be one possible solution for the second reason. We will make use of the SROM
here, too.

The algorithm for our solid mechanics problem looks like this:

1. Assemble a model for the solid with the engineering scale material model S. Draw
one sample of S and compute the corresponding sample of loading Q at failure; also
observe and record the spatial location of failure.

2. Repeat step 1 as many times as possible to achieve a low fidelity estimate of the
probability law of failure PrL(Q ≤ a) as well as an idea of where the “hot spots” are
located and how likely failure is to occur at each location.

3. Partition domainD into n non-overlapping regionsD1, . . . ,Dn as illustrated by Fig. 1.4.

4. Insert the fine scale material model M into region Dk and use the engineering scale
material model S everywhere else, that is, in D \ Dk. We represent this modeling
scenario with notation (D \ Dk = S,Dk = M).

5. Construct an SROM for the random parameters associated with (D\Dk = S,Dk = M)
and compute the corresponding probability law of Q, the load at failure. Let Fk de-
note the event that failure occurs in region Dk, then in this step we have computed
PrH (Q ≤ a | Fk), the probability of failure conditioned on the event occurring in re-
giong Dk.

6. Repeat steps 4 and 5 for a selection of the n regions illustrated by Figure 1.4.
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Figure 1: Arbitrary solid subjected to applied load.

Figure 2: Spatial partition of solid into n regions.

3

Figure 1.4: Spatial partition of solid into n regions.

With Fk denoting the event that failure occurs in region Dk. The high fidelity probability
law of Q can then be quantified by the theorem of total probability, i.e.,

PrH(Q ≤ a) =
n∑
k=1

PrH (Q ≤ a | Fk) Pr(Fk) (1.1)

where the marginal probabilities Pr(Fk), k = 1, . . . , n, can be estimated by step 2 above.
Note further that low fidelity estimates of the conditional probability PrL (Q ≤ a | Fk) can
be obtained from step 2. In the case that there is very low, or zero, probability for a sub-
region, the low fidelity estimate for conditional probability could be used in Equation 1.1,
thus saving the considerable computational effort of coupling the microstructure in that
region.

In this report for crack nucleation in thin sheet form AA 6061-T6, we use a Hill plas-
ticity [7] constitutive model with damage [8] to relate stress with strain for the materials
behavior at the engineering scale S. Our model for the fine scale M explicity includes a
model for the geometry of the grains with a crystal plasticity constitutive formulation [10]
governing the deformation behavior. Further, we explicitly include a model for the geom-
etry of a sub-grain second-phase particle, assuming it behaves rather simply with elastic
or elastic-power-law-hardening constitutive behavior. Both S amd M are assumed to con-
tain materials uncertainties that are propagated with liberal application of SROMs. The
higher-fidelity model couples S with M through multiscale calculations, either with a do-
main decomposition method using multipoint constraints (MPC) to achieve the coupling or
with sub-modeling for one-way coupling.
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Chapter 2

Material form and behavior of the AA
6061-T6

This work focused on AA 6061-T6 rolled plate because it was readily available and
affordable, it is frequently used in nuclear weapons and aerospace applications, and it has
been richly studied in the literature, c.f., [16, 17, 18, 19, 20, 21]. The latter point alleviates
to some degree the requirement for us to dive deeply into the exploration of mechanisms and
materials science because we can leverage the work of previous investigators. Nevertheless,
we needed to collect data and information about a specific material for for our purposes.
This chapter describes the material we used in our investigation and provides some details
on the characterization of it.

2.1 Metallurgical details of AA 6061-T6

This work studied strain localization and damage progression in AA 6061-T6 rolled plate
form. A single 1.2 m x 1.2 m x 0.8 mm (4 ft x 4 ft x 0.032 in) plate was procured from Alcoa
Inc. via McMaster-Carr. The composition of the plate is listed in Table 2.1 below. A few
key structural properties from the manufacturer are listed in Table 2.2.

Si Fe Cu Mn Mg Cr Zn Ti Al (bal)

% alloy 0.63 0.4 0.24 0.05 1.0 0.17 0.03 0.02 97.46

Table 2.1: The chemical composition of AA 6061-T6 plate.

UTS (MPa) 337
Yield Stress (MPa) 276
Elongation (%) 13.8

Table 2.2: Mechanical properties of AA 6061-T6 from the manufacturer.

As shown in Table 2.1, several alloying elements are present. These elements primarily
take the form of precipitates with a size of roughly 0.2 µm and inclusions around 5 µm as
shown in Figure 2.1. Later in this work, we attempt to explicitly include the larger particles
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in a FE mesh to study the effects the surrounding matrix on the load in the particle. X-
ray diffractions was used to investigate the composition of these precipitates and inclusions.
The elemental peaks are shown in Figure 2.2. Spatial distributions of elements are shown
in Figure 2.3. Most of the inclusions are Si and Mg with some are Fe-bearing particles also
present. The precipitates are too small to be resolved with X-ray diffraction, but are thought
to be of similar composition.

Figure 2.1: Micrographs showing inclusions and precipitates in AA 6061-T6. Originally, it
was thought that these might provide a basis for a DIC speckle pattern, but they are too
sparse and they lose contrast upon loading.

Electron backscatter diffraction (EBSD) was performed on samples of this material to
establish the grain size, grain aspect ratio, and texture. The coordinate system used for
crystallographic data is shown in Figure 2.4. EBSD maps are shown in Figure 2.5. From
these figures, it is apparent that the grains have a diameter of approximately 50 µm in
the normal plane direction. In the other directions, the grains are elongated in the rolling
direction so that their widths are approximately 20 µm. Pole and inverse pole figures of the
crystallographic texture are shown in Figure 2.6 and 2.7. There is a texture of strong 100
orientation with respect to the rolling direction and 110 orientation with respect to the other
two.

Crystallographic orientation can also be quantified with three rotations, known as Euler
angles, which can be calculated from the EBSD measurements. The Euler angles describe
the orientation of the crystal lattice with respect to the lab reference frame as described by
rotations from the reference in a specified pattern. There are many choices for convention,
but here we follow the z-x-z convention. The first angle rotates the crystal away from the
reference frame about the z-axis of the reference frame. The second angle rotates the lattice
about the current x-axis. The final angle rotates the lattice about the current z-axis again.
Figure 2.8 plots the normalized histograms for each of the three Euler angles from the plan
EBSD measurements.

Following [22] one can compute the rotation matrix for crystal A from the euler angles
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Figure 2.2: X-ray diffraction peaks showing some of the detected elements in this alloy.

using

gA =

 c1c3− s1c2s3 s1c3 + c1c2s3 s2s3
−c1s3− s1c2c3 −s1s3 + c1c2c3 s2c3

s1s2 −c1s2 c2

 (2.1)

where c1 is the cosine of the first Euler angle, c2 is the cosine of the second Euler angle, c3 is
the cosine of the third Euler angle, s1 is the sine of the first Euler angle, s2 is the sine of the
second Euler angle, and s3 is the sine of the third Euler angle. To describe the orientation
of one grain with respect to another grain, on can write the rotation of grain B with respect
to grain A’s orientation as

gB = ∆gABgA (2.2)

so that

∆gAB = gBg
−1
A (2.3)

describes the rotation from grain A to grain B. Converting this to the axis/angle convention
for describing crystallographic orientation yields a measure or the grains’ misorientation
given as

Θ = arccos((tr(∆gAB)− 1)/2) (2.4)

where tr(•) represents the sum of the diagonal of the matrix. The misorietation angles for
each of the plan, longitudinal and transverse EBSD data are plotted in Figure 2.9.

Ductile fracture is attributed to the mechanisms of void nucleation, growth and coales-
cence. This has been studied extensively over the course of time and there are a nice series
of papers in particular on AA 6061-T6 [16, 18, 17, 21]. The findings in these papers provided
partial motivation for our focus on AA 6061-T6. Given the complexities of modeling growth
and coalescence at the mesoscale, we’ve chosen to focus on nucleation, which requires a clear
definition. In general, void nucleating sites in an alloy can be attributed to a vast number
of properties ranging from lattice vacancies to grain boundary imperfections to other-phase
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Figure 2.3: Spatial distribution of chemical constitituents measured by X-ray diffraction for
AA 6061-T6 rolled plate.

Figure 2.4: Orientation convention for crystallographic plots.

particles and inclusions. For the aluminum alloy we’re focused on, our measurements above,
which are confirmed in the literature, show there are nominally two populations of second-
phase for concern, see Figure 2.3. There are finer, micron-size iron (Fe) precipitates, and
there are larger, 10 mm magnesium-silicon (Mg2Si) and iron precipitates, which refer to
as particles. From careful consideration of the image in Figure 2.3, the average particle
dimensions are taken to be 5µm in the rolling direction with waste of 2µm. It may be
unconventional to discuss future work in the introductory chapter, but the bimodality of
the precipitate size suggest the idea of coupling damage nucleation and growth models to
account for the finer precipitates, with crystal plasticity models that explicitly include the
larger particles in the mesh. The size and spacing of the larger particles would set a length
scale, so local damage models would be convergent [23].
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Figure 2.5: EBSD maps from three primary directions of the plate colored according to the
legend in Figure 2.4 with respect to the direction of view (normal, rolling, and transverse
respectively).
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Figure 2.6: Pole figures showing the texture of the AA 6061-T6. There is some preference
for [100] texture in the rolling direction and a slight [110] bias in the other two directions.
This is similar to a Goss texture.
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Figure 2.7: Inverse pole figures of the AA 6061-T6 microstructure showing a 100 texture in
the rolling direction with a slight secondary 111 rolling texture and preferential 100 and 110
orientations in the normal direction.

2.2 Specimens

Approximately 200 specimens of five types were cut from the sheet of AA 6061-T6 in both
the rolling and transverse direction including dogbone tension specimens, 2-notch-sharp, 2-
notch-gradual, and 6-notch specimens with dimensions shown in the drawings included in
Appendix B. Tension specimens were created to characterize base material properties and
natural variability. The 2-notch sharp and gradual specimens test the variability associated
with strain localization for differing triaxialities. Figure 2.10 shows an example of the notched
specimens with a faile sharp-notced specimen.

Figure 2.11 plots engineering stress-strain curves for the smooth, gradual-notched, and
sharp-notched tensile specimens in both rolling and transverse directions. The plasticity
behavior is apparently anisotropic and relatively repeatable, or deterministic, however there
is a wide range in strain to failure. Note that the data as presented has been smoothed and
spline fit for convenience in further processing. These data are used in Chapter 6 to calibrate
an engineering scale plasticity model.
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Figure 2.8: Normalized histograms of the Euler angles from the plan EBSD measurement.

The 6-notch specimens were designed to investigate stochastic failure with multiple pos-
sible crack initiation locations, and are discussed in further detail in the subsequent chapters.
The tension and two-notch specimens were generally inputs into models whereas the 6-notch
specimens served as validation target specimens. Figure 2.12 shows a series of medium mag-
nification images at the root of the notches. The nucleation event was dominated in the
middle set of notches. Figure 2.13 shows the performance of the 6-notched specimens with
load normalized by the nominal plate area (not including the notches). Again, the plasticity
of the plates is repeatable with variability arising in strain-to-failure.

A senior design project was leveraged at Howard University to compliment this project. In
one year, a team of four undergraduate seniors built a tensile testing load frame, building on
progress in previous years. They also set up the load frame for in situ DIC measurements.
Sandia support not only included guidance, but also the delivery of 50 of the 4-notch
specimens for testing at Howard university. The results from those studies primarily focused
on specimen-to-specimen variability in force and displacement. For more details, the reader
is referred to the report [24].
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Figure 2.9: Normalized histograms of the lattice misorientations from the plan, longitudinal,
and transverse EBSD measurements.
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Figure 2.10: In situ image of a broken sharp-notch specimen.
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Figure 2.11: Engineering stress-strain curves for a the smooth, gradual-notched (GN), and
sharp-notched (SN) tensile specimens in both rolling (R) and transverse (T) directions used
for characterization.
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Figure 2.12: Series of medium magnification images at the root of the six notches. Fracture
sets up in the middle set of notches.
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Figure 2.13: Normalized load versus strain curves for a the 6-notched tensile specimen serving
as our “idealized component” for model validation.
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Chapter 3

Microstructure modeling

A key element in the research is development of tractable computational microstructural
models to predict crack nucleation events. We employ a very basic crystal plasticity model
to account for crystallographic slip [10], noting that like multiscale numerical methods this is
an active area of research at Sandia with which we intend to intersect in the future [12, 25].
So far, we are focused on texture, that is, the distribution of crystallographic orientation
in a polycrystal [22]. We are interested in how texture affects the homogenized response of
a polycrystal, and its effects on the statistical distribution of, e.g. maximum stress/strain
in an idealized second-phase particle. To study the effects on the homogenized response
we have developed some so-called voxellated, or overlay, geometries whereby the grains are
constructed by overlaying a Poisson Voronoi tessellation onto a uniform hexahedra mesh of
varying densities [26, 27] and textures are generated with a random field model following [28].
In this Chapter we discuss the vector-valued random-field models for texture, a reduced-order
version of it, geometry and mesh model concerns for generating polycrystals with second-
phase particles, and we present some observations from meso-structural calculations.

3.1 Translation model for generating polycrystalline

texture models

Let Θ(x) = (Θ1(x),Θ2(x),Θ3(x))′ denote a model for the three Euler angles that decribe
the crystallographic orientation at a location of interest x ∈ D ⊂ R3 in a material microstruc-
ture. The proposed model, developed by Arwade and Grigoriu [28], is a translation random
field, a particular type of non-Gaussian random field defined by a nonlinear, spatially in-
variant, mapping of a Gaussian random field. This approach has several advantages that
make it attractive for problems of this type: (1) one can match any non-Gaussian marginal
distribution; (2) one can match the covariance function of the non-Gaussian field, with some
exceptions; (3) the method is conceptually simple; and (4) the generation of random samples
via Monte Carlo simulation is straightforward and efficient.
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3.1.1 Analysis of the available EBSD data

Electron backscattered diffraction (EBSD) measurements of the three Euler angles de-
scribing crystallographic orientation of the ductile polyscrystalline AA 6061-T6, discussed
in Chapter 2, are analyzed. The data have been recorded at n distinct locations (or grid
points) within a domain of interest, D. The data are denoted by {ψj,k = ψj(xk), j =
1, 2, 3, k = 1, . . . , n}, where subscripts j and k are indices on the coordinate of the vector
of Euler angles and spatial location, respectively. Three data sets are available for study.
Data sets #1, #2, and #3, which are of size n = {nj, j = 1, 2, 3} = {1866, 6610, 1938},
describe the crystallographic orientation of the aluminum alloy in the longitudinal, plan,
and transverse directions, respectively. The scanned area for each directional data set is
roughly a = {aj = lj × hj, j = 1, 2, 3} = {l1 × h1, l2 × h2, l3 × h3}. Histograms of
{ψj(xk), j = 1, 2, 3, k = 1, . . . , nj} for the longitudinal direction of the aluminum alloy
can be seen in Figures 3.1(a),(c), and (e). The measurement locations, {xk, k = 1, . . . , nj},
for the longitudinal direction can also be seen in Figures 3.1(b), (d), and (f).

3.1.2 Analysis of Euler angle experimental observations for the
purpose of informing the translation random vector model

We will make the following assumptions about the experimental data,

1. All measurements are made without error;

2. The measurements come from a statistically homogeneous and mean-square ergodic
random field with finite variance;

3. The covariance function of the random field is isotropic; and

4. The correlation length normalized by the average grain size is approximately the same
for each data set.

By assumption 2, we can treat the measurements {ψjk} as independent samples of random
field Θ(x). Therefore,

µ̂j =
1

n

n∑
k=1

ψj,k, σ̂
2
j =

1

n− 1

n∑
k=1

(ψj,k − µ̂j)2 , and F̂j(θ) =
1

n

n∑
k=1

1(ψj,k ≤ θ) (3.1)

provide estimates of µj = E[Θj(x)], σ2
j = Var[Θj(x)], and Fj(θ) = Pr(Θj(x) ≤ θ), the mean,

variance, and marginal probability distribution of Θj(x), j = 1, 2, 3. Estimates of the means
and standard deviations are listed in Table 6.4.

By assumption 4, the average grain size is an important feature of the data. To define
this quantity, let

δj = min
k=1,...,n
k 6=j

‖xj − xk‖ (3.2)
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Figure 3.1: Histogram and measurement locations of {ψj(xk), j = 1, 2, 3, k = 1, . . . , nj} for
the longitudinal direction of the aluminum alloy. The presented histograms illustrate the
difference in the PDFs of the euler angles (a) {ψ1(xk, k = 1, . . . , n1}, (c) {ψ2(xk, k =
1, . . . , n2}, and (e) {ψ3(xk, k = 1, . . . , n3}. The measurement locations are also illustrated
for (b) {xk, k = 1, . . . , n1}, (d) {xk, k = 1, . . . , n2}, and (f) {xk, k = 1, . . . , n3}. The voronoi
tessellation is included for visualization; additionally, the color map indicates the value of
the corresponding {ψj(xk), j = 1, 2, 3, k = 1, . . . , nj}.

denote the distance between grid j and its nearest neighbor; δj > 0 can be interpreted as the
“size” of the grain centered at grid xj, and δavg = (1/n)

∑n
j=1 δj denotes the average grain

size.
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Data set Orientation Mean (deg) Standard deviation (deg)

#1 Longitudinal (181.4, 32.85, 45.54)′ (106.8, 11.33, 25.75)′

#2 Plan (181.8, 30.13, 45.42)′ (99.86, 11.37, 26.97)′

#3 Transverse (181.4, 30.70, 44.27)′ (108.7, 14.13, 22.59)′

Table 3.1: Sample mean and standard deviation of Euler angles.

Next consider two locations u,v ∈ D and let

ξkl(u,v) = ξkl(‖u− v‖) =
Cov (Θk(u),Θl(v))

σk σl
, k, l = 1, 2, 3, (3.3)

be scaled versions of the covariance functions of Θ(x), where the first equality is true by
assumption 3. We can obtain estimates of {ξkl} using the available data {ψj,k = ψj(xk), j =
1, 2, 3, k = 1, . . . , n}. The auto- ξk,l k = l and cross-covariances ξk,l k 6= l are along the top
and bottom rows, respectively. The plots indicate that the correlation length for data set #1
is roughly 1-2 times the average grain size, and roughly 3-4 times the average grain size for
data set #2. In addition, there is little if any cross-correlations among the different angles.
The red curves, corresponding to estimates made from data set #2, are smoother than the
blue curves because data set #2 is almost four times larger than data set #1.

It is convenient to approximate the scaled covariance functions defined by Eq. (3.3) by
exponential functions of the following form

ξkl(η) ≈ γkl e
−αkl η, (3.4)

where αkl and γkl are constants satisfying αkl > 0, γkk = 1, and −1 < γkl < 1, k 6= l.
Estimates for these parameters can be obtained by least-squares minimization and are listed
in Table 3.2. We make use of these approximations when calibrating the model proposed in
the following section.

It should be noted that in data sets #1 and #3, some off-diagonal terms of α̂kl are
estimated to be of value ∞. By Equation 3.4, this simply implies that the correlation
lengths of these off-diagonal terms are 0. The physical interpretation of this implication is
that the grains in the orientation of interest are not correlated with respect to those Euler
angles. For example, in data set #1, it is noted that α̂3,2 = α̂2,3 = ∞. This ultimately
indicates that for the longitudinal orientation, the Euler angles ψ2 and ψ3 are not correlated.

3.1.3 Vector-valued translation random field model definition

Let G(x) = (G1(x), G2(x), G3(x))′ be a vector-valued homogeneous and isotropic Gaus-
sian random field with zero mean, unit variance, and covariance functions ρkl(‖u − v‖) =
E[Gk(u)Gl(v)], k, l = 1, 2, 3. Our proposed model for Θ(x) is defined as a simple nonlinear
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Data set Orientation {α̂kl} {γ̂kl}

#1 Longitudinal

0.945 0.363 0.662
0.363 0.263 ∞
0.662 ∞ 2.00

  1 0.0134 −0.037
0.0134 1 −0.006
−0.036 −0.006 1



#2 Plan

0.279 0.068 0.064
0.068 0.048 0.184
0.064 0.184 0.245

  1 −0.007 0.008
−0.007 1 0.008
0.008 0.008 1



#3 Transverse

0.534 ∞ ∞
∞ 1.016 0.338
∞ 0.338 2.212

  1 0.024 0.011
0.024 1 0.014
0.011 0.014 1



Table 3.2: Estimates of parameters for exponential fit to scaled covariance functions defined
by Eq. 3.4 for each data set.

transformation of G(x), called a translation random field [29, Section 5.3.3]. The form of
the transformation is given by [28],

Θ(x) = µ+ a Y(x) =

µ1

µ2

µ3

+

σ1 0 0
0 σ2 0
0 0 σ3

 Y(x), (3.5)

where Y(x) is a vector-valued translation random field with zero mean, unit variance, and
coordinates,

Yk(x) = hk(Gk(x)) = F−1
k ◦ Φ(Gk(x)), k = 1, 2, 3, (3.6)

each Fk is a cumulative distribution function (CDF) satisfying,∫
R
u dFk(u) = 0 and,

∫
R
u2 dFk(u) = 1,

and Φ(z) = (2π)−1/2
∫ z
−∞ e

−u2/2 du denotes the CDF of the standard Gaussian random vari-
able. We can show that Θ(x) is a homogeneous and isotropic random field with the following
properties,

1. The mean value of the random field is constant and equal to µ defined by Eq. (3.5),
i.e., E[Θk(x)] = µk. Likewise, the standard deviation of each coordinate is constant
and equal to σk, k = 1, 2, 3.

2. The marginal CDF of Yk is Fk defined by Eq. (3.6). It follows that Pr(Θk(x) ≤ z) =
Fk((z − µk)/σk), k = 1, 2, 3, are the marginal CDFs of Θ(x).
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3. Y(x) is a homogeneous and isotropic random field with covariance functions

ξkl(‖u− v‖) = E[Yk(u)Yl(v)]

= E[hk(Gk(u)hl(Gl(v))] =

∫
R2

hk(y)hl(z)φ2(y, z; ρkl(‖u− v‖)) dy dz,

(3.7)

where,

φ2(y, z; ρ) =
1

2π
√

1− ρ2
exp

(
−y

2 − 2 y z ρ+ z2

2(1− ρ)2

)
denotes the joint probability density function (PDF) of two standard Gaussian random
variables with correlation ρ. It follows that the covariance functions of Θ(x) are
σk σl ξkl(η).

3.1.4 Model calibration and implementation of translation model

The calibration and implementation of the previously defined model for generating poly-
crystalline orientations represented as proper Euler angles is rather straightforward and can
be accomplished in a relatively simple manner. The process for calibrating the model is as
follows,

1. Set the elements of µ and a, as denoted in Equation 3.5, equal to the estimates of µ̂k
and σ̂k, k = 1, 2, 3, which are defined in Equation 3.1;

2. Use estimates of F̂k, defined in Equation 3.1, for the CDFs Fk in the mappings
hk(Gk(x)) = F−1

k ◦ Φ(Gk(x)), k = 1, 2, 3;

3. Set the covariance functions {ξkl} defined by Equation 3.7 equal to the approximations
for {ξkl} defined by Equation 3.4, where the parameters α̂kl and γ̂kl are determined via
experimental observations; and

4. Solve Equation 3.7 for {ρkl}, the covariance functions of G(x), where G(x) is the
Gaussian image of Θ(x).

It is useful to further elaborate on Step 4. Given a value of ρkl, we solve Equation 3.7 to
obtain the corresponding value for ξkl; the integration is typically done numerically. This
procedure is repeated for different values of ρkl until the interval −1 ≤ ρkl ≤ 1 is sufficiently
represented, resulting in a collection of {(ρkl, ξkl)}. Linear interpolation on this collection
can then be used to determine ρkl for a specified value of ξkl.

Once the translation model has been calibrated using experimental observations, creating
samples of Θ(x) on an arbitrary finite element (FE) mesh becomes exceedingly straightfor-
ward and involves three steps. The process for generating samples of Θ(x) is as follows,
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1. Generate samples of Gaussian random field G(x) over the FE mesh;

2. Using Equation 3.6, translate the samples of G(x) to obtain the corresponding samples
of Y(x); and

3. Apply Equation 3.5 to shift and scale the samples of Y(x) to obtain the corresponding
samples of Θ(x).

Textures were generated for a synthetic microstructure using the translation random
field model and calibrated to our EBSD data in Chapter 2. The texture samples were
generated at grain centroids chosen by a Poisson close-packing algorithm [30], with a linear
mapping applied in the normal direction to achieve approximate aspect ratio of the grains
in our AA 6061-T6. Figure 3.2 shows inverse pole figure (IPF) plots of texture generated
with the translation model for the three cases of no texture, macro- and micro-texture. A
truly non-textured structure would be uniformly 1.0 times random in IPF magnitude and the
samples generated with the translation model range from 0.92 to 1.12. The textured samples
reasonably reproduce the EBSD data shown in Figure 2.3. It is not possible to differentiate
between micro- and macro-texture with IPFs. For this, we use misorientation. Figures 3.3 –
3.5 plot histograms of the three Euler angles. Noteworthy, although well known in the texture
analysis community, a naive approach to generate non-textured microstructures might be to
choose three Euler angles with uniform distribution in some range of support. However,
because of their relationship in the rotation matrix, which belongs to a special orthogonal
group, the second Euler angle is not uniformly distributed. As with the pole figures, the
textured samples reasonably reproduce the EBSD data shown in Figure 2.8.

Following the discussion in Chapter 2, we can compute misorientation for the samples
from the translation model. Figure 3.6 plots the misorientation angles for the three models,
no texture, macro-texture and micro-texture. The non-textured misorietations show ten-
dency for grains to be more drammatically misoriented, with the density continuously rising
from 0° to 180°. There are symmetries that could be employed that we neglect in these
plot [31]. Otherwise, there are only subtle differences in the distributions of the macro- and
micro-textured samples, with the micro-texture rising a bit more steeply for 0° and peaking
a bit more sharply in the neighborhood of 30°.

3.1.5 Reduced-order model for vector-valued random field

In Section 3.1, we utilized a translation model to generate samples of the crystallographic
orientation of a material of interest for an arbitrary 3D FE model. Using this methodol-
ogy, one can generate a vast number of samples, which, depending on the refinement of the
FE mesh, can be impractical to solve for all crystallographic orientation realizations due to
computational cost and constraints. With this being the case, it would be useful to be able
to select a small number of samples from the total number of generated crystallographic
orientation realizations while maintaining relevant statistical characteristics. In light of this,
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Figure 3.2: Inverse pole figures from ensembles of non-, macro-, and micro-textured (top to
bottom) 224-grain polycrystal samples.

we apply the stochastic reduced-order model (SROM) methodology developed by Grigo-
riu [32] to assist in the selection of a comparatively small number of samples which have
been generated via the translation model methodology.

Let Θ̃(x) = {θ̃(x)(1), . . . , θ̃(x)(m)} be defined as elements of the SROM of Θ(x), where
{Θ̃(x) : Θ̃(x) ⊂ S(x)}, where S(x) defines the support of Θ. The SROM samples have
corresponding probabilities (p̃(1), . . . , p̃(m)), which are defined such that p̃(i) ≥ 0 ∀ i, i =
1, . . . ,m, and

∑m
i=1 p̃

(i) = 1. The SROM sample, which is of size m, thus has the following

sample-probability pairs, (θ̃(i), p̃(i)), i = 1, . . . ,m. Additionally, the corresponding marginal
cumulative distribution function, moments, and correlations are defined as,

F̃k(θk) = Pr(Θ̃k ≤ θk) =
m∑
i=1

p̃(i)1(θ̃
(i)
k ≤ θk), (3.8)
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Figure 3.3: Histograms of the Euler angles from an ensemble of non-textured 224-grain
polycrystal samples.

µ̃k(q) = E[Θ̃q
k] =

m∑
i=1

p̃(i)(θ̃
(i)
k )q, (3.9)

c̃(k, l) = E[Θ̃kΘ̃l] =
m∑
i=1

p̃(i)θ̃
(i)
k θ̃

(i)
l , (3.10)

Where E[·] is the expectation operator, 1(·) is the indicator function, and q is the order of
the marginal moments. Using Equations 3.8–3.10, we can impose a criteria to choose the
sample-probability pairs of the SROM to optimally represents the probability law of full
set of realizations, by some measure. For example, we may use an objective function that
seeks to minimize the error between the marginal distributions, moments, and correlations
of Θ and Θ̃. The expressions that define the error between the SROM and target marginal
distributions, moments, and correlations are as follows,

min

{
3∑
r=1

wrer(p)

}
, (3.11)
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Figure 3.4: Histograms of the Euler angles from an ensemble of macro-textured 224-grain
polycrystal samples.

where wr are weight factors which are to be defined such that wr ≥ 0 and
∑3

r=1wr = 1 and
er are discrepancy (or error) functions. For our purposes, the discrepancy functions seek to
determine the difference between the marginal CDF, moments and correlations of Θ and Θ̃.
The generalized definition of er, where r = 1, 2, 3, is,

e1(p) = max
1≤k≤3

w1

∣∣∣F̃k(x)− Fk(x)
∣∣∣ , (3.12)

e2(p) = max
1≤q≤q̄

max
1≤k≤3

w2 |µ̃k(q)− µk(q)| , (3.13)

e3(p) = max
k,l

w3 |c̃(k, l)− ck(k, l)| , (3.14)

where e1, e2, and e3 denote the difference between the marginal CDF, moments, and correla-
tions of Θ and Θ̃, respectively, and q̄ is the number of moments. By solving Equations 3.11-
3.14, the max of the discrepancy between the Θ and Θ̃ can be minimized, thus providing
the optimal SROM Θ̃ of Θ.
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Figure 3.5: Histograms of the Euler angles from an ensemble of micro-textured 224-grain
polycrystal samples.

3.2 Microstructure mesh model development

Much of the work in this project is completed using a microstructure model where the
mesh does not conform to the polycrystal grain geometry. The details of that approach
are discussed in Section 3.2.1. To better understand the implications of this scheme we
compare these results with a model constructed using a new meshing tool called Sculpt that
can produce meshes that conform with the grain geometry [2]. This scheme is discussed in
Section 3.2.2. An artifact of the sculpting process is that it makes, sometimes not so subtle,
changes to the underlying geometry. Because of this, it was not possible to compare directly
the outcomes of an overlay microstructure with a sculpted microstructure. Consequently,
a third scheme was devised so that the overlay was performed on a sculpted geometry,
thus guaranteeing the geometry of the particle was consistent. This scheme is used to
identify the influence of grain boundary treatment on particle breaking load and described
in Section 3.2.3.
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Figure 3.6: Histograms of the misorientation angles from ensembles of non-, macro-, and
micro-textured (top to bottom) 224-grain polycrystal samples.

The following discussion holds for both a single-phase microstructure or a multi-phase
microstructure. We generate single-phase microstructures to evaluate the effects of texture on
yield behavior. We generate two-phase microstructures, including an idealized iron-bearing,
second-phase particle, to study the load in the particle as a function of the texture model
applied. The particle is idealized to have ellipsoidal geometry, which is a common but not
accurate assumption, with approximate aspect ratio consistent with the average particle size
observed in our AA 6061-T6.

3.2.1 Grain independent meshing

The simplest approach to incorporate the crystallographic structure into the FE model
is to independently mesh the background geometry and overlay crystallographic details on
the mesh. For this, we use a close-packing algorithm to generate a Voronoi tessellation
describing grain centroids [30]. There are shortcomings in this approach to modeling grain
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morphology, but its accessibility is attractive. Subsequently, we loop through every element
in the background mesh and assign the element properties, in our case grain orientations via
Euler angles, based on the Voronoi cell the element is contained in. In Figure 6.7 this was
performed with a background mesh of hexahedra elements. In the present discussion when
we include a second-phase particle, we choose to use unstructured tetrahedral meshing. The
outcome of the overlay approach at the intersection of several grains on the surface of a
polycrystal model is shown in Figure 3.7. Because each element is independently assigned
to its parent grain, with no smoothing along the grain boundary, the result is an artificially
roughened grain surface whose tortuosity is dictated by the local mesh, not physics. For
purposes of modeling fracture, a localization event that is driven by microstructural defects
that cause stress concentrations, this artificial stress concentration is alarming. We continue
to argue that, for our special case of aluminum matrix with a stiff and brittle second phase,
the artificially roughened grain boundary might not be terribly dominant.

Figure 3.7: View of mesh using the overlay technique where elements do not conform to the
grain boundaries

3.2.2 Grain boundary conforming meshing

To construct a finite element mesh that conform to the grain boundaries the Sculpt
tool was used [2]. This tool constructs a hexahedral mesh that aligns with the defined
boundaries. The input to Sculpt is a combination of an STL file defining the ellipsoid particle
geometry and a Cartesian grid that defines the grains. The Cartesian grid is a voxellated
representation of grain geometry similarly to the mesh constructed in Section 3.2.1 when
hexahedral elements are used. Each cell in the Cartesian grid is assigned a parent grain.
Sculpt smooths this jagged boundary definition to construct the mesh shown in Figure 3.8.
There is a cost analysis that must be applied that balances the Cartesian grid spacing with
smoothing to result in the most accurate microstructure. After meshing, grain orientation
can be assigned to individual elements. Due to variations in the precise alignment of the
grain boundaries in the Sculpt meshes it was chosen to assign grain orientation to all elements
within a particular block otherwise a jagged boundary may still occur.
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Figure 3.8: View of mesh where elements do conform to the grain boundaries

Significant complexity in the Sculpt meshing process arises from the smoothing and coars-
ening process that takes place internally due to the format of the grain definitions. Internally
Sculpt converts the prescribed information to a grain density or ’volume of fluid’ represen-
tation on each Cartesian grid cell. To remove the stair-stepped nature of the Cartesian grid,
Laplace smoothing is performed. For continuity, the Laplace smoothing is forced on the el-
lipsoid inclusion geometry, which has also been converted to a volume-of-fluid representation
internally. As the length scale of the ellipsoid inclusion is small relative to the grains the
Laplace smoothing compresses further the size of the particle. There are some fundamental
difficulties that arise from converting all the geometry to a volume-of-fluid representation
and then operating on that. A hypothesis for future investigation is that retaining a level
set implicit representation of geometry may alleviate some of the difficulties experienced by
the Sculpt tool.

Additionally, our team supported an effort to strengthen the Sculpt and tetrahedral
meshing tools available in Cubit. As such, we collaborated with the Sculpt development team
during this work and discovered inconsistencies with the current parallel implementation of
the Sculpt tool. For certain grain configurations some domain decompositions (number
of processors) would result in a well formed mesh with no inverted elements while others
would yield inverted elements. The meshing appears to be dependent on the the mesh
partition in some non-obvious way. The adaptive mesh refinement feature was also found to
be problematic. For microstructure meshes the adaptive mesh refinement feature in sculpt
coarsens the mesh away from grain boundaries, which would be useful in constructing meshes
that well represent the ellipsoid and grains while not being prohibitively expensive. The
adaptive mesh refinement was found to generally yield inverted elements when prescribed
for the meshing described in this work.

3.2.3 Consistent discretization of the second phase particle

There are three primary differences between the meshes of Sections 3.2.1 and 3.2.2: align-
ment of element faces with grain boundaries (a ”smooth” grain boundary), the element type
or topology (hexahedral versus tetrahedral) and finally the precision of the geometry of the
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second-phase particle. In the overlay approach, the particle geometry is consistent with
the background geometry model in geometry and mesh modeling tool, Cubit in our case.
Because of the Laplace smoothing in the BG-conforming approach, the geometry model for
the particle can stray a long ways from ellipsoidal. Figure 3.9 shows an example of the
differences in that can arise in the particle geometry. On the left side of the figure is the
ellipsoidal particle included in the overlay approach, and on the right side of the figure is
picture of a particle after the Laplace smoothing of Sculpt. The effects are random, dictated
by the grain morphology, and increasingly deleterious as the disparity between particle size
and grain size grows. For particles on the order of 5µm as measured for our AA 6061-T6,
the effects can be quite bad. In this section we describe a meshing strategy that combines
the discretized brittle inclusion geometry of Section 3.2.2 with the grain meshing scheme of
Section 3.2.1.

Figure 3.9: Comparison of tetrahedral meshed ellipsoid (left) and hexahedral meshed particle
that comes out from Sculpt (right).

The process goes like this:

1. perform the meshing of Section 3.2.2;

2. load the mesh into the meshing software Cubit;

3. extract the discretized surface between the inclusion and the rest of the mesh;

4. convert that surface from quadrilaterals to triangles;

5. insert that surface in an analytically defined box (exterior of the mesoscale domain);

6. mesh that entire domain with tetrahedra; and finally,

7. perform the overlay process described in Section 3.2.1.

This procedure results in a tetrahedral mesh that does not conform to the grain boundaries,
and that contains a particle domain whose geometry is correspondent to the equivalent
microstructure resulting from the GB-comforming approach.
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3.2.4 Comparing particle breaking load for GB-conforming and
non-conforming microstructures

The primary objective in this section is to explore the effects of grain boundary conform-
ing or non-conforming meshes on the particle breaking load. We want to use the overlay
approach because it is faster, least pathological, and simpler to perform. We cannot directly
compare results from the overlay approach to the GB-conforming approach because the par-
ticle geometry is so drastically different. So, we devised an approach to first Sculpt, changing
the geometry of the particle, then overlay. Here we apply our meshing methods for a small
polycrystal with 32 grains, one particle, and one realization of macro-texture. The model
inclusion was five times larger than the average particle observed in our AA 6061-T6 and it
was assumed to be pure iron with modulus of elasticity of 211 (GPa) and Poisson’s ratio of
0.29. For these calculations, the particle is five times larger than the average particle in our
AA 6061-T6 due to the pathologies of the sculpt meshing process, which had difficulties as
the inclusion became small relative to the grain size.

Figure 3.10 shows the first principle stress contour plot for the two models: hybrid on
the left; GB-conforming on the right. The figure shows cross-section through the polycrystal
with normals to the rolling direction (top) and transverse direction (bottom) with the particle
removed. The grain boundaries can be made out due to the stress fields, but there is not
an obvious spike in the stress fields along the grain boundaries due to the non-conforming
mesh scheme. Moreover, there is a philosophical debate to launch regarding our continuum
representation of grain boundaries, but we won’t digress down that path here. The stress
at the interface between the inclusion and the crystalline matrix is noticeably higher in the
tetrahedral mesh (left).

Figure 3.11 shows a more detailed view of the same stresses shown in Figure 3.10. The
difference in stress is visible both at the inclusion-matrix interface as well as a region around
that. In Figure 3.12 the pressure on the outer surface of the inclusion is shown for the
tetrahedral mesh constructed according to Section 3.2.3. Here small elements with large
pressure values are noticeable. The overall mesh quality on the surface and the geometric
artifacts from Sculpt are visible.

In Figure 3.13 the difference in the stress-strain relationship for different meshing schemes
is shown. These stress-strain curves plot the average first principle stress in the particle versus
the nominal applied engineering strain on the representative polycrystal. The three different
meshing schemes outlined in Section 3.2 are shown in addition to varying mesh refinement for
each scheme. The red curves are results from the overlay scheme. The blue curves are results
from the grain-boundary conforming scheme. The green curve is from the hybrid approach,
which overlays the mesh with a particle geometry that came from Sculpt. We describe the
curves in three regions: the primarily elastic region (steep initial slope), the transition to
plasticity (abrupt change in slope in the curves) and the plastic deformation region. After
plastic deformation develops (strains > 0.005) it is clear that the grain boundary conforming
meshes (blue curves) describe a different particle response than the non-conforming scheme
(red curves). Note, the plasticity in this case is in the surrounding matrix; the particle is
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Figure 3.10: Comparison of principle stress at the inclusion-matrix boundary between tetra-
hedral mesh using scheme hybrid meshing scheme (left) and GB-conforming scheme (right).

Figure 3.11: Zoomed view of differences in principle stress between the hybrid and GB-
conforming approaches.

elastic. The grain conforming curves harden less then the non-grain-boundary-conforming
curves. We suspected this was driven by effects of the Sculpt process on the geometry of
the particle. Indeed, the response of the particle in the hybrid approach (green curve) lies
directly atop the GB-conforming mesh results. It’s not clear what role the 5x particle size
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Figure 3.12: View of pressure at surface of inclusion for model constructed using the scheme
of Section 3.2.3.

plays in these results and these results only include one realziation of macro-texture, but
the conclusion from these results is important. Careful treatment of the grain boundaries
when modeling a stiff particle in a soft matrix is unnecessary. The dominant fields are in
the particle and remains unaffected by the treatment of the grain boundaries.

Figure 3.13: Comparison of statistics resulting from different meshing schemes

Figure 3.14 shows an enlarged view of the transition region between elastic and plastic
behavior. Here there is evidence that treatment of grain boundary plays a role, with the
transition apparently sensitive to the meshing choice. The grain-conforming mesh exhibits a
much sharper transition between elastic and plastic behavior, while the non-grain-conforming
meshes show a more gradual transition. It is hypothesized that this is due to the larger vari-
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ation in local element-level strain conditions in the non-grain-conforming mesh resulting in
a wider range of global strains that result in individual element transition to plasticity. It is
also observed that the elastic-plastic transition is more senstive to mesh refinement for the
grain-conforming mesh than the other schemes. Finally, this behavior may be particularly
dependent on the texture as it closely related to the onset of plasticity in the grains. Fur-
ther study of the meshes resulting from Sculpt seems necessary to understand all possible
implications to the behavior observed.

Figure 3.14: Comparison of meshing approaches at the start of plastic deformation

3.3 Chapter summary

In this chapter on microstructural modeling of AA 6061-T6, we presented a translation
model for grain orientation and described a reduced-order form for that model. It was
shown that when the translation model is calibrated to EBSD data, it accurately reproduces
samples of texture and microtexture of that data. Subsequently, we described our method
for developing finite element geometry and mesh models for microstructures and proved that
for our purposes, we can use an overlay microstructure for computing crack nucleating load
in an iron-bearing second-phase particle.
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Chapter 4

Multiscale simulation

In this Chapter we outline the techniques we used to couple our engineering scale model
with the microstructural models so that we may identify certain behavior within the mesoscale
model that indicates the crack nucleation and incipient failure. Philosophically, we believe
that homogenization techniques or hierarchical multiscale techniques are insufficient for a
high-fidelity representation of the requisite physical processes, especially when ultra-high
reliability requirements exist. The objective of concurrently coupling the models that repre-
sent physical phenomena occurring on differing length scales is to add physical fidelity where
necessary, but not everywhere. This is a necessity given the complexity and computational
expense of the fine-scale models. Moreover, for the complex, highly nonlinear behavior asso-
ciated with ductile failure, it is insufficient to merely track deformation on the engineering
scale and push boundary conditions downward with no feedback reminding the engineering
scale of the particulars of deformation on the fine scale. This latter comment is tested within
this Chapter.

We do not develop a new multiscale numerical method (MNM). To connect the length
scales – reiterating that we were not focused on the development of a new MNM – we employ
a rather unsophisitcated domain decomposition method with multipoint constraints (MPC)
to achieve continuum-to-continuum coupling of our engineering-scale domain with a poly-
crystalline, meso-scale domain. Further, we make comparison between the MPC approach
and a traditional sub-modeling approach, which achieves only one-way coupling. Submod-
eling is one-way coupling from the engineering scale solution to the mesoscale model. MPC
coupling is the direct embedding and concurrent solution of the engineering and mesoscale
models via Multi-Point Constraints (MPCs).

In the following, first we discuss our implementation of the submodeling approach using
the existing capability in Sierra/SM [33]. Then we discuss the MPC approach for concurrent
coupling of the differing length scales. Finally, we look at fields in a particle when coupled
in both manners and attempt to iron out the necessity of concurrent coupling.
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4.1 Submodeling

The submodeling capability that exists in Sierra/SM is used to couple our engineering
length scale model with the microstructural models including second-phase particles. The
procedure for submodeling is as follows:

1. solve the engineering scale model (with no knowledge of the mesoscale model);

2. given the prescribed position of the mesoscale model, map the displacements from the
engineering scale model onto the outside surfaces of the mesoscale model; and

3. apply the mapped displacements as Dirichlet boundary conditions on the mesoscale
model and solve for its response.

Figure 4.1 provides a visual flow chart for the procedure. Conveniently, this algorithm is
performed automatically with Sierra/SM with the use of the Submodel block (refer to Section
7.14.11 [33]). In general, the input file contains details about both FE models with a list of
“embedded” and “enclosing” blocks to signal when and where to perform the coupling. This
approach only propagates information from the engineering scale to the mesoscale, there is
no assurance that the resulting boundary conditions and mesoscale behavior are compatible
with the behavior exhibited by the engineering scale model. This capability has been used
for analysis of parts ranging in geometric length scale, e.g. parts containing small fasteners
or welds, but to our knowledge it has not employed to couple distinctly different physical
phenomena.

Figure 4.1: Depiction of submodeling process: engineering scale solution, mapping displace-
ments to mesoscale model, solving mesoscale model

4.2 MPC coupling

The MPC coupling approach is a brute force method to couple the length scales [11, ?].
There are more eloquent methods coming online to perform this scale coupling [34, 35], but
frankly, they are not mature enough for the present purposes. Moreover, it remains to be
seen if they are beneficial for the current application given convergence issues and that they
still require domain decomposition and special attention to meshing. Referring to notation
from Section 1.1, the procedure is as follows:
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1. identify the location to employ multiscale modeling, region Dk, using the engineering
scale calculation;

2. decompose the engineering scale geometry so that its domain is (D\Dk = S and mesh;

3. prepare the microstructural FE model to fit the domain in region Dk;

4. prepare node and surface sets on both FE models;

5. make appropriate modifications to the analysis input file to add constrains coupling
the displacements on the mating surfaces; and

6. solve the full problem to compute displacements in both domains simultaneously.

Figures 4.2 and 4.3 illustrate the procedure.

Figure 4.2: Depiction of submodeling process: engineering scale solution, mapping displace-
ments to mesoscale model, solving mesoscale model

Figure 4.3: Engineering scale model is decomposed to contain region (D \ Dk = S (left) so
that the microstructural model (right) has a tight fit.

In the present implementation, the engineering scale model is constructed so that a set
of elements exactly aligned with the mesoscale model. This facilitates the meshing because
the elements are easily removed from the engineering scale model so that the mesoscale
model could be embedded within it with no overlap (and no gap) between the models. The
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engineering scale meshing is evident in Figure 4.3 and can be seen to be quite coarse. We
did not probe the sensitivity to the discretization, and we expect it to affect the results and
it is a topic for furutre investigation.

4.3 Comparing the approaches

Engineering scale constitutive models are making dramatic improvements and with in-
ternal state variables and micromechanics, they can represent an awe-inspiring amount of
fine-scale physics [36, 7]. One of the suppositions of this work is that concurrent coupling
is necessary to accurately predict localization events. The question arises, do high fidelity
engineering scale constitutive models obviate the necessity for concurrent coupling. Further,
perhaps with an engineering scale model that accurately captions deformation and the onset
of localization, perhaps a one-way coupling like our submodeling approach is sufficient. We
use our multiscale approaches to explore this.

To ensure the best comparison between both approaches, the same engineering scale
mesh (excepting elements removed to accommodate the mesoscale model) is used for both
the submodeling and MPC coupling. The efforts in this report are admittedly light on
mesh convergence investigation because of the rather cumbersome task of remeshing and
assembling the multiscale calculations, a shortcoming that should be addressed with future
work. Per our hierarchical approach, the location to embed the subdomain is chosen based
on the engineer-scale solution. Discussed in Section 6.4, for ductile fracture we can use points
of high-triaxiality to base the decision.

Our microstructural model is the same as presented in SubSection 3.2.4. We assume that
the second phase particle in the mesoscale model, the ellipsoid, is elastic and brittle. The
engineering scale model uses Hill anisotropic plasticity calibrated to the available tension
data. The calibration and engineering scale model are is discussed in depth in Chapter 6.
Figure 4.4 plots the deformed shape of the polycrystal and particle for both multiscale
modeling approaches overlapped. There are small differences, but the deformations are
distinctly different, which strengthens the notion that submodeling even with a high fidelity
engineering constitutive model is not the same as concurrent multiscale.

Figure 4.5 plots the maximum first-principle stress in the particle versus simulation time
for one sample of a macro- and micro-textured polycrystal run using MPC and submodeling.
The first observation is that the stress in the particle is very high, probably due to the
constraint caused by the coupling schemes, i.e. opposed to the simple boundary conditions
applied in SubSection 3.2.4. The use of the elasto-plastic model for the particle was not
possible at the time of this writing. In subsequent discussion we monitor the mean first-
principle stress in the particle. The next observation is that at higher stress levels, the
choice of texture model deviates widely for the MPC calculations, but more narrowly for
submodeling. This seems to indicate the necessity for concurrent coupling. The figure inset
shows contour plots of von Mises stress on a macro-textured polycrystal, cross-sectioned
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(a) Matrix (b) Particle

Figure 4.4: Comparison of the multiscale modeling approaches showing the deformation of
the polycrystal (a) and particle (b).

through the particle. There are noticeable differences on the low end of the stress band, but
the particle stresses look similar. The deformed shapes (included) have noticeable differences.

Figure 4.5: Maximum first-principle stress in the particle for MPC macro texture (red), MPC
microtexture (blue), submodel macro texture (green) and submodel micro texture (pink).

In Figure 4.6 the mean first-principle stress is plotted versus nominal applied engineering
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strain on the engineering specime, computed as the displacements at the ends of the engi-
neering scale domain normalized by it’s original length. The solid lines represent the mean
value of the stress-strain curve while the dashed lines are plus and minus one standard de-
viation. For this comparison ten Monte Carlo samples were used. The inflection points that
are visible in the submodeling result correspond to the points at which the engineering scale
displacement was recorded. The displacement applied to the exterior of the mesoscale model
between these points was a linear interpolation between nearby records. A close inspection
of Figure 4.6 shows that at the critical value of 540 MPa the mean values are similar but
the distributions only overlap by a small fraction of their area.

Figure 4.6: Comparison of statistics resulting from different coupling schemes run for many
realizations of microtexture. The data plotted are mean and +/- standard deviation for the
MPC (red) and submodeling approachs (blue).

4.4 Chapter summary

In this chapter we discuss two methods to couple a microstructure with an engineering
scale structure. With submodeling, information flow is one-way down length scales from the
engineering scale model to the microstructure in the form of kinematic boundary conditions.
This implies that if the localization process in the microstructure influences the behavior of
the engineering scale model, the effects are lost due to the one-way flow of information. It
should be noted, our microstructural models do not soften, so this one-way coupling may be
sufficient. Nevertheless, we compared the submodeling approach to an approach for brute
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force concurrent coupling. In this, we couple the two length scales via multi-point constraints
on matching surfaces of the two domains. When the state of microstructural modeling is
sufficiently mature as to nucleate cracks and propagate them through the microstructure,
thereby simulating the localization of strain and attendant load shedding, this concurrency
will be necessary.
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Chapter 5

Multiscale digital image correlation

To support model development and validation, a multiscale, full-field experimental tech-
nique based on digital image correlation (DIC) was explored. Because the DIC technique
lacks an inherent length scale, it can be used at a wide range of scales – from atomic force
microscopy to entire rocket assemblies. A multiscale DIC approach is an ideal solution to
validating hierarchical models since it will provide macroscale deformation measurements
of the entire component while simultaneously providing details of hotspots with microscale
resolution. Only a few researchers have attempted to use multiscale speckle patterns for
DIC. For a large region of interest encompassing several meters, Reu [37] painted through
two templates with different colors (black and grey) to generate overlapping speckle patterns
with considerably different speckle sizes (20 mm and 2 mm). Other researchers have per-
formed multiscale DIC at smaller scales [38, 39], but with limited range of scales because a
single speckle pattern was used at different fields of view.

One goal of this project was to develop multiscale DIC techniques and to use the multi-
scale results to inform multiscale models. Although multiscale approaches had been investi-
gated previously [40, 38, 37], none of the prior work attempted it at the high magnifications
and large scale separation of interest in this work. The approach was to use a low magnifi-
cation scale to capture the strain field throughout an entire “structure” such as the 6-notch
specimen as illustrated in Figure 5.1.

Figure 5.1: Multiscale DIC uses low magnification images to cover the entire specimen, and
high magnification images to capture deformation details at stress concentrators.
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Multiscale DIC techniques were developed and applied to several notched specimens
loaded while being observed in situ in an SEM. In one case, the full surface microtexture was
obtained through EBSD, e.g., Figure 5.2. These EBSD measurements were used to plot the
inverse pole figures in Figure 2.3, although they were independently confirmed with other
EBSD scans.

(a) (b) (c)

Figure 5.2: Grain orientations in a 6-notch specimen relative to the (a) transverse direction
(b) rolling direction, and (c) normal direction.

At first glance, these six notches appear equally likely to initiate specimen failure. How-
ever, finite element modeling indicated that diagonal strain bands, which link the notches,
create a bias toward crack nucleation and fracture occurring in the the center notches. These
model results are shown and confirmed by experimental observation in Figure 5.3.

Figure 5.3: Failure in this specimen geometry is most likely at the center notches due to two
diagonal shear bands whereas the distal notches only have one.
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For multiscale DIC in the SEM, it was necessary to capture a fairly large montage of
images to cover the entire specimen for low magnification DIC. At high magnification DIC,
montages were again used to observe strain localizations at notch tips with sub-grain reso-
lution. Examples of such images are shown in Figure 5.4.

Figure 5.4: Low magnification montages were used to image the entire specimen. High
resolution montages were used to image notch tips with sub-grain level details.

Making use of the multiscale imaging requires multiscale speckle patterns. Many tech-
niques were attempted for applying such patterns to specimens. One significant challenge
was getting a suitable small-scale speckle pattern. Many techniques were tried including
1. Inherent patterns, 2. Copper nanospeckle powder, 3. Self-assembled nanoparticles, 4.
Electroplating island deposition, and 5. Thin film remodeling. These will be discussed in
order. First, it was thought that the precipitates and inclusions shown in Figure 2.1 could
be used. Unfortunately, upon significant loading, the contrast of these speckles decreased
markedly, thereby rendering them nearly invisible at higher strains. This is demonstrated in
Figure 5.4 by the fact that so few of the inclusions and precipitates can be seen in the images.
Second, copper nanospeckle power was used following [38]. This technique is relatively easy
and effective, but true SEM-DIC images for the goals of this study are near the particle size
and spacing limit of the technique: it is challenging to make speckles small enough with this
technique. Third, a visit was made to the University of California Santa Barbara (UCSB)
to meet the leading researchers in this field and to learn some of their speckling techniques.
The self-assembled nanoparticles approach by Kammers et al. [39] was learned and applied
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for Sandia specimens. Fourthly, electroplating deposition was attempted in which coatings
were electrodeposited on top of specimens with settings chosen such that they would form
islands rather than a solid coating. This technique showed great promise for one specimen,
but did not appear to be easily repeated. Finally, a thin film remodeling technique was used
in which specimens were sputtered with a thin layer of gold and subsequently subjected to
humidity to shrink the gold into islands suitable for high magnification DIC. Many iterations
of settings were attempted for this technique and at this point it appears to be the most
promising for the applications of this project. Some of the resulting speckle patterns from
this technique are shown in Figure 5.5 along with the settings chosen to make these patterns
in Table 5.1.

Figure 5.5: Speckle patterns created by several different settings (see Table 5.1) with coating
thicknesses of 50 nm (top) and 80 nm (bottom). Images are consistently 64 µm wide,
captured using backscatter electron imaging.

Specimen Au thickness Set Temp Duration Chamber Vapor Flow Area Insulated
(nm) (C) (min) Vol. (cm3) Flow (mL/hr) (mm2) (Y/N)

1 49.4 342( 280) 60 1158 80 256 N
2 78.6 342( 280) 60 1158 80 256 N

1-repeat 49.4 342( 280) 30 1158 80 256 N
2-repeat 78.6 342( 280) 30 1158 80 256 N

3 49.4 342( 280) 60 1158 60 96 N
4 78.6 342( 280) 60 1158 60 96 N
5 49.4 342( 280) 60 1158 70 256 Y
6 78.6 342( 280) 60 1158 70 256 Y
7 49.4 342( 280) 60 2835 100 478 N
8 78.6 342( 280) 60 2835 100 478 N
9 49.4 342( 280) 60 2835 100 179 N
10 78.6 342( 280) 60 2835 100 179 N

Table 5.1: Settings used for each sputter.

Performing DIC on SEM images creates special challenges. In particular, SEM images
have much more distortion than conventional images due to the fact that SEM images are
captured using a rastering technique. Early attempts at DIC in the SEM were unsuccessful
due to these SEM distortions. One example of this is the horizontal strain field from a
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montage of images shown in Figure 5.6. The general strain field is captured in this image,
but it is interrupted by purple bands of distorted results because the left edge of each of
these images was distorted. Correction techniques for SEM distortions have been developed
by Kammers and Daly [1]. These techniques allow images to be corrected to remove the
distortions associated with SEM images. To correct for distortion, images are captured of
a speckled, unloaded specimen at various locations. By extracting and analyzing the strain
fields of these rigid motions (the true strain field is zero everywhere), the distortions due
to SEM imaging can be quantified spatially. Figure 5.7 shows a schematic of the technique
from [1] in the upper left inset. The rest of the figure shows the exx strain field calculated
for these rigid motion images thereby demonstrating the spatial distortion. This distortion
can then be corrected in functional DIC images.

Figure 5.6: Challenges with montaging DIC data with SEM distortions.

High magnification DIC measurements were made on notch tips in a few specimens with
limited success due to time constraints. Unfortunately, simultaneous multiscale DIC was
not achieved. However, the majority of the techniques and capabilities necessary to achieved
this was developed in this LDRD. One example of a notch tip strain field is shown for a
similar specimen in Figure 5.8 using copper powder. These strain fields show the two strain
bands emanating from the tips with strain localizations around the grain scale. Yet another,
higher magnification strain field around a crack tip is shown in Figure 5.9.

Another approach to multiscale in the SEM is to use the multiSEM – a 61 beam SEM
capable of incredibly fast imaging rates. As a trial, the multiSEM was used to image pre-
cipitates and inclusions in the aluminum as a trial for high resolution DIC over large areas.
One example of MultiSEM imaging is shown in Figure 5.10 in which two 2.5 x 2.5 mm re-
gions were imaged with 4 nm resolution in one hour. This tool has great promise, but the
extremely fine speckle patterns required to take advantage of it are not currently capable of
being produced.
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Figure 5.7: SEM-DIC distortion correction technique taken from [1]. In this case, four steps
are taken in the X and Y directions covering a total distance of one quarter of the field of
view in each direction.

As shown earlier, notched specimens exhibit significant differences in ductility with the
primary drivers being geometrical tolerances and microstructure. DIC measurements such as
the ones shown here are valuable for validating models to predict failure distributions. These
measurements can be made even more powerful if combined with HR-EBSD measurements
such as those supplied by Professor Kacher at Georgia Tech for this project, described in
Chapter 7. DIC can give surface strain measurements of hotspots in situ. This data can be
bolstered by HR-EBSD measurements, which can destructively provide strain measurements
internally as well as information on GNDs in the same region as the high resolution DIC to
add yet more understanding to the failure mechanisms in FCC metals.
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Figure 5.8: DIC strain measurement at notch tips just before specimen fracture achieved
with copper powder speckling. The eventual fracture path is shown by the dashed line.

Figure 5.9: Grain level DIC strain accumulation at a notch tip.
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Figure 5.10: MultiSEM imaging of large areas.
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Chapter 6

Numerical examples

We present 4 examples to demonstrate the tools. In the first example, we use the mi-
crostructure modeling tools for treatment of a small scale plate whose dimensions only allow
for a small number of grains. It is idealized to be cubic elastic and pure aluminum, but having
the same texture as measure for our AA 6061-T6. The takeaway message is the efficiency and
accuracy of the random field reduced-order model. In the second example, we construct yield
surfaces for polycrystals modeled with macro- and micro-texture and demonstrate subtle,
but we assert important, differences between the two texture models. In the third example,
we add the second-phase particles and consider the load on the particle for simple applied
loadings on the microstructure. In the final example, we explore the multiscale models and
effects that including the full engineering scale boundary value problem has on the load in
the particle.

6.1 Example 1 – cubic elasticity and micron-size plate

in plane strain

This example is a hypothetical scenario with significantly reduced complexity. We for-
mulate the problem so that we consider cubic elasticity in a small polycrystal. Constitutive
data is taken from the literature. Multiscale coupling is avoided because the microstructure
can tractably be modeled over the entire domain. The tractability of the problem enables
us to generate our own “truth” data by performing a large number of direct numerical cal-
culations of the microstructural model, thereby allowing us to evaluate the accuracy and
efficiency of the random-field reduced-order model (RFROM).

6.1.1 Formulation

Consider a plate in plane strain with dimensions 240µm x 120µm x 0.5µm. The plate
is comprised of a cubic-elastic pure aluminum with elastic constants taken from [41]. The
average grain size is approximately 40µm, so that there are approzimately 18 grains in the
specimen. Suppose that the plate has stringent design requirements for extension displace-
ment when loaded longitudinally, so developing the probability law for apparent modulus
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of elasticity Eapp can be used to quantify failure. We generate “truth” data by FE simula-
tion, varying crystallographic orientation using the models in 3 and EBSD data presented
in 2, with 400 instantiations of non-textured, macro-textured and micro-textured crystals.
Figure 6.1 shows the assumed boundary conditions and Figure 6.2 is a contour plot of the
xx-component of stress, showing the random distribution of load in the plate. The FE mesh
uses selectively-reduced integration hex elements on a uniformly spaced grid with grid spac-
ing equal to the plate thickness. This results in approximately 80 brick elements per grain
edge, sufficiently resolving the fields [27].

Figure 6.1: Boundary conditions for example 1.

Figure 6.2: A sample σxx distribution for a micro-textured example 1.

We randomly draw 20 samples from each set of truth data to simulate load-displacement
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test data samples from which to estimate apparent modulus. The estimates of apparent
modulus are then used to compute the maximum likelihood estimators (MLE) for a given set
of probability distributions, and the best fit is chosen based on the minimum of the negative
log-likelihood. This model serves as the engineering-scale model for this illustration. Note
that in the context of a real engineering problem, twenty samples of test data is on the
high end of reality. Very often, there are fewer samples available. Table 6.1 summarizes the
estimates of negative log-likelihood for the 20 samples and for the full set of 400 calculations.
In all cases, the beta distribution is chosen. Table 6.2 tabulates the parameters for beta as
determinted from the MLE for both the 20 samples. The engineering scale performance
estimate is generated with 100 Monte Carlo samples drawn from these beta distributions,
which is done to simulate reality when an engineering scale model is less expensive than the
microstructural model but not free.

no texture macro texture micro texture

beta 3162.6 154.3 3190.3 161.0 3239.4 157.0
pareto 3506.0 168.3 3454.4 173.6 3526.7 166.6
norm 3163.2 163.5 3190.6 165.6 3240.3 162.6
gamma 3164.2 163.4 3190.5 165.8 3241.2 162.4
rayleigh 3278.6 inf inf inf inf 162.4

Table 6.1: Maximum likelihood estimates.

a b location scale

no texture 1.327 0.7743 67079 3657.9
macro 2.566 0.9038 65839 5037.5
micro 0.8275 0.9716 67694 3262.8

Table 6.2: MLE parameters for beta for apparent modulus from 20 samples.

The fine scale performance estimate is achieved with recoarse to a RFROM as described
in Chapter 3. The direct numerical calculation is conducted for a realization corresponding
to each of 50 RFROM samples. The

6.1.2 Results

Figure 6.3 plots the cumulative distribution of apparent modulus computed with the
sets of 400 simulation results, the so-called “truth” data. There are subtle differences in
the distributions between no-, macro-, and micro-texture. It appears that correlation in the
micro-textured microstructures lends to polycrystals that are both stiffer and more compli-
ant, so that the tails of the distribution extend further on both ends. On the other end of the
spectrum, the non-textured results suggest a lower variance, which suits intuition suggesting
these grains are optimally disorganized. As expected, the macro-textured results tend to
split the difference.
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Figure 6.3: Estimated “truth” cumulative distribution for apparent modulus of a plane
strain, micro-size plate with non-, macro-, and micro-textured cubic crystals.

Figures 6.4–6.6 plot the cumulative probability for the apparent modulus. Each plot
includes the cdf computed three ways: by the MLE-estimated beta distribution of the
engineering-scale model; by the RFROM of the microstructural-scale model; and by the
truth estimate from the direct numerical calculations. A common measure for comparing
probability distributions to a reference is the Kolmogorov-Smirnov (K-S) two-sample test [42,
Section 10.1]. However, this approach requires the samples of both random variables to be
independent and identically distributed (iid), and the SROM samples violate this require-
ment. Nevertheless, we compute the maximum difference norm and tabulate in Table 6.3.
We further develop an alternative measure for the comparison. Let F (x) denote the empiri-
cal cdf obtained from the “truth” sample data. Let F1(x) denote the empirical cdf obtained
from the engineering-scale sample data. Let F̃ (x) denote the cdf of the SROMs. An ap-
propriate error metric used here is the the L2 norm of the difference between two CDFs,
i.e.,

m1 =

∫
R

(F1(x)− F (x))2 dx

m̃ =

∫
R

(
F̃ (x)− F (x)

)2

dx (6.1)

These errors are listed in Table 6.4 for the cases of no texture, macro texture, and micro
texture. It is evident that, in every case, the SROM micro-scale model outperforms the
engineering-scale model.
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Figure 6.4: Cumulative probability estimates of apparent modulus for a non-textured mi-
crostructure.

No texture Macro texture Micro texture

LI engineering scale 0.224 0.166 0.131
LII microstructure scale 0.154 0.197 0.196

Table 6.3: L∞-norm comparing the CDFs of the models to the “truth” data.

6.1.3 Comments

The Level I engineering scale model is trivial in this example and we could have chosen
many thousands of samples. However, more MCS samples does not correct for errors due to
sparse data, i.e., only 20 tests. There is a subtle point to be made here that supports higher-
fidelity, and therefore multiscale, modeling. In real engineering examples, there is often
limited data available to calibrate models. In some sense, this sparsity of data outweighs the
accuracy of the engineering scale model. On the other hand, as with the present example,
we often have a large amount of data to calibrate fine-scale models.
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Figure 6.5: Cumulative probability estimates of apparent modulus for a macro-textured
microstructure.

No texture Macro texture Micro texture

LI engineering scale 41.02 40.7 23.3
LII microstructure scale 12.1 18.6 22.8

Table 6.4: L2-norm comparing the CDFs of the models to the “truth” data.

6.2 Example 2 – microstructure texture models

6.2.1 Formulation

To study the effects on the homogenized response we have developed so-called voxel-
lated, or overlay, geometries following the grain-independent mesh model scheme described in
Chapter 3. The geometry and mesh models are constructed by overlaying a Poisson Voronoi
tessellation onto a uniform hexahedra mesh of varying densities following closely [43, 27].
Figure 6.7 illustrates one morphological sample of overlayed geometry with macro-textured
(left) and micro-textured (right) crystal orientations. Note that, the grain shapes are not
equiaxed. Rather, the average dimensions in the “N” direction is smaller than the aver-
age “R” and “T” direction to simulate the measured average grain dimensions of the rolled
plate. This was achieved by a linear mapping from the output of the Voronoi tessellation to
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Figure 6.6: Cumulative probability estimates of apparent modulus for a micro-textured
microstructure.

a “rolled” state. The colors plotted are the first Euler angle in each grain so that the grains
are obvious.

Figure 6.7: Two texture samples of an aluminum 6061-T6 rolled microstructure. The macro
texture sample (left) does not include spatial correlation in the random-field model for crys-
tallographic orientation whereas the micro texture sample (right) does.

With samples like these, we have simulated applied bi-axial loadings and extracted ho-
mogenized response following [27] and compared with a von Mises approximate of the yield
surface. Our crystal plasticity model closely follows [10], and was calibrated to the average of
smooth tensile data measured for our AA 6061-T6 and presented in Chapter 2. The fit and
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properties appear below in Figure 6.8. We use these properties throughout for the crystal
plasticity simulations contained herein.
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Figure 6.8: Crystal plasticity calibration to
average smooth tensile data.

no macro micro

g0 (MPa) 110.6 115.2 114.0
gs0 (MPa) 169.4 174.7 172.8
G0 (MPa) 116.6 116.6 116.6
m 0.01 0.01 0.01

Table 6.5: Crystal plasticity material
parameters.

6.2.2 Results

The yield surfaces for three random samples of macro- and micro-texture are shown in
Figure 6.9. The salient point is that when spatial correlation is maintained in the texture
model, there are subtle differences and variations in the corresponding yield behavior. These
differences can lead to significant differences in yield-surface normals compared with tradi-
tional J2-based engineering scale plasticity models, as illustrated by the overlap of the von
Mises yield surface in the figure.

6.3 Example 3 – microstructure and second-phase par-

ticle

6.3.1 Formulation

Next, we further employ the grain-independent meshing algorithm to explore the impacts
of texture on second-phase particles, idealizing the second-phase particle as an ellipsoid. Two
examples of this type of microstructure are shown in Figure 6.10 where the roughened edges
of the grain boundaries are obvious. Interestingly, by chance in both of these morphological
realizations the particle is located on or intersecting the grain boundaries, an effect that
bears deeper investigation. This microstructure is considerably smaller than would be rec-
ommended for applications predictions, but is tractable enough that we can perform some
studies and compare with our reduced order model. In the end, there are 32 grains and
548,351 composite tetrahedral elements.
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Figure 6.9: Approximated yield surface for macro- and micro-textured polycrystals at 0.2%
and 2.0% effective strain.

Due to its simplicity, we have used the models in Figure 6.10 to study the mean and
max stress in the idealized particle for a large number of both macro- and micro-texture
samples surrounding it. From these simulations, we show an influence of micro-texture on the
mean/max stress distribution, specifically a broadening in the tails. The thought experiment
suggests that with correlation (micro-texture) there is a certain higher probability that the
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Figure 6.10: Particle/microstructure geometry for two instances of grain morphology. The
images are taken at a cross-section intersecting the particle for display.

particle will be located in/near some grains that are aligned in a softer/stiffer manner.
Indeed, Figure 6.3 seems to suggest there is a tendency for grains to align in some manner
that facilitates (elastic) extension, which suggests a more compliant microstructure. We
assume the particle acts elastically and is perfectly bonded at the interface. The particle is
iron, with assumed modulus of elasticity of 211 (GPa) and Poisson’s ratio of 0.29. We apply
displacements extending the simply supported microstructure in the rolling direction. We
seek the probability that the applied engineering strain on the microstructure causes particle
fracture. That is, the probability that the engineering strain belongs to some limit set S,

Pr(ε̄RV E ∈ S) (6.2)

where ε̄RV E is the average applied engineering strain and S is defined as S = {ε̄RV E ∈ R :
g(ε̄RV E) ≤ 0} and g is the limit state funciton defined as g(ε̄RV E) = σ̄p,cr − σ̄p(ε̄RV E) and σ̄p
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is some measure of stress in the particle. Here we use the average of the first principle stress
over the entire particle volume with σ̄p,cr = 540 MPa. The mean stress measure is reasonable
because the particle is elastic. In some cases the strain on the particle never reached the
limit state within the simulated applied strain range. In this case, we use the final points in
the history to decide what failure strain to assign. If the slope of the final points is positive,
we extrapolate. If the slope is negative, we assign an arbitrarily large value σ̄p,cr = 0.1, or
10% strain. Note, a negative slope does not imply loss of ellipticity – these are not material
point stress-strain relations.

6.3.2 Results

Results from these simulations are shown Figure 6.11. The left-hand side of the figure
plots the mean stress versus the nominal applied engineering strain on the microstructure.
For the micro-textured samples, there were some number of simulations that experienced
numerical difficulties and the calculations failed earlier in simulation time. This is due to the
same softer/stiffer bands of material that might drive higher or lower peaks in mean/max
particle stress that are making the global matrices harder to solve (ill conditioning). How-
ever, from the calculations that were completed, the histograms in the right-hand side of
Figure 6.11 support our hypothesis that microtexture leads to higher variability in second-
phase particle stress distribution.

Assuming the particle is both perfectly brittle and coherently bonded to the matrix
is conservative, as it neglects dissipative mechanisms that exist. On perhaps the opposite
spectrum, we assume the particle is elasto-plastic and we use a power-law hardening plasticity
model. The form of the hardening equation is

σ̄(ēp) = σy + Aēnp (6.3)

where σ̄ is the effective stress, ēp is the effective plastic strain, σy is the yield stress, A and n
are hardening modulus and hardening exponent. For the particle properties we use 300 MPa
for yield stress, 333 MPa for hardening modulus and 0.15 for hardening exponent. These
choices are informed from the literature, but remain a bit arbitrary because the objective is
to explore perhaps an upper bound on particle breaking load based on allowing some energy
dissipation through a non-fracture mechanisms. Figure 6.12a plots the available simulation
results, where again there is some attrition due to convergence issues for certain texture
arrangements. We run these calculations on SkyBridge with 128 processors and they take at
least 28 hours. The stress-strain data is not unlike the elastic-particle results in character,
with obviously lower stresses. Interestingly, the distribution of failed particles, shown in
Figure 6.12b and 6.12c is even wider, ranging above 100% strain. This is an artifact of our
choice of plasticity parameters for the particle and our extrapolation routine for particles
that don’t fail within the simulated time. It is also unlikely to be true [16].

In an effort to ground the observations closer to reality, we consider the maximum first
principle stress that occurs in any element in the particle volume. Figure 6.13 provides
comparably information to Figure 6.12. Here, the stress-strain tends not to drop because
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Figure 6.11: Particle stress-strain relations for a variety of surrounding textures.

there is always a hot element in the particle. The distribution shown with Figures 6.18b
and 6.18c is more like the elastic-particle results and suggests less discrepancy between
macro- and micro-texutre. Nevertheless, there tails of the mirco-textured samples still appear
broader.

6.4 Example 4 – multiscale now!

6.4.1 Formulation

Our target has been predicting performance, crack nucleation and failure of the 6-notched
specimen presented in Chapter 2, Figures 2.12, 2.13 and Appendix B. Our approach in this
example is to build a FE model at the engineering length scale of the 6-notched specimen,
calibrate it to the available data plotted in Figure 2.11 and use prediction calculations to
define a subdomain to embed our microstructure model. We do not fully implement the
hierarchical algorithm because, frankly, we ran out of time.
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Figure 6.12: Statistics of broken particles with mean stress metric when the particle is
assumed to be an elasto-plastic material with power-law hardening.

First we built FE models of the smooth, gradual-notched, and sharp-notched tension
specimens and used MatCal [8] to calibrate the constitutive parameters of the Hill plastic-
ity model. MatCal uses optimization algorithms to solve the inverse problem between the
FE predictions and available data, normalized load versus normalized displacement in our
case. The procedure requires many FE solves and is deeply involved and computationally
expensive. We performed teh calibration first to the smooth and gradual-notched tension
data to get a reasonable fit for the plasticity parameters. Subsequently, we performed the
fit to the gradual- and sharp-notched tension data for the damage parameters. This was
not the focus of our research effort so we sought a calibration that was reasonably accurate.
Application of the hierarchical methodology would include fitting all available data, building
a translation model for the parameters, constructing an SROM and perform MCS with this
model to construct the engineering scale estimate for reliability [6]. Figure 6.14 shows the
results of the calibration to all available data and the parameters resulting parameters are
tabulated in Table 6.6.

With the calibration complete, we turned the focus on predicting performance of the
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Figure 6.13: Statistics of broken particles with maximum stress metric when the particle is
assumed to be an elasto-plastic material with power-law hardening.

6-notched plate. Our goal here is to determine where to embed the polycrystal model.
Figure 6.15 plots the force-displacement response that was predicted for the 6-notch specimen
along with the available 6 test results. In general, the engineering scale model peforms
reasonably well, but leaves no prediction about the uncertainty in strain-to-failure that is
observed in the tests. Again, with the method described above, one could make a coarse UQ
estimate, but our focus is on coupling the length scales.

Figures 6.16 and 6.17 show fields predicted by the engineering scale FE model. Figure 6.16
shows the von Mises effective stress (top) and triaxiality (bottom) contour plots. Clearly
the middle set of notches are the most active for this deterministic scenario. Figure 6.17
shows the triaxiality contour plot focused on a cross-section at the mid-plane and at the
middle notch. This is the location of highest triaxiality and identifies the hot spot where
we will embed the microstructure with our multiscale approach. We use the micro-textured
microstructure with elastic and brittle particle presented in Example 6.3 and our MPC
approach for coupling.
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(a) plasticity (b) damage

Figure 6.14: Calibration results for calibrating the Hill plasticity model with damage to the
smooth, gradual-notch, and sharp-notch tenstion data. Calibrations were performed with
MatCal.

parameter value

R11 1.00e-00
R22 8.07e-01
R33 8.00e-01
R12 = R23 = R31 9.50e-01
yield (MPa) 2.80e+02
hardening (MPa) 1.16e+02
recovery 1.11950e+01
damage exponent 9.875

Table 6.6: Hill plasticity parameters calibrated to the available smooth, gradual-notched and
sharp-notched tension data.

6.4.2 Results

Figure 6.18 quantifies the results of the load in the particle for 46 realizations of micro-
texture. The strain measure here is different then for the microstructural plots. Here we
use the nominal applied strain on the 6-notch specimen, so that the strains coincide with
Figure 6.15. The critical strains are in the range 0.001 to 0.004, noticeably lower than the
apparent strain-to-failure in of the plate, which ranges from 0.035 - 0.039. These results
indicate that a particle in the high-triaxiality region in front of the notch is likely to frac-
ture very early in loading. This is somewhat inconsistent with other findings that suggest
particles don’t fracture until after peak load on the specimen [16]. However, there are other
findings in the fatigue literature that suggest surface particles fracture upon first fatigue
cycle [44]. The two scenarios are for particles embedded in vastly different constraint envi-
rons. Nonetheless, it is reasonable to suspect our results are still missing some key physics
as we assume the particle is elastic with no dissipation. The next steps for this research are
to perform these multiscale calculations with the elasto-plastic constitutive model for the

81



0.00 0.01 0.02 0.03 0.04 0.05
Engineering strain (mm/mm)

0

50

100

150

200

250

N
or

m
al

iz
ed

lo
ad

(M
P

a)

experiments

model

Figure 6.15: Engineering scale simulation plotted on the experimental observations.

Figure 6.16: Effective stress contour contour plot (top) and triaxiality contour plot (bottom).

particle and to compare our SROM approach with the brute force MCS present here.
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Figure 6.17: Magnified view of the triaxiality on a bisecting cross-section of the specimen at
the middle notch identifying the hot spot from the engineering level simulation.
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Figure 6.18: Statistics of broken particles when the particle is coupled to a Hill plasticity
engineering scale model.
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Chapter 7

Quantifying dislocation accumulation
via a combined EBSD - in situ SEM
deformation approach

The objective of this research is to understand how different aspects of the microstructure
in AA 6061-T6, including grain boundary and triple junction state, grain size, and presence of
second phase particles, interact synergistically to promote localized dislocation accumulation
as a function of strain and depth from the sample surface. The work was motivated by our
multi-scale DIC efforts and a desire to collect evidence for the next length scale down the
hierarchy. Outcomes of this discovery work and the techniques developed herein can be
used to inform model development for damage at the microscale, calibrate those models,
and provide validating evidence for our simulations that include the material’s second phase
particles.

7.1 Experimental

Six-notch AA 6061-T6 tensile bars were ground and polished using successively finer levels
of SiC paper, followed by diamond paste and a colloidal silica finish. A damage-free surface
was then achieved by electropolishing the samples using a methanol-perchloric electrolyte.
Once polished, the samples were loaded into a Kammrath-Weiss model in situ SEM straining
stage that has been modified to facilitate EBSD-based analysis during deformation. Samples
were strained incrementally, with EBSD scans collected at arrested stages of deformation us-
ing an EDAX/TSL system. All EBSD scans reported here were collected near the center
notch of the specimens. Strain levels are taken from cross-head displacements read directly
from the stage and should be taken as nominal values only. Samples were characterized us-
ing both traditional electron backscatter diffraction (EBSD) analysis as well as high angular
resolution EBSD (HREBSD) using OpenXY, an open-access software package for HREBSD
analysis. In contrast to traditional EBSD measurements, HREBSD relies on capturing and
storing high-quality EBSD patterns during a scan. Cross-correlation based measurements
are then used to measure minute shifts in Kikuchi bands in each pattern relative to a grain
reference pattern. These shifts can be related to elastic strains and rigid body rotations of
the underlying crystal lattice, providing two orders of magnitude higher angular resolution
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measurements in comparison to traditional EBSD and the resolution of all nine components
of the elastic strain gradient tensor to within 0.0005 [45, 46]. The accumulation of geometri-
cally necessary dislocations (GND), or those dislocations with non-opposing Burgers vectors
in a given region, leads to internal-grain orientation gradients. These rotations can be quan-
tified via traditional EBSD or, for higher precision measurements, HREBSD and related to
Nyes dislocation density tensor via Kroners formulation [47, 48]:

αij = κki − δkiκpp + ekljε
e
ij,l (7.1)

Where κ is the lattice curvature and is defined by:

κij =
∂θk
∂xi

(7.2)

εeij,l is the spatial derivative of the elastic strain, θk is the rotation vector as measured by
HREBSD, eklj is the Levi-Civita symbol, δki is the Dirac delta function, and αij is the
dislocation density tensor. The dislocation tensor is a statistical representation of the local
dislocation state where columns represent the line direction and rows represent the Burgers
vectors of the dislocations. The total GND density can then be estimated by taking the
L1 norm of αij, as described by Ruggles et al. [49]. More details on the calculations and
expected sensitivity can be found in [50, 51].

7.2 Results and analysis

7.2.1 Dislocation distribution as a function of depth from the sur-
face

Figure 7.1 shows EBSD scans and the associated GND density maps collected from a
2%-strained sample at the surface (Fig. 7.1a-b), at a depth of 200 µm (Fig 7.1c), and at
a depth of 400 µm (Fig 7.1d), with material removed between scans by mechanical and
electro-polishing. As can be seen, at the surface of the deformed sample, the dislocations
accumulate in lobe structures extending at 45° angles from the notch tip. With increasing
depth from the surface, the dislocations increasingly concentrate near the center of the notch.

This dislocation distribution can be seen more clearly in the column-averaged GND
density measurements, plotted in Figure 7.1e. These plots were filtered using a mean filter
with a fifty-pixel (75 µm) window to reduce noise levels. Finite element analysis (FEA)
simulations of the elastic strain field, assuming a homogeneous material, were conducted
using the same geometry and applied stress levels (220 MPa). Cross-sections of the stress field
corresponding to the depth scans are shown as insets in Figure 1b-d. Similar to the measured
dislocation density fields, the stress distribution appears as a two-lobed structure on the
sample surface and becomes increasingly concentrated near the notch tip with increasing
depth from the sample surface.
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Figure 7.1: (a) Inverse pole figure (IPF) map of notched AA 6061-T6 sample strained to 2%.
(b) GND density map generated from orientation data. (c-d) GND density map at 200 and
400 µm from surface, respectively. Insets in b-c show FEA predictions of elastic strain field.
(e) column-wise average of GND density taken from b-d. Data are shown on a lograrithmic
scale.
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7.2.2 Dislocation distribution as a function of strain

In order to investigate the deformation behavior of the AA 6061-T6 as a function of
strain level, samples were strained in situ in the SEM, with straining interrupted and EBSD
scans collected every 0.2% strain between 1% and 2%. A subset of the GND maps generated
from these scans are shown in Figure 7.2. As can be seen, the deformation lobe structure,
similar to what is seen in Figure 1, develops early in the deformation. It is also apparent in
the image that localized “hotspots” of deformation, or regions of high dislocation density,
develop far ahead of the notch tip, during deformation. One such region is magnified in
insets in Figure 7.2, showing GND accumulation localization to a region surrounding two
intermetallic constituent particles, identifiable as black spots in the GND map.

Figure 7.2: GND distribution in front of notch at (a) 0% strain, (b) 1.4% strain, and (2)
1.8% strain. GND density plotted on logarithmic scale from 103 to 1014.8 m−2. Insets show
dislocation accumulation around intermetallic constituent particles.

HREBSD scans were also collected during in situ deformation at higher magnification
around features of interest. These scans were collected at 0%, 1%, and 2% strain around a
triple junction (Fig. 7.3a-f) and near intermetallic constituent particles (Fig. 7.3g-l). Near
the triple junction, it can be seen that dislocation accumulation occurs preferentially early on
in the deformation, forming a banded structure (Fig. 7.3e, lower right grain). By 2% strain,
dislocation accumulation led to the formation of a 20° rotation boundary. In the region
surrounding the intermetallic constituent particles, there is little indication of dislocation
accumulation at 1% strain (Fig. 7.3h). However, by 2% strain, dislocation bands similar to
those shown in Figure 7.3f are clearly resolved and the region near the particle has undergone
significant grain refinement(Fig. 7.3i and l). In both cases, the microstructure appears to
concentrate dislocation accumulation, leading to grain refinement and sub-grain structure
formation.

7.2.3 Quantification of microstructure/dislocation accumulation
relationship

The above-described results are largely observation based, providing insight into strain
localization mechanisms but lacking statistical significance. In order to quantify the influ-
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Figure 7.3: Inverse pole figure maps (a-c, g-i) and GND density maps (d-f, j-l) at 0%, 1%,
and 2% strain at two regions of interest. GND density plotted on log scale from 1013 to
1015.6 m−2.

ence of different microstructural features on dislocation accumulation, it is important to
recognize the various ways in which a microstructure can be represented. Figure 7.4 demon-
strates six unique ways in which the same microstructure can be presented, with each pixel
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in the scan representing either a local property of the material (orientation, grain size, or
GND density shown in Fig. 7.4a-c, respectively) or the proximity to a feature of interest
(intermetallic constituent particle, grain boundary, or triple junction shown in Fig. 7.4d-f,
respectively). Once the microstructure is represented in different forms of interest, it be-
comes straightforward to relate different aspect of the microstructure to each other. This
process is demonstrated for the EBSD scan collected 200 µm from the surface of the material
(shown in Fig. 7.1c) with a focus on relating the local GND density to four aspects of the mi-
crostructure: proximity to intermetallic constituent particles, proximity to grain boundaries,
proximity to triple junctions, and grain size. The grain sizes and distances from each point
to the microstructural feature of interest were calculated using the orientation data for grain
boundary and triple junction locations and by thresholding the EBSD image quality map to
locate the intermetallic constituent particles. Once these maps are generated, the average
GND density was calculated as a function of distance from features of interest; plots of these
calculations are shown in Figure 7.5a. In Figure 7.5b, the data are further segmented as a
function of grain size, with data points located in grains with diameter below approximately
45 µm plotted separately from data points located in larger grains. An additional line is
also plotted representing data points with none of the targeted microstructural features of
interest within the given range.

The data clearly show that the GND density is inversely proportional to the distance from
all three features of interest, with triple junctions and constituent particles having a larger
influence than grain boundaries. Interestingly, grain size appears to have little influence
on the dislocation accumulation behavior near triple junctions or grain boundaries, but has
a significant effect on dislocation behavior near intermetallic particles, with smaller grains
promoting the accumulation of dislocations. Overall, the data suggest that the locations of
highest dislocation accumulation are intermetallic particles located in smaller grains.

This quantitative information was used as a guide in the investigation of strain localiza-
tion in front of a crack tip in AA 6061-T6. A sample was strained until crack nucleation and
a cracked intermetallic particle was located ahead of the crack tip (shown in Fig. 7.6a). A
HREBSD scan was collected around the crack tip and used to generate a dislocation density
map. In addition, a kernel average misorientation (KAM) map was generated, which supplies
qualitative dislocation density information and is less sensitive to noise in the scan. Particle
cracking has been widely associated with crack initiation in ductile failure of AA 6061-T6,
but multiple theories exist on what causes the particle cracking to occur and how particle
cracking leads to crack initiation. Tanaka and Mura reviewed three types of fatigue crack ini-
tiation mechanisms at inclusions, including debonding and dislocation emission, dislocation
impingement on inclusions leading to stress concentration and particle cracking, and dislo-
cation generation from the inclusion/matrix interfaces due to elastic strain mismatches [52].
Although the present work investigates deformation under monotonic loading, many of the
same mechanisms can be expected to be active.

In the GND density map (Fig. 7.6), it can be seen that dislocations accumulated prefer-
entially on one side of the particle; in this case the side closer to the crack. This suggests
that the dislocation accumulation led to the particle cracking, as either dislocation genera-

90



Figure 7.4: Different microstructural representations of scan shown in Fig 7.1c. (a) IPF
map, (b) grain size map, (c) GND density map, (d) proximity to second phase particles, 0 -
40 µm, (e) proximity to grain boundary, 0 - 20 µm, (f) proximity to triple junction, 0 - 20
µm.
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Figure 7.5: Average GND density as a function of distance from microstructural feature of
interest. ‘None’ indicates that no three of the listed features are with the given distance.
(b) Data separated between large grains (D > 40µm) and small grains (D < 20µm). GND
density plotted on logarithmic scale.

tion from the matrix/inclusion interface or from a debonded region would most likely lead
to higher levels of dislocation accumulation leading away from the crack tip. The associ-
ated KAM map was overlaid with the EBSD pattern quality map to give a sense of the
local surface features. As can be seen, multiple small particles are distributed in the region
surrounding the intermetallic particle. Based off their size, it is assumed that these are
dispersoids in the matrix. Interestingly, it can be seen that dislocations accumulate prefer-
entially around these dispersoids, suggesting that there is a synergistic effect between the
intermetallic particle and the dispersoids, leading to high levels of dislocations accumulation.

7.3 Summary

Microstructural heterogeneities inherent to AA 6061-T6, including the distribution of
second-phase particles and grain structure-related inhomogeneities associated with all poly-
crystalline materials, lead to localization of dislocation accumulation. The relationship be-
tween microstructural inhomogeneities and dislocation accumulation can be quantified and
explored in detail, including how the dislocation distribution evolves with strain and depth
from the free surface, using a combined EBSD/in situ SEM deformation approach. In this
study, it was shown that dislocation accumulation occurs preferentially near intermetallic
particles, in particular those that are located in small grains. This observation can motivate
future work along the lines discussed in Chapters 3 and 4. The dislocation distribution
surrounding a cracked particle suggests that the particle cracking is induced from stresses
associated with dislocations piling up at the particle/matrix interface.
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Figure 7.6: Secondary electron image (SEM) and HREBSD scan data around a cracked
intermetallic particle found ahead of a crack tip. KAM map is overlaid on an EBSD pattern
image quality map to give quasi-topographical information. White arrows in KAM map
indicate the presence of dispersoids. KAM map scale is linear from 0 - 5°and for GND
density map is logarithmic from 1013.85 to 1015.5 m−2.
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Chapter 8

Conclusions

In summary, we developed tools for modeling uncertaint microstructure of AA 6061-T6
and propagating those uncertainties through forward calculations to provided estimates of
particle cracking, leading to crack nucleation. Our approach outlines a hierarchical, multifi-
delity method that systematically focuses computational resources at hotspots identified by
engineering-scale simulations and combines the results from multiscale analyses to maximize
efficiency. Our engineering-scale simulations use Hill anisotropic plasticity and damage. The
multiscale simulations focused on the variability associated with random grain orientation,
including spatial correlation to capture grain misorientation, and its influence on fracture
load in second-phase particles. During research to prepare our microstructural finite element
models for multiscale analysis, we explored the effect of a convenient simplification for the
geometric representation of grain boundaries. We employed the newly developed Sandia tool
Sculpt[2] to develop FE meshes of microstructures whose mesh boundaries conform in some
sense to the materials grain boundaries. A simpler approach is to overlay grain orientation
onto an existing background mesh resulting in grain boundaries that are not smooth and
that have sharp corners introduced by the background mesh. For the problems that we
have considered for this aluminum alloy and that explicitly include a second-phase in the
microstructure, it appears less important to carefully treat the grain boundary. Further,
an important contribution of this work was the development of random-field reduced order
models (RFROMs) to expedite MCS of polycrystalline materials.

Our experimental efforts developed a multiscale digital image correlation (DIC) observa-
tions for use in model validation, and through high-resolution electron backscatter diffraction
(EBSD) measurements and serial section, identify key relationships between microstructural
features and dislocation density leading to damage and crack nucleation. The multiscale
DIC attempted to capture two distinctly different length scales of strain data in situ, so
that engineering-scale and microstructural strain fields could be simultaneously observed.
While ultimately unsuccessful in the lifespan of this project, many speckle patterns were
ruled out and a thin-film remodeling method was identified as a strong candidate. Work
on the topic will continue and the data will be useful for validating multiscale calculations.
The high-resolution EBSD work was achieved through the Academic Alliance LDRD pro-
gram and collaboration with Professor Josh Kacher at Georgia Institute of Technology (GT).
The Kacher contract was extremely productive with the only regret being it was a one-year
contract in the final year this project. The GT data captures dislocation accumulations
occurring in the presence of a strong gradient caused by a sharp notch at grain boundaries,
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grain boundary triple junctions, and second-phase particles. This information is measured
at the surface of a specimen and at a multiple serial-sectioned depths below the surface
approaching the midplane of the specimen. This data is very informative about ranking the
importance of microstructural features for damage processes and can be used in the future
for calibrating damage models at the microstructural length scale.

The following list itemizes our findings and newly developed capabilities:

• a tool to model random fields, calibrated to data, that generates statistically equivalent
samples for Monte Carlo simulation;

• a reduced-order model for random fields and it was shown to be accurate and efficient
for propagating uncertainty;

• understanding of the impacts of modeling assumptions about grain boundaries in the
presence of a material’s second phase and concluded that overlay microstructures are
sufficient in some cases, despite leading to artificially roughened grain boundaries;

• understanding of the effects of microtexture on particle breaking load in second-phase
particles and found that microtexture broadens the probability density function for
crack nucleating load in the particle;

• multiscale simulations coupling the engineering scale to the material microstructural
scale concurrently and with one-way submodel coupling and noting various differences
in the particle breaking load;

• concurrently coupling the engineering scale with a microstructure that contains a crack
nucleating agent (second-phase), in 3D and with Monte Carlo simulation for estimates
of probability;

• using a combined EBSD/in situ SEM deformation approach, it was shown that dis-
location accumulation occurs preferentially near intermetallic particles, in particular
those that are located in small grains.
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Appendix A

Multiscale uncertainty modeling code
and Git repository

All of the code developed for this project is stored with the Git version control software.
Table A.1

Multiscale UQ Tools https://code-source.sandia.gov/git/multiscaleUQTools/
srom stochastic reduced-order models
eulerRF translation random field model and ROM
make ustructure overlay and sculpting code
trv translation random vectors
utilities misc.

LDRD project repo https://gitlab.sandia.gov/62758/multiscale-UP

Computational Science Tools https://code-source.sandia.gov/git/CompSciTools/
pyTools various python scripts, including exodus

read/write and FEM manipulations

Table A.1: Code and data stored in Git repositories.
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Appendix B

Engineering drawings
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