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Abstract 

Predicting transient effects caused by short-pulse neutron irradiation of electronic devices 
is an important part of Sandia’s mission. For example, predicting the diffusion of radiation-
induced point defects is needed within Sandia’s Qualification Alternative to the Sandia 
Pulsed Reactor (QASPR) program since defect diffusion mediates transient gain recovery 
in QASPR electronic devices. Recently, the semiconductors used to fabricate radiation-
hard electronic devices have begun to shift from silicon to III-V compounds such as GaAs, 
InAs, GaP and InP. An advantage of this shift is that it allows engineers to optimize the 
radiation hardness of electronic devices by using alloys such as InGaAs and InGaP. 
However, the computer codes currently being used to simulate transient radiation effects 
in QASPR devices will need to be modified since they presume that defect properties 
(charge states, energy levels, and diffusivities) in these alloys do not change with time. 
This is not realistic since the energy and properties of a defect depend on the types of 
atoms near it and, therefore, on its location in the alloy. In particular, radiation-induced 
defects are created at nearly random locations in an alloy and the distribution of their local 
environments – and thus their energies and properties – evolves with time as the defects 
diffuse through the alloy. To incorporate these consequential effects into computer codes 
used to simulate transient radiation effects, we have developed procedures to accurately 
compute the time dependence of defect energies and properties and then formulate them 
within compact models that can be employed in these computer codes. In this document, 
we demonstrate these procedures for the case of the highly mobile P interstitial (IP) in an 
InGaP alloy. 
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1.  INTRODUCTION 
 
In neutron irradiated semiconductor devices, both thermally-activated and carrier-induced 
processes may contribute to the diffusion of (point) defects produced by the irradiation. 
In thermally-activated (thermal) diffusion, a defect in a fixed charge state, q, hops between 
stable-state configurations over energy barriers associated with intervening saddle-point 
configurations, and the diffusion rate thus depends on these barriers and the temperature 
of the device. In carrier-induced diffusion, a change in a defect charge state upon capture 
or emission of a carrier is accompanied by a change in the (atomic) configuration of the 
defect. For example, in GaP (and InP) the stable-state configuration of the (q =) 0 P 
interstitial (IP) is C2v 110p, the stable-state configuration of the +1 IP is C1h p001g and 
each configurations converts into the other when a carrier is captured or emitted. Since 
each configuration is adjacent to two symmetrically equivalent locations of the other 
configuration, they form a network in GaP (and InP) such that repeated changes in the IP 
charge state can produce diffusion without energy barriers with a diffusion rate that 
depends on the currents in the device. 
 
In an InGaP alloy, these two diffusion processes are modified because the energy of IP 
depends strongly on the occupation of nearby group-III sites, and thus on its location in 
the alloy. Thermal diffusion is biased toward more energetically favorable locations of IP. 
Since net diffusion requires moving away from these locations, the effective barrier for 
diffusion will increase with time and eventually IP may become trapped at its lowest-
energy locations. Similarly, alloying breaks the symmetries that enable IP to convert into 
two symmetric locations upon capture or emission a carrier. IP undergoing carrier-induced 
diffusion may then encounter two neighboring sites that reliably convert into each other 
and become trapped at these sites. Fortunately, the combination of thermal and carrier-
induced diffusion can enable IP to escape the traps associated with each process taken 
individually. Thus, some amount of carrier capture can enhance thermal IP diffusion, and 
vice versa. 

A consequence of the trapping noted above is that thermal diffusion rate of IP in InGaP 
decreases after a short time in contrast to the constant rate observed for IP in GaP and 
InP. This decrease is illustrated in Fig. 1 where we plot results from our detailed study of 
thermal diffusion of -1 IAs in an In0.5Ga0.5As alloy. This study employed Density-Functional 
Theory (DFT) to calculate IAs stable-state and saddle-point energies in a training set of 
alloy configurations, the Cluster Expansion (CE) approach to develop parameterized 
models of the IAs training-set energies that can be used to rapidly calculate IAs stable-state 
and saddle-point energies at arbitrary sites in the alloy, and Kinetic Monte-Carlo (KMC) 
to simulate IAs diffusion using the CEs. (See SAND2014-17844 for a detail discussion of 
this model, which we hereinafter refer to this as the DFT/CE/KMC model.) To highlight 
the decrease in the IAs diffusion rate, the time axis in the plot has been scaled relative to 
a virtual crystal approximation (VCA) in which EB is the composition-weighted energy 
barrier for IAs diffusion in the alloy. As can be seen in the plot, the initial diffusion rates 
(the slopes of the plots) are the same as the rate for the VCA, but decrease after a short 
time period. Further analysis of the KMC results confirms that the decrease is due to IAs 
trapping at low-energy sites, which is mitigated with increasing temperature such that the 
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diffusion rate approaches the VCA rate at high temperatures. We note that the existence 
of a short transient in the diffusion rate of a defect in an alloy (i.e., the short time period 
during which the defect diffuses rapidly before entering a slower, trap-mediated diffusion 
mode) may be important because: (1) such transients are difficult to detect in experiments 
and (2) a transient in the diffusion rate can produce a corresponding transient in the gain-
recovery rate of a device during which the device may not operate correctly. 

     

Figure 1. DFT/CE/KMC modeling results for thermal diffusion of -1 IAs in an InGaAs 
alloy at various temperatures. To highlight the decrease in the diffusion rate, the 
time axis has been scaled relative to a virtual-crystal approximation. 

 
Although the DFT/CE/KMC model can yield accurate predictions of the time-dependent 
behavior of defects in alloys, it would be computationally prohibitive to directly incorporate 
it into the diffusion-reaction codes currently in use at Sandia to simulate radiation effects 
in semiconductor devices. Thus, the main objective of this LDRD is to develop a capability 
to extract compact models from the detailed results from the DFT/CE/KMC model and 
use these models in Sandia diffusion-reaction codes to assess the effects of this behavior 
on device operation. To prototype this capability, we have considered the case of IP in an 
In0.5Ga0.5P alloy (hereinafter referred to simply as InGaP), which is used in the emitter of 
an NPN QASPR heterojunction bipolar transistor (HBT). Following up on our discussion 
of the transient in the diffusion rates of defects in alloys, we note that the length scale of 
the mean-squared-displacement (MSD) during this transient will be one of the parameters 
in our compact model. 
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Below, we discuss our development of a DFT/CE/KMC model for IP in InGaP and compact 
models extracted from this model. In Section 2, we detail our DFT calculations for IP in 
training sets for three different charge states, including CEs for both their stable-state and 
saddle-point configurations. In Section 3, we describe the development and verification 
of CEs from the DFT results for these training sets. In Section 4, we describe the KMC 
results obtained using these CEs, both for thermal diffusion and combined thermal and 
carrier-induced diffusion. In Section 5, we discuss the compact models we extracted from 
the KMC results. 
 
2.  DENSITY-FUNCTIONAL THEORY 
 
2.1 General Aspects of DFT Defect Calculations 
 
In semiconductors, the defects produced by neutron irradiation may have multiple charge 
states, and transitions between these charge states yield (thermodynamic) defect levels 
which are the Fermi levels at which the transitions occur. Defect levels are technologically 
important because they may control the relative rates of carrier capture and emission, 
and thereby degrade the performance of a minority-carrier device. Moreover, the device 
performance may undergo additional changes as the defects diffuse and react with other 
defects, dopants and impurities. Measurements of defect levels are challenging, and 
using experiments to determine the atomistic origin of a level can require a lifetime of 
work. Because of this, there is considerable interest in theoretical studies of defects. 
 
Most theoretical defect studies in semiconductors rely on Kohn-Sham DFT,1,2 a semilocal 
exchange-correlation functional,1,3,4 and norm-conserving pseudopotentials (NCPs).5 
DFT defect calculations are typically performed in a periodically repeated parallelpiped 
(supercell), containing a single defect surrounded by bulk material. The defect charge 
state, q, is modeled by adding or removing electrons from the supercell, and a uniform 
compensating charge distribution with integrated charge equal to –q is added to the 
supercell so that the Poisson equation has a well-defined solution.6 For a given charge 
state, two types of calculations may be needed: 1) A calculation of the stable configuration 
(the energy minimum with respect to small atomic displacements), and 2) a calculation of 
the saddle-point configuration that mediates thermal diffusion between adjacent stable 
configurations. Finding a stable configuration may involve both relaxation of the atomic 
coordinates for a particular configuration and comparison of different configurations. 
Saddle-point configurations are found using the dimer method,7 and may also involve 
comparison of different configurations. 
 
Once the stable and saddle-point configurations are found, their formation energies can 
be computed using the general-purpose expression 8 

 
 Ef

D q,L,EF( ) = ED q,L( )− EB 0,L( )− Σi ni µi + qEF ,     (1) 
 
in which ED(q,L) is the energy of defect D in a supercell of size L (the cube root of the 
supercell volume) and in charge state q. EB(0,L) is the energy of a neutral bulk supercell 
of the same size as the defect supercell. ni is the number of atoms of type i that were 
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added to (ni > 0) or removed from (ni < 0) the bulk supercell to form the defect structure 
and µi is the chemical potential of the reservoir providing atomic exchange for atom i. For 
the case of IP, this sum over chemical potentials is replaced by a single term, µP. EF is the 
Fermi level defined in terms of the chemical potential of the reservoir providing electron 
exchange, µe, and a relative Fermi level, εF, such that EF ≡ µe + εF. Henceforth, we use the 
traditional convention in which µe is the Kohn-Sham eigenvalue at the valence-band edge, 
εVBE. For a given IP configuration, the level for a transition between charge states q–1 and 
q is defined as the Fermi level at which the formation energies of the two charge states 
are equal. This can be calculated from the equation 9 
 
 .     (2) 

In this LDRD project, DFT calculations were performed using the Socorro code 10 and the 
local-density approximation (LDA) for exchange and correlation.2,3 Semilocal NCPs for 
Ga+3 and P+5 were constructed using the FHI98PP 11 code, and then converted into a 
local potential plus Kleinman-Bylander projectors 12 for use in Socorro. Semilocal NCP's 
for In+3 were constructed using the GNCPP 13 code of Hamann, and then converted into 
a local potential plus Kleinman-Bylander projectors. Non-linear core corrections 14 were 
used in all of the NCPs. A 30 Ryd cutoff was used to define the plane wave basis for the 
Kohn-Sham orbitals and the Kleinman-Bylander projectors, and a 120 Ryd cutoff was 
used to define the plane wave basis for the electron density and the local potentials.15 
Sampling meshes in the Brillouin zone (denoted n×n×n, where n is an integer) were 
constructed using the Monkhorst-Pack technique,16 and the occupations of the Kohn-
Sham orbitals at these sampling points were computed using the DFT eigenvalues and a 
Fermi function with kT = 0.025852 eV (T = 300K), 0.028007 eV (T = 325K), or 0.030161 
eV (T = 350K). 
 
To verify the NCPs, we performed DFT calculations for the equilibrium lattice constants 
of zinc blende GaP and InP in 2-atom primitive supercells using 5×5×5 Monkhorst-Pack 
sampling meshes. For GaP, bulk energies were calculated for twelve lattice constants 
ranging from 5.133 to 5.715 Å and fit using the Murnaghan equation.17 Consistent with 
trends found when using the LDA, the fit yielded a cubic lattice constant of 5.387 Å, which 
is 0.3% smaller than the measured value at room temperature (5.405 Å).18 For InP, bulk 
energies were calculated for twelve lattice constants ranging from 5.556 to 6.138 Å and 
fit using the Murnaghan equation.17 Consistent with trends found when using the LDA, 
the fit yielded a cubic lattice constant of 5.817 Å, which is 0.9% smaller than the measured 
value at room temperature (5.869 Å).19 
 
The phosphorus chemical potential, µP, needed in Eq. 1 was obtained from DFT 
calculations for bulk phosphorous in an orthorhombic structure using a 18×12×6 sampling 
mesh. The equilibrium lattice constants for this structure were found to be a = 3.28 Å, b = 
7.69 A and c = 19.09 Å, which differ by up to 5.6% from measured values, due to our 
neglect of van der Waals interactions. However, they are in agreement with recent DFT 
results obtained using LDA exchange and correlation.20 

ΔD q −1/ q,L( ) = Ef
D q −1,L,εVBE( )− Ef

D q,L,εVBE( )
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2.2 DFT Calculations for IP in InGaP 
 
To identify relevant IP charge states in InGaP, we performed extensive DFT studies of IP 
in GaP and InP. Based on the results, we focused on three charge states; q = -1, 0 and 
+1. In both GaP and InP, the ground-state configurations in the -1 and 0 charge states 
were found to be C2v 110p and the saddle-state configurations for thermally-activated 
hops between these configurations were found to be C2v 001m. (We use the non-specific 
letter, m to designate either gallium or indium as the group-III atom to which the P 
interstitial atom is bonded.)  In both GaP and InP, the ground-state configurations in the 
+1 charge state were found to be C1h p001m, and the saddle-point configuration for 
thermally-activated hops between these configurations was found to be C2v 110p. These 
three configurations are illustrated in Figure 2 for the case of GaP. 

 
Figure 2. Ball-and-stick models of relevant IP configurations identified in our DFT 
study of GaP. Green balls denote Ga atoms and black balls denote P atoms. 

 
In the C2v 110p configuration, the interstitial P atom shares a lattice site with a bulk P 
atom, forming a P-P dimer oriented along a <110>-type direction. In the C2v 001m and 
C1h p001m configurations, the interstitial P atom is located between two bulk P atoms and 
is also bonded to either a gallium or indium atom. The difference between the C2v 001m 
and C1h p001m configurations is a displacement (puckering) of the interstitial P atom off 
of the line between the two neighboring bulk P atoms. However, we note that because of 
alloy-induced symmetry breaking the C2v 001m configuration in InGaP will not be the ideal 
one shown in Fig. 2. We further note that our KMC simulations allowed reorientation of 
the C2v 110p and C1h p001m ground-state configurations in order to enable change in the 
diffusion direction and thereby obtain realistic mean-squared displacements (MSDs). As 
in the case of diffusion, the reorientations are thermally activated. However, since the 
details of reorientation are less important to our studies than the diffusion itself, we did 
not perform explicit calculations to obtain reorientation activation energies in the alloy. 
Rather, we used the activation energies obtained in our study of IP in GaP (0.34 eV for 
the -1 C2v 110p configuration, 0.11 eV for the 0 C2v 110p configuration, and 0.30 eV for 
the +1 C1h p001m configuration) as default values and then judiciously increased these 
values as needed to obtain a balance between reorientation and diffusion in the alloy at 
a given temperature. 
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To determine the formation energies of IP in InGaP, DFT calculations were performed in 
cubic 216-atom supercells with size L = 16.7989 Å using a 3×3×3 sampling mesh. DFT 
calculations for bulk InGaP and for IP stable-states were preformed using a quenched-
annealing algorithm to find the lowest-energy atomic configurations. DFT calculations for 
IP saddle points were performed using the dimer method.7 The resulting energies from 
each IP supercell, ED(q,L), and its associated bulk supercell, EB(0,L), were substituted into 
Eq. 1 to compute the IP formation energy. The formation energies from the training sets 
for each IP charge state and configuration were then used to develop CEs for use in our 
KMC simulations. 
 
3.  CLUSTER EXPANSIONS 
 
3.1 General Aspects of Cluster Expansions 
 
The cluster-expansion (CE) formalism is a well-established approach to computing the 
properties of alloys.21,22,23 In this approach, the occupancy of each site on the alloyed 
sublattice is described in terms of an Ising-like variable. For example, in the InGaP alloys 
that are the focus of this LDRD, this variable takes on the value +1 (−1) if a group-III site 
is occupied by In (Ga). The energy of the alloy is then expanded in products of these 
variables at the different sublattice sites. As shown in Figure 3, terms involving a single 
occupancy variable are called single-site (or point) clusters, while terms involving the 
product of two occupancy variables are called pair clusters. Terms involving the products 
of three occupancy variables are called triplet clusters, etc. In principle, the set of all 
clusters forms a complete and orthonormal basis for expanding any alloy property that is 
a function of the occupations of the sublattice sites. In practice, the expansion is truncated 
after a finite number of terms. The coefficients of these various terms are obtained from 
a least-squares fit to a training set. Each element of this training set consists of a point at 
which the desired function is known for a particular set of site occupations. 
 
The CASM code developed by Prof. Van der Ven was used to construct our CEs. 
24,25,26,27,28  In recent years, we have collaborated with Prof. Van der Ven as part of a CINT 
(Center for Integrated Nano-Technology) project to use the CASM code to model the 
surface structures of compound semiconductors. 29,30,31,32 In the general approach used 
in CASM, the training set is obtained from DFT calculations. In the initial stage of the CINT 
project, we modified CASM to work with Sandia’s Socorro DFT software. A genetic 
algorithm was then used to optimize the set of clusters included in the expansion,33 with 
the goal of minimizing a leave-one-out cross-validation score.34  
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Figure 3. The group-III nearfield lattice sites for the ground state of +1 C1h p001m 
IP in InGaP. Green and violet balls denote Ga and In group-III sites within the 
defect’s nearfield; white balls denote other close-by group-III sites identified as 
having less influence on the +1 IP formation energy that are thus designated to be 
in the defect’s far-field; all of the more-distant group-III sites (not shown) also 
reside in the defined far-field. 

 
In this LDRD project, a CE is employed to rapidly evaluate the formation energy of a 
particular defect in an arbitrary local alloy environment, which presents distinct technical 
challenges as compared to the same defect in an unalloyed environment such as in GaAs 
or GaP. In particular, alloying breaks the translational and rotational symmetry of the 
defect leading to a large number of inequivalent group-III sites. In order to produce a 
tractable CE, it becomes necessary to select a limited neighborhood of sites about the 
defect to be included in the CE (the near-field). In previous LDRD work, we found a useful 
tool in choosing the near-field to be “flipping calculations” in which we used DFT to 
calculate the change in energy when the atom at one (alloy) site at a time was switched 
between Ga and In. Since the effect of flipping one site depends significantly on the 
occupations of the other sites, it is necessary to sample over a variety of such 
occupations. We then truncate our CE to include only those sites that had more significant 
effects in our flipping calculations. The present work on compact-model development 
continues to use this same approach.  
 
This elimination of certain sites (the far-field) from the CE introduces another challenge: 
The CE must expand a well-defined function of the included variables, yet the far-field 
occupations introduce additional spurious fluctuations in the DFT values we were fitting. 
Conceptually, we overcame this obstacle by averaging the DFT results obtained with a 
fixed near-field over all possible far-field occupations. In previous work, we initially tried 
to perform this average by sampling over far-fields in our DFT calculations. Later in the 
previous LDRD project, we realized that averaging the results obtained with a given far-
field with the results obtained with a “mirrored” far field in which all Ga atoms are replaced 
by In atoms, and vice versa, largely cancels the far-field effects and allows for a much 
more rapid and reliable evaluation of the far-field averages. Consequently, we have 
utilized this mirrored far-field approach when performing calculations of the InGaP-alloy 
defect-formation energies and saddle-point energies within the present LDRD. 



UNCLASSIFIED UNLIMITED RELEASE 

14 
UNCLASSIFIED UNLIMITED RELEASE 

 
3.2 Cluster Expansion of Defect Ground States and Saddle-Points in InGaP 
 
We have constructed six CE's for the P interstitial (IP) in an InGaP alloy. Each CE applies 
to a particular defect charge state and structure, and the CE can accurately predict the 
formation energy of this charge state and structure as a function of the local environment 
in the alloy. In order to simulate thermal and carrier-induced diffusion of -1, neutral, and 
+1 IP, we constructed CE's for both the ground state and the transition state (saddle point) 
for each of these three possible charge states of the defect. 
 
As already discussed in part in Section 2, the ground state of -1 and 0 IP have the same 
split structure (see Figure 4) in which two P atoms share a single P site in the host crystal. 
If we do not consider symmetry breaking due to the occupations of the neighboring group-
III sites in the alloy, the structure has C2v symmetry, and the two P atoms of the split 
interstitial form a dimer oriented along a <110>-type direction. The two P atoms are 
indistinguishable and either one may remain at the site once the interstitial diffuses away.  
In contrast, the ground state of +1 IP has a lower symmetry structure (see Figure 3) where 
a single interstitial P atom is positioned near (or just above, as in Figure 3) a group-III 
lattice site. Here, the interstitial causes a displacement (downward in Figure 3) of the 
metal atom such that the P and metal-atom pair share the original group-III site. In 
addition, there is a small rotation of the atom-pair such that the bond joining them is not 
directly along the vertical [001] direction. The puckered or rotation-lowered symmetry, the 
nominal [001] bond orientation, and the close association with a group-III metallic site, 
combine to give this defect its C1h p001m structural designation. 

 
Figure 4. The group-III nearfield lattice sites for the ground states of -1 and 0 C2v 
110p (split-interstitial) IP in InGaP. 

 
For the saddle-points of the -1, 0, and +1 charge states of IP, the structural configurations 
are similar to those described for the ground states, but they are essentially reversed with 
respect to charge state. Thus, the saddle point of +1 IP takes on the dimerized, split-
interstitial C2v 110p structure shown in Figure 4, whereas the saddle points of the -1 and 0 
interstitials take on structures similar to that shown in Figure 3, but with one important 
difference:  At the higher-energy, less-relaxed saddle points, there is a reduced puckering 
rotation (and in fact, there is none at all in analogous binary compounds, GaP and GaAs) 
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such that the above-noted vertical [001] bond orientation tends to be better-preserved 
near the saddle point, with the nominal symmetry remaining closer to C2v. The resulting 
structural designation for the -1 and neutral saddle points of IP thus become C2v 001m (not 
shown).  
 
Table 1 summarizes selected CE-fitting details related to each of the six types of IP defects 
of interest. As seen in the table, the DFT training sets for each of the defects contained 
from 128 up to 152 different alloy configurations, where in each case, the defect near-
field contained either 18 or 21 specific group-III sites (setting aside here the CE data for 
the small, preliminary 7-site near-fields noted in Table 1) arranged about the defect 
position, as  shown above in Figure 3 and Figure 4.  The defect quasi-symmetry (C2v or 
C1h), the large number of near-field sites (18 or 21), and the maximum order of the allowed 
CE model (triplet) combine to define the maximum number of unique configurations that 
may be represented by the defect’s CE.  In the table, the possible number of configuration 
ranges from 66,432 for the higher-symmetry C2v defect with the smaller 18-site near-field, 
up to possibly 1,050,264 configurations for the lower-symmetry C1h defect with the larger 
21-site near-field.  Thus, the DFT-training-set/cluster-expansion ansatz allows the 66,432 
to 1,050,264 needed DFT calculations to be reduced to only ~152 x 2 DFT calculations 
(where the 2x arises from the needed mirroring).   
 
The variance of each defect’s population of formation energies, when taken about the 
simple mean energy of the population, ranges from 130 to 280 meV for the present six IP 
states. As seen at far right in Table 1, the fitted CE representation of the alloy-site-
occupancy within the defect’s near-field reduces the unexplained variation in the defect 
energy several-fold to only 24 to 45 meV. Relative errors of this size or smaller are 
adequate for present first attempts to develop compact models of defect diffusion in 
InGaP alloys. 

Table 1. Summary of Cluster-Expansion Fitting Statistics for P interstitials in InGaP. In cases 
where double entries appear in the table, a small nearfield (7 sites) was initially considered for 
exploratory purposes; this was followed by later consideration of a larger, fully populated near-
field (21 sites). 

 

As part of the work to develop these CEs for IP, substantial additional work was done 
under the present LDRD to further improve the CASM-based methods for selecting the 
best-optimized CE for each alloy defect of interest. The chief problem that was addressed 
was avoidance of overfitting errors within the CASM-based cluster-expansion fitting.  
These errors arise in a somewhat insidious fashion because the above-described 
mirroring process leaves behind residual random errors in the pair-wise-averaging of the 
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defect energies for each training-set configuration. Because the original CASM fitting 
algorithm was not designed to optimize properly in the presence of the mirroring errors, 
CASM will optimized the fit to remove the mirroring errors whenever the model has a 
sufficiently large number of free parameters. Notably, the relative random error introduced 
by the mirroring has been independently estimated to be roughly ±30 meV (±1σ) for the 
defects of interest when placed within a series of alloyed-crystal configurations of interest, 
whereas the underlying relative random error inherent in a very well-executed set of DFT 
defect calculations (due to k-point sampling, selection of basis-set size, and related 
numerical methods & details) may be as small as only a few meV. 
 
To prevent overfitting of the mirroring errors embedded in the DFT training sets, the 
CASM fitting was performed in a step-wise fashion, where a series of CASM-based CE 
fits were performed for each defect’s DFT training-set, and where the CE model 
complexity was incrementally increased at each step by adding an additional fitted cluster 
to the model. As shown in Figure 5(a), the resulting 1-sigma fitting errors of the CEs were 
then plotted versus the number of fitted clusters (see the blue circles, with red-line 
showing a fitted trend), and this plot was then compared to the independent estimate of 
the range of expected mirroring errors (see horizontal black-dashed lines). As shown by 
the colored arrows at the bottom of Figure 5, it was assumed that as the sigma of the 
fitted CE approaches the upper range of the expected mirroring error, increasing 
overfitting of the mirroring error begins to be important. The best-fitted model is assumed 
to rest near to this position. 
 
To better confirm the optimal model selection, we also monitor the specific clusters 
selected by CASM code during the stepwise fitting of each CE model. Before the noted 
transition to overfitting, the ensemble of selected clusters incrementally improves in a 
stable, consistent fashion wherein each stepwise increase in model complexity (i. e., the 
number of fitted clusters) simply adds the next-most statistically important cluster to those 
already identified in the previous, lower-complexity steps (This stable behavior 
corresponds to the green-arrowed region in Figure 5(a)). At some position near to the 
expected transition to overfitting, the added-cluster behavior changes character, with the 
series of added clusters no longer offering simple, incremental improvements to an 
existing stable ensemble; instead, multiple clusters more randomly enter and exit as each 
stepwise model is fitted.  This onset of clearly non-sequential cluster addition and removal 
with the continued stepwise model fitting, along with the simultaneous approach to the 1-
sigma fitting error expected due to the mirroring, are used together to refine the choice of 
the best-fitted CE. The selected best-fit CE error that results for an example series of 
fitted models is indicated by green, coarse-dashed lines in Figure 5(a), where the optimal 
number of fitted clusters in the CE is 17. 
 
Using the optimally fitted CEs, we generated histograms of the population of defect-
formation energies that result for each of the cluster-expanded defects, resulting in defect-
energy distributions similar to the example shown in Figure 5(b). The total range of 
formation energies spanned by each defect population, and the the full-width at half-
maximum (FWHM) of each population, were calculated using the constructed CE 
histograms. These statistical measures of the energy widths of the defect-populations are 



UNCLASSIFIED UNLIMITED RELEASE 

17 
UNCLASSIFIED UNLIMITED RELEASE 

discussed in a Section 4 of this report. Finally, the best-fitted CE coefficients (represented 
by E0 and Vα in Figure 3) for each defect’s ground state and saddle point structure were 
subsequently used as input parameters to our KMC simulation code. The fitted-CE 
representations of the DFT training sets enabled detailed KMC simulation studies of IP 
diffusion in InGaP alloys. The KMC simulations and resulting compact models are 
described next. 

 
Figure 5. (a) The 1-sigma fitting error of a defect cluster expansion (CE) versus 
the complexity of the expansion, which is expressed as the number of fitted 
cluster terms.  The CE was performed for the +1 C1h p001m ground state of IP in 
InGaP. (b) The population distribution (or histogram) of the defect-formation 
energies computed for the 1,050,264 possible defect-alloy configurations 
represented by the fitted CE. 

 
4.  KINETIC MONTE CARLO SIMULATIONS 
 
4.1 Construction of Sub-Lattice Models for Defects in a Zinc-Blende Alloy 
 
The first step in defining a lattice model for defect diffusion in a zinc-blende alloy is to 
define a physically meaningful set of lattice sites for the defect. The zinc-blende structure 
consists of two interpenetrating face-centered-cubic (FCC) sub-lattices. For an FCC 
lattice, there are 16 natural sites in each cubic unit cell: 4 atomic sites, 4 octahedral 
interstitial sites and 8 tetrahedral interstitial sites. In units of (a/4) where a is the cubic 
lattice constant, the atomic sites are (0,0,0), (0,2,2), (2,0,2) and (2,2,0). The 4 octahedral 
interstitial sites are obtained by adding a displacement of [2,2,2] to each of the atomic 
sites and the 8 tetrahedral interstitial sites are located at (±1, ±1, ±1). 
 
To define a lattice model for zinc-blende, we denote its two FCC sub-lattices A and B. 
The A sub-lattice has its origin at (0,0,0) and the B sub-lattice has its origin at (1,1,1). The 
4 atomic sites of the B sub-lattice correspond to 4 of the tetrahedral interstitial sites of the 
A sub-lattice, and the 4 octahedral interstitial sites of the B sub-lattice correspond to the 
other 4 tetrahedral interstitial sites of the A sub-lattice. The tetrahedral interstitial sites of 
the B sub-lattice correspond to either atomic sites or octahedral interstitial sites of the A 
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sub-lattice. Therefore, a physically meaningful set of defect sites consists of the atomic 
sites and the octahedral interstitial sites of both the A and B sub-lattices, yielding 16 sites 
in the cubic unit cell. In a KMC simulation, this cubic unit cell is periodically repeated in 
all three directions to create a simulation cell (system) of the desired size. 
 
To define a configuration of the system, species tags are assigned to the sites of the 
simulation cell. A defect species tag is assigned to an appropriate lattice site and bulk 
atom tags are assigned to the remaining atomic sites of the A and B sub-lattices. Unique 
defect species tags are associated with each defect charge state and structure. Since the 
host crystal structure (e.g., the crystal structure before species tags are assigned) is 
invariant with respect to a set of rotational symmetries around each lattice site, a defect 
with a given charge state and structure may have multiple orientations at a given lattice 
site. For example, the ground-state of -1 IP is a split-interstitial structure at a bulk P site 
with the P-P bond oriented along one of six different <110>-type directions. The number 
of such orientations is determined by the symmetry of the host lattice and the symmetry 
of the defect. A unique species tag is associated with each of these orientations, and one 
of the orientations is chosen to be the reference orientation. The symmetry operations 
that map the reference orientation into each of the other orientations of the defect are 
then tabulated. Thus, the species tag for a defect codes the charge state, structure, and 
orientation of the defect. Using the symmetry operation associated with the species tag, 
any vector defined for the reference orientation can be mapped into the corresponding 
vector for the indicated defect. 
 
The host crystal structure is passed in a text database to the Kinetic Monte Carlo (KMC) 
code. This database assigns an identification number and entity to each lattice site and 
provides the location of the lattice site. To facilitate the KMC simulations, the database 
also includes information about the atomic neighbors on the A and B sub-lattices. For 
each defect lattice site, the list of the identification numbers of the other lattice sites within 
a cut-off radius of the lattice site is pre-computed and read by the KMC code. Thus, the 
KMC code can readily determine the occupations of the lattice sites near the defect. 
 
Once the KMC code has read the crystal structure database, it randomly assigns the 
occupation of alloyed sites (e.g., in In0.5Ga0.5P, it has a 50% chance of assigning an In 
species tag and a 50% chance of assigning a Ga species tag to each group-III site). The 
KMC code also chooses one site of an appropriate type to be a defect by assigning a 
defect species tag to that site, thereby fully specifying the initial system configuration for 
a KMC simulation.  Note that this specification of the system configuration is very flexible 
and could be used to code systems with multiple defects, complex alloys with multiple 
species on each sublattice, and systems where the alloy structure changes as a result of 
defect diffusion. Many of these possibilities have yet to be explored.    
 
The CEs discussed above the provide the means of calculating the formation energy of 
the defect ground states and saddle points for arbitrary sites and orientations in the alloy.  
The KMC reads each cluster expansion (CE) from a file. These files code the neighbors 
appearing in the CE as displacement vectors from the reference orientation defect to the 
neighbors. These vectors can then be mapped using the symmetry operation associated 
with the species tag to identify the corresponding neighbors for an arbitrary orientation of 
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the defect. In a similar manner, each possible transition for a given defect species is 
coded by the displacement vectors to the transition state and the final state. These vectors 
are given for the reference orientation and can be mapped to other orientations using the 
symmetry operation associated with the species tag. By a suitable application of geometry 
and symmetry operations, it is possible to identify the site and orientation of the saddle 
point and final state for each transition.   
 
4.2 Application of KMC to Thermal Diffusion 
 
The KMC method provides a simple yet powerful and flexible technique for exercising the 
concerted action of fundamental, stochastic, physical processes to create a model of the 
collective behaviors they produce. In this section, we describe the application of the KMC 
method to thermal diffusion of -1 C2v 110p IP in InGaP. The CE introduced above for the 
-1 C2v 110p ground state provides the means for calculating its formation energy for any 
system configuration, thereby allowing a change in its formation energy (ΔE) due to a 
transition from an initial configuration (initial state) to a final configuration (final state) to 
be calculated. Furthermore, the CEs for the ground state and the -1 C2v 001m saddle-
point provide the means for calculating the energy barrier (Eb) between the initial state 
and the final state. Using these energies, the average rate, r, of the transition can be 
expressed as 
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where A is half of the attempt frequency, k is Boltzmann’s constant and T is the system 
temperature. In this work, we consider transitions involving both reorientation of the defect 
at a given lattice site and diffusion of the defect between lattice sites. For -1 IP, the values 
for ΔE for each transition were calculated from the CE for the -1 C2v 110p ground states. 
For diffusion, the values of Eb for each transition were calculated from the CE for the -1 
C2v 110p ground states and the CE for the -1 C2v 001m saddle points. For reorientation, 
default values of Eb for each transition were taken from DFT results for IP in GaP and then 
judiciously increased in order to obtain a balance between diffusion and reorientation at 
a given value of T (as previously noted in Section 2.2) during a KMC simulation. The 
remaining inputs to Eq. 3 were A = 3.746×1012/2 sec-1 and kT = 0.025852 eV (T = 300K), 
0.028007 eV (T = 325K), or 0.030161 eV (T = 350K). 
 
There are several KMC variants in common use today. In our work we used a kinetic 
adaptation 35,36,37 of the N-Fold Way,38,39,40 which is itself a re-formulation of the Metropolis 
method.41 In this approach, a list of possible transitions that the system can undergo must 
be maintained at all times. For the case of -1 IP, this list consists of two diffusion events 
(hops) to adjacent sites along the P-P bond direction and five reorientation events in the 
P-P bond. At each Monte Carlo step, one event is chosen from this list such that 
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ri
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m−1
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j=1

N
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where i, j, and k are summation indices denoting the individual events, ri is the rate of the 
event i, m is the index of the chosen event, N is the total number of possible events 
throughout the model system, and ρ1 is a random number evenly distributed over the 
range [0,1). This formulation ensures that fast transitions are chosen more often than slow 
ones. The Monte Carlo time is then advanced by 
 

Δt = −
ln ρ2( )

rj
j=1

N

∑
,                (5) 

 
where Δt is the time that has elapsed between the previous event, i.e. the one prior to m, 
and the event m itself; and ρ2 is a random number evenly distributed over the range (0,1). 
After each transition is selected and executed, the lattice site occupancies of the model 
system are updated, and any necessary updates to the event list are made. 
 
The ground state and transition state structures of 0 IP are the same as for -1 IP, and thus 
thermal diffusion of 0 IP was simulated with essentially the same model used for -1 IP with 
the appropriate 0 species tags and CEs. For +1 IP, the ground states are C1h p001m 
structures, while the transition states are approximated by the C2v 110p metastable 
structures. In order to model the diffusion of +1 IP, CEs for these two structures were 
developed and the appropriate thermal transitions were coded.  
 
4.3 Application of KMC to Combined Thermal and Carrier-Induced Diffusion 
 
Starting from the KMC models developed for thermal diffusion of -1, 0, and +1 IP, a model 
of combined thermal and carrier-induced diffusion IP was developed by keeping all of the 
states and processes in the three thermal diffusion models and adding carrier capture 
and emission processes that change the IP charge state. The parameters that determine 
the rates of these carrier capture and emission processes are the band gap, EG, the 
thermodynamic IP levels, E0,+1 and E-1,0, the carrier-capture cross-sections, σ0,+1 and σ-1,0, 
the thermal velocities of holes and electrons, vh and ve, and the band density-of-states of 
holes and electrons, N0

h  and N0
e, in InGaP In our KMC simulations, we used values for 

the band gap (EG = 1.86 eV), the thermodynamic defect levels (E0,+1 = 0.93 eV and E-1,0 
= 0.93 eV), the thermal velocities (vh = 2.7x107 cm/s and vh = 3.6x107 cm/s) and the 
density-of-states (N0

h = 1.16x1019 cm-3 and N0
e = 6.55x1017 cm-3) that are consistent with 

the values used in recent device simulations at Sandia.42 For the carrier-capture cross-
sections, we used representative values of 10-16 cm2. The densities of holes Nh and 
electrons Ne could then be varied along with the temperature T to model different 
conditions of the system. The transition rate from charge state q to charge state q+1 was 
given by  
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𝒓 = N$v$σ',')* +	N-.v-σ',')*exp −
E4 − E',')*

kT ,																																																			(6) 

 
where the first term corresponds to capture of holes and the second term corresponds to 
emission of electrons. Likewise, the transition rate from charge state q+1 to charge state 
q was given by 
 

r = N-v-σ',')* +	N$.v$σ',')*exp −
E',')*
kT ,																																																																		(7) 

 
where the first term corresponds to capture of electrons and the second term corresponds 
to emission of holes. 
 
Alternatively, we could have used the defect levels determined from the cluster expanded 
energies of the initial and final states to evaluate the defect levels occurring in the carrier 
emission rates. This would have required a method of aligning the energy differences 
determined from the cluster expansions to the band edges of InGaP. This approach would 
be likely to produce a more accurate model of diffusion at low carrier densities (where 
carrier emission is significant) and would be a useful topic for future research. In addition, 
when a transition between different charge states occurs, it is necessary to pick a final 
state for the transition. Since there is a one-to-one correspondence between the sites, 
structures, and orientations for the -1 and 0 charge states, it is logical to assume that 
transitions between these charge states result in the corresponding structure of the other 
charge state. However, no such correspondence exists between the 0 and +1 charge 
states. For transitions between these charge states, we assumed that the final state is 
the lowest energy neighboring structure. The accuracy of this assumption depends on 
details of the carrier capture and emission processes, which are the subject of ongoing 
research. Given that the choice of final states for these processes could have significant 
effects on the calculated diffusion rates, especially at higher carrier concentrations in 
which the current approach leads to an absence of sustained Bourgoin-Corbett diffusion 
in the alloy, future research in this area would be worthwhile. 
 
4.4 KMC for Thermal Diffusion of IP in InGaP 
 
The KMC application described in Section 4.2 was utilized to simulate thermal diffusion 
of -1, 0 and +1 IP in an InGaP alloy using the CEs described in Section 3. The simulations 
tracked 2304 diffusion histories for run times of up to 96 hours. After a run, the Mean-
Squared-Displacements (MSDs) of the histories were averaged and the averages plotted 
as a function of the (diffusion) time. As noted in the introduction, general aspects of these 
plots were discussed in a previous LDRD report by us.43 Briefly, there is an initial transient 
during which the slope (the diffusion rate) is close to the value that would be obtained 
with an activation energy equal to the difference in the average energies of the saddle-
point and ground-state CEs. Followed this transient, the diffusion rate reaches a steady-
state value that is lower than the diffusion rate during the initial transient. Analysis of the 
steady-state process reveals that it is trap-mediated diffusion. The steady-state diffusion 
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rates will be our main concern in the discussions below and will constitute the compact 
models extracted for use in Sandia device modeling codes. 
 
Figure 6 shows a plot of MSD vs. Time for thermal diffusion of the -1 charge state from a 
96-hour KMC simulation at T = 300K. In the plot, the initial transient is followed by a large 
decrease in the diffusion rate to a steady-state value. To extract the steady-state diffusion 
rate, we computed the change in the MSD over the interval from t = 150 to t = 200 sec, 
obtaining a value of 0.07477 nm2/sec. As a check of this result, we estimated an effective 
activation energy for the steady-state diffusion rate using the expression 
 

Δ𝑀𝑆𝐷 = 	6𝐷Δ𝑡.																																																																																																																															(8) 
 
In this expression, ΔMSD is the change in the MSD from Figure 6 (0.07477 nm2), Δt is the 
time interval of the change (50 sec), and D the diffusion coefficient, 
 
𝐷 = 𝐷. exp 𝐸 𝑘𝑇 .																																																																																																																										(9) 

 
For the prefactor, D0, we take the value used in a Sandia device modelling code, 1011 
nm2/sec. Substituting, Eq. 9 into Eq. 8 and using kT = 0.025852 eV, we found a value of 
0.87 eV for the activation energy. This value is 0.15 eV higher than the difference in the 
average energies of the saddle-point and ground-state CEs (0.72 eV). In addition, it is 
close to the 0.92 eV found in experimental studies of annealing of radiation damage in 
the n-type InGaP region of a Sandia heterojunction bipolar transistor.44 
 

 
Figure 6.  Plot of MSD vs. Time for thermal diffusion of -1 IP in InGaP at T = 300K. 
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Fig. 7 shows plots of MSD vs. Time for thermal diffusion of the -1, 0, and +1 charge states 
at T = 300K. The steady-state diffusion rate of 0 IP is significantly higher than the steady-
state diffusion rates of -1 and +1P. Estimating an effective activation energy for the steady-
state diffusion rate of 0 IP yields the value 0.56 eV, which is 0.11 eV higher than the 
difference in the average energies of the saddle-point and ground-state CEs (0.45 eV). 
This suggests that the 0 IP undergoes less trapping than -1 (and +1) IP in the steady-state 
regime. We further note that this result correlates with the 0.15 eV narrower FWHM of the 
ground-state CE energy distribution for the 0 charge state (0.50 eV) compared with the 
FWHM of the ground-state CE energies for the -1 and +1 charge states (0.65 eV). Further 
study will be needed to better understand and quantify the effects of trapping and their 
dependence on charge state. 
 

 
Figure 7. Plots of MSD vs. Time for thermal diffusion of -1, 0, and +1 IP in InGaP at 
T = 300K. 

 
 
4.5 KMC for Combined Thermal and Carrier-Induced Diffusion of IP in 
InGaP 
 
The KMC application described in Section 4.3 was utilized to simulate combined thermal 
and carrier-induced diffusion of IP in an InGaP alloy using the CEs described in Section 
3. The simulations tracked 2304 diffusion histories for run times of up to 48 hours. After 
a run, the Mean-Squared-Displacements (MSDs) of the histories were averaged and the 
averages plotted as a function of the (diffusion) time. Fig. 8 repeats the plots of MSD vs. 
Time for thermal diffusion of the -1, 0, and +1 charge states at T = 300K shown in Fig 7, 
and adds a plot of MSD vs. Time for carrier-induced diffusion of IP at 300K with a carrier 
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density of 1012 cm-3. The diffusion rate of IP with carriers is greater than those of -1 and 
+1 IP, but less than that of 0 IP. The interpretation of these results is that the presence of 
carriers leads to a non-zero population of 0 IP having a higher diffusion rate than -1 and 
+1 IP. 
 

 
 

Figure 8. Plots of MSD vs. Time for thermal diffusion of -1, 0, and +1 IP in InGaP at 
T = 300K and combined thermal and carrier-induced diffusion of IP at T = 300K 
with a carrier density of 1012 cm-3. 

 
This interpretation is confirmed by increasing the carrier density to 1014 cm-3 (Fig. 9). The 
carrier-induced diffusion rate of IP is noticeably increased, indicating that the steady-state 
population of 0 IP is increased, approaching the thermal diffusion rate of 0 IP. The steady-
state diffusion rate for IP undergoing combined thermal and carrier-induced diffusion can 
then be extracted using the same procedures outlined above and utilized in Sandia device 
modeling codes to model IP diffusion and the resulting annealing of radiation damage. 
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Figure 9. Plots of MSD vs. Time for thermal diffusion of -1, 0, and +1 IP in InGaP at 
T = 300K and combined thermal and carrier-induced diffusion of IP at T = 300K 
with a carrier density of 1014 cm-3. 

 
5.  CONCLUSIONS 
 
This project has significantly expanded a theoretical capability that was developed in a 
previous LDRD project by: (1) refining the development of cluster expansions so as to 
remove far-field effects and increase the accuracy of the expansions, (2) developing a 
new capability for KMC simulations of combined thermal and carrier-induced diffusion of 
defects in alloys, and (3) developing compact models that can be employed in Sandia 
device modeling codes to accurately model the annealing rate of radiation damage in 
radiation-hard devices containing alloys. This expanded capability was demonstrated by 
performing KMC simulations of thermal diffusion and combined thermal and carrier-
induced diffusion of a P interstitial (IP) in an In0.5Ga0.5P alloy, which is currently used in 
the n-type emitter of a Sandia radiation-hard transistor, and extracting compact models 
of the steady-state diffusion rates for use in simulations for this device. More broadly, this 
capability, and the expertise to employ it, effectively enable the increased use of alloys in 
future radiation-hard devices, thereby increasing confidence in qualification evidence 
obtained from device simulations. 
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