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Abstract

We calculated the optical nonlinearities of the atomically thin monolayer transition metal
dichalcogenide MoS,, particularly for those linear and nonlinear transition processes that uti-
lize the bound exciton states. We adopted the bound and the unbound exciton states as the basis
for the Hilbert space, and derived all the dynamical density matrices that provides the induced
current density, from which the nonlinear susceptibilities can be drawn order-by-order via
perturbative calculations. We provide the nonlinear susceptibilities for the linear, the second-
harmonic, the third-harmonic, and the kerr-type two-photon processes.
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1. Introduction

Atomically thin 2D materials are the ideal candidate for various on-chip functional devices, in-
cluding the optical computing, laboratory on chip, on-chip cold atoms, on-chip cavity quantum
electrodynamics, and qubit processors on chip. Recently the growth technologies for these 2D
materials have greatly advanced so that any desired multi-layered atomically thin materials can be
grown and deposited on top of the existing photonic circuits.

Recent studies on the 2D transient metal dichalcogenides (TMDC) materials including, MoS,,
MoSe;, TSe,, etc., revealed that such thin material provides a decent level of optical interaction,
due to the reduction of dimensionality and, thus, the improved density of states. On top of that, the
exciton states which accumulates all the available quantum states over the lattice Bloch states may
further increase the optical responses so that one can utilize such material for making a strong in-
teraction between the light and the material. In addition, optical nonlinearity can be used to realize
important applications such as qubit operation via cavity quantum electrodynamics, optical tran-
sistor that controls the photonic signal flow through control optical signals (photons), and various
frequency conversion operations.

We calculate the optical nonlinearities of a monolayer MoS, material, particularly when the
input optical frequency is designed to utilize the optically highly active level of bound exciton
states. For this we adopt the quantum description of the induced current, from which the optical
susceptibility is deduced, in a perturbative manner. We then resolve the order-by-order optical
responses from an external drive electromagnetic field.

This SAND report is composed of general theory that describes the interaction Hamiltonian
of the 2D monolayer solids under the influence of the external field, the method to extract the
susceptibility, and the perturbative calculation of the optical susceptibility up to the third order
response. Then, the actual calculation of the physical parameters follow. Finally a summary and
conclusion follows.



2. Theory for calculating perturbative optical susceptibilities

2.1 Assumptions

We assume zero temperature for simplicity. The coupling of exciton levels with the phonon levels
are completely ignored. Thus, we count only the radiative transitions.

Our primary interest is the linear and the nonlinear optical processes that involves the bound
exciton states of the monolayer MoS,. We take the approach of second quantization for the un-
perturbed exciton bound states. We particularly assume a low density excitons so that we address
only the regime of a single exciton over the sample. Therefore, we ignore the bosonic nature of the
excitons nor the Bose-Einstein condensation of the excitons. We also ignore the exciton-exciton
interaction. Consistently with the weakly exciting regime, we take the perturbative approach that
naturally produces the first, the second, and the third-order nonlinear susceptibilities.

The MoS; monolayer exhibits the valley selection rule where only the circularly polarized
photon excites a particular exciton levels for a given valley (either K or K’ = —K). Without loss
of generality, we assume therefore the incoming light has 6+ polarization, corresponding to the
K valley. The case of o— polarization and the corresponding —K valley is readily obtained by
adjusting the energy gap via considering the difference in spin-orbit coupling energy.

For the band structure of the MoS,, we assume the gapped Dirac cone model that was adopted
in many of the theoretical works of the TMDS material calculations [25, 12, 17, 6, 16, 11, 19, 22,
23]. Our analytical calculation also includes the second-order perturbative solution for the unper-
turbed (without light interaction Hamiltonian) bound exciton states under the gapped Dirac cone
approximation, in the hope of easy calculation of various dipole moment matrix elements, which
however fails to address the required accuracy of the result. Therefore, we resorts to full numerical
calculation for the evaluation of the nonlinear optical susceptibilities. While doing so, we adopt
the higher-order correction of the gapped Dirac cone approximation [22, 23] that improves the
accuracy of the level transition strengths.

2.2 Hamiltonian and exciton solutions
2.2.1 Unperturbed Hamiltonian of matter

Let us consider a semiconductor that has a direct nonzero bandgap. Let us define the second
quantized electron and hole operators as

_ T
O.s = Ac ks Bk,s = Ay ks (D

where a; j ; is the fermionic annihilation operator for an electron at band 4 = ¢,v (conduction and
valence bands, respectively) with the crystal momentum #k and spin s. Here, o and 3 are the
annihilation operators of the electron (in the conduction band) and the hole (in the valence band).
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From now on, the spin is implicit, combined to k. When we use the usual anti-commutator for the
electrons:

{al,kval’,k'} = {a;’wa;/’k/} =0, {al,k7a2/7k/} = 6&,1’6]@]{’7 ()

one easily obtains the creation operator for an exciton (i.e., an electron-hole pair under the influence
of Coulomb interaction between the two), moving with combined momentum as in 7K [7]. For the
details, see the Appendix B. The exciton creation operator is

K
Bl = Zk: vy (k— 5) o/ Bl ., 3)

where yy (k") is the spatial Fourier transform (see the Appendix A) of the wave function y (7)
that satisfies the Wannier Schrodinger equation

2v72
[—h Vi +v<r>} V() = Evva(r), @

2m,

with the reduced mass m, = (1/m.+ 1/|m,|)~! where m,, are the effective mass of the conduc-
tion and valence band electrons, V(r) the Coulomb potential between the electron and the hole.
Rasmussen et al. [16] resolved the values m. = 0.55m, and m, = —0.56m, where m, is the rest
electron mass.

Here, the excitonic binding energy E, with the excitonic state quantum number v = (n,l,m) is
given as

—Eo ;s n=123,, (3D)
Ey =E, = 1 (5)
_E0m7 n=0,1,2,---, (2D)
with
4
e'm, my 1
Ey=—————=(—) (= |Ry, 6
7 2(amege,) (me) <8r2) g ©
with the electron charge e = —|e| = —1.6 x 107! C, and the vacuum and the relative material

permittivity &, &, respectively. In addition, m, is the electron mass and Ry = 13.6 eV is the hydro-
gen Rydberg energy. Note that the Rydberg of the exciton scales with respect to (m,/m,)(1/€2).
Typically the semiconductors have €. ~ 10. We will use & = 7 through the manuscript. This value
is nearly the optimal fit for the known range of the binding energy and the exciton radius. Hence,
the typical exciton Rydberg energy Ej is about 0.01 — 0.1 eV range. The experimental result of
the exciton binding energy for n = 0 in the monolayer MoS; is approximately —0.5 ~ —0.3 eV
[26, 10, 8, 4, 18].

A physical intuition on the exciton creator given in equation (3) is that an exciton state is a
superposition of all Bloch electron-hole pairs having the momentum %k and 7(K — k), weighted by
the orbital Fourier transform yy, (k — K /2).
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The solution to the Wannier equation is [7]:

_\/<nio> 2;’1[(n1+ll)2]3p p/zL;%{jll(p>Yl,m<97¢)a (3D)
I/]n,l,m(r) = 7
1 (n=|mD! im|.—p/272Iml| img
\/ w1727 o EP e L (P)E™, - (2D)

where V (A) is the quantizing volume (area), respectively, and ag = 4nh’ege, / (e2m,), p = 2r/((n+
1/2)ap), and L} (p) is the Laguerre polynomials defined by

L) = ¥ (-ayrr 40P ®)
1P A, (a=p=V)ip+V)v
Recall the closure from equation (188):
[ &rinel=1 o), [Erinil=1 @) ©)
\%4 A
Then, the normalization condition is
Wiv) = [ Ervl) ) = | 0¥ =1, GD)
Wiv) = [ Er(wlr) (ry) = [ v (rven() = 1. 2D) (10)

The solutions in equation (7) satisfy these normalization conditions.

Also one can consider the Fourier transform using the closure in equation (188) such that

1 .
y(r) = \/—Zw e, vk = /A d*ry(r)e ", (11

Note that the the Fourier transform in actual calculation can be performed in the polar coordinate

such that
- L / 7 d¢ / " dry(r)eikreos(©-9) (12)
VA Jo 0 ’
where r = (x,y) = (rcos¢,rsin¢) and k = (ky,k,) = (kcos 6,ksin ).

The possible indices for 3D aren =1,2,---,1=0,1,--- ,n—1,and m = 0,%1,--- ,£/. Those
for2Daren=0,1,--- andm=0,+£1,--- ,+n. The exciton radius is also experimetally resolved to
approximately 6 ~ 10 A, at zero temperature [26]. The calculated wavefunctions and their Fourier
transforms are shown in the table 1. The normalization of y(k) is given by the closure (188):

2
1= (yiy) = L y) = Zw (v =4 [ qov @y, 03

where we converted the sum into integral using the relation d’k = (27)?/A. It is easily verifiable
that all the Fourier transforms (k) appearing in the table 1 satisfy this normalization condition.
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Table 1: 2D bound exciton wavefunctions and their Fourier transforms

n m vy (r) vy (k) E,
2V2 o 2m_ 8ag _
0 0 P K A Graiepn 4Eo
2r .
8r o 3ap @it 3 2% 16age’® 4
1 \ 37:9 93 ° 7440 99 ks (0=a)) 5Eo
. /2 2Bag—4r) ~ e 675%0]‘2) _4
10 3 943 e A "(419a2K2)57 5Eo
37 943 TA Jo (2+3iagkcos(6—9))3 90
) 1 1672 5ao —2i¢ 15 (2@ 32age > 4
2 2 V 157 1254] 36 The mA JO d¢(2i75aokcos(97¢))4 25Eo
8r(4r—15ag) .~ s _i¢ 15 (27 34 16ag(—2+5iagkcos(0—¢))e ¥ 4
- — 0 A P
2 1 15713 125a © ¢ A JO d(P (2i—5apkcos(0—¢))* 25E0
2 0 [2 2(25a6—40a0r+8r2)675%1—’0 /107 40ag(16—400a3k*+62543k*) _ 4
Sn 125a(3) A (4+25a%k2)7/2 2550
1 8r(4r—15ap) —5 o /15 16ag(—2+5iagk cos(0—¢))el? 4
—— 0 e _ T
2 1 157r 12543 ¢ ve A d¢ (2i—5agkcos(6—9))* 25 E0
1672 5(10 2i¢ 15 27 32a0€2i¢ _ 4
2 2 V 157r 125a3e © \ =& Jo d¢(2i—5aokcos(9—(])))4 25E0
3 0 [2 2(1029(1(3)—l764a(2)r+504a0r2—32r3)e 73’0 [ 147 56a0(49agk> —4) (16—1568a3k*+2401adk*) _4p
n 7203613 A (4+49a%k2)9/2 7950
4 0 \/3 2(19683a3—34992a3r+11664agr2—1152a0r3+32r4) ~ 5 iy
T 631441a] 640

[27 216a0(256—82944a3k>+3779136agk* —34012224afk0+43046721a§k®)
A (4+81a3k?)11/2

We could obtain the completely analytical closed Fourier transform formulas for v = (n,0), while
we failed to obtain the closed form for v = (n,m # 0), which we still successfully performed the
radial integral, but left the angle integral as implicit forms. This angle integral can be obtained
easily using numerical integrals.

It is also noteworthy that the expectation value of the exciton radius (yy|r|yp) = ag/2 for 2D

case, and ag scales as [21]
a = (’"—) (%) as. (14)
m, 1

where ag = 4megh? /(mee?) ~ 0.53 A,
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The free Hamiltonian for the exciton system is then

Sy =0 ey xBlyByk, (15)
v.K

where the exciton energy eigenvalues are [21]

E,+Ey+ %, (bound states)
he\/,]{ = _— (16)
haoy + %, (unbound states).

where E; is the bandgap, Ey = E, as in equation (5), and the combined mass M = m, + AR
and the excitation energy /i@y for a single hole-pair with the momentum 7%k, —hk. Note that the
above Hamiltonian includes both the bound and the unbound exciton states. For convenience, let
us divide into two groups:

Hy=h Y  evkBlByk+h Y, okClCrk, (17)
bound,v,K unbound,k,K
where C,z x 18 the creator operator for the unbound exciton states with energy %y x = hoy +

K> /2M where hiay, is the energy of a single electron-hole pair with a crystal momentum 7k, —7ik.

Now, we consider the fact that the incoming photon has a negligibly small momentum, com-
pared to the crystal momentum k. Hence, we are primarily interested in case where K ~ 0 as K
must be compared to the magnitude of k. In this regime, the unperturbed exciton Hamiltonian is
given as

Hy~h Y eBiBy+h Y  oCCy, (18)

bound,v unbound,k

where Bf, and Cz are the bound and the unbound exciton states, respectively.

2.2.2 Interaction Hamiltonian

We consider the situation where a monochromatic external field given by

E(q,1) =8&&(q)e ", (19)

with a polarization unit vector €, interacts with the material. The nature of the interaction Hamil-
tonian between the classical external field and the exciton particle is the dipole interaction. This
dipole interaction is captured by the following interaction Hamiltonian [7]:

A== | dk)oy Bl S @) e (20)

where the interband dipole moment is

dey(k) = (c(k)|er-&|v(k)) = e(c(k)|r-&v(k)), 21

14



with the single particle states |A(k)) with A = ¢,v, the conduction and the valence band Bloch
states with the momentum 7ik.

One can second-quantize the external field by using

hay,
2V80

&(q) =i (22)

where b, is the boson annihilation operator for the photons and V' is the quantizing volume. Then,
the interaction Hamiltonian implies that an incoming photon with a momentum #gq is annihilated,
creating an electron-hole pair with the Bloch momentum % (g/2 +k),h(g/2 — k), respectively, with
the combined center of mass momentum 7%g. Since k can be any, one must sum over all k. The in-
teraction strength is proportional to d, (k). Recall that the interband dipole is explicitly dependent
on k.

Note that

=Y Wi (k)Bl,, (23)
\
where the last equation follows from equation (3), and the third equation follows from

S = (klK'y =Y (klxy) (xy|K') Zwv )y (K). (24)

\%

Using equation (23), we obtain

X [(Zdw )BT &(q)e" " +hec.

(25)

Note that the photon momentum is negligibly small in the scale of the crystal momentum.
Then, we can safely approximate ¢/2 4+ k ~ +k. Then, an exciton state ket is

‘vaq> Bh 0) NBT 0) Z‘lfv Tﬁjk 0) = ‘Xv,0> = [xv), (26)

where we defined
B, =B} =Y w(k)o B’ ,. 27)
k

Let us set

gv = Y de(k)y; (k). (28)
k

15



In Haug et al. [7], it is approximated to

Z dey (k) W$ (k) ~ Z dey (0) W\:k (k) = \/chv(0> W\i (r = 0)7 (29)
k

k

where the following Fourier transform is used (see Appendix A):
1 .
b(r)=—=Y wi(kje " 30
W) == ; wy (k) (30)

This is indeed a bold approximation where the interband dipole matrix element is approximated to
be that of the band extrema (for a direct bandgap material). In this case, one obtains

gv ~ VAd, (0) Wi (r =0). 31)

Nevertheless, we are not going to use this approximation, but we will rather fully evaluate the
numerical sum of g, as in equation (28). Recall that the interaction Hamiltonian is from equations
(25) and (28):

==Y [ngw(q)e*"%f +h.c.] . (32)

2.3 Susceptibility and induced current density

When an external field is present, an induced current is produced due to the dipole interaction as
in the previous section. It is obtained as

J=2Re[J]=J+J =eN,(v)=eN,t|[vp], (33)

where J is the complex valued current, and N, is the free carrier density, v is the velocity operator,
and p is the density matrix, which follows the von Neumann equation:

p =—— [+ 54,p], (34)

i

h
where the unperturbed Hamiltonian .77 is in equation (15) and the interaction Hamiltonian is in
(32). Note that the above differential equation can be solved through a recursive relation:

pl)=—1 [ a1t + 40,0
_ _%/_:odt’ {%+%, (—% /_:dt”[%wi’ﬁp(t”ﬂﬂ
; (35)
Note that 77 «< &(g). Then, one can expand the perturbative order of p such that

p(t)=p ) +pM(O)+pP )+, (36)

16



where p((¢) involves only @(&"(g)) terms. The result is the famous Dyson series, and one
replaces the ordered solution of p into equation (33) to obtain the perturbative solution of the
conductance ¢ through:

J=0E=(c"+c)4+..)E. (37)

On the other hand, the polarization density P is related to the induced charge through
~Quna=_dA-P, (38)
av

where V is an infinitesimal volume and dV is the boundary (surface) of the volume, while the
induced current density is related to the induced charge through the continuity:

—Qind:/dVV-J: dA-J. (39)
Vv av

From these two, we obtain the relation between the induced current density and the induced polar-
ization density as

opP
J=—= 40
o (40)
Using the relation between the induced current and the external field
P=gyE, 1)
and assuming the monochromatic field E(t) = €& (q)e*®, one obtains
d ~ ~
E (80(7((1) +X(2) + .- )E(ﬂ) = (0-(1) + 6(2) 4+ .- )E(t) (42)

Equating terms order by order from left to right establishes the relation between the susceptibility
and the conductivity for each order.

2.4 Perturbative solution

We now solve the problem to obtain the induced current, order by order through the perturbative
method. There are two plausible approaches to solve this problem. The first is to take the con-
ventional single particle basis such as |c(k)),|v(k)) that are the single particle Bloch states with
momentum 7ik. This approach allows to use the conventionally known forms of operators such as
the velocity operator relating to the Berry connection, etc., while it complicates the Schrodinger
equation of p, due to the complex Coulomb potential. Although this method was successfully
used to calculate the linear response [7], it is not certain whether the first method is tractable
for the higher order calculations, due to the higher order Coulomb interaction in the perturbative
approach.

Another approach is to take the many body basis {|0), [xy—04),|Xv=1,4),"" }, which are anti-
symmetrized Slater determinant states. This method incorporates the Coulomb potential in the

17



energy eigenvectors and eigenvalues of the excitonic states. Importantly the unperturbed Hamil-
tonian %) that includes the Coulomb potential as in equation (15) is diagonal in this many body
basis. This is already a great advantage over the first approach that does not diagonalize 7).
Hence, solving the Schrodinger equation perturbatively is quite easy. However, one must repre-
sent the operators in these new many body kets and bras. If operators are successfully represented
through the many body basis, the calculation is relatively straightforward.

We take the second approach to use the many body basis. Our first task is to calculate the
velocity operator v in this new many body basis, which is critical in calculating the induced current
in (33). In linear response theory where the incoming light frequency is close to a bound exciton
state | yy ), our Hilbert space is two dimensional with the basis {|xy),|0)} where |0) is the ground
state (Fermi sea). Consequently, the velocity operator and the density operator are now 2 X 2

matrices:
< Vee Vef >, ) ( Pee  Pef ) : (13)
Vte  Vff Pre  Ptt

where each element is such that, for example, vef = (x| v |0). We calculate

Vie = (0] F [xv) = —% (O [r, 0 + ] [xv) = == (O] [r, 0] [xv)

i
| h
— 010~ o) ) = iy (01 o). 9

Here, we used the fact that [r,.7#7] = 0 since .77 o r since it involves the dipole moment element.
Also we used that %) |xy) = hey |xy) and (0] 7 = 0 (the energy of the Fermi sea is set to zero).
It is also noteworthy that the diagonal terms of the velocity operator v are all zero according to the
above derivation: )

i
— 5 (Ey = Ey){(y|rly) =0. (45)
Therefore, we need only the off-diagonal terms of the density matrix to calculate the induced
current. Then, we have

(y[v]y) =

J= 7"‘ -7* = eN, (Vefpfe + erpef)- (46)

Next, we calculate,

(0[&-7|xv) =Y wv (k) (01 ret BT, 10) = Yy (k) (v(k)| & - r[c(k))

k k
1 *
=~ Y w(K)diclk) = 2, (47)
k

where the last equation follows from equation (28). Here, we abbreviated such that |c(k)) =
ZSlaterperm |V(k,)> Q- & |V(k)//> ® |C(k)> ® |v(km)> ®---, which implies that a]jﬁjk |0> = |C(k)>
in the abbreviated notation. Then, we obtain, for an isotropic medium where the induced current
direction coincides with the external field direction,

. *
* —lev8y
Ve = Ver = e €, (48)
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where ey is given in equation (16).
Next, let us solve the Schrodinger equation for p. First, we calculate
(xv|[%,p]|0) = heyper, (49)

where we used the fact that the energy eigenvalue of the Fermi sea is zero. Using this, we establish
a differential equation for pe¢:

Pl = —ievper — 3 (x| [74,p]10). (50)
Let us introduce the perturbative solution according to the perturbative orders:
p(t)=p D) +p () +pP (1) +---. (51)
We then carry out the bookkeeping for the differential equations on each order:
o (1) = —iewp{ (1),
B (1) = —ieuplf) (1)~ = (xu] 4.9 [0),
P 1) = —iewpP0) ¢ ol 11,010},

P (1) = —ievpd (1) = (x| 14,0 [0) (52)

Other matrix elements for p(”) can be obtained in a similar manner.

2.4.1 Linear susceptibility

Figure 1: Transition involving the linear susceptibility. See the description of the state kets in the
Appendix B.

The linear response involves the direct dipole absorption of the photon, matching the energy
difference between the ground state (Fermi sea), and the exciton state. Figure 1 shows the relevant
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transition. An incoming photon has an energy resonant with the exciton state energy, exciting the
exciton state.

The first of equations (52) describes the dynamics of pr in the absence of any external pertur-
bation. It is a free rotation. We then solve the second equation. For this, we calculate

(xv|[4.p1]|0)

~ vl (ngf( vp' P“”B&)) 0) &(g)e"
— (xy| (ng,< vp( ) _ p(O )) 10) 6™ (q)e it

= —gv ((xv1BLp 10) — (xv1 p°BL [0} ) & (g)e

= —gv (101 10) — (xv1p® [xv) ) & (q)e™

= —&v(py —pee )5 (g)e "

= —gv&(g)e” ", (53)

where we used the fact that By |0) =0, B:, |xy) =0, and that pf(fo) =1land pe(g ) = 0in the absence of
the external field at zero temperature, that is, the state without the external field at zero temperature
is the Fermi sea. From this, the first order differential equation is now

Pl (1) = —ievplf) (1) + 2 gv& (e ™. (54)

Let us replace

i (1) = s ()e e, (55)

Then, the differential equation for S (¢) is

SN (1) = —gvé (g)eer o0, (56)
Using the following
iley—wy) + €

where € > 0 is the infinitesimal constant used to regulate the integral, we obtain

gvéa(q) eilev—ay)t

S () = . 58
(®) ho (ey—wy) —ie (58)
Hence, we obtain the first order solution
1 .
PPty =8 & (g)e (59)

h (ey—wy) —ie



(1)

Let us also solve for pe.’ (¢) for later use. This calculation involves the following:

(xv] [, p ] [xv) =0, (60)

since 777 changes the state ket. Hence, péé)(z) = 0. With the initial condition péé )(—oo) =0, we

obtain péel) (r) = 0. Likewise, it easily follows that pf(fl) (r)=0.

According to the equations (46) and (48), we obtain

. *
—ieygy gv 1 A —iwgt

; h(ev_wq)_l_gs@@(q)e . (61)

J ~=¢eN,

From this, we obtain the linear conductivity

2
N, 1
o) — _evlgvl™Ne

h (ey — wy) — i€ ©62)

Using the relation in equation (42), one obtains the linear susceptibility. One more important aspect
is that the atomic dipole moment element d., = (—e¢) (c(k)| € - r|v(k)) depends on the relative ori-
entation of the incoming light field with respect to the solid orientation. For a randomly polarized
light, it is necessary to calculate the orientation-averaging such as

J§sin0d8 ["dpcos’O |
O - JEsinode [(Tdp 3’ (3D), 63
<| CV'€| >_ f()2¢d9C0826_1 2 ( )
T Pa 2 (2D),

where d,, is the unit vector in the direction of the random dipole moment and 6 is the angle
between d.,, and the field polarization direction €. Hence, for a randomly polarized light, the entire
o)) must be divided by D = d for d—dimensional problem. However, for other polarizations of the
incoming photon, the value d,, need to be calculated accordingly. For example, if d., = d* % +d9,
and the incoming light is a 6+ polarized light with € = % (% 4 i9), the appropriate dipole moment

i dey = dey+ & = 5 (df, +idey).

We finally obtain the linear susceptibility of the exciton state:

€v|gv|2Ne 1 . ev|g\/’2Ne<@ 1 +iﬂ«'ev|gv|2Ne

(1) = = S(ey — 4
2 () heow, (ey — o) — i€ heow, ~ ey —wy, heyy, (& —ay),| (64)

where we used the Dirac identity

1
lim —— = Z—+ind(r), (65)
e=0rJ1€ r

with the Cauchy principal value symbol &?. From equation (31), one may approximate g, ~
VAd,,(q = 0)yi(r = 0) (see the table 1). Then, we obtain

hey \\ AN, 1
W (a,) = (2 ) ANe 4 0)Rly (= 0) .
£0) = () Sl Ol =0 G (66)
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We replace N, — 2/(Ad.sr) where deg =~ 6.5 A [24, 15] is the effective monolayer thickness, as-
suming a weakly exciting situation at a single exciton (two charge carriers) level over the sample.
Then, we obtain using ey ~ @y, for v = 0 the lowest exciton state:

QP Y (r =0 1 1600 1

X(l) (o) = )
€odogr (hey —hay) —ihe  maddesey (hey —hwy) — ihe

(67)

Note that ajder is the effective volume of the exciton. This formula exactly matches the results
in Elliott’s seminal paper [5] as well as the formula appearing in Haug, et al. [7] (see equation
10.103) and the formula appearing in Klingshirn [9] (see equation 27.52). The rationale to replace
N, — 2/Ad.g is that the induced current density J = tr[e(N,p)v] in equation (33) captures the
density of charge carriers and their movements. Particularly N,p = 2p /Ad.g with the quantum
mechanical density p (with the second quantized treatment, the maximum of the matrix element
is unity) captures the density of the excited exciton. When the external field is near resonant with
one of the exciton absorption line, the current density counts only the exciton charge carriers (an
electron and a hole), and thus, it is correct to replace N, — 2 /Ad.gs.

Using the relation between the refractive index and the susceptibility

n=1/1+x0), (68)

one obtains the absorption (fraction) given by od.¢r Where dy is the effective thickness of the single
layer 2D material. Using that the absorption coefficient is o = 2Im[n] @, /c, the total absorption is

given by ades = 2defflm[\/ 1+ x(l)]a)q/c.

If we incorporate the phenomenological decay rate 9, of the exciton, the formula is

_ €V|gV‘2Ne (w/2)

(1)
= ew, (ev =2+ (/22

(69)

This is the usual Lorentzian lineshape with the line broadening factor 7, caused by the radiative
decay (spontaneous emission).

Wang, et al.[23] calculated the radiative lifetime of the exciton at a temperature of 5 K to be ~
200 fs (see also the result of Selig, et al. in [19]), implying 73, ~ 5 x 10'? rad/s. In addition, the
real part is

2
N, ey — O,
Re (1) :ev|8v‘ e v g .
0= T, (v =07+ (12

When the imaginary part is small, one obtains Re[n] =~ /1 + Re[x(1)].

(70)

A more precise value can be obtained if one sums over all the bound exciton levels such that

2N ,},
Imly (D] = ev|gv|Ne v ,
2] ; heow, (ev —ay)?+ (W/2)?
2 _
Re[%(l)] — Zev‘g‘/’ Ne €y C()q (71)

v hepwy (ev — wq>2 +(w/2)*
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2.4.2 Second-order susceptibility

‘wa VAVAVANg

SRR " Fill
W 2
hw,,

0) v

Figure 2: Transition involving the second-order susceptibility.

2.4.2.1 Second harmonic with input frequency resonant with exciton levels

First, we consider the case where the external field frequency ®, is near resonant with one of
the bound exciton states. In the absence of another light with a different optical frequency, the
primary second order effect is the second harmonic generation with the fundamental frequency
of w, (see the figure 2). Given the exciton binding energy of TMDS materials, when the first
transition is near resonant with the transition from the Fermi sea to one of the bound exciton states,
the second transition must involve the transition from the bound exciton state to the free exciton
state, which is a state of an electron in the conduction band, and a hole in the valence band, having
the excitation energy ha,.

The interaction Hamiltonian for the second transition must be

H ==Y | KBy ()e™™ +he.| . (72)
k,v

where the new dipole transition element fy (k) is given as
folk) = e (C(K)| &-rlxv) = e} yw(K) (C(k)| & ray BT, 10)
k/
=X W (k) (CR)|& - r|ck)), 3)
kl
where |C(k)) = CZ |0) is a free excitonic state of a single electron-hole pair having momentum
hk, —hk respectively, not bound by the Coulomb potential. The physical intuition is that this dipole

moment is a superposition of all intraband dipole moment weighted by the (Fourier-transformed)
exciton wavefunction.

From the equation (42), the second order susceptibility is obtained through

2 et (20, 06 (g)e " = 6782 (g)e 2, (74)
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which relates

ey

—i2€)0y

1?0, 0,) = (75)

The second order transition involves the three levels: |0}, |x,),|C(k)) whose energy eigenvalues
are 0, ey, and hiy(~ 2hay,), respectively. In order to calculate the induced current, we need to

caleulate pl¢ (1) = (xv| p2)(1) 0), pigy () = (C(k) | PP (1)]0), and P (1) = (C(K) [ PP (1) [xv)-
2)

We will show that the only substantial term is p;,(f) among them. Let us first calculate

péfz ) (1), which is obtained through

(2 () I

Put (1) = —ievpys (1) =+ (xvl [ + 7 p™M] [0} (76)
with the solution in equation (59), which is repeated here:

(D, _ 8v 1 —iwgt
pef (Z) - A (ev B wq) _l-g(ga(CI)e T (77)

Note that
(xv| [, p" — (x] (Zgw( Lol meL)) 0) & (g)e . (78)

Also note that the basis necessary to describe p(!) is only {|0),|xy)}. Then, for p(!) we can use
the following identity:

BipW =B} (10)(0] + |xv) (xv]) pV
p B}, = pW (|0)(0] + |xv) (xv|) B (79)

Using this and utilizing the fact that pf(flge (1) = 0 as we solved in the previous subsection, we obtain
(xy|[24,p1V]]0) = 0. This leads to

. ) i
pis (1) = —ievpt (1) = = (vl [, pV]0). (80)
We calculate
xv|[A . p — (xy| (Z fur(k (CTBV, b p(”c,jBV/> &(g)e 0! —h.c.> 0). (81)
k,v!
Note that
Y () (xy | C{Bup M 0) = 1 fir(k) (xv] CLBy (10)(0]+ [xv) (xv1) p 1 [0)
kv kv

_ va(k) (xv[CF10) (xv| P |0)
_va (xv|C(k) <XV‘P(1)|O>
_ 07 (82)
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since (xy|C(k)) = 0. Similarly it easily follows that

Y k) (xv[ B Cip ™M [0) = ¥ £ (k) (xv| BY,Cic(10)(0] + [xv) (xv]) p)[0)
kv kv

= Zfé‘(k) (0] Cr[xv) (xv| pV]0)

_va k)[xv) <XV|P |0>

In addition, we calculate

Y fur(k) (xy | pVCiBy |0y =0=Y fi (k) (xv| pVBT,C]0) . (84)

kv’ kv

Therefore, we obtain (xy| [, p(1]]0) = 0. Since pg)(—oo) =0 and péfz) (1) = —ievpg) (1), we
obtain péfz) (r)=0.

Next, we solve the following to obtain pce k(?):

. . i
Plarlt) = =0 — eV )Py (1) = - (€| [+ 47 p V] x). (85)
First, we calculate

(CW)| 14 ,p V] xv)

(va (C B,p) — P(I)CZBV’> &(g)e™'! hC) Xv)

k,v!

i (Z Fo (k) (0 By [xy) (xv ) [xv) —;<C(k)lp‘” |c(k)>) & (g)e ot
A%
=0. (86)

Also we calculate

<C(k)‘ [%’p(l)] |XV _ (ngl (BT/p p(UBi,) g(Q)efl.wa _|_hC> |Xv>
—0, (87)
since By |C(k)) = [0) <Xv!C( )> =
péze)k( ) = 0, we obtain pCe k( )=
(2)

Let us now calculate p;, (¢) using

0 and B ,|xy) = 0. From the above two and the fact that

. . i
Pek() = —i@p&(0) = 3 (CW) [+ 47, p ] [0) (88)
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where 1@y 1 1s the energy eigenvalue of |C(k)). In this context, we can expand the basis to describe
the matrix p(!) to |C(k)),|evy),|0). In order to solve this equation, we need to know the matrix

element pée)k( t) and péf) (t), where the latter is obtained in (59). We also know that pélf)k(t) =

0 since the driving frequency @, is far from @, ~ 2®,. Let us calculate péle)k(t) through the
differential equation

) . I
PEok(t) = —ievpy(1) = 2 (C(K)| [+ 7, p][0) (89)
We first calculate
(k)| [,V xy) =0, (90)

since %7 involves BT,,BV only. Next, we calculate

() A4 ,p ") Ixy)
- Z fv(k/) <C(k)|CZ’BV,p(O) - p(O)CZ/Bv/ |Xv> g(q)e_lwa

kv
= 1o (0) (101 By [x)xv1p@ [xv) = (C(K) [ p©[C(K)) ) & (g)e
= —fv(k) <pee) ngk> cg‘)e*"“’éﬂ, 1)

where we discarded the terms proportional to e/’ as they produce zero results. Here, we also used

the fact that p () has nonzero elements only on the diagonal terms. The quantities pég ) and péoc) are

negligibly small compared to pf(f0 ) 1. Therefore, we obtain that (C(k)|[74,p O] |xy) ~ 0. Since

the drive is zero, the differential equation (89) states that pé?_k (1) = 0 because pé? (=) =0.

Next, let us calculate the following:

(C(k)| [jipla ng/ z,p(l) _P(I)Bc/ 10) g(q)e—iqu

=0, 92)

where we discarded the terms involving e'®’ as they produce zero results and used the fact that
p(l) has only significant matrix element of pe(fl) (t). On the other hand, we calculate

(Cw)I1A4 p = X (k) oY —pch B, |0y &(g)e

K

- ‘wa(k) (01By ) (v ) [0} & (g

Jv(k)gy 1 2/ \—i2eyt
7 (ev—wq)—ie(g] (9)e ; (93)
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where we discarded the terms involving e/®’, which produce zero results. We also used the fact

that the only nonzero element of p(!)(r) is p(_gfl )(t). Then, we obtain the following differential
equation

. \4 1 —i20,t
pELD) = —ionp 30+ e 04)

Setting '
Pk () =S (B)e 95)

the new differential equation for ') (¢) is now

1(2) (1) — Jfv(k)gv 1 2 i(@p—2ay)t
SY(t) = +i o (ev—wq)—ieg (q)e )t (96)

The solution is

(2)

\4 1 —i2W,4t
Peix(t) = 1By 2(g)e 2. (97)

1t ((ev—wy) —i€) ((ox —20,) — i)

This quantity is substantial if @, is close to ey and @y ~ 2ey. The only remaining quantity to
calculate is the velocity element

[ .
vick = (0] 7|C(k)) = ~% (O [r, 4] |C(k)) ~ —icwk (v(k)|r|c(k)) . (98)
This allows to obtain the induced current as

J? =N, tr[vp ZeN Vic. kpéf)k+h c.

T efv vwdeV( ) I @2 —i2am,t
. Z ((ev — 0g) —i€) ((ax —200,) —i€’) E€%(q)e +he. (99)

o~ 2 R . A
and, therefore, from J @ _ 6(2)862(61)6_’2“’4[ , we obtain

4 C 2} 1
@ — "ZN fv(k)gvzw kdey (k) _ — (100)
. h ((ev — ay) —i€) ((ax —2ay) — i€’)
Then, from equation (75), we finally obtain
N, 1 fv(k)ayd:, (k)
@ (@, ~ey) = —ve8V ( ) v cv : 101
X7 (0~ ev) 280h2a)q (ey —w,) — i€ zk: (an —20y) — i€’ 1on

This is the second-order nonlinear susceptibility relevant to the second harmonic generation from
the fundamental frequency @,, which is close to ey. With the phenomenological treatment of the
decay rate of the transition |0) <+ |xy), and |xy) <> |C(k)) with the decay rate ¥y, ¥, respectively,
we obtain

(@~ ou) — Negv 1 fv(k)oyd?, (k)
e zeohzwq(<ev—wq>—i<w/z>)@(wk—zwq)—im/z))’ (o2

from which it is possible to extract the real and the imaginary values of 1@,
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Figure 3: Second harmonic generation where the fundamental photon energy is half of the exciton
energy. Dotted line represents a virtual energy level.

2.4.2.2 Low-frequency second harmonic In the next scenario, we consider the case where the
incoming light energy is such that i@, ~ hiey /2. Unlike the previous scenario where i@, ~ fiey that
has inevitably a linear loss for the incoming light, this low frequency photon does not suffer from
the linear loss for the fundamental frequency since the incoming photon is not directly resonant
with any of the real energy levels.

The first transition from |0) by the external field & (g)e "® involves a virtual transition as
shown in the figure 3. This virtual level is nothing other than the collective contribution from the
higher order bound exciton states represented by the first order matrix elements in equation (59)

(1) _ 8 1 —iayt
pvf (t) - h (ev _ wq) _ igvéa(q)e ™ 5 (103)

where @, is indeed not close to any of e,. Note that the previous solution to the case where @, ~ ey
was obtained by considering the first transition |0) — |xy), and the second transition |x,) — |Cy),
and the most significant matrix element in p(2) was pézf)k. Then, in an analogy, we can obtain y (2
of the current low-frequency configuration by replaciné the role as follows: the first transition is
|0) — |x), the second transition is |xy) — |xo), and the most significant matrix element of p(?
is pé?) = (xo| p?|0), since 2w, ~ ep. Note that in this configuration, all v may participate as
the intermediate virtual level, except for v = 0 level, simply because the transition probability
|X0) — |xo) through the external field is zero. Then, from equation (102), it easily follows that the

correct solution for y(?)(w, ~ ep/2) is obtained as

2) o evNegvhvogy 1
X7 (g~ e0/2) = , . ;| (104)
7 \go 20,€0h* ( (ev — @y —i(1/2)) (€0 — 200, — i(Y0/2))
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Figure 4: Two third-order nonlinear processes relevant to the case of a single external field that is
resonant with the exciton energy.

where 7y is the radiative decay rate of |x,) state and

80 = chv(k)w (k)
k
8v = chv(k) vy (k)
k
hv() =€<Xv|r-é|X0>. (105)
Note that using equation (204), we easily obtain

(xv|rlxo) =Y wy(k)wo(K') (c(k)| r|c(K')), (106)
kk’

and thus, using equation (73), we obtain

hvo = Y Wy (k) Wo (K )dee (k,K) Zq/v (107)
kK

where d.(k,k') = (c(k)|r-&]|c(K')) is the intraband dipole moment matrix element for the con-
duction band.

2.4.3 Third-order susceptibility

2.4.3.1 High frequency third order processes We first consider the case where the driving ex-
ternal field is near resonant with the exciton level. The relevant third-order processes are twofolds:
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(1) the third harmonic generation, and (2) the two-photon transition (i.e., Kerr nonlinearity and
two-photon absorption) (see the figure 4).

We first calculate the third-harmonic generation process. This process involves the two inter-
action Hamiltonian . and ¢’ in equations (32) and (72), respectively. It also involves additional
transition from the upper level |C(k)) to a further up level in the continuum. Since the momentum
must be preserved, it involves the following transition interaction Hamiltonian

A ==Y |doclk KICIC8 (g)e ™ +he (108)
kK

where dyc(k',k) = e (C'(K')| r-€|C(k)) is the dipole moment between the pair electron-hole state
with &” and the pair electron-hole state with k.

Note that this process involves the four many body states |0}, |xy),|C(k)),|C'(k')). The only

significant matrix element that involves the real transition is pg} . = (C'(k)|p) |0), which can

be easily seen since all the other transition matrix elements involves some virtual levels whose

3)

transition strength is not as high as p We can easily guess the form:

C'f ke
po) (1)
_ Z fv (k/)dc’c(klvk)gv 1 &3 <q)efi3a)qt’
P n ((ev — 0g) —i€) (W —20) —i€’) ((Wpr — 30g) —i€")

(109)
where fi., is the energy eigenvalue of |C(k)) and /i, is that of |C'(k)). We also need the quantity
view = O1F|CK)) = — £ (0] 17, 6] [C () = —iw0 (R [CR)). (110)
We then calculate the induced current for the third-harmonic generation:
J®) = eN,tr[vp)] ~ ZeNefo/k/pgf)’k, +h.c.
Nefv(k’)kdc/c(k’=k)ngcfk/djfv(k’)

=—i) A : o3 s nws | Fhe, (11D)
k' X ((ev—ay)—ie) (0 —205)—i€") (0 —30y)—i" ) £6”(q)e ™

where d,, (k') = e (¢/(K')| r-&|v(K')). Then, from 7% = o283 (q)e 39!, we obtain

. Nefy (K )1, (K K)gy@ud’ (K)
oy =—iy } & | . (112)
kK ((ev—ay)—ie) (0 —205)—i€") (@ —30y)—i" )

The third-order susceptibility for the third-harmonic generation is obtained through

%soxﬁ,(mq, 0,)&3 (q)e 3% = 63 &3 (g)e B! (113)
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From this, we obtain

3)
3) __0C
Xrp (30, 0,) = e, (114)

Finally, we obtain the third-order susceptibility for the third-harmonic generation as

wc-/k/Ner (k/)dc/c (k,’k)gvd:’\/(k,)

Xgu)r(wq ~ey/3)= Z % oo 1 : (115)
kel ((ev—ay)—ie) (0u—20)—ig") (@ —30)—ie")

Next, let us turn to the two-photon transition shown in figure 4. This process involves three
levels, namely, |0, |xy),|C(k)). Hence, p(® has nine matrix elements, where only six are inde-
pendent (Hermitian). The interaction Hamiltonians are .%7 and ., which are repeated here for
convenience:

Hi =Y [gvB& (q)e” " +hc,
\4

A = = Y[ (KIC[ByE (g)e ™™ +h.c),
k,v

where

8v = Z‘lfv(k)dCV(k)
k
k) =e} w(k)(C(k)|& r|C(K)).
k/

The third order perturbative solution p (3) for the two photon process is described through the three
states |0) , |xy),|C(k)) as in the second-order calculation. In order to calculate the induced current
density, we need the matrix elements of p(3). The matrix has nine elements, and six of them are
independent. Since the diagonal terms of the velocity matrix are all zero as we have shown earlier,
we are concerned with only the off-diagonal term (see equation (45) and the text around it). Then,

G L6 J06)

we are concerned with only three terms P, Posio Per -

The differential equation for the third order involves the second order solution as in equations

(52). Let us first calculate pé?k through

P = —i0eaply (1) — 3 (CR 171+ Ixy) (116)
where @..r = @ — ey. Let us first calculate
(Ch)| [, [xv)
( vBYE(q)e " + g1 By & *(q)e"‘”q’> p@

= — Ck . X
;< ( ) —P( )( V’B g( ) lwq[_’_g;k,/Bv/g*(q)elwqt) | v>
_ gtpé?k@@*eiwqt
2
_ fvlk)lgv] 1 & (q)P&eiou (117)

7 ((ev_wq)_ig)((wck_zwq)_igl)
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where we used the fact that the only significant matrix element of p(z) is pg)k, and the equation

(97). Next, let us calculate
(CW)| 14 ,p P xv)
 Yew (A WIS (@) + Fi (B, Cos" (g ) p
i —p® (K (K)CLBy& (@)e™ + £ (K)BL,Cu ™ (g)ei )
=0, (118)
2)

where we again used the fact that the only significant term in p(z) is ppgy- From these two, we
obtain the differential equation

Xv)

.(3) . (3) _ -fv(k)’gv|2 1
Peeslt) = —0ekPecslt) =5 (o, ) —ie) (@ —2y) — i€

& (q)PEe™.

(119)
The solution is

fv(k)|gv|2 1

pé?’k(t) I ((ev — 0g) —i€) ((ck — 2007) — i€") ((Ocer — @) — i€”) (g6,
(120)
Next, let us calculate ng,)k through
Pek(t) = —i0upli (1) = - (CR)| 17+ 1 . p ] [0). (121)
Let us calculate
(C(k)|[,p][0)
=~ Y (C(®)] { (BB slae e @) o ] 0)
v P (gvBl,E (@) + g, By (g)e " )

=0, (122)

()L BuE (@i + f(K)BL,Co&™ (g ) p@ 0)
—p@ (K )CLB & (g)e % + £ (K)BL,Co&™ () )

KV
=0, (123)
where we used the fact that the only significant term in p(z) is péi?k. Then, we have only the
free rotating term in the right hand side of equation (121). Since p(3) (t = —o0) is zero, we obtain
pcix(t) =0.

Next, let us calculate pe(? ) through
NE NE I
P (1) = —ievp (1) = = (vl [+ 7, p D] 10). (124)
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Let us calculate
(xv|[4,p2]10)
(gvai/@@ (q)e "' + g}, By & (Q)e"“’q’> p@
7 —p® (svBlE(g)e o + gy BT (g)ein )
=0, (125)

10)

(A)Ch B (g)e 0 + (KB Cos* (@) ) p
X .

L ) ()t + 0B (e
=0, (126)

where we used the fact that the only significant term in p(z) is pg)k. Hence, we obtain pe(f3 ) (r)=0.

10)

The two-photon induced current is

I3 = eN,tu[vp )] = ZeNeVeC,kpggk +h.c. (127)
k

Let us calculate
Vec k = (xv|#|C(k)) = —% (x| [r, 7] |C(k)) = —icxer (xv|7|C(K))
= i S W5 (K) (k)] rle(h)) (128)
g

From this, we obtain

(3) Newcek|fvgk)|2|gv‘2
J® = 3 y The.  (129)
Zk: e |6 (q)[e&ein

X ev—g)—18) (0 —20,) 18 ((@ret—0g)—iE")

Then, from 7(T3f), = GSD) |6(q) 1288 (q)e !, we obtain

chek|fv )‘2|8v‘2 1
orp =L ((ev — @) — i€) (ot —200) — i€)) (Quut — 0g) —iE")

The two-photon susceptibility is obtained through

J 71 —i
S-eoxrp (@) 6(@)PE(@)e ™ = o7p|8(q) P& (g)e . (131)
Therefore, the relation is
o) orp
Xrp(0g) = : (132)

—1€) 0y
From this, we finally obtain the two-photon susceptibility

wce Ne k 2 2 1
(0, ~ ey/2) = - Y LeeklVelfv (0l

T w, &’ ((ey — @y) —i&) (W — 20,) — i€") ((Weer — @g) —i€”)

(133)
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Figure 5: Third-order processes with low frequency input light. (a) Third harmonic generation
where 3@, ~ eq. (b) Two photon process where 2@, ~ ey.

2.4.3.2 Low frequency third order processes We now consider the situation where 3@, ~ ey,
which is the third-harmonic generation process with a low frequency input field. Recall that the
previous high-frequency third harmonic involved the cascaded process |0) — |xy) — |C(k)) —
|C'(k)). The low frequency third harmonic involves two virtual levels such that |0) — |xy,) —
|Xv,) = |xv), where vi # 0 and v, # vi,v2 # 0. Hence, the dipole moments are analogous as
gv — 8vy» fulk) = hy,y,, doe(k) — hyy,, doy(k) — gy. Then, analogous to equation (115), we
easily obtain

eyNehv,v vy, 8v, gv

2w, ~ev/3) =Y 3ogel’ 1 (134)

Viva \ ((ev, —@g)—iev, ) ((ev, —20)—iey, ) ((ey—3g)—iey)

where for clarity

hyy = e(xy|r-&|xy) =Y vy (k)W (K )dee (k, k) Z‘l’v ) for (k (135)
kK

Lastly we calculate the two photon process for the low frequency input field. Let us generalize
the case such that the upper level involved in the two-photon process is |y ), instead of |yp).
Recall that the high-frequency two-photon process involved the transition |0) — |xy) — |C(k)) —
|xy) — |0). The low-frequency two photon process involves the transition [0) — |xy,) — |Xy) —
Xv,) = [0). Then, the role of dipole moments are related as gy <+ gv,, fv (k) <> hyy,, fy (k) < I, .,
and gy, <> g, Therefore, we obtain

3
%;g(wq ~ey/2)
(ev—evy )Negv hvv, htvzgtz
=) g€’ | . (136)
Vi,V2 ((evl —a)q)—igv] ) ((ev—Za)q)—isv) ((EV—evz_wq)_isvz)
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ev v2 e
(@) v i e

hegw, (ey—ay)—ie

2P (0~ ey) Lo saiber () (Te o o)
x®? (g ~ev/2) Lvzv ev%f);/gﬁ;v‘ﬁ/gt (((ev/wq)isv/ )1((ev2a)q)i8v))
OuNefy(K)dyg (K Ky’ (K)
13 (@~ ey) Yikv ool
X (ev—0y)—i2) (0 —20)—i&') (0 —30,)—ic")
eyNehy, v hyv, 8v, 8%
%;2(% ey/3) Yo vs 3wyeh’
((ev, qu)fievl)(<evz—2cloq)fiev2)((ev73wq)fiev)
A0y~ er) | =Ly SO e T
(ev—ev, )Negv, hvv, hyy, 8V,
X?Ig (g ~ev/2) Ly, o

X ((ev, —ay)—igv, ) ((ev—2wy)—igy ) ((ev—ey, — ) —iey, )

Table 2: Summary of calculated exciton susceptibilities

2.5 Summary

We summarized the calculated susceptibilities in table 2. Note that we calculated the nonlinear
susceptibilities for a fixed exciton order v. For the actual spectra, however, we have to sum over
all v such that the form now become a general solution for any @,.
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3. Calculation of various transition dipole moments

3.1 Massive Dirac cone approximation

The DFT calculation results show that the conduction band and the valence band around the K, —K
points are dominated by the atomic orbitals of the Mo atom [11]. Particularly, when we can write

the Bloch state as

Wi (r) = ey (1), (137)

where A = ¢, v is the band index, and uk,A(r) is the Bloch function having the periodicity such
that uy 5 (r +R) = uy 5 (r) for any lattice vector R, one can approximate

1 .
o p (r) = ﬁZe”"(’em")m(r—Rm), (138)

where

00(r) = (r1ge) = (rlda). 00) = (116 = = ((rlda ) +i2 (). (139)

with the valley index 7 = £1 for K, —K points, respectively. Here, dzz> , |dx2,yz> , ‘dxy> are the 4d

shell atomic orbitals of the Mo atom.

Using these two basis {}dzz> L(1/3/2)( |dxz_y2> +i7 |dyy))}, one constructs the four tensor state

basis {|¢:) @ (1), |0:) R L), [0v) @ 1), |dy) @1))}. Then, the Hamiltonian around the K, —K points
is approximately [25]:
(1-0;) _ Esoc

80, (140)

Eg
H; = | hv(tq.0, + CIyGy) + 761 QL+7T

where (gx,qy) =k — (£K) is the differential crystal momentum around +K points, E, is the inter-
band bandgap energy, and E is the spin-orbit coupling split energy. Here, v is the Fermi velocity
and, DFT calculation found v ~ 5.8 x 10° m/s [17]. In matrix form,

E;/2 0 hv(tg, —igy) 0
0 E,/2 0 hw(tgy — iqy)
H; = . & Y 141
0 hv(tq.+iqy) 0 —E;/2 — 1Ec/2

Let us focus on a particular valley 7. Also let us assume that our driving optical frequency is
nearly at resonance with only one spin transition. Then, the state lives in the subspace spanned
by {|¢.),|¢y)} with a particular spin. Let us also denote A = E, + TEo for the up spin and
A = E; — TE, for the down spin, describing the bandgap energy between the valence and the
conduction band for a particularly chosen spin. Then, the Hamiltonian in this subspace is

_ A/2 h(tqy —iqy)
H= ( hv(tqx +igy) —A/2 ’ ) ' (142)
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According to the detailed DFT calculation [12], the numerical values are v = 3.82 eV Adee.,
v =5.8x10° m/s), E, =2.23 eV (DFT-HSEO06) [17] (and experimentally measured as 2.15 eV
[27] ), and Egoc ~ 146 meV. Also it is noteworthy that the effective mass from the DFT band
calculation is found to be mS;/m, = 0.48 and m};/m, = —0.62 where m, is the electron mass.

The eigenvalues of the Hamiltonian is easily obtained to be

A 2
Ey(q) =7 (5) + V2R, (143)

where ¢ = /¢% + q%, and y = +1 for the conduction band, and Yy = —1 for the valence band. To

calculate the eigenvectors, let us slightly modify such that
m(tqx Figy) = (g F itqy) = hvtge ™™, (144)

where tan ¢, = gy/q is the phase of ¢. Let us set the eigenvector to be (x, y)T. Then, the equation
for the eigenvector is

AJ2 hvtge ™% x\ A\ 2 2o f X
(hvrqe““f’q —A/2 y =7 Pl + v y ) (145)

This equation is equivalent to

A/2 hvtge "9
A2 | 32 ol A2 | 22 Y=
VO e () g
hivtge'™® A/2
L / y=1. (146)

VO e (3) e

Multiplying ¥ on both sides of the second equation above, we obtain

A/2 hvtge ™%
5 X+ 5 y=7x
V@ +ive @) g
hvtge™ AJ2
L AR B (147)
V(@) i\ (3) g
Let us set A/ "
cosby, =7y 2/ , sinfy, zvq : (148)
(3) +1*viq? (3)"+rv2g?
Then, the above equation is
yxcos Oy, + Tye "sin 8, , = yx,
yrxe % sin @, , — ycos By, = y. (149)
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A slight modification to make the following:

yxet/ 2 cos 6, , + Tye "%/ s5in @, , = yxeT1T%/2)

yxe 't/ 25in 0, , — Tye 1%/ 2 cos 0y, = Tye"%/2,

x\ _ [ ycos(8y,/2)e "0/
y )\ tsin(8,,,)e’"%/?

In summary, we obtained the energy eigenvalues and the energy eigenvectors as

A 2
B =n(3) +1e

B ycos(9y7q/2)e*”‘7’q/2
A(9)) = ( rsin(9y7q/2)e”¢q/2 ’

The above is solved by

where A = ¢,v is the band index, and y=1for A =c¢,and y= —1for A =v.

(150)

(151)

(152)

Since Wy (q) is significant only up to 1/ag where ag/2 ~ 10 A is the Bohr radius of the exciton,
it is expected that only a small portion of g in the FBZ will participate in the exciton formation.
Then, one can assume that fivg << A/2, which allows for the perturbative expansion of the energy

and the eigenvectors up to the second order:

A h2v2q2

Then, the eigenvector equation is

1 h2 2.2 i i
(—(1—'}/)—')/ V4 )x+ vqre_w(])qy:o,

2 A? A
7%6”-6“”% — (%(1 +7)+ Yh2222q2> y=0.
For Yy =1 (conduction band), we have
B hzziqzx n thre*iw‘fy ~o.
%e“wqx — (1 + hzfzqz) y=0.

This has a solution that is correct up to the second order of g:

2,22
l_hvzq
uge)={ )= ’
q.c/ — - .
y h\Zﬂempq

38

(153)

(154)

(155)

(156)



For y = —1 (valence band), we have

h22 2 hvat )
(1+ 1 >x+ ey =0,

A2
hvgt e
— oy ——1y=0. (157)
This has a solution that is correct up to the second order of g:
ey [ e
|uq,v> - y o - 22 g? (158)
A2
In summary, the approximate perturbative solution up to the second order of g is

EV(Q)ZY(2+ A

h2V2q2
)= (1-"5

A hzvzqz)

) \Mo,c> +

hiv

TqreiT(Pq ‘ u07v> ?

(159)

i ) h222
) = =25 % ) + (1= )

3.2 Higher order correction

There is a discrepancy between the DFT calculation results and the Dirac cone approximation in
terms of effective mass and the actual band curvatures. Zhang et al. [26] and Kormanyos et al.
[12] added a higher order correction to the Hamiltonian in equation (142) the following term:

K(gx +itqy)? — L4* (g« — iTqy)
: (160)

( “
K(gx— iT‘]y)z - %qz(%c + iTC]y) qu

where the numerical values of the parameter based on the DFT calculations are o¢ = 1.72 eV A2,
B=-0.13eVA% k=-1.02eV A% andn =8.52¢eV A3,

Recall that we are mostly interested in the region around the Dirac cones where the direct
bandgap occurs. Particularly we are interested within |g| < 1 rad/A region where the exciton
envelope wavefunction yy(g) is significant. Figure 6 shows some difference in the band structure
between the second-order perturbative solution in equation (159) and the numerically calculated
energy eigenvalues from the higher-order corrected Hamiltonian using equation (160). Certainly
what is shown in the figure is that the higher-order corrected numerical solution has a larger valence
band effective mass than the conduction band.
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Figure 6: Comparison of band energy dispersion of (a) the perturbative analytical solution (159),
(b) the higher-order corrected (HOC) numerical solution. Also shown are the differences between
the two (c) the conduction band, and (d) the valence band.

3.3 Dipole moment calculation
3.3.1 Analytical solution and comparison with numerical solution

To calculate the dipole moment, we use the well known Blount formula [1]:

(Wi r|Wear) = =iV (WiealWo ) + i (| Vil ar) (161)

where the first term on the right hand side describes the contribution from the phase term in case
k=k',A = A'. Unless there is discontinuity in |l//k, ,1> with respect to k such as Riemann sheet
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branch cuts, the first term is ignorable. Then, most of the cases we have

(Wia|r| Wi ar) = 6 (U2 | Vi) - (162)

Putting k = k' and A = ¢,A’ = v, we obtain

dev(q) = elc(q)|r|v(q)) = ie <“q,6| Vq |”q,V> (163)
From equation (159),
. hvt 22  .hv 22
Vq ‘uq,v> =X (_T |u0,c> - Zqu ‘Mo,v>) +Y (lX ’u0,6> _2FQy |u0,v>) (164)
Hence,
A wt  Bvtg? Pvigr
dey(q) =iex (_T + A3 T _, A;] q«€ ’T‘P”l)
(v VR mviqr
+iep (’X —itg e 2 e “Pq) (165)

This is accurate up to the second order of g around the Dirac cone. if g approaches zero, the dipole
moment is proportional to the ration /iv/A. The parameter v is related to the hopping strength, and
therefore, the oscillation strength is proportional to the hopping strength while inversely propor-
tional to the bandgap.

If we calculate the dipole moment elements for the o, light that has a polarization & = \% (x+

oA

i9), we obtain for T = 1:

dcv(Q) = dcv(Q) &= —i

(166)

This is a correct answer up to the second order of g. Note that the second-order perturbative
solution is a constant imaginary value over the region of the Dirac cones.

Figure 7 shows the numerically evaluated d,(q) according to the unperturbed full Dirac cone
approximated eigenvectors of the Hamiltonian in equation (142), corrected by the higher-order
correction term in equation (160). Compared to the analytical value of d.,(q) = —/2ieliv/A =
—3.64i x 1072 (C-m), using the second order perturbation result in (166), the numerically evalu-
ated Dirac cone approximated d..,(q) is not much different for the |g| < 0.1 rad/A, which appears
to be nearly constant. Nonetheless, the higher-order corrected numerical values exhibits non-zero
real values and varying imaginary values of d.,(q) over the Diraction region.

We also calculate gy according to equation (28):

gv =Y de(@) Wy (q). (167)
k

Using the second-order perturbative result in equation (166), we then obtain

o — <_“§Ah) Y wila) = (—@) vi(r=0). (168)

q
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Figure 7: Numerically evaluated d,,(g) for the o, circularly polarized incoming photons, based
on the second-order corrected Dirac cone approximation.

Using the result in table 1, one obtains gy = g, as follows. The nonzero element occurs only for
m = 0 since Yy (r) o< r for m # 0, and the first couple of nonzero gy are

——i\/g 4ehy _ i 4ehy _ i 4ehy (169)
00 =N T\ an )0 00T TN 32 3,0 ) 8O T TN 5\ 54, )

It can be easily shown that

. A 4ehv
800 =N 2nt ) <(2n+ l)aoA) ' (170)

For the numerical evaluation based on the higher-order corrected Dirac cone approximation,
we use the following conversion from sum to integral:

A 2
§—> (M)z/d q (171)

where we used the infinitesimal areal element d>g = (27)?/A. Then, it follows that

gy = zk:‘//:/k (q)dev(q) = (2?[)2 / &g vy (q)dev(q). (172)

Table 3 shows the calculated g, based on the analytical solution in equation (170), on the
numerical evaluation of the gapped Dirac cone Hamiltonian to obtain the eigenvectors, and on the
numerical evaluation of the higher-order corrected gapped Dirac cone Hamiltonian to obtain the
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\Y ‘ perturbative analytic g, | gapped Dirac cone gy | higher-order Dirac cone gy

(0,0) 4.34i 2.43i 2.15i
(1,0) 0.84i 0.41i 0.33i
(2,0) 0.39i 0.19i 0.15i
(3,0) 0.23i 0.12i 0.10i
(4,0) 0.16i 0.02i 0.01i

Table 3: Comparison of the calculated gy based on the second-order perturbative analytic solution,
the numerical evaluation of the gapped Dirac cone approximation, and the higher-order corrected
numerical evaluation of the gapped Dirac cone approximation. The unit is 10720/ VA (C-m).
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Figure 8: Comparison of the calculated g, for the perturbative analytic (blue), the gapped
Dirac cone approximation (red), and the higher-order corrected gapped Dirac cone approximation
(green).

eigenvectors. Since gy with v = (n,m # 0) is negligible as expected since yy (r) o< r, we present
only the results for v = (n,0). It is easily seen that the perturbative analytic solution is not so
accurate for the most important v = (0,0) exciton state. In addition, the most accurate result
of the numerically evaluated higher-order corrected gapped Dirac cone model shows the strong
dominance of g o) over all others. It is well expected that the exciton absorption spectra of MoS;
would be dominated by the peak at @ gy = E; —4Ej /h.

Next, we calculate f, (k) which is given by

(@) =e) w(d){c(q)& r|c(q)). (173)
ql

Using the formula in equation (162), we calculate
(@) r]e(d)) = iS4 (uge| Vg |ug.e)- (174)
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Let us calculate

Then, we obtain

. 2h2v2q 722 . ~ 2h2v2q -hzvzr .
<uq,(;| Vq |uqac> =X <_ AZ . + Az (qx - quy)) +y - Az Y +l AZ (qx - quy)

hZ 2 hz 2
:x( v qe”%) +y( * qe’w‘?) (176)
Hence, we obtain
hZ 2 hZ ZT ]
dec(q) = iek (—qu”%) - &( > qe”"’q)- (177)

hzvz )
dec(q) =dec(q) - € = —ie(1+ T)quzr% (178)
Therefore, we obtain
W
Folg) = —iewv(q) (14 7)=5-qe"™™. (179)

It is noteworthy that fy(¢) and d..(g) both exhibit the selection rule where 6+ light works for
T = 1 valley and o— light works for T = —1 valley, but not cross.

Next, let us calculate &, which is given by
hyo = e (xy|r-&|xq) . (180)

Using the closure in equation (188), we calculate for the case of o+ light with a circular polariza-
tion € =X+ iy:

hvo—e/A (xy|r) (r|r-&|x0) —e/ r)(r-&)yy(r)
/ T () (e i) o (v, )

2 .
= [ rar [T 0w 0)re o 0). (s

Note that this produces a natural selection rule that for o+ light only the transition ‘X070> > |xn71>
is allowed due to the ¢ integral. We obtain Ay using the wavefunction of the bound excitons in
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table 1:

9 /3
= —\/j\e\am h(1,0)0,0) = (1,-1)(0,0) = 0,

)(00) 162\/7‘ a0, h(a,-2)(0,0) = h2,-1)(0.0) = 12,0)(0,0) = h2.2)(0

14721 1944 15125
h.000) = 5797 —1a5lelaos  han00) = 15625\/_| elao, hs,1)0,0) = 1119744 \ |ao,
54756 / 3781575 1()5
182

so on. Note that &y keeps reducing as v increases, and /g 1)(0,0) 18 about ten times smaller than
h1,1)0,0)

Finally, hy,y, for 6+ light, which is defined as

thVZ :e<Xv1‘r'é‘sz> (183)

is similarly calculated:

hV1 \%]

o 21 .
=5 [ rar [ 0w (1) (1:0).

(184)

According to the selection rule due to ¢ integration, the first few that are not zero are:

101255

8192 |¢lao;

b1, -1y2-2) = h(1.0)2,

27783
h<1’1><3’2>:31250\/r_| a0, P(1,0)3,-1) = Tecre

7503125»/_||
1119744 a0,

hi,2)3,-3) =
1071875v7
ho,—1)(3,-2) = WM“O, h0)3,-
248675
h21)3.0) = 379936 | lao, o231 =
SO On.

2025

3969\/_
15625

373625 “
~ 373248 | 3¢90
300125

~ 1119744\ 2 ||a“

——clelao, (1,1),(

45

1125 |’
~ 4096 | 2 14190
3087

~ 31250V 2 || 0,

(3,0)

(185)
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Figure 9: Numerically evaluated x(l) based on the higher-order corrected Dirac cone approxima-
tion. Real value of x(l) in blue and imaginary value of chiV) in red.

4. Numerical evaluation of susceptibilities

In this section, we apply the numerically evaluated various dipole moments calculated in the pre-
vious section to the fomula for the linear and the nonlinear susceptibilities in the table 2. Since we
saw some significant discrepancies in the dipole moments among the various approaches, namely
(1) the second-order perturbative Dirac cone, (2) the numerical Dirac cone, and (3) higher-order
corrected Dirac cone, we will exclusive use the dipole moments based on the higher-order cor-
rected Dirac cone.

4.1 Linear susceptibility

We calculated (1), which is shown in figure 9. Both the real and the imaginary values are shown in

the graph. Five exciton resonances are prominent, which corresponds to | l//(070)> , | Vi 70)> , } l//(270)> , ‘ IV(370)>,
and ‘1//(4’0)>, corresponding to 1.776, 2.050, 2.072, 2.078, 2.080 eV, respectively. For the broad-

ening factor, we used 9, = Y uniformly. The line broadening is due to the radiative transition, for

which we used 200 fs as the lifetime.

We then calculate the absorption as Otdeyr = 2degIm[y/ 1+ x(l)]a)q /c where we used degr =
6.5 A. The absorption leaves a long tail beyond the first resonance frequency. The peak absorption
is estimated to be approximately 23 % at the resonance frequency 1.776 eV of |‘If(0,0)>- Com-
pared to the experimental values of 10 ~ 15%, our predicted value is approximately double. This
discrepancy is due to (1) the 2D treatment of the problem and (2) the gapped Dirac Hamiltonian
approximation. To compensate for this discrepancy, we introduce a fitting parameter & such that

we replace gy — Egy. We chose & = 0.5, resulting in the maximum absorption at the resonance to
be 11.6%.
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Figure 10: The deduced absorption of the monolayer MoS, material and the refractive index spec-
tra.

We also calculated the refractive index through n = Re[v/1+ x(1)]. The refractive index has a
long tail below the first exciton state resonance.

4.2 Second-order susceptibility

We then calculate the second-order susceptibility. We are primarily interested in the low-frequency
second-harmonic generation in the figure 3, where the input light has a frequency @, ~ ep/2. For
the (@ (wy ~ ep/2), one needs to use gy, hyo, go as is shown in the table 2, which are all calculated
and listed in the previous section. While performing the summation over v, we summed up to
v = (n,0) = (7,0). The difference of the maximum | (?)| between summing up to n =7 and up to
n = 61s only 0.7 %. Hence, we concluded summing up to n = 7 is sufficient.

As we described in the appendix E, the intensity of the second harmonic at the exciton resonant
frequency ep depends on the absolute value | %(2)| whereas the phase of 2@ explains the phase
delay of the second harmonic light. The estimated maximum value of | (?)| at frequency e /2 is
approximately 8 x 108 m/V. The order or magnitude of this result matches the experimental result
found in Kumar, et al. of ~ 10~7 m/V [13] and the experimental result found in Malard, et al., of
~ 1077 m/V [14].

Compared to the typical x(z) value 20 pm/V of lithium niobate, which is the common material
for the second harmonic generation, the (2) of Mo$S, monolayer exciton is about four orders of
magnitude larger.
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Figure 11: Numerically evaluated 2@ based on the higher-order corrected Dirac cone approxima-
tion. The real value (blue), the imaginary value (red), and the absolute value (green) of x @) are
shown.

4.3 Third-order susceptibility
4.3.1 Third harmonic generation

We are primarily interested in the case where the fundamental frequency is one third of the low-
est exciton resonance frequency: @, ~ eo/3 (see figure 5 (a)). The formula of x(3)(a)q ~ ep/3)
involves the dipole moment hy,y, multiplied by Agy,. Note that &gy, has nonzero element for o+
incoming photons, only when v, = (np,my) with my = —1. Hence, we are only concerned with
hy,y, in the case where v| = (ny,m;) with m; = —2. These are the coefficients such as h(L_l)(z?_z),
h1,-1)3,-2)> h2,-1)(3,~2) 1(2,-1)(4,~2)- and so on. Table 5 shows the useful values of both f¢y, and
hy,y, for calculating the susceptibility relevant to the third-harmonic generation process.

Using the values in the table 5, we evaluated the third-harmonic generation xg)l(a)q ~ep/3).
The maximum || is found to be 5.5 x 10717 m?/V2.

4.3.2 Two photon process

We also primarily focus on the case where the upper level of the two photon process involves
the lowest exciton bound state | ), as shown in the figure 5 (b). Let us recall that the relevant
susceptibility calculated is given in equation (136). If we set |y, ) — |yp) in the equation, we
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\'%) Vi ‘ h0v2 hV2 \%1

(1,—1) (2,-2)] 0344 276
(3,-2) 1.05
(4,-2) 0.61
(2,—1) (3,-2)]0.141 5.07
(3,—1) (4,-2) ] 0.082 8.01
(4,—1) (5,-2)]0.056 11.6
(7,-2) 2.76
(5,-1) (6,~2)]0.041 158
(6,—1) (7,—2)]0.032 207
(3)

Table 5: Calculated &y, y, that is useful to calculate y;, (30, ~ ep, @;). The unit is eap (C-m). For
MoS;, ap = 13.4 A.

obtain

3
2Xvp (0~ €0/2)
(eo_eVZ )Neg\’l hOV] h?)vzgtz
=) €0l 1 . (186)

Vi,V2 ((evl —,)—i€y, )((60—2wq)—i8()) ((eo—evz—wq)_igvz)

For o+ light having the polarization vector & = (1/v/2)(* 4 i9), we showed that g,/ ~ yy (r =
0)d.,(0) is nonzero only for v/ = (n,m) with m = 0, due to the multiplication by " in y,(r) as
shown in the table 1. Then, the nonzero contribution occurs only if vi = (ny,m;), v, = (np,my)
have both m; = my = 0. In addition, we also showed that for 6+ light, the nonzero value A,
occurs only if v/ = (n',m) with m’ = 1 (see the equation (182)). Therefore, for o+ light, the
two photon process does not occur since gy, iy, = 0 for any v;. Then, for o+ light, xﬁ(wq ~
ep/2) is nonzero only if we include the unbound exciton states and sum over them for the virtual

levels whose contribution is diminished, due to a large values of the frequency difference in the
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Figure 12: Numerically evaluated y ) (wy ~ ep/3) based on the higher-order corrected Dirac cone
approximation. This process corresponds to the figure 5 (a) where the input light frequency is
approximately one third of the lowest exciton resonant frequency eg. The real value (blue), the
imaginary value (red), and the absolute value (green) of x(2) are shown.

denominator. Thus, it is expected that %]("SP)((Dq ~ ep/2) will be very small for o+ light photons.
Instead, the two photon process involving |y, ) — ‘I//(l,—l)> with the corresponding xﬁ?(wq ~
e(1,-1) /2) will be more significant as it involves the quantities such as 8(n0) #0and A, 0y(1,—1) # 0.

The two-photon susceptibility is for v = (1,1):

(3)
Xrp(@q ~e.1)/2)
(1,1 =evy INegvi i1y 1y 1y, 89,
-y g€l | . (187)

vz ((evy —ag)—iev, ) ((e(1.1)—20q) —ig(11)) ((e(1,1)—ev, ) —iev, )

The useful dipole moments A(; 1)y, with v; such that gy, is nonzero are shown in table 6.

The numerically evaluated xﬁ(a)q ~ e(1,1)/2) is shown in figure 13. As we stated in the
Appendix E, the imaginary value is real two-photon absorption and the real value is related to
the Kerr effect where the refractive index changes proportionally to the intensity of light. The
maximum of the real value of )(Sz is shown to be approximately 1 x 10~!8 m?/VZ2. The maximum
of the imaginary is shown to be approximately 2 x 10~!% m?/V2.

For the Kerr nonlinearity applications, one wants that the photon changes the refractive index of
the material while not suffering from the incoherent effect of the two-photon absorption. Therefore,

the ratio between the real and the imaginary values of xﬁ? is important. The ratio reaches quite

large values of > 50 while the absolute value of the real xg)) is still large. The negative sign

appearing in equation (13) is significant: the fact that 7 (1 ) is both dominant and negative is
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Vl ‘ h(lal)vl

(0,0) | 0.344
(1,0) | —3.18
(2,0) | 0.752
(3,0) | 0.320
(4,0) | 0.194
(5,0) | 0.135
(6,0) | 0.102
(7,0) | 0.080

Table 6: Calculated /iy 1)y, that is useful to calculate xﬁg (2w, ~ e(1,1), ®y). The unit is eag (C-m).

For MoS,, ap = 13.4 A.
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Figure 13: Numerically evaluated xgz (@, ~ e(1,1)/2) based on the higher-order corrected Dirac

cone approximation. This process corresponds to the figure 5 (b) where the input light frequency
is approximately one half of the "V(l,l)> exciton resonant frequency e(; 1y. The real value (blue)

and the imaginary value (red) ¥ are shown. Also shown is the ratio between the real and the
imaginary values of )(;3,2 (green).

combined with the negative sign to produce a positive imaginary value, which nicely explains the
two photon absorption.
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5. Conclusion

We have calculated the optical nonlinear susceptibilities of the monolayer MoS,, based on the
second-order corrected gapped Dirac cone approximation around K points. The calculated optical
nonlinearities are impressively large compared to other 3D bulk materials. Particularly the Kerr
optical nonlinearity of the monolayer MoS; is quite large in the spectral region where the two-
photon absorption is negligibly small, which indeed is a promising result to use the MoS, material
for the cavity QED configuration to operate the qubits on a semiconductor platform. Although
graphenes also exhibits a large third-order susceptibility [20], graphene suffers from the linear loss
for all incoming light’s frequencies, due to the gapless Dirac cone dispersion. Unlike graphene,
MoS;’s Kerr effect does not suffer from the linear absorption and one can expect a sufficiently
coherent operation utilizing a strong Kerr nonlinearity in the monolayer MoS; platform. Combined
with the newly developed CVD capabilities to deposit sheet-by-sheet on the existing photonic
circuits, our results indicate that MoS; is indeed a good candidate for chip-scale qubit operator as
well as low energy optical transitors on chip.

We found that our result is within an order of magnitude compared with a few existing ex-
perimental results for the second and the third harmonic generation from the excitonic levels of
the monolayer MoS,. This indeed is a good agreement as a nonlinearity calculation. We did not
include the sophisticated higher order effect such AC stark shift or self-coupling as in [20], which
however are expected to be a small correction compared to the two-photon absorption or direct
Kerr effect.
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Appendices
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A. Fourier transforms

In this section, we clarify the normalization constants for the state kets. For this, we will clearly de-
fine the Fourier transforms with appropriate normalization constants. We begin with two important
closures (completeness of the Hilbert spaces):

| &rint=1.

Y lk) (k| =1, (188)
k

where V is the quantizing volume. We treat r as the continuous eigenvalues of the operator 7, while
we treat k as the discrete eigenvalues of the operator k. Note that the definition of this closure is
consistent with the interpretation that |y/(r)|> = (y|r) (r|w) is the probability density for a particle
to be found at r since, putting the above closure into a normalized state |y):

wiv)=1= [ @yl i) = | drw()P (189)
This ensures that the integration of the probability density must be unity.

We know that the wavefunction in the position basis for a particle of a state |k) is (r|k) o< e/
The way to calculate the normalization constant is to set (r|k) = Ce**” and use the following
normalization condition:
/ 3 N el [ @reitt—nr _ { CIPV, ifk=K,
(kIK") = & v = /d (k|r) (rlK") =|C| /d rell = { 0. ifk£K. (190)
The above holds because k, k' are discrete quantities such that k- a; = 2mm, k' - a; = 2m'w where
m,m’ are integers and gy is the lattice constant. Therefore,

&Sr oo 1, ifk=FK,
Vvel(k K) :{ 0 ifkK }zak’k,, (191)
Then, we obtain C = 1/4/V and consequently
1 .
(rlk) = —=e™". (192)

va%

Then, the Fourier transform of a wave function is clearly defined as
y(r) = (rly) = Z(r\k> (kly) = ==Y w(k)e™",
\/_
w(k) = (k) = / &Br (klr) (rly) = / Sry(r) (193)
Extending to the two particle wavefunctions follows easily: using the closures

/d3rd3r' ‘r, r’><r,r" =1,
%

Y |k k) (kK | =1, (194)
kK
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one obtains the normalized wavefunction:

1 ] ! )
(r,r |k, k') = Velk”"‘ " (195)

which leads to the Fourier transforms:

1 ertill
’ N _ 7 / _ , /k,k/ k,k’ — k,k/ ik-r+ik ~r,
y(r,r') = (rrly) kXJ;OH ) (kK ) VkXJ;w( Je

1 N
vk k) = (kK |y) = /V &Erd®r (kK |, ) (r,F |y) = v /V Erd®ry(r, e kKT (196)

56



B. Exciton creation operator

According to the anticommutation relation of the electron operators in (2), we obtain the following
anticommutators for the lowering and raising operators of the electrons and holes:

{o, o} = { 0w Bl | = {ow. B} = {Be. B} =0,
(o) = (o B} = {of B} = {BBr} =0
{ak,a,j,} — S, {ﬁ,ﬁﬁ;} — 5 (197)

We treat the bound exciton in a second quantized context. Let us now derive the creation
operator for the exciton state. If we denote the exciton state as |VK) where v = (n,l,m) is the
exciton state index and K is the total momentum vector of the exciton, one can express the exciton
creation operator using the Dirac notation as

B@,K = |vK) (0], (198)

where |0) represents the ground state where all valence band states are filled and all conduction
band states are empty (i.e., the Fermi sea), with zero energy eigenvalue.

Note that the exciton state |VK) is a dual-particle state where there is one electron-hole pair.
One can use a single electron-hole pair basis |k, —k) that represents a free electron (in the conduc-
tion band) with the momentum 7k, and a free hole (in the valence band) with the momentum —7k.
Any single electron-hole pair then lives in a Hilbert space that is spanned by basis {|k,—k)}. In
this subspace, the closure relation is

Y |k, —K") (k,—K'| =1. (199)
kK

Then, we obtain

By =Y |k,—k') {k,—K|vK) (0|

k,k’

=Y (k,—K|vK) [k, —K") (0]
k,k/

=Y (k—K|vK) o7, (200)
k,k/

where OC]Z- , ﬁj , are the creation operators for the free electron and the free hole, respectively. We

calculate the following using the closure [d*rd*#' |r,#')(r,7| = 1 and the equation (195):
<k, —k’]VK> = / drd3r <k, —K|r, r’> <r, r'|vK>
14
1

1
z/d3rd3rlve lk}’elk r

l//v(r—r/)ﬁe”('r?/? 201)
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where yy, (") is the solution to the exciton Schrodinger equation in equation (4), with the quantum
number v = (n,l,m), and we approximated the electron and the hole pair states as the free electron
and free hole states. Then, we Fourier-transform y, by using equation (193) to obtain

(k, —k’|vK>
d3 d3/ r"’r/ k k/ / k// / k//
VZZ rexp ket K K (=) ) |y ()
k//
Z Erd’r ex (5 k) (S K’ 202
=72 p 5 kK (S wv(k')  (202)
k//

Using the equation (191), we finally obtain

k+K
<k,—k/|vK>:5K’(kk/)wv< 5 ) (203)

Hence, we obtain

k+k
Blg =Y 8 x) W (—2 > o B’

kK
K
(i 5)eit
k
This coincides with those appearing in the references [23, 22].

One can calculate the boson commutator for the lowest order v = 0 exciton operator as follows:

[Boo, B 00) = X Wolk)wo(K')[B- k0, 00 B ]
kK
—ZW’O l—akak_ﬁTkB k)
=1- ﬁ(nag), (205)

where n is the density of the excitons, ay = h2£0 / e?m, is the Bohr radius of the exciton, and
d = 2,3 is the dimension. Hence, in the limit of a vanishing number of excitons (nag — 0), we
obtain the boson commutator for the excitons. Hence, the excitons are approximately bosons when
the exciton density is sufficiently small.

If we assume that K ~ 0, viewed in the scale of the crystal momentum since the incoming
photon’s momentum is negligibly small, we interchangeably use the notation |[v0) = |xy). Then,
from the definition of the exciton creation operator and the derived result of equation (204), we
obtain

= [xv)(0] = Zwv (K)o B, (206)
From this, the following is obvious:

B} |0) = |xy), B |xy)=0. (207)
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Figure 14: Band representation of many body states for the Fermi sea (|0)), the single electron-hole
pair excitation (not bounded by the Coulomb interaction) (|C(k)) = |k, —k)), and the exciton state

(|xv>)

We can obtain the reverse relation to express Oc,j ﬁi , using BT, as follows. Note that

S = (kK =Y (k|v)(v|K) Z v (k) wy (k). (208)
v
We multiply y; (k') on the left of both sides in equation 206 and sum over V:
Y wi(K)B, = Yy (K w (ko BT, =Y & pal BT = o BT . (209)
v k,v k

Hence, we obtain the reverse relation:

o/ B', =Y w;(k)Bj. (210)

Also note that, explicitly, the Fourier transformed yp (k) for the lowest exciton state is given by
[7]
ﬂ?a
VY e OD)
Wo(k) = ; (211)

2
V o @0

where V,A are the volume and the area of the sample, respectively. These are relatively flat for
0 < k < 1/ag and rapidly decreasing for k > 1/ag. Therefore, the exciton size ay determines what
portion of k points in the FBZ would participate in creating the exciton significantly. For example,
MoS; has a unit cell size of 3.2 A[16], while it has the lowest exciton radius ag of 10.5 A. Since
the size of the FBZ is 27t /a; where q; is the lattice constant, it implies that about 10 % of FBZ k
points strongly participating in building an exciton state.

Figure 14 shows the many body state represented by the band structure of a solid. The Fermi
sea state has a fully occupied valence band and a fully empty conduction band. The single electron-
hole pair state is not bounded by the Coulomb potential (i.e., above the Coulomb bounded state
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Figure 15: Energy levels of various many body states.

- excitons). The exciton state is a superposition of the single electron-hole pairs for all possible
k, with a weight yy (k). This is somewhat a remarkable physical insight for an exciton, which
is originally a bound electron-hole pair state by the Coulomb potential, which turns out to be a
superposition state of all possible k, with the Fourier-transformed exciton wave function v, (k) as
the superposing weight.

Figure 15 shows the energy levels of the various many body states. We regard the Fermi sea
state energy to be zero. The first excited state is the lowest exciton state |Xq), and the next levels are
the exciton states |x1),|x2)--- which are bound state according to the Coulomb potential. Then,
the unbounded states C(k) starts, which is more or less like a continuum of an energy band.

60



C. Optical selection rule for £K valleys

The result in section 3.3.1 also nicely explains the selection rule. Let us consider the o+ light that
has the polarization € o X +ij. Then, the dipole moment at the band extrema is proportional to
d*,(0) 4 id?,(0) where d¢; (0) is the x,y component of the dipole moment in equation (165). For
K valley, we set T = 1:

. ) v hv L hy
d;:K [d},(0) +id?,(0)],_, = ie (_X — X) = —ZZeX. (212)
However, we calculate
fi h
oy = [5(0) — id2y (0)]_, = ie (—Kv + KV) =0, 213)

Therefore, at K valleys, only o+ light is absorbed. At —K valleys, one can show that

hv ok
&g = 5 (0) +id2 (0)],__, =ie [~~~ ) =0,
A A
- X . . (v hv hv
de,_g = [d;,(0) —id?,(0)],__, = ie (X + X) = 2ie—. (214)

Therefore, at —K valleys, only o— light is absorbed. Hence, by adjusting the light polarization,
one can selectively excite either K valleys or —K valleys.

According to (165), the optical selection rule starts deviating from the above result for the cases
qx 7 qy. However, note that the deviation from the valley selection rule is a second-order effect.
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D. Lifetime of an electron hole pair

When an electron-hole pair is excited, the recombination takes place either through a radiative or
a non-radiative process. The radiative process is the spontaneous emission while the non-radiative
process is the scattering involving phonons. At zero temperature, the dominant process is the
radiative process due to the lack of phonon excitations.

According to the Fermi’s golden rule (first order perturbation theory), the differential transition
rate dWy; from an initial state |7) to a final state |f) subject to a perturbation from an interaction
Hamiltonian .77 is given by [3]
27'L'|

h

dWy; = =| (| i) [’p¢(E)S(E — ho)dE, (215)

In our case, the interaction Hamiltonian is given by

ho, ho,
-“ . E
M=) [dcvakﬁikq [ 3ve: ba— doiy | 3y gobj,akﬁ_k] : (216)

wher.e Otlj , ﬁ,j are the raising operators for the electron and hole, respectively, and bj] is the photon
creation operator.

Note that the states are tensor states |i) = [0,) ® [k, —k) = Oc,j il + |04) ®10), describing the state
where the number of photons is zero and an electron hole pair is excited, and |f) = }1q> ®1[0) =
b; |0,,> ® |0) where one photon state is excited and the solid is in the ground state (Fermi sea).
Hence, we find

_ «. | ho,
(F1 01y = iy | 352 (0| @ (016gby 0) @ 10)

.. | ho,
=di T:o (0g] (Bibg+1)]04)

ho
=d*i 4 217
"\ 2ve, @17)

The photon energy is given through
Eq
Eq=hog=heq, q=-", (218)
and the count of states
V. 4m 14 > v E; dE,

N, =2——— dN, =2——4ng°dg =2 41 219
1 =2 0ap 3 T e =2t =2 3 5 e 219)
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where we put extra factor 2 for counting two possible polarization. Hence, the density of states is

2 2
v,  VE;  Vay

E) = = = : 220
On the other hand, the solid state band energy is given through
E(k)=E,+ L dE (k) (221)
e 2m,’ B 2
The count of states is
A A A m Am
N = mk?, dN= 2mkdk = — 28— dE (k) = —>dE(k). 222
N
Hence, the density of states is
dN Am,
E(k)=——~= 223
Then, we obtain the total spontaneous emission rate
27 |dev|[* oy quz a);’ 2|1
W= [dw, = == = d.|" =~ 224
/ = 2 ey he - amand el T (224)

where 7 is the lifetime. Here, we put the extra factor 1/2 to average out |d,,|* for all possible
polarization (2D). Putting the parameters of the MoS;, we obtain T ~ 5 ns.
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E. Nonlinear propagation of light

We briefly remind of the nonlinear propagation of light at harmonic frequencies affected by the
nonlinear optical susceptibilities. We follow the treatment in Boyd [2]. We start with the Maxwell
equations:

VD:p7
V-B=0,
0B
VXE=——
% ot’
D
Vtzaa—t—l—J, (225)

which is supplemented by the materials without free charges or currents:
p=0, J=0, (226)

but, having the polarization
D = gE +P. (227)

The material is assumed to be non-magnetic:
B = upH, (228)
where L is the vacuum permeability. Then, differentiating the Maxwell equation, we obtain

1 92 1 2P

2ot T e (229)

where Uogy = 1/c? is used, and V - E is assumed to be negligibly small even for the non-isotropic
medium (P varies over space). By splitting the linear and the nonlinear parts of polarization such
that P = P+ PN with P& = gyx(VE, we obtain

e 92E 1 02PNk
c 92 gt Ir?

V’E — (230)

where e(1) = 1+ x (). Assuming a plane wave and using the complex tilde envelopes such that,
for example,

E(r,t) =E(r)e ™ 4 c.c., (231)
we obtain ) )
~ Q) ~ w; ~
V2E + C—zqe(l)(coq)E — —%—ZZPNL (232)

For the second harmonic generation,

5(2)

P (w,) = e0x® (0, /2)E " (0,/2). (233)
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Let us use the plane wave approximation E = £A(z)e*?, and calculate only for the envelope A(z),
while applying the slowly varying envelope approximation where

PAR)| | dAR)

—_— k
< dz

, (234)

dz?

where k = nw,/c with the refractive index n at @y, the differential equation for the z propagating
plane wave at @, is givenas

dA(w,) | xPog

: q 42 iAkz
2ik & = A% (wy/2)e"™, (235)
where Ak = 2k(w,/2) — k(@) is the phase mismatch term. This leads to
dA(o) 2Py, , iAk
=P g2 g )6tk 236
dz "2en (@/2)e", (236)
The solution after propagating distance of L is
(2) L 2) iNKL
X0 0 / irkz _ XD 40 e 1
A(wy, L) =i——A%(w,/2 d =i—A(0;/2) ——/——. 237
(0g; L) =175 - =A%(wy/2) | dze i ANy /2)— (237)
The intensity is given as
1 = 2neyclA|? (238)
Hence, we find
21, (2) 2 .2
&0 ,/2 AkL/2
I(w,) == o\ (@0/2)F 5 sin”(AKL/2) (239)

2cn (AKL/2)?

From this, we see that, for the intensity of the second harmonic, the absolute value | x(z)| at the
fundamental frequency ®,/2 matters, and the phase of x(z) enters in equation (237) to describe the
phase lag of the second harmonic envelope.

Third harmonic is similarly calculated, and what matters for the intensity of the third harmonic
is the absolute value |y (3)] at the fundamental frequency @,/3, and the phase of x (3) enters to
describe the phase lag of the third harmonic envelope.

The two photon process is somewhat different since the nonlinearity is given as

P (0g) = Seotrp (0 = @+ 0 — 0g) [E (@) PE(a,) (240)
Hence, the total polarization (excluding the second order) is given as
~ ~ 3 ~ ~
P(ay) = ox VE(@,) + 301 p (@) |E () PE(@,). (241)
Therefore, the effective susceptibility is
3 ~
Xett = 2V + 31 E (@) (242)
Recall that the complex refractive index n is given as
n* =1+ Yetr- (243)
Hence, the real value of )(g; serves as the self phase modulation (modifying the refractive index

depending on the intensity o |A(®,)|*), while the imaginary value of xﬁ? is indeed a loss term,

describing the two photon absorption, which is also intensity dependent.

65



F. Derivation of Blount formula

In this section, we study the Blount formula given in equation (161), which is repeated here:

(Wialr|wean) = =iV (Wi W o) + i (e | Vi) - (244)

Let us consider the Bloch theorem:

(rlwin) =e*" {rlug ;). (245)

Then, we calculate

Vi (Wialwe ) = Vk’/d3r<uk,l’r> e_ik'reik/‘r<rfuk’,/1'>

=i [ @yl vy + [ @r(ulr)e e 51V g 1)
= i{Wia| 7w ar) + (a ( [ @il e"k”‘)*) Viluga).  (246)
Note that, for any normalized state kets |9),|¢’):
(9] </d3r|r)<r!ei(k/_k)'r> 9" = /d3r¢*(r)¢/(r)ei("/"‘)". (247)

If k' = k, the right hand side is equal to (¢|¢’). Otherwise, the phase rapidly changes for large r,
and the net contribution must become zero. Hence, we conclude

/ &Er|r)(r]eF 0T = § 1. (248)
From this, we obtain

Vi (Wi lWiear) = EWeal 7 [Wiear) + 8w (| Ve [ o) - (249)
This is equivalent to the Blount formula in equation (244).

Things become complicated when k' — k. Taking this limit on the left, we obtain
(wia|rlwia) = —ikl,iglkvk' (Wi W) +iCwen | Vil ar) - (250)

We know that <l//k7 Al Wi, ,1/> = 0y ' since “V/a )L> and “Vk, ,1/> are the eigenvectors of the Hamilto-
nian, which is a Hermitian operator. The real question is whether we can bring the limit inside the
derivative V. This in general is not possible, due to, for example, the dependence of the phase of
‘ Vi, l’> on k'. Unless the phase is discontinuous as in the Riemann branch cuts, indeed the function
value of Vi <l;/k7 2l 7% l’> must be continuous as kK’ passes through k. Hence, as Blount stated in his
paper [1], the first term is in most cases & 5 = 0.
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In case of the monolayer MoS,, there is no reason to believe that the phase of “Vk, ,1> becomes
discontinuous at any point of k around +K points. Hence, we obtain

(Wia|r|via) = |y 27 - (251)

Next, we show that the well known formula of the velocity operator
1

V=2Vl (252)

where 57 is a Hamiltonian, is consistent with the above result. For this, let us consider
. 1 .
(elviv) = {cliv) = — (c|r, 2] |v) = i@ — o) (e r[v), (253)

where |c,v) are the kets of the conduction and the valence band states, and %, , is the energy of
the conduction and the valence band, respectively. Hence, we obtain

i

=——«—{(c|V .
<C|I"‘V> h((ﬂv— wc) <C| k%|v> (254)
Note that
V() = (V) [v) + AV |v) . (255)
On the other hand, since .77 |v) = hw, |v), we have
Vi () = (Vihay) [v) + 1o, Vi |v) . (256)
From these two, we obtain
(Vi) [v) = (Viha,) [v) + hoo Vi |v) — AV |v) . (257)
We take bra on left:
{c| (Vi) [v) = (Vihay) (c|v) + hay, (c| Vi |[v) — hoxe {c| Vi |v)
= (@, — o) (c| Vi lv) . (258)
From equations (254) and (258), we obtain
(c|r|v) =i{c|Vi|v). (259)

On the other hand, we calculate

(c|Vi|v) /d3 (uclrye ™" (elkr|”v )
_/d3 ir) (uc|r) (rluy) + (ue|r) (r] Vi luy)]

= ir (ucluy) + (ue| Vi |uy)

= (ue| Vi luy) . (260)
From these two equations (259) and (260), we finally obtain
(c|rv) =i{uc| Vi |u), (261)

which exactly matches the Blount formula in equation (251). Therefore, we verified that the well
known formula of the velocity operator in equation (252) is consistent with the Blount formula in
equation (251).

67



References

[1] EI Blount. Formalisms of band theory. Solid state physics, 13:305-373, 1962.
[2] Robert W Boyd. Nonlinear optics. Academic press, 2003.

[3] Dmitry Budker, Derek F Kimball, and David P DeMille. Atomic physics: an exploration
through problems and solutions. Oxford University Press, USA, 2004.

[4] Ming-Hui Chiu, Chendong Zhang, Hung-Wei Shiu, Chih-Piao Chuu, Chang-Hsiao Chen,
Chih-Yuan S Chang, Chia-Hao Chen, Mei-Yin Chou, Chih-Kang Shih, and Lain-Jong Li.
Determination of band alignment in the single-layer mos2/wse2 heterojunction. Nature com-
munications, 6, 2015.

[5] RJ Elliott. Intensity of optical absorption by excitons. Physical Review, 108(6):1384, 1957.

[6] Shiang Fang, Rodrick Kuate Defo, Sharmila N Shirodkar, Simon Lieu, Georgios A Tritsaris,
and Efthimios Kaxiras. Ab initio tight-binding hamiltonian for transition metal dichalco-
genides. Physical Review B, 92(20):205108, 2015.

[7] Hartmut Haug and Stephan W Koch. Quantum theory of the optical and electronic properties
of semiconductors. World Scientific Publishing Co Inc, 2009.

[8] Heather M Hill, Albert F Rigosi, Cyrielle Roquelet, Alexey Chernikov, Timothy C Berkel-
bach, David R Reichman, Mark S Hybertsen, Louis E Brus, and Tony F Heinz. Observation
of excitonic rydberg states in monolayer mos2 and ws2 by photoluminescence excitation
spectroscopy. Nano letters, 15(5):2992-2997, 2015.

[9] Claus F Klingshirn. Semiconductor optics. Springer, 2012.

[10] AR Klots, AKM Newaz, Bin Wang, D Prasai, H Krzyzanowska, Junhao Lin, D Caudel,
NJ Ghimire, J Yan, BL Ivanov, et al. Probing excitonic states in suspended two-dimensional
semiconductors by photocurrent spectroscopy. Scientific reports, 4:6608, 2014.

[11] Andor Korményos, Guido Burkard, Martin Gmitra, Jaroslav Fabian, Viktor Z6lyomi, Neil D
Drummond, and Vladimir Fal’ko. k- p theory for two-dimensional transition metal dichalco-
genide semiconductors. 2D Materials, 2(2):022001, 2015.

[12] Andor Kormanyos, Viktor Z6lyomi, Neil D Drummond, Péter Rakyta, Guido Burkard, and
Vladimir I Fal’ko. Monolayer mos 2: Trigonal warping, the y valley, and spin-orbit coupling
effects. Physical review b, 88(4):045416, 2013.

[13] Nardeep Kumar, Sina Najmaei, Qiannan Cui, Frank Ceballos, Pulickel M Ajayan, Jun Lou,
and Hui Zhao. Second harmonic microscopy of monolayer mos 2. Physical Review B,
87(16):161403, 2013.

[14] Leandro M Malard, Thonimar V Alencar, Ana Paula M Barboza, Kin Fai Mak, and Ana M
de Paula. Observation of intense second harmonic generation from mos 2 atomic crystals.
Physical Review B, 87(20):201401, 2013.

68



[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

Branimir Radisavljevic, Aleksandra Radenovic, Jacopo Brivio, i V Giacometti, and A Kis.
Single-layer mos2 transistors. Nature nanotechnology, 6(3):147-150, 2011.

Filip A Rasmussen and Kristian S Thygesen. Computational 2d materials database: electronic
structure of transition-metal dichalcogenides and oxides. The Journal of Physical Chemistry
C, 119(23):13169-13183, 2015.

Emilia Ridolfi, Duy Le, TS Rahman, ER Mucciolo, and CH Lewenkopf. A tight-binding
model for mos2 monolayers. Journal of Physics: Condensed Matter, 27(36):365501, 2015.

Albert F Rigosi, Heather M Hill, Kwang Taeg Rim, George W Flynn, and Tony F Heinz.
Electronic band gaps and exciton binding energies in monolayer m o x w 1- x s 2 transition

metal dichalcogenide alloys probed by scanning tunneling and optical spectroscopy. Physical
Review B, 94(7):075440, 2016.

Malte Selig, Gunnar Berghduser, Archana Raja, Philipp Nagler, Christian Schiiller, Tony F
Heinz, Tobias Korn, Alexey Chernikov, Ermin Malic, and Andreas Knorr. Excitonic linewidth
and coherence lifetime in monolayer transition metal dichalcogenides. Nature communica-
tions, 7:13279, 2016.

Daniel BS Soh, Ryan Hamerly, and Hideo Mabuchi. Comprehensive analysis of the optical
kerr coefficient of graphene. Physical Review A, 94(2):023845, 2016.

Yutaka Toyozawa. Optical processes in solids. Cambridge University Press, 2003.

Haining Wang, Jared H Strait, Changjian Zhang, Weimin Chan, Christina Manolatou, Sandip
Tiwari, and Farhan Rana. Fast exciton annihilation by capture of electrons or holes by defects
via auger scattering in monolayer metal dichalcogenides. Physical Review B, 91(16):165411,
2015.

Haining Wang, Changjian Zhang, Weimin Chan, Christina Manolatou, Sandip Tiwari, and
Farhan Rana. Radiative lifetimes of excitons and trions in monolayers of the metal dichalco-
genide mos 2. Physical Review B, 93(4):045407, 2016.

Qing Hua Wang, Kourosh Kalantar-Zadeh, Andras Kis, Jonathan N Coleman, and Michael S
Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.
Nature nanotechnology, 7(11):699-712, 2012.

Di Xiao, Gui-Bin Liu, Wanxiang Feng, Xiaodong Xu, and Wang Yao. Coupled spin and
valley physics in monolayers of mos 2 and other group-vi dichalcogenides. Physical Review
Letters, 108(19):196802, 2012.

Changjian Zhang, Haining Wang, Weimin Chan, Christina Manolatou, and Farhan Rana.
Absorption of light by excitons and trions in monolayers of metal dichalcogenide mo s 2:
Experiments and theory. Physical Review B, 89(20):205436, 2014.

Chendong Zhang, Amber Johnson, Chang-Lung Hsu, Lain-Jong Li, and Chih-Kang Shih.
Direct imaging of band profile in single layer mos2 on graphite: quasiparticle energy gap,
metallic edge states, and edge band bending. Nano letters, 14(5):2443-2447, 2014.

69



DISTRIBUTION:

1 MS 9033 David Reyna, 08648
1 MS 9033 Daniel Soh, 08648
1 MS 0899 Technical Library, 9536 (electronic copy)

70



71

v1.40



@ Sandia National Laboratories

72



