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Abstract

We calculated the optical nonlinearities of the atomically thin monolayer transition metal
dichalcogenide MoS2, particularly for those linear and nonlinear transition processes that uti-
lize the bound exciton states. We adopted the bound and the unbound exciton states as the basis
for the Hilbert space, and derived all the dynamical density matrices that provides the induced
current density, from which the nonlinear susceptibilities can be drawn order-by-order via
perturbative calculations. We provide the nonlinear susceptibilities for the linear, the second-
harmonic, the third-harmonic, and the kerr-type two-photon processes.
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(C-m). For MoS2, a0 = 13.4 Å. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7



8



1. Introduction

Atomically thin 2D materials are the ideal candidate for various on-chip functional devices, in-
cluding the optical computing, laboratory on chip, on-chip cold atoms, on-chip cavity quantum
electrodynamics, and qubit processors on chip. Recently the growth technologies for these 2D
materials have greatly advanced so that any desired multi-layered atomically thin materials can be
grown and deposited on top of the existing photonic circuits.

Recent studies on the 2D transient metal dichalcogenides (TMDC) materials including, MoS2,
MoSe2, TSe2, etc., revealed that such thin material provides a decent level of optical interaction,
due to the reduction of dimensionality and, thus, the improved density of states. On top of that, the
exciton states which accumulates all the available quantum states over the lattice Bloch states may
further increase the optical responses so that one can utilize such material for making a strong in-
teraction between the light and the material. In addition, optical nonlinearity can be used to realize
important applications such as qubit operation via cavity quantum electrodynamics, optical tran-
sistor that controls the photonic signal flow through control optical signals (photons), and various
frequency conversion operations.

We calculate the optical nonlinearities of a monolayer MoS2 material, particularly when the
input optical frequency is designed to utilize the optically highly active level of bound exciton
states. For this we adopt the quantum description of the induced current, from which the optical
susceptibility is deduced, in a perturbative manner. We then resolve the order-by-order optical
responses from an external drive electromagnetic field.

This SAND report is composed of general theory that describes the interaction Hamiltonian
of the 2D monolayer solids under the influence of the external field, the method to extract the
susceptibility, and the perturbative calculation of the optical susceptibility up to the third order
response. Then, the actual calculation of the physical parameters follow. Finally a summary and
conclusion follows.
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2. Theory for calculating perturbative optical susceptibilities

2.1 Assumptions

We assume zero temperature for simplicity. The coupling of exciton levels with the phonon levels
are completely ignored. Thus, we count only the radiative transitions.

Our primary interest is the linear and the nonlinear optical processes that involves the bound
exciton states of the monolayer MoS2. We take the approach of second quantization for the un-
perturbed exciton bound states. We particularly assume a low density excitons so that we address
only the regime of a single exciton over the sample. Therefore, we ignore the bosonic nature of the
excitons nor the Bose-Einstein condensation of the excitons. We also ignore the exciton-exciton
interaction. Consistently with the weakly exciting regime, we take the perturbative approach that
naturally produces the first, the second, and the third-order nonlinear susceptibilities.

The MoS2 monolayer exhibits the valley selection rule where only the circularly polarized
photon excites a particular exciton levels for a given valley (either K or K′ = −K). Without loss
of generality, we assume therefore the incoming light has σ+ polarization, corresponding to the
K valley. The case of σ− polarization and the corresponding −K valley is readily obtained by
adjusting the energy gap via considering the difference in spin-orbit coupling energy.

For the band structure of the MoS2, we assume the gapped Dirac cone model that was adopted
in many of the theoretical works of the TMDS material calculations [25, 12, 17, 6, 16, 11, 19, 22,
23]. Our analytical calculation also includes the second-order perturbative solution for the unper-
turbed (without light interaction Hamiltonian) bound exciton states under the gapped Dirac cone
approximation, in the hope of easy calculation of various dipole moment matrix elements, which
however fails to address the required accuracy of the result. Therefore, we resorts to full numerical
calculation for the evaluation of the nonlinear optical susceptibilities. While doing so, we adopt
the higher-order correction of the gapped Dirac cone approximation [22, 23] that improves the
accuracy of the level transition strengths.

2.2 Hamiltonian and exciton solutions

2.2.1 Unperturbed Hamiltonian of matter

Let us consider a semiconductor that has a direct nonzero bandgap. Let us define the second
quantized electron and hole operators as

αk,s = ac,k,s, β
†
k,s = av,−k,s, (1)

where aλ ,k,s is the fermionic annihilation operator for an electron at band λ = c,v (conduction and
valence bands, respectively) with the crystal momentum h̄k and spin s. Here, α and β are the
annihilation operators of the electron (in the conduction band) and the hole (in the valence band).
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From now on, the spin is implicit, combined to k. When we use the usual anti-commutator for the
electrons:

{aλ ,k,aλ ′,k′}= {a
†
λ ,k,a

†
λ ′,k′}= 0, {aλ ,k,a

†
λ ′,k′}= δλ ,λ ′δk,k′, (2)

one easily obtains the creation operator for an exciton (i.e., an electron-hole pair under the influence
of Coulomb interaction between the two), moving with combined momentum as in h̄K [7]. For the
details, see the Appendix B. The exciton creation operator is

B†
νK = ∑

k
ψν

(
k− K

2

)
α

†
k β

†
K−k, (3)

where ψν(k′′) is the spatial Fourier transform (see the Appendix A) of the wave function ψν(r)
that satisfies the Wannier Schrödinger equation

[
− h̄2

∇2
r

2mr
+V (r)

]
ψν(r) = Eνψν(r), (4)

with the reduced mass mr = (1/mc + 1/|mv|)−1 where mc,v are the effective mass of the conduc-
tion and valence band electrons, V (r) the Coulomb potential between the electron and the hole.
Rasmussen et al. [16] resolved the values mc = 0.55me and mv = −0.56me where me is the rest
electron mass.

Here, the excitonic binding energy Eν with the excitonic state quantum number ν = (n, l,m) is
given as

Eν = En =

 −E0
1
n2 , n = 1,2,3, · · · , (3D)

−E0
1

(n+1/2)2 , n = 0,1,2, · · · , (2D)
(5)

with

E0 =
e4mr

2(4πε0εr)2h̄2 =

(
mr

me

)(
1
ε2

r

)
Ry, (6)

with the electron charge e = −|e| = −1.6× 10−19 C, and the vacuum and the relative material
permittivity ε0,εr, respectively. In addition, me is the electron mass and Ry = 13.6 eV is the hydro-
gen Rydberg energy. Note that the Rydberg of the exciton scales with respect to (mr/me)(1/ε2

r ).
Typically the semiconductors have εr ∼ 10. We will use εr = 7 through the manuscript. This value
is nearly the optimal fit for the known range of the binding energy and the exciton radius. Hence,
the typical exciton Rydberg energy E0 is about 0.01− 0.1 eV range. The experimental result of
the exciton binding energy for n = 0 in the monolayer MoS2 is approximately −0.5 ∼ −0.3 eV
[26, 10, 8, 4, 18].

A physical intuition on the exciton creator given in equation (3) is that an exciton state is a
superposition of all Bloch electron-hole pairs having the momentum h̄k and h̄(K−k), weighted by
the orbital Fourier transform ψν(k−K/2).
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The solution to the Wannier equation is [7]:

ψn,l,m(r) =


−
√(

2
na0

)
(n−l−1)!

2n[(n+l)!]3 ρ le−ρ/2L2l+1
n+1 (ρ)Yl,m(θ ,φ), (3D)√

1
πa2

0(n+1/2)3
(n−|m|)!
[(n+|m|)!]3 ρ |m|e−ρ/2L2|m|

n+|m|(ρ)e
imφ , (2D)

(7)

where V (A) is the quantizing volume (area), respectively, and a0 = 4π h̄2
ε0εr/(e2mr), ρ = 2r/((n+

1/2)a0), and Lp
q(ρ) is the Laguerre polynomials defined by

Lp
q(ρ) =

q−p

∑
ν=0

(−1)ν+p (q!)2ρν

(q− p−ν)!(p+ν)!ν!
. (8)

Recall the closure from equation (188):∫
V

d3r |r〉〈r|= 1 (3D),
∫

A
d2r |r〉〈r|= 1 (2D). (9)

Then, the normalization condition is

〈ψ|ψ〉=
∫

V
d3r 〈ψ|r〉〈r|ψ〉=

∫
V

d3rψ
∗
n,l,m(r)ψn,l,m(r) = 1, (3D)

〈ψ|ψ〉=
∫

A
d2r 〈ψ|r〉〈r|ψ〉=

∫
A

d2rψ
∗
n,m(r)ψn,m(r) = 1. (2D) (10)

The solutions in equation (7) satisfy these normalization conditions.

Also one can consider the Fourier transform using the closure in equation (188) such that

ψ(r) =
1√
A ∑

k
ψ(k)eik·r, ψ(k) =

1√
A

∫
A

d2rψ(r)e−ik·r. (11)

Note that the the Fourier transform in actual calculation can be performed in the polar coordinate
such that

ψ(k) =
1√
A

∫ 2π

0
dφ

∫
∞

0
drψ(r)e−ikr cos(θ−φ), (12)

where r = (x,y) = (r cosφ ,r sinφ) and k = (kx,ky) = (k cosθ ,k sinθ).

The possible indices for 3D are n = 1,2, · · · , l = 0,1, · · · ,n−1, and m = 0,±1, · · · ,±l. Those
for 2D are n = 0,1, · · · and m = 0,±1, · · · ,±n. The exciton radius is also experimetally resolved to
approximately 6 ∼ 10 Å, at zero temperature [26]. The calculated wavefunctions and their Fourier
transforms are shown in the table 1. The normalization of ψ(k) is given by the closure (188):

1 = 〈ψ|ψ〉= ∑
k
〈ψ|k〉〈k|ψ〉= ∑

k
ψ
∗(k)ψ(k) = A

∫ d2k
(2π)2 ψ

∗(k)ψ(k), (13)

where we converted the sum into integral using the relation d2k = (2π)2/A. It is easily verifiable
that all the Fourier transforms ψν(k) appearing in the table 1 satisfy this normalization condition.
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Table 1: 2D bound exciton wavefunctions and their Fourier transforms

n m ψν(r) ψν(k) En

0 0 2
√

2
a0
√

π
e−

2r
a0

√
2π

A
8a0

(4+a2
0k2)3/2 −4E0

1 1
√

1
3π

8r
9a2

0
e−

2r
3a0 eiφ

√
3

πA
∫ 2π

0 dφ
16a0eiφ

(2+3ia0k cos(θ−φ))3 −4
9E0

1 0
√

2
3π

2(3a0−4r)
9a2

0
e−

2r
3a0

√
6π

A
24a0(9a2

0k2−4)
(4+9a2

0k2)5/2 −4
9E0

1 -1
√

1
3π

8r
9a2

0
e−

2r
3a0 e−iφ

√
3

πA
∫ 2π

0 dφ
16a0e−iφ

(2+3ia0k cos(θ−φ))3 −4
9E0

2 -2
√

1
15π

16r2

125a3
0
e−

2r
5a0 e−2iφ

√
15
πA
∫ 2π

0 dφ
32a0e−2iφ

(2i−5a0k cos(θ−φ))4 − 4
25E0

2 -1 −
√

1
15π

8r(4r−15a0)

125a3
0

e−
2r

5a0 e−iφ
√

15
πA
∫ 2π

0 dφ
16a0(−2+5ia0k cos(θ−φ))e−iφ

(2i−5a0k cos(θ−φ))4 − 4
25E0

2 0
√

2
5π

2(25a2
0−40a0r+8r2)

125a3
0

e−
2r

5a0

√
10π

A
40a0(16−400a2

0k2+625a4
0k4)

(4+25a2
0k2)7/2 − 4

25E0

2 1 −
√

1
15π

8r(4r−15a0)

125a3
0

e−
2r

5a0 eiφ
√

15
πA
∫ 2π

0 dφ
16a0(−2+5ia0k cos(θ−φ))eiφ

(2i−5a0k cos(θ−φ))4 − 4
25E0

2 2
√

1
15π

16r2

125a3
0
e−

2r
5a0 e2iφ

√
15
πA
∫ 2π

0 dφ
32a0e2iφ

(2i−5a0k cos(θ−φ))4 − 4
25E0

3 0
√

2
7π

2(1029a3
0−1764a2

0r+504a0r2−32r3)

7203a4
0

e−
2r

7a0

√
14π

A
56a0(49a2

0k2−4)(16−1568a2
0k2+2401a4

0k4)

(4+49a2
0k2)9/2 − 4

49E0

4 0
√

2
π

2(19683a4
0−34992a3

0r+11664a2
0r2−1152a0r3+32r4)

631441a5
0

e−
2r

9a0 − 4
64E0√

2π

A
216a0(256−82944a2

0k2+3779136a4
0k4−34012224a6

0k6+43046721a8
0k8)

(4+81a2
0k2)11/2

We could obtain the completely analytical closed Fourier transform formulas for ν = (n,0), while
we failed to obtain the closed form for ν = (n,m 6= 0), which we still successfully performed the
radial integral, but left the angle integral as implicit forms. This angle integral can be obtained
easily using numerical integrals.

It is also noteworthy that the expectation value of the exciton radius 〈ψ0|r |ψ0〉= a0/2 for 2D
case, and a0 scales as [21]

a0 =

(
me

mr

)(
εr

1

)
aB, (14)

where aB = 4πε0h̄2/(mee2)∼ 0.53 Å.
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The free Hamiltonian for the exciton system is then

H0 = h̄ ∑
ν ,K

eν ,KB†
νKBνK, (15)

where the exciton energy eigenvalues are [21]

h̄eν ,K =

 Eg +Eν +
h̄2K2

2M , (bound states)

h̄ωk +
h̄2K2

2M , (unbound states).
(16)

where Eg is the bandgap, Eν = En as in equation (5), and the combined mass M = me + |mh|,
and the excitation energy h̄ωk for a single hole-pair with the momentum h̄k,−h̄k. Note that the
above Hamiltonian includes both the bound and the unbound exciton states. For convenience, let
us divide into two groups:

H0 = h̄ ∑
bound,ν ,K

eν ,KB†
νKBνK + h̄ ∑

unbound,k,K
ωk,KC†

k,KCk,K, (17)

where C†
k,K is the creator operator for the unbound exciton states with energy h̄ωk,K = h̄ωk +

h̄2K2/2M where h̄ωk is the energy of a single electron-hole pair with a crystal momentum h̄k,−h̄k.

Now, we consider the fact that the incoming photon has a negligibly small momentum, com-
pared to the crystal momentum k. Hence, we are primarily interested in case where K ≈ 0 as K
must be compared to the magnitude of k. In this regime, the unperturbed exciton Hamiltonian is
given as

H0 ≈ h̄ ∑
bound,ν

eνB†
νBν + h̄ ∑

unbound,k
ωkC

†
kCk, (18)

where B†
ν and C†

k are the bound and the unbound exciton states, respectively.

2.2.2 Interaction Hamiltonian

We consider the situation where a monochromatic external field given by

Ẽ (q, t) = ε̂E (q)e−iωqt , (19)

with a polarization unit vector ε̂ , interacts with the material. The nature of the interaction Hamil-
tonian between the classical external field and the exciton particle is the dipole interaction. This
dipole interaction is captured by the following interaction Hamiltonian [7]:

HI =−∑
k

[
dcv(k)α

†
1
2 q+k

β
†
1
2 q−k

E (q)e−iωqt +h.c.
]
, (20)

where the interband dipole moment is

dcv(k) = 〈c(k)|er · ε̂ |v(k)〉= e〈c(k)|r · ε̂ |v(k)〉 , (21)
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with the single particle states |λ (k)〉 with λ = c,v, the conduction and the valence band Bloch
states with the momentum h̄k.

One can second-quantize the external field by using

E (q) = i

√
h̄ωq

2V ε0
bq. (22)

where bq is the boson annihilation operator for the photons and V is the quantizing volume. Then,
the interaction Hamiltonian implies that an incoming photon with a momentum h̄q is annihilated,
creating an electron-hole pair with the Bloch momentum h̄(q/2+k), h̄(q/2−k), respectively, with
the combined center of mass momentum h̄q. Since k can be any, one must sum over all k. The in-
teraction strength is proportional to dcv(k). Recall that the interband dipole is explicitly dependent
on k.

Note that

α
†
1
2 q+k

β
†
1
2 q−k

= ∑
A

δA, 1
2 q+kα

†
Aβ

†
q−A = ∑

A
δk,A− 1

2 qα
†
Aβ

†
q−A

= ∑
A,ν

ψ
∗
ν(k)ψν

(
A− 1

2
q
)

α
†
Aβ

†
q−A

= ∑
ν

ψ
∗
ν(k)B

†
νq, (23)

where the last equation follows from equation (3), and the third equation follows from

δk,k′ = 〈k|k′〉= ∑
ν

〈k|xν〉〈xν |k′〉= ∑
ν

ψ
∗
ν(k)ψν(k′). (24)

Using equation (23), we obtain

HI =−∑
ν

[(
∑
k

dcv(k)ψ∗ν(k)

)
B†

νqE (q)e−iωqt +h.c.

]
. (25)

Note that the photon momentum is negligibly small in the scale of the crystal momentum.
Then, we can safely approximate q/2± k ≈±k. Then, an exciton state ket is∣∣xν ,q

〉
= B†

ν ,q |0〉 ≈ B†
ν |0〉= ∑

k
ψν(k)α

†
k β

†
−k |0〉=

∣∣xν ,0
〉
= |xν〉 , (26)

where we defined
B†

ν = B†
ν ,0 = ∑

k
ψν(k)α

†
k β

†
−k. (27)

Let us set
gν = ∑

k
dcv(k)ψ∗ν(k). (28)
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In Haug et al. [7], it is approximated to

∑
k

dcv(k)ψ∗ν(k)≈∑
k

dcv(0)ψ∗ν(k) =
√

Adcv(0)ψ∗ν(r = 0), (29)

where the following Fourier transform is used (see Appendix A):

ψ
∗
ν(r) =

1√
A ∑

k
ψ
∗
ν(k)e

−ik·r. (30)

This is indeed a bold approximation where the interband dipole matrix element is approximated to
be that of the band extrema (for a direct bandgap material). In this case, one obtains

gν ≈
√

Adcv(0)ψ∗ν(r = 0). (31)

Nevertheless, we are not going to use this approximation, but we will rather fully evaluate the
numerical sum of gν as in equation (28). Recall that the interaction Hamiltonian is from equations
(25) and (28):

HI =−∑
ν

[
gνB†

νE (q)e−iωqt +h.c.
]
. (32)

2.3 Susceptibility and induced current density

When an external field is present, an induced current is produced due to the dipole interaction as
in the previous section. It is obtained as

J = 2Re[J̃] = J̃+ J̃
∗
= eNe〈v〉= eNetr[vρ], (33)

where J̃ is the complex valued current, and Ne is the free carrier density, v is the velocity operator,
and ρ is the density matrix, which follows the von Neumann equation:

ρ̇ =− i
h̄
[H0 +HI,ρ], (34)

where the unperturbed Hamiltonian H0 is in equation (15) and the interaction Hamiltonian is in
(32). Note that the above differential equation can be solved through a recursive relation:

ρ(t) =− i
h̄

∫ t

−∞

dt ′[H0 +HI,ρ(t ′)]

=− i
h̄

∫ t

−∞

dt ′
[
H0 +HI,

(
− i

h̄

∫ t ′

−∞

dt ′′[H0 +HI,ρ(t ′′)]
)]

... (35)

Note that HI ∝ E (q). Then, one can expand the perturbative order of ρ such that

ρ(t) = ρ
(0)(t)+ρ

(1)(t)+ρ
(2)(t)+ · · · , (36)
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where ρ(n)(t) involves only O(E n(q)) terms. The result is the famous Dyson series, and one
replaces the ordered solution of ρ into equation (33) to obtain the perturbative solution of the
conductance σ through:

J̃ = σ Ẽ = (σ (0)+σ
(1)+ · · ·)Ẽ. (37)

On the other hand, the polarization density P is related to the induced charge through

−Qind =
∮

∂V
dA ·P, (38)

where V is an infinitesimal volume and ∂V is the boundary (surface) of the volume, while the
induced current density is related to the induced charge through the continuity:

−Q̇ind =
∫

V
dV ∇ · J =

∮
∂V

dA · J. (39)

From these two, we obtain the relation between the induced current density and the induced polar-
ization density as

J =
∂P
∂ t

(40)

Using the relation between the induced current and the external field

P̃ = ε0χẼ, (41)

and assuming the monochromatic field Ẽ(t) = ε̂E (q)e−iωqt , one obtains

∂

∂ t

(
ε0(χ

(1)+χ
(2)+ · · ·)Ẽ(t)

)
= (σ (1)+σ

(2)+ · · ·)Ẽ(t). (42)

Equating terms order by order from left to right establishes the relation between the susceptibility
and the conductivity for each order.

2.4 Perturbative solution

We now solve the problem to obtain the induced current, order by order through the perturbative
method. There are two plausible approaches to solve this problem. The first is to take the con-
ventional single particle basis such as |c(k)〉 , |v(k)〉 that are the single particle Bloch states with
momentum h̄k. This approach allows to use the conventionally known forms of operators such as
the velocity operator relating to the Berry connection, etc., while it complicates the Schrödinger
equation of ρ , due to the complex Coulomb potential. Although this method was successfully
used to calculate the linear response [7], it is not certain whether the first method is tractable
for the higher order calculations, due to the higher order Coulomb interaction in the perturbative
approach.

Another approach is to take the many body basis {|0〉 ,
∣∣xν=0,q

〉
,
∣∣xν=1,q

〉
, · · ·}, which are anti-

symmetrized Slater determinant states. This method incorporates the Coulomb potential in the
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energy eigenvectors and eigenvalues of the excitonic states. Importantly the unperturbed Hamil-
tonian H0 that includes the Coulomb potential as in equation (15) is diagonal in this many body
basis. This is already a great advantage over the first approach that does not diagonalize H0.
Hence, solving the Schrödinger equation perturbatively is quite easy. However, one must repre-
sent the operators in these new many body kets and bras. If operators are successfully represented
through the many body basis, the calculation is relatively straightforward.

We take the second approach to use the many body basis. Our first task is to calculate the
velocity operator v in this new many body basis, which is critical in calculating the induced current
in (33). In linear response theory where the incoming light frequency is close to a bound exciton
state |ψν〉, our Hilbert space is two dimensional with the basis {|xν〉 , |0〉} where |0〉 is the ground
state (Fermi sea). Consequently, the velocity operator and the density operator are now 2× 2
matrices:

v =

(
vee vef
vfe vff

)
, ρ =

(
ρee ρef
ρfe ρff

)
, (43)

where each element is such that, for example, vef = 〈xν |v |0〉. We calculate

vfe = 〈0| ṙ |xν〉=−
i
h̄
〈0| [r,H0 +HI] |xν〉=−

i
h̄
〈0| [r,H0] |xν〉

=− i
h̄
〈0|(rH0−H0r) |xν〉=−ieν 〈0|r |xν〉 . (44)

Here, we used the fact that [r,HI] = 0 since HI ∝ r since it involves the dipole moment element.
Also we used that H0 |xν〉 = h̄eν |xν〉 and 〈0|H0 = 0 (the energy of the Fermi sea is set to zero).
It is also noteworthy that the diagonal terms of the velocity operator v are all zero according to the
above derivation:

〈ψ|v |ψ〉=− i
h̄
(Eψ −Eψ)〈ψ|r |ψ〉= 0. (45)

Therefore, we need only the off-diagonal terms of the density matrix to calculate the induced
current. Then, we have

J = J̃+ J̃∗ = eNe(vefρfe +vfeρef). (46)

Next, we calculate,

〈0| ε̂ · r |xν〉= ∑
k

ψν(k)〈0| ε̂ · rα
†
k β

†
−k |0〉= ∑

k
ψν(k)〈v(k)| ε̂ · r |c(k)〉

=
1
e ∑

k
ψν(k)dvc(k) =

g∗ν
e
, (47)

where the last equation follows from equation (28). Here, we abbreviated such that |c(k)〉 =
∑Slater perm

∣∣v(k′)〉⊗ ·· ·⊗ |v(k)′′〉⊗ |c(k)〉⊗ ∣∣v(k′′′)〉⊗ ·· · , which implies that α
†
k β

†
−k |0〉 = |c(k)〉

in the abbreviated notation. Then, we obtain, for an isotropic medium where the induced current
direction coincides with the external field direction,

vfe = v∗ef =
−ieνg∗ν

e
ε̂, (48)
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where eν is given in equation (16).

Next, let us solve the Schrödinger equation for ρ . First, we calculate

〈xν | [H0,ρ] |0〉= h̄eνρef, (49)

where we used the fact that the energy eigenvalue of the Fermi sea is zero. Using this, we establish
a differential equation for ρef:

ρ̇ef =−ieνρef−
i
h̄
〈xν | [HI,ρ] |0〉 . (50)

Let us introduce the perturbative solution according to the perturbative orders:

ρ(t) = ρ
(0)(t)+ρ

(1)(t)+ρ
(2)(t)+ · · · . (51)

We then carry out the bookkeeping for the differential equations on each order:

ρ̇
(0)
ef (t) =−ieνρ

(0)
ef (t),

ρ̇
(1)
ef (t) =−ieνρ

(1)
ef (t)− i

h̄
〈xν | [HI,ρ

(0)] |0〉 ,

ρ̇
(2)
ef (t) =−ieνρ

(2)
ef (t)− i

h̄
〈xν | [HI,ρ

(1)] |0〉 ,

ρ̇
(3)
ef (t) =−ieνρ

(3)
ef (t)− i

h̄
〈xν | [HI,ρ

(2)] |0〉 , (52)

Other matrix elements for ρ(n) can be obtained in a similar manner.

2.4.1 Linear susceptibility

Figure 1: Transition involving the linear susceptibility. See the description of the state kets in the
Appendix B.

The linear response involves the direct dipole absorption of the photon, matching the energy
difference between the ground state (Fermi sea), and the exciton state. Figure 1 shows the relevant
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transition. An incoming photon has an energy resonant with the exciton state energy, exciting the
exciton state.

The first of equations (52) describes the dynamics of ρef in the absence of any external pertur-
bation. It is a free rotation. We then solve the second equation. For this, we calculate

〈xν | [HI,ρ
(0)] |0〉

=−〈xν |
(

∑
ν ′

gν ′

(
B†

ν ′ρ
(0)−ρ

(0)B†
ν ′

))
|0〉E (q)e−iωqt

−〈xν |
(

∑
ν ′

g∗
ν ′

(
Bν ′ρ

(0)−ρ
(0)Bν ′

))
|0〉E ∗(q)eiωqt

=−gν

(
〈xν |B†

νρ
(0) |0〉−〈xν |ρ0B†

ν |0〉
)

E (q)e−iωqt

=−gν

(
〈0|ρ(0) |0〉−〈xν |ρ(0) |xν〉

)
E (q)e−iωqt

=−gν(ρ
(0)
ff −ρ

(0)
ee )E (q)e−iωqt

=−gνE (q)e−iωqt , (53)

where we used the fact that Bν |0〉= 0, B†
ν ′ |xν〉= 0, and that ρ

(0)
ff = 1 and ρ

(0)
ee = 0 in the absence of

the external field at zero temperature, that is, the state without the external field at zero temperature
is the Fermi sea. From this, the first order differential equation is now

ρ̇
(1)
ef (t) =−ieνρ

(1)
ef (t)+

i
h̄

gνE (q)e−iωqt . (54)

Let us replace
ρ
(1)
ef (t) = S(1)(t)e−ieν t . (55)

Then, the differential equation for S(1)(t) is

Ṡ(1)(t) =
i
h̄

gνE (q)ei(eν−ωq)t . (56)

Using the following ∫ t

−∞

dt ′ei(eν−ωq)t ′ =
ei(eν−ωq)t

i(eν −ωq)+ ε
, (57)

where ε > 0 is the infinitesimal constant used to regulate the integral, we obtain

S(1)(t) =
gνE (q)

h̄
ei(eν−ωq)t

(eν −ωq)− iε
. (58)

Hence, we obtain the first order solution

ρ
(1)
ef (t) =

gν

h̄
1

(eν −ωq)− iε
E (q)e−iωqt . (59)
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Let us also solve for ρ
(1)
ee (t) for later use. This calculation involves the following:

〈xν | [HI,ρ
(0)] |xν〉= 0, (60)

since HI changes the state ket. Hence, ρ̇
(1)
ee (t) = 0. With the initial condition ρ

(1)
ee (−∞) = 0, we

obtain ρ
(1)
ee (t) = 0. Likewise, it easily follows that ρ

(1)
ff (t) = 0.

According to the equations (46) and (48), we obtain

J̃
(1)

= eNe
−ieνg∗ν

e
gν

h̄
1

(eν −ωq)− iε
ε̂E (q)e−iωqt . (61)

From this, we obtain the linear conductivity

σ
(1) =−i

eν |gν |2Ne

h̄
1

(eν −ωq)− iε
(62)

Using the relation in equation (42), one obtains the linear susceptibility. One more important aspect
is that the atomic dipole moment element dcv = (−e)〈c(k)| ε̂ · r |v(k)〉 depends on the relative ori-
entation of the incoming light field with respect to the solid orientation. For a randomly polarized
light, it is necessary to calculate the orientation-averaging such as

〈|d̂cv · ε̂|2〉=


∫

π

0 sinθdθ
∫ 2π

0 dφ cos2 θ∫
π

0 sinθdθ
∫ 2π

0 dφ
= 1

3 , (3D),

∫ 2φ

0 dθ cos2 θ∫ 2φ

0 dθ
= 1

2 , (2D),
(63)

where d̂cv is the unit vector in the direction of the random dipole moment and θ is the angle
between d̂cv and the field polarization direction ε̂ . Hence, for a randomly polarized light, the entire
σ (1) must be divided by D= d for d−dimensional problem. However, for other polarizations of the
incoming photon, the value dcv need to be calculated accordingly. For example, if dcv = dx

cvx̂+dy
cvŷ,

and the incoming light is a σ+ polarized light with ε̂ = 1√
2
(x̂+ iŷ), the appropriate dipole moment

is dcv = dcv · ε̂ = 1√
2

(
dx

cv + idy
cv
)
.

We finally obtain the linear susceptibility of the exciton state:

χ
(1)(ωq) =

eν |gν |2Ne

h̄ε0ωq

1
(eν −ωq)− iε

=
eν |gν |2Ne

h̄ε0ωq
P

1
eν −ωq

+ i
πeν |gν |2Ne

h̄ε0ωq
δ (εν −ωq), (64)

where we used the Dirac identity

lim
ε→0

1
r∓ iε

= P
1
r
± iπδ (r), (65)

with the Cauchy principal value symbol P . From equation (31), one may approximate gν ≈√
Adcv(q = 0)ψ∗ν(r = 0) (see the table 1). Then, we obtain

χ
(1)(ωq) =

(
h̄eν

h̄ωq

)
ANe

ε0
|dcv(0)|2|ψν(r = 0)|2 1

(h̄enu− h̄ωq)− ih̄ε
. (66)
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We replace Ne→ 2/(Adeff) where deff ≈ 6.5 Å [24, 15] is the effective monolayer thickness, as-
suming a weakly exciting situation at a single exciton (two charge carriers) level over the sample.
Then, we obtain using eν ≈ ωq, for ν = 0 the lowest exciton state:

χ
(1)(ωq)≈

2|dcv(0)|2|ψν=0(r = 0)|2

ε0deff

1
(h̄eν − h̄ωq)− ih̄ε

=
16|dcv(0)|2

πa2
0deffε0

1
(h̄eν − h̄ωq)− ih̄ε

. (67)

Note that πa2
0deff is the effective volume of the exciton. This formula exactly matches the results

in Elliott’s seminal paper [5] as well as the formula appearing in Haug, et al. [7] (see equation
10.103) and the formula appearing in Klingshirn [9] (see equation 27.52). The rationale to replace
Ne → 2/Adeff is that the induced current density J = tr[e(Neρ)v] in equation (33) captures the
density of charge carriers and their movements. Particularly Neρ = 2ρ/Adeff with the quantum
mechanical density ρ (with the second quantized treatment, the maximum of the matrix element
is unity) captures the density of the excited exciton. When the external field is near resonant with
one of the exciton absorption line, the current density counts only the exciton charge carriers (an
electron and a hole), and thus, it is correct to replace Ne→ 2/Adeff.

Using the relation between the refractive index and the susceptibility

n =

√
1+χ(1), (68)

one obtains the absorption (fraction) given by αdeff where deff is the effective thickness of the single
layer 2D material. Using that the absorption coefficient is α = 2Im[n]ωq/c, the total absorption is
given by αdeff = 2deffIm[

√
1+χ(1)]ωq/c.

If we incorporate the phenomenological decay rate γν of the exciton, the formula is

Im[χ(1)] =
eν |gν |2Ne

h̄ε0ωq

(γν/2)
(eν −ωq)2 +(γν/2)2 . (69)

This is the usual Lorentzian lineshape with the line broadening factor γν caused by the radiative
decay (spontaneous emission).

Wang, et al.[23] calculated the radiative lifetime of the exciton at a temperature of 5 K to be ∼
200 fs (see also the result of Selig, et al. in [19]), implying γν ∼ 5× 1012 rad/s. In addition, the
real part is

Re[χ(1)] =
eν |gν |2Ne

h̄ε0ωq

eν −ωq

(eν −ωq)2 +(γν/2)2 . (70)

When the imaginary part is small, one obtains Re[n]≈
√

1+Re[χ(1)].

A more precise value can be obtained if one sums over all the bound exciton levels such that

Im[χ(1)] = ∑
ν

eν |gν |2Ne

h̄ε0ωq

γν

(eν −ωq)2 +(γν/2)2 ,

Re[χ(1)] = ∑
ν

eν |gν |2Ne

h̄ε0ωq

eν −ωq

(eν −ωq)2 +(γν/2)2 . (71)
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2.4.2 Second-order susceptibility

Figure 2: Transition involving the second-order susceptibility.

2.4.2.1 Second harmonic with input frequency resonant with exciton levels .

First, we consider the case where the external field frequency ωq is near resonant with one of
the bound exciton states. In the absence of another light with a different optical frequency, the
primary second order effect is the second harmonic generation with the fundamental frequency
of ωq (see the figure 2). Given the exciton binding energy of TMDS materials, when the first
transition is near resonant with the transition from the Fermi sea to one of the bound exciton states,
the second transition must involve the transition from the bound exciton state to the free exciton
state, which is a state of an electron in the conduction band, and a hole in the valence band, having
the excitation energy h̄ωq.

The interaction Hamiltonian for the second transition must be

H ′
I =−∑

k,ν

[
fν(k)C

†
k BνE (q)e−iωqt +h.c.

]
, (72)

where the new dipole transition element fν(k) is given as

fν(k) = e〈C(k)| ε̂ · r |xν〉= e∑
k′

ψν(k′)〈C(k)| ε̂ · rα
†
k′β

†
−k′ |0〉

= e∑
k′

ψν(k′)〈C(k)| ε̂ · r
∣∣C(k′)

〉
, (73)

where |C(k)〉 = C†
k |0〉 is a free excitonic state of a single electron-hole pair having momentum

h̄k,−h̄k respectively, not bound by the Coulomb potential. The physical intuition is that this dipole
moment is a superposition of all intraband dipole moment weighted by the (Fourier-transformed)
exciton wavefunction.

From the equation (42), the second order susceptibility is obtained through

∂

∂ t
ε0χ

(2)(2ωq,ωq)E
2(q)e−i2ωqt = σ

(2)E 2(q)e−i2ωqt , (74)
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which relates

χ
(2)(2ωq,ωq) =

σ (2)

−i2ε0ωq
. (75)

The second order transition involves the three levels: |0〉 , |xν〉 , |C(k)〉 whose energy eigenvalues
are 0, h̄eν , and h̄ωk(≈ 2h̄ωq), respectively. In order to calculate the induced current, we need to
calculate ρ

(2)
ef (t) = 〈xν |ρ(2)(t) |0〉, ρ

(2)
Cf,k(t) = 〈C(k)|ρ(2)(t) |0〉, and ρ

(2)
Ce,k(t) = 〈C(k)|ρ(2)(t) |xν〉.

We will show that the only substantial term is ρ
(2)
Cf,k(t) among them. Let us first calculate

ρ
(2)
ef (t), which is obtained through

ρ̇
(2)
ef (t) =−ieνρ

(2)
ef (t)− i

h̄
〈xν | [HI +H ′

I ,ρ
(1)] |0〉 . (76)

with the solution in equation (59), which is repeated here:

ρ
(1)
ef (t) =

gν

h̄
1

(eν −ωq)− iε
E (q)e−iωqt . (77)

Note that

〈xν | [HI,ρ
(1)] |0〉=−〈xν |

(
∑
ν ′

gν ′

(
B†

ν ′ρ
(1)−ρ

(1)B†
ν ′

))
|0〉E (q)e−iωqt . (78)

Also note that the basis necessary to describe ρ(1) is only {|0〉 , |xν〉}. Then, for ρ(1) we can use
the following identity:

B†
νρ

(1) = B†
ν (|0〉〈0|+ |xν〉〈xν |)ρ

(1),

ρ
(1)B†

ν = ρ
(1) (|0〉〈0|+ |xν〉〈xν |)B†

ν . (79)

Using this and utilizing the fact that ρ
(1)
ff,ee(t) = 0 as we solved in the previous subsection, we obtain

〈xν | [HI,ρ
(1)] |0〉= 0. This leads to

ρ̇
(2)
ef (t) =−ieνρ

(2)
ef (t)− i

h̄
〈xν | [H ′

i ,ρ
(1)] |0〉 . (80)

We calculate

〈xν | [H ′
I ,ρ

(1)] |0〉=−〈xν |
(

∑
k,ν ′

fν ′(k)
(

C†
k Bν ′ρ

(1)−ρ
(1)C†

k Bν ′

)
E (q)e−iωqt−h.c.

)
|0〉 . (81)

Note that

∑
k,ν ′

fν ′(k)〈xν |C†
k Bν ′ρ

(1) |0〉= ∑
k,ν ′

fν ′(k)〈xν |C†
k Bν ′ (|0〉〈0|+ |xν〉〈xν |)ρ

(1) |0〉

= ∑
k

fν(k)〈xν |C†
k |0〉〈xν |ρ(1) |0〉

= ∑
k

fν(k)〈xν |C(k)〉〈xν |ρ(1) |0〉

= 0, (82)
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since 〈xν |C(k)〉= 0. Similarly it easily follows that

∑
k,ν ′

f ∗ν (k)〈xν |B†
ν ′Ckρ

(1) |0〉= ∑
k,ν ′

f ∗ν (k)〈xν |B†
ν ′Ck (|0〉〈0|+ |xν〉〈xν |)ρ

(1) |0〉

= ∑
k

f ∗ν (k)〈0|Ck |xν〉〈xν |ρ(1) |0〉

= ∑
k

f ∗ν (k)〈C(k)|xν〉〈xν |ρ(1) |0〉

= 0. (83)

In addition, we calculate

∑
k,ν ′

fν ′(k)〈xν |ρ(1)C†
k Bν ′ |0〉= 0 = ∑

k,ν ′
f ∗
ν ′(k)〈xν |ρ(1)B†

ν ′Ck |0〉 . (84)

Therefore, we obtain 〈xν | [H ′
i ,ρ

(1)] |0〉 = 0. Since ρ
(2)
ef (−∞) = 0 and ρ̇

(2)
ef (t) = −ieνρ

(2)
ef (t), we

obtain ρ
(2)
ef (t) = 0.

Next, we solve the following to obtain ρCe,k(t):

ρ̇
(2)
Ce,k(t) =−i(ωk− eν)ρ

(2)
Ce,k(t)−

i
h̄
〈C(k)| [Hi +H ′

i ,ρ
(1)] |xν〉 . (85)

First, we calculate

〈C(k)| [H ′
I ,ρ

(1)] |xν〉

=−〈C(k)|
(

∑
k,ν ′

fν(k)
(

C†
k Bν ′ρ

(1)−ρ
(1)C†

k Bν ′

)
E (q)e−iωqt−h.c.

)
|xν〉

=−

(
∑
k,ν ′

fν(k)〈0|Bν ′ |xν〉〈xν |ρ(1) |xν〉−∑
k
〈C(k)|ρ(1) |C(k)〉

)
E (q)e−iωqt

= 0. (86)

Also we calculate

〈C(k)| [HI,ρ
(1)] |xν〉=−〈C(k)|

(
∑
ν ′

gν ′

(
B†

ν ′ρ
(1)−ρ

(1)B†
ν ′

)
E (q)e−iωqt +h.c.

)
|xν〉

= 0, (87)

since Bν |C(k)〉 = |0〉〈xν |C(k)〉 = 0 and B†
ν ′ |xν〉 = 0. From the above two and the fact that

ρ
(2)
Ce,k(−∞) = 0, we obtain ρ

(2)
Ce,k(t) = 0.

Let us now calculate ρ
(2)
Cf,k(t) using

ρ̇
(2)
Cf,k(t) =−iωkρ

(2)
Cf,k(t)−

i
h̄
〈C(k)| [HI +H ′

I ,ρ
(1)] |0〉 , (88)
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where h̄ωk is the energy eigenvalue of |C(k)〉. In this context, we can expand the basis to describe
the matrix ρ(1) to |C(k)〉 , |evν〉 , |0〉. In order to solve this equation, we need to know the matrix
element ρ

(1)
Ce,k(t) and ρ

(1)
ef (t), where the latter is obtained in (59). We also know that ρ

(1)
Cf,k(t) =

0 since the driving frequency ωq is far from ωk ≈ 2ωq. Let us calculate ρ
(1)
Ce,k(t) through the

differential equation

ρ̇
(1)
Ce,k(t) =−ieνρ

(1)
Ce,k(t)−

i
h̄
〈C(k)| [HI +H ′

I ,ρ
(0)] |0〉 . (89)

We first calculate

〈C(k)| [HI,ρ
(0)] |xν〉= 0, (90)

since HI involves B†
ν ,Bν only. Next, we calculate

〈C(k)| [H ′
I ,ρ

(0)] |xν〉
=−∑

k′,ν ′
fν(k′)〈C(k)|C†

k′Bν ′ρ
(0)−ρ

(0)C†
k′Bν ′ |xν〉E (q)e−iωqt

=− fν(k)
(
〈0|Bν |xν〉〈xν |ρ(0) |xν〉−〈C(k)|ρ(0) |C(k)〉

)
E (q)e−iωqt

=− fν(k)
(

ρ
(0)
ee −ρ

(0)
CC,k

)
E e−iωqt , (91)

where we discarded the terms proportional to eiωqt as they produce zero results. Here, we also used
the fact that ρ(0) has nonzero elements only on the diagonal terms. The quantities ρ

(0)
ee and ρ

(0)
CC are

negligibly small compared to ρ
(0)
ff ≈ 1. Therefore, we obtain that 〈C(k)| [H ′

I ,ρ
(0)] |xν〉 ≈ 0. Since

the drive is zero, the differential equation (89) states that ρ
(1)
Ce,k(t) = 0 because ρ

(1)
Ce,k(−∞) = 0.

Next, let us calculate the following:

〈C(k)| [HI,ρ
(1)] |0〉=−∑

ν ′
gν ′ 〈C(k)|B†

ν ′ρ
(1)−ρ

(1)B†
ν ′ |0〉E (q)e−iωqt

= ∑
ν ′

gν ′ 〈C(k)|ρ(1) |xν〉E (q)e−iωqt

= 0, (92)

where we discarded the terms involving eiωqt as they produce zero results and used the fact that
ρ(1) has only significant matrix element of ρ

(1)
ef (t). On the other hand, we calculate

〈C(k)| [H ′
I ,ρ

(1)] |0〉=−∑
k′,ν ′

fν(k′)〈C(k)|C†
k′Bν ′ρ

(1)−ρ
(1)C†

k′Bν ′ |0〉E (q)e−iωqt

=−∑
ν ′

fν ′(k)〈0|Bν ′ |xν〉〈xν |ρ(1) |0〉E (q)e−iωqt

=− fν(k)gν

h̄
1

(eν −ωq)− iε
E 2(q)e−i2ωqt , (93)
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where we discarded the terms involving eiωqt , which produce zero results. We also used the fact
that the only nonzero element of ρ(1)(t) is ρ

(1)
ef (t). Then, we obtain the following differential

equation

ρ̇
(2)
Cf,k(t) =−iωkρ

(2)
Cf,k(t)+ i

fν(k)gν

h̄2
1

(eν −ωq)− iε
E 2(q)e−i2ωqt . (94)

Setting
ρ
(2)
Cf,k(t) = S′(2)(t)e−iωkt , (95)

the new differential equation for S′(2)(t) is now

Ṡ′(2)(t) = +i
fν(k)gν

h̄2
1

(eν −ωq)− iε
E 2(q)ei(ωk−2ωq)t . (96)

The solution is

ρ
(2)
Cf,k(t) =

fν(k)gν

h̄2
1(

(eν −ωq)− iε
)(

(ωk−2ωq)− iε ′
)E 2(q)e−i2ωqt . (97)

This quantity is substantial if ωq is close to eν and ωk ≈ 2eν . The only remaining quantity to
calculate is the velocity element

vfC,k = 〈0| ṙ |C(k)〉=− i
h̄
〈0| [r,H0] |C(k)〉 ' −iωck 〈v(k)|r |c(k)〉 . (98)

This allows to obtain the induced current as

J(2) = eNetr[vρ
(2)]≈∑

k
eNevfC,kρ

(2)
Cf,k +h.c.

=−∑
k

i
Ne fν(k)gνωkd∗cv(k)

h̄2
1(

(eν −ωq)− iε
)(

(ωk−2ωq)− iε ′
) ε̂E 2(q)e−i2ωqt +h.c. (99)

and, therefore, from J̃
(2)

= σ (2)ε̂E 2(q)e−i2ωqt , we obtain

σ
(2) =−i∑

k

Ne fν(k)gνωckd∗cv(k)
h̄2

1(
(eν −ωq)− iε

)(
(ωk−2ωq)− iε ′

) (100)

Then, from equation (75), we finally obtain

χ
(2)(ωq ∼ eν) =

Negν

2ε0h̄2
ωq

(
1

(eν −ωq)− iε

)(
∑
k

fν(k)ωkd∗cv(k)
(ωk−2ωq)− iε ′

)
. (101)

This is the second-order nonlinear susceptibility relevant to the second harmonic generation from
the fundamental frequency ωq, which is close to eν . With the phenomenological treatment of the
decay rate of the transition |0〉 ↔ |xν〉, and |xν〉 ↔ |C(k)〉 with the decay rate γν ,γk, respectively,
we obtain

χ
(2)(ωq ∼ eν) =

Negν

2ε0h̄2
ωq

(
1

(eν −ωq)− i(γν/2)

)(
∑
k

fν(k)ωkd∗cv(k)
(ωk−2ωq)− i(γk/2)

)
, (102)

from which it is possible to extract the real and the imaginary values of χ(2).
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Figure 3: Second harmonic generation where the fundamental photon energy is half of the exciton
energy. Dotted line represents a virtual energy level.

2.4.2.2 Low-frequency second harmonic In the next scenario, we consider the case where the
incoming light energy is such that h̄ωq∼ h̄eν/2. Unlike the previous scenario where h̄ωq∼ h̄eν that
has inevitably a linear loss for the incoming light, this low frequency photon does not suffer from
the linear loss for the fundamental frequency since the incoming photon is not directly resonant
with any of the real energy levels.

The first transition from |0〉 by the external field E (q)e−iωqt involves a virtual transition as
shown in the figure 3. This virtual level is nothing other than the collective contribution from the
higher order bound exciton states represented by the first order matrix elements in equation (59)

ρ
(1)
νf (t) =

gν

h̄
1

(eν −ωq)− iεν

E (q)e−iωqt , (103)

where ωq is indeed not close to any of eν . Note that the previous solution to the case where ωq∼ eν

was obtained by considering the first transition |0〉 → |xν〉, and the second transition |xν〉 → |Ck〉,
and the most significant matrix element in ρ(2) was ρ

(2)
Cf,k. Then, in an analogy, we can obtain χ(2)

of the current low-frequency configuration by replacing the role as follows: the first transition is
|0〉 → |xν〉, the second transition is |xν〉 → |x0〉, and the most significant matrix element of ρ(2)

is ρ
(2)
0f = 〈x0|ρ(2) |0〉, since 2ωq ∼ e0. Note that in this configuration, all ν may participate as

the intermediate virtual level, except for ν = 0 level, simply because the transition probability
|x0〉 → |x0〉 through the external field is zero. Then, from equation (102), it easily follows that the
correct solution for χ(2)(ωq ∼ e0/2) is obtained as

χ
(2)(ωq ∼ e0/2) = ∑

ν 6=0

eνNegνhν0g∗0
2ωqε0h̄2

(
1(

eν −ωq− i(γν/2)
)(

e0−2ωq− i(γ0/2)
)) , (104)
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(a) Third harmonic generation (b) Two photon transition

Figure 4: Two third-order nonlinear processes relevant to the case of a single external field that is
resonant with the exciton energy.

where γν is the radiative decay rate of |xν〉 state and

g0 = ∑
k

dcv(k)ψ∗0 (k),

gν = ∑
k

dcv(k)ψ∗ν(k),

hν0 = e〈xν |r · ε̂ |x0〉 . (105)

Note that using equation (204), we easily obtain

〈xν |r |x0〉= ∑
k,k′

ψ
∗
ν(k)ψ0(k′)〈c(k)|r

∣∣c(k′)〉 , (106)

and thus, using equation (73), we obtain

hν0 = ∑
k,k′

ψ
∗
ν(k)ψ0(k′)dcc(k,k′) = ∑

k
ψ
∗
ν(k) f0(k), (107)

where dcc(k,k′) = 〈c(k)|r · ε̂
∣∣c(k′)〉 is the intraband dipole moment matrix element for the con-

duction band.

2.4.3 Third-order susceptibility

2.4.3.1 High frequency third order processes We first consider the case where the driving ex-
ternal field is near resonant with the exciton level. The relevant third-order processes are twofolds:
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(1) the third harmonic generation, and (2) the two-photon transition (i.e., Kerr nonlinearity and
two-photon absorption) (see the figure 4).

We first calculate the third-harmonic generation process. This process involves the two inter-
action Hamiltonian HI and H ′

I in equations (32) and (72), respectively. It also involves additional
transition from the upper level |C(k)〉 to a further up level in the continuum. Since the momentum
must be preserved, it involves the following transition interaction Hamiltonian

H ′′
I =−∑

k,k′

[
dc′c(k

′,k)C′†k′CkE (q)e−iωqt +h.c.
]
, (108)

where dc′c(k′,k) = e
〈
C′(k′)

∣∣r · ε̂ |C(k)〉 is the dipole moment between the pair electron-hole state
with k′ and the pair electron-hole state with k.

Note that this process involves the four many body states |0〉 , |xν〉 , |C(k)〉 ,
∣∣C′(k′)〉. The only

significant matrix element that involves the real transition is ρ
(3)
C′ f ,k = 〈C

′(k)|ρ(3) |0〉, which can
be easily seen since all the other transition matrix elements involves some virtual levels whose
transition strength is not as high as ρ

(3)
C′ f ,k. We can easily guess the form:

ρ
(3)
C′ f ,k′(t)

= ∑
k

fν(k′)dc′c(k′,k)gν

h̄3
1(

(eν −ωq)− iε
)(

(ωck−2ωq)− iε ′
)(

(ωc′k−3ωq)− iε ′′
)E 3(q)e−i3ωqt ,

(109)

where h̄ωck is the energy eigenvalue of |C(k)〉 and h̄ωc′k is that of |C′(k)〉. We also need the quantity

vfC′,k′ = 〈0| ṙ
∣∣C′(k′)〉=− i

h̄
〈0| [r,H0]

∣∣C′(k′)〉=−iωc′k′ 〈v(k)|r
∣∣c′(k′)〉 . (110)

We then calculate the induced current for the third-harmonic generation:

J(3) = eNetr[vρ
(3)]≈∑

k′
eNevfC′,k′ρ

(3)
C′f,k′+h.c.

=−i∑
k,k′

 Ne fν (k′)dc′c(k
′,k)gν ωc′k′d

∗
c′v(k

′)

h̄3

× 1
((eν−ωq)−iε)((ωck−2ωq)−iε ′)((ωc′k−3ωq)−iε ′′)

ε̂E 3(q)e−i3ωqt

+h.c., (111)

where dc′v(k′) = e
〈
c′(k′)

∣∣r · ε̂ ∣∣v(k′)〉. Then, from J̃
(3)

= σ (3)ε̂E 3(q)e−i3ωqt , we obtain

σ
(3)
T H =−i∑

k,k′

 Ne fν (k′)dc′c(k
′,k)gν ωc′k′d

∗
c′v(k

′)

h̄3

× 1
((eν−ωq)−iε)((ωck−2ωq)−iε ′)((ωc′k−3ωq)−iε ′′)

 . (112)

The third-order susceptibility for the third-harmonic generation is obtained through

∂

∂ t
ε0χ

(3)
T H(3ωq,ωq)E

3(q)e−i3ωqt = σ
(3)E 3(q)e−i3ωqt . (113)
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From this, we obtain

χ
(3)
T H(3ωq,ωq) =

σ (3)

−i3ε0ωq
. (114)

Finally, we obtain the third-order susceptibility for the third-harmonic generation as

χ
(3)
T H(ωq ∼ eν/3) = ∑

k,k′

 ωc′k′Ne fν (k′)dc′c(k
′,k)gν d∗c′v(k

′)

3ωqε0h̄3

× 1
((eν−ωq)−iε)((ωck−2ωq)−iε ′)((ωc′k−3ωq)−iε ′′)

 . (115)

Next, let us turn to the two-photon transition shown in figure 4. This process involves three
levels, namely, |0〉 , |xν〉 , |C(k)〉. Hence, ρ(3) has nine matrix elements, where only six are inde-
pendent (Hermitian). The interaction Hamiltonians are HI and H ′

I , which are repeated here for
convenience:

HI =−∑
ν

[gνB†
νE (q)e−iωqt +h.c.],

H ′
I =−∑

k,ν
[ fν(k)C

†
k BνE (q)e−iωqt +h.c.],

where

gν = ∑
k

ψν(k)dcv(k),

fν(k) = e∑
k′

ψν(k′)〈C(k)| ε̂ · r
∣∣C(k′)

〉
.

The third order perturbative solution ρ(3) for the two photon process is described through the three
states |0〉 , |xν〉 , |C(k)〉 as in the second-order calculation. In order to calculate the induced current
density, we need the matrix elements of ρ(3). The matrix has nine elements, and six of them are
independent. Since the diagonal terms of the velocity matrix are all zero as we have shown earlier,
we are concerned with only the off-diagonal term (see equation (45) and the text around it). Then,
we are concerned with only three terms ρ

(3)
Ce,k, ρ

(3)
Cf,k, ρ

(3)
ef .

The differential equation for the third order involves the second order solution as in equations
(52). Let us first calculate ρ

(3)
Ce,k through

ρ̇
(3)
Ce,k(t) =−iωcekρ

(3)
Ce,k(t)−

i
h̄
〈C(k)| [HI +H ′

I ,ρ
(2)] |xν〉 , (116)

where ωcek = ωck− eν . Let us first calculate

〈C(k)| [HI,ρ
(2)] |xν〉

=−∑
ν ′
〈C(k)|

 (gν ′B
†
ν ′E (q)e−iωqt +g∗

ν ′Bν ′E
∗(q)eiωqt

)
ρ(2)

−ρ(2)
(

gν ′B
†
ν ′E (q)e−iωqt +g∗

ν ′Bν ′E
∗(q)eiωqt

)  |xν〉

= g∗νρ
(2)
Cf,kE

∗eiωqt

=
fν(k)|gν |2

h̄2
1

((eν −ωq)− iε)((ωck−2ωq)− iε ′)
|E (q)|2E e−iωqt , (117)
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where we used the fact that the only significant matrix element of ρ(2) is ρ
(2)
Cf,k, and the equation

(97). Next, let us calculate

〈C(k)| [H ′
I ,ρ

(2)] |xν〉

=−∑
k′,ν ′
〈C(k)|

 ( fν(k′)C
†
k′Bν ′E (q)e−iωqt + f ∗ν (k

′)B†
ν ′Ck′E

∗(q)eiωqt
)

ρ(2)

−ρ(2)
(

fν(k′)C
†
k Bν ′E (q)e−iωqt + f ∗ν (k

′)B†
ν ′Ck′E

∗(q)eiωqt
)  |xν〉

= 0, (118)

where we again used the fact that the only significant term in ρ(2) is ρ
(2)
Cf,k. From these two, we

obtain the differential equation

ρ̇
(3)
Ce,k(t) =−iωcekρ

(3)
Ce,k(t)− i

fν(k)|gν |2

h̄3
1

((eν −ωq)− iε)((ωck−2ωq)− iε ′)
|E (q)|2E e−iωqt .

(119)
The solution is

ρ
(3)
Ce,k(t) =−

fν(k)|gν |2

h̄3
1

((eν −ωq)− iε)((ωck−2ωq)− iε ′)((ωcek−ωq)− iε ′′)
|E (q)|2E e−iωqt .

(120)

Next, let us calculate ρ
(3)
Cf,k through

ρ̇
(3)
Cf,k(t) =−iωckρ

(3)
Cf,k(t)−

i
h̄
〈C(k)| [HI +H ′

I ,ρ
(2)] |0〉 . (121)

Let us calculate

〈C(k)|[HI,ρ
(2)] |0〉

=−∑
ν ′
〈C(k)|

 (gν ′B
†
ν ′E (q)e−iωqt +g∗

ν ′Bν ′E
∗(q)eiωqt

)
ρ(2)

−ρ(2)
(

gν ′B
†
ν ′E (q)e−iωqt +g∗

ν ′Bν ′E
∗(q)eiωqt

)  |0〉
= 0, (122)

〈C(k)|[H ′
I ,ρ

(2)] |0〉

=−∑
k′,ν ′
〈C(k)|

 ( fν(k′)C
†
k′Bν ′E (q)e−iωqt + f ∗ν (k

′)B†
ν ′Ck′E

∗(q)eiωqt
)

ρ(2)

−ρ(2)
(

fν(k′)C
†
k′Bν ′E (q)e−iωqt + f ∗ν (k

′)B†
ν ′Ck′E

∗(q)eiωqt
)  |0〉

= 0, (123)

where we used the fact that the only significant term in ρ(2) is ρ
(2)
Cf,k. Then, we have only the

free rotating term in the right hand side of equation (121). Since ρ(3)(t = −∞) is zero, we obtain
ρCf,k(t) = 0.

Next, let us calculate ρ
(3)
ef through

ρ̇
(3)
ef (t) =−ieνρ

(3)
ef (t)− i

h̄
〈xν | [HI +H ′

I ,ρ
(2)] |0〉 . (124)
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Let us calculate

〈xν |[HI,ρ
(2)] |0〉

=−∑
ν ′
〈xν |

 (gν ′B
†
ν ′E (q)e−iωqt +g∗

ν ′Bν ′E
∗(q)eiωqt

)
ρ(2)

−ρ(2)
(

gν ′B
†
ν ′E (q)e−iωqt +g∗

ν ′Bν ′E
∗(q)eiωqt

)  |0〉
= 0, (125)

〈xν |[H ′
I ,ρ

(2)] |0〉

=−∑
k′,ν ′
〈xν |

 ( fν(k′)C
†
k′Bν ′E (q)e−iωqt + f ∗ν (k

′)B†
ν ′Ck′E

∗(q)eiωqt
)

ρ(2)

−ρ(2)
(

fν(k′)C
†
k′Bν ′E (q)e−iωqt + f ∗ν (k

′)B†
ν ′Ck′E

∗(q)eiωqt
)  |0〉

= 0, (126)

where we used the fact that the only significant term in ρ(2) is ρ
(2)
Cf,k. Hence, we obtain ρ

(3)
ef (t) = 0.

The two-photon induced current is

J(3) = eNetr[vρ
(3)] = ∑

k
eNeveC,kρ

(3)
Ce,k +h.c. (127)

Let us calculate

veC,k = 〈xν | ṙ |C(k)〉=− i
h̄
〈xν | [r,H0] |C(k)〉=−iωcek 〈xν |r |C(k)〉

=−iωcek ∑
k′

ψ
∗
ν(k
′)
〈
c(k′)

∣∣r |c(k)〉 . (128)

From this, we obtain

J(3) = i∑
k

(
Neωcek| fν (k)|2|gν |2

h̄3

× 1
((eν−ωq)−iε)((ωck−2ωq)−iε ′)((ωcek−ωq)−iε ′′) |E (q)|2ε̂E e−iωqt

)
+h.c.. (129)

Then, from J̃
(3)
T P = σ

(3)
T P |E (q)|2ε̂E (q)e−iωqt , we obtain

σ
(3)
T P = i∑

k

Neωcek| fν(k)|2|gν |2

h̄3
1

((eν −ωq)− iε)((ωck−2ωq)− iε ′)((ωcek−ωq)− iε ′′)
. (130)

The two-photon susceptibility is obtained through

∂

∂ t
ε0χ

(3)
T P(ωq)|E (q)|2E (q)e−iωqt = σ

(3)
T P |E (q)|2E (q)e−iωqt . (131)

Therefore, the relation is

χ
(3)
T P(ωq) =

σ
(3)
T P

−iε0ωq
. (132)

From this, we finally obtain the two-photon susceptibility

χ
(3)
T P(ωq ∼ eν/2) =−∑

k

ωcekNe| fν(k)|2|gν |2

ωqε0h̄3
1

((eν −ωq)− iε)((ωck−2ωq)− iε ′)((ωcek−ωq)− iε ′′)
.

(133)
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(a) Third harmonic (b) Two-photon

Figure 5: Third-order processes with low frequency input light. (a) Third harmonic generation
where 3ωq ∼ e0. (b) Two photon process where 2ωq ∼ e0.

2.4.3.2 Low frequency third order processes We now consider the situation where 3ωq∼ eν ,
which is the third-harmonic generation process with a low frequency input field. Recall that the
previous high-frequency third harmonic involved the cascaded process |0〉 → |xν〉 → |C(k)〉 →
|C′(k)〉. The low frequency third harmonic involves two virtual levels such that |0〉 → |xν1〉 →
|xν2〉 → |xν〉, where ν1 6= 0 and ν2 6= ν1,ν2 6= 0. Hence, the dipole moments are analogous as
gν → gν1 , fν(k)→ hν2ν1 , dc′c(k)→ hνν2 , dc′v(k)→ gν . Then, analogous to equation (115), we
easily obtain

χ
(3)
T H(ωq ∼ eν/3) = ∑

ν1,ν2

 eν Nehν2ν1hνν2gν1g∗ν
3ωqε0h̄3

1
((eν1−ωq)−iεν1)((eν2−2ωq)−iεν2)((eν−3ωq)−iεν)

 , (134)

where for clarity

hνν ′ = e〈xν |r · ε̂ |xν ′〉= ∑
k,k′

ψ
∗
ν(k)ψν ′(k

′)dcc(k,k′) = ∑
k

ψ
∗
ν(k) fν ′(k). (135)

Lastly we calculate the two photon process for the low frequency input field. Let us generalize
the case such that the upper level involved in the two-photon process is |ψν〉, instead of |ψ0〉.
Recall that the high-frequency two-photon process involved the transition |0〉 → |xν〉 → |C(k)〉 →
|xν〉 → |0〉. The low-frequency two photon process involves the transition |0〉 → |xν1〉 → |xν〉 →
|xν2〉→ |0〉. Then, the role of dipole moments are related as gν↔ gν1 , fν(k)↔ hνν1 , f ∗ν (k)↔ h∗ν2ν ,
and g∗ν ↔ g∗ν2

. Therefore, we obtain

χ
(3)
T P(ωq ∼ eν/2)

=− ∑
ν1,ν2

 (eν−eν2)Negν1hνν1h∗νν2
g∗ν2

ωqε0h̄3

× 1
((eν1−ωq)−iεν1)((eν−2ωq)−iεν)((eν−eν2−ωq)−iεν2)

 . (136)
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χ(1)(ω) ∑ν

eν |gν |2Ne
h̄ε0ωq

1
(eν−ωq)−iε

χ(2)(ωq ∼ eν) ∑ν
Negν

2ε0h̄2
ωq

(
1

(eν−ωq)−iε

)(
∑k

fν (k)ωkd∗cv(k)
(ωk−2ωq)−iε ′

)
χ(2)(ωq ∼ eν/2) ∑ν ′ 6=ν

eν Neg
ν ′hνν ′g

∗
ν

2ωqε0h̄2

(
1

((eν ′−ωq)−iε
ν ′)((eν−2ωq)−iεν)

)

χ
(3)
T H(ωq ∼ eν) ∑k,k′ν


ωc′kNe fν (k′)dc′c(k

′,k)gν d∗c′v(k
′)

3ωqε0h̄3

× 1
((eν−ωq)−iε)((ωck−2ωq)−iε ′)((ωc′k′−3ωq)−iε ′′)



χ
(3)
T H(ωq ∼ eν/3) ∑ν ,ν1,ν2


eν Nehν2ν1hνν2gν1g∗ν

3ωqε0h̄3

1
((eν1−ωq)−iεν1)((eν2−2ωq)−iεν2)((eν−3ωq)−iεν)


χ
(3)
T P(ωq ∼ eν) −∑k,ν

ωcekNe| fν (k)|2|gν |2
ωqε0h̄3

1
((eν−ωq)−iε)((ωck−2ωq)−iε ′)((ωcek−ωq)−iε ′′)

χ
(3)
T P(ωq ∼ eν/2) −∑ν ,ν1,ν2


(eν−eν2)Negν1hνν1 h∗νν2

g∗ν2
ωqε0h̄3

× 1
((eν1−ωq)−iεν1)((eν−2ωq)−iεν)((eν−eν2−ωq)−iεν2)


Table 2: Summary of calculated exciton susceptibilities

2.5 Summary

We summarized the calculated susceptibilities in table 2. Note that we calculated the nonlinear
susceptibilities for a fixed exciton order ν . For the actual spectra, however, we have to sum over
all ν such that the form now become a general solution for any ωq.
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3. Calculation of various transition dipole moments

3.1 Massive Dirac cone approximation

The DFT calculation results show that the conduction band and the valence band around the K,−K
points are dominated by the atomic orbitals of the Mo atom [11]. Particularly, when we can write
the Bloch state as

ψk,λ (r) = eik·ruk,λ (r), (137)

where λ = c,v is the band index, and uk,λ (r) is the Bloch function having the periodicity such
that uk,λ (r+R) = uk,λ (r) for any lattice vector R, one can approximate

u0,λ (r) =
1√
N ∑

m
eik·(Rm−r)

φλ (r−Rm), (138)

where

φc(r) = 〈r|φc〉=
〈
r|dz2

〉
, φv(r) = 〈r|φv〉=

1√
2

(〈
r|dx2−y2

〉
+ iτ

〈
r|dxy

〉)
, (139)

with the valley index τ =±1 for K,−K points, respectively. Here,
∣∣dz2
〉
,
∣∣dx2−y2

〉
,
∣∣dxy
〉

are the 4d
shell atomic orbitals of the Mo atom.

Using these two basis {
∣∣dz2
〉
,(1/
√

2)(
∣∣dx2−y2

〉
+ iτ

∣∣dxy
〉
)}, one constructs the four tensor state

basis {|φc〉⊗|↑〉 , |φc〉⊗|↓〉 , |φv〉⊗|↑〉 , |φv〉⊗|↓〉}. Then, the Hamiltonian around the K,−K points
is approximately [25]:

Hτ =

(
h̄v(τqxσx +qyσy)+

Eg

2
σz

)
⊗ I2 + τ

(1−σz)

2
⊗ Esoc

2
σz, (140)

where (qx,qy) = k− (±K) is the differential crystal momentum around ±K points, Eg is the inter-
band bandgap energy, and Esoc is the spin-orbit coupling split energy. Here, v is the Fermi velocity
and, DFT calculation found v≈ 5.8×105 m/s [17]. In matrix form,

Hτ =


Eg/2 0 h̄v(τqx− iqy) 0

0 Eg/2 0 h̄v(τqx− iqy)
h̄v(τqx + iqy) 0 −Eg/2+ τEsoc/2 0

0 h̄v(τqx + iqy) 0 −Eg/2− τEsoc/2

 (141)

Let us focus on a particular valley τ . Also let us assume that our driving optical frequency is
nearly at resonance with only one spin transition. Then, the state lives in the subspace spanned
by {|φc〉 , |φv〉} with a particular spin. Let us also denote ∆ = Eg + τEsoc for the up spin and
∆ = Eg− τEsoc for the down spin, describing the bandgap energy between the valence and the
conduction band for a particularly chosen spin. Then, the Hamiltonian in this subspace is

H =

(
∆/2 h̄v(τqx− iqy)

h̄v(τqx + iqy) −∆/2

)
. (142)
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According to the detailed DFT calculation [12], the numerical values are h̄v = 3.82 eV Å(i.e.,
v = 5.8× 105 m/s), Eg = 2.23 eV (DFT-HSE06) [17] (and experimentally measured as 2.15 eV
[27] ), and Esoc ≈ 146 meV. Also it is noteworthy that the effective mass from the DFT band
calculation is found to be mc

eff/me = 0.48 and mv
eff/me =−0.62 where me is the electron mass.

The eigenvalues of the Hamiltonian is easily obtained to be

Eγ(q) = γ

√(
∆

2

)2

+ h̄2v2q2. (143)

where q =
√

q2
x +q2

y , and γ = +1 for the conduction band, and γ = −1 for the valence band. To
calculate the eigenvectors, let us slightly modify such that

h̄v(τqx∓ iqy) = h̄vτ(qx∓ iτqy) = h̄vτqe∓iτφq, (144)

where tanφq = qy/qx is the phase of q. Let us set the eigenvector to be (x,y)T . Then, the equation
for the eigenvector is(

∆/2 h̄vτqe−iτφq

h̄vτqe+iτφq −∆/2

)(
x
y

)
= γ

√(
∆

2

)2

+ h̄2v2q2
(

x
y

)
. (145)

This equation is equivalent to

∆/2√(
∆

2

)2
+ h̄2v2q2

x+
h̄vτqe−iτφq√(
∆

2

)2
+ h̄2v2q2

y = γx,

h̄vτqeiτφq√(
∆

2

)2
+ h̄2v2q2

x− ∆/2√(
∆

2

)2
+ h̄2v2q2

y = γy. (146)

Multiplying γ on both sides of the second equation above, we obtain

∆/2√(
∆

2

)2
+ h̄2v2q2

x+
h̄vτqe−iτφq√(
∆

2

)2
+ h̄2v2q2

y = γx,

γ
h̄vτqeiτφq√(
∆

2

)2
+ h̄2v2q2

x− γ
∆/2√(

∆

2

)2
+ h̄2v2q2

y = y. (147)

Let us set

cosθγ,q = γ
∆/2√(

∆

2

)2
+ h̄2v2q2

, sinθγ,q =
h̄vq√(

∆

2

)2
+ h̄2v2q2

. (148)

Then, the above equation is

γxcosθγ,q + τye−iτφq sinθγ,q = γx,

γτxe+iτφq sinθγ,q− ycosθγ,q = y. (149)
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A slight modification to make the following:

γxe+iτφq/2 cosθγ,q + τye−iτφq/2 sinθγ,q = γxe+iτφq/2,

γxe+iτφq/2 sinθγ,q− τye−iτφq/2 cosθγ,q = τye−iτφq/2. (150)

The above is solved by (
x
y

)
=

(
γ cos(θγ,q/2)e−iτφq/2

τ sin(θγ,q/2)eiτφq/2

)
(151)

In summary, we obtained the energy eigenvalues and the energy eigenvectors as

Eγ(q) = γ

√(
∆

2

)2

+ h̄2v2q2,

|λ (q)〉=
(

γ cos(θγ,q/2)e−iτφq/2

τ sin(θγ,q/2)eiτφq/2

)
, (152)

where λ = c,v is the band index, and γ = 1 for λ = c, and γ =−1 for λ = v.

Since ψν(q) is significant only up to 1/a0 where a0/2∼ 10 Å is the Bohr radius of the exciton,
it is expected that only a small portion of q in the FBZ will participate in the exciton formation.
Then, one can assume that h̄vq� ∆/2, which allows for the perturbative expansion of the energy
and the eigenvectors up to the second order:

Eγ(q)≈ γ

(
∆

2
+

h̄2v2q2

∆

)
. (153)

Then, the eigenvector equation is(
1
2
(1− γ)− γ

h̄2v2q2

∆2

)
x+

h̄vqτ

∆
e−iτφqy = 0,

h̄vqτ

∆
e+iτφqx−

(
1
2
(1+ γ)+ γ

h̄2v2q2

∆2

)
y = 0. (154)

For γ = 1 (conduction band), we have

− h̄2v2q2

∆2 x+
h̄vqτ

∆
e−iτφqy = 0,

h̄vqτ

∆
e+iτφqx−

(
1+

h̄2v2q2

∆2

)
y = 0. (155)

This has a solution that is correct up to the second order of q:

∣∣uq,c
〉
=

(
x
y

)
=

 1− h̄2v2q2

∆2

h̄vqτ

∆
eiτφq

 . (156)

38



For γ =−1 (valence band), we have(
1+

h̄2v2q2

∆2

)
x+

h̄vqτ

∆
e−iτφqy = 0,

h̄vqτ

∆
eiτφqx+

h̄2v2q2

∆2 y = 0. (157)

This has a solution that is correct up to the second order of q:

∣∣uq,v
〉
=

(
x
y

)
=

 − h̄vqτ

∆
e−iτφq

1− h̄2v2q2

∆2

 (158)

In summary, the approximate perturbative solution up to the second order of q is

Eγ(q) = γ

(
∆

2
+

h̄2v2q2

∆

)
,

∣∣uq,c
〉
=

(
1− h̄2v2q2

∆2

)∣∣u0,c
〉
+

h̄vqτ

∆
eiτφq

∣∣u0,v
〉
,

∣∣uq,v
〉
=− h̄vqτ

∆
e−iτφq

∣∣u0,c
〉
+

(
1− h̄2v2q2

∆2

)∣∣u0,v
〉
. (159)

3.2 Higher order correction

There is a discrepancy between the DFT calculation results and the Dirac cone approximation in
terms of effective mass and the actual band curvatures. Zhang et al. [26] and Kormanyos et al.
[12] added a higher order correction to the Hamiltonian in equation (142) the following term:(

αq2 κ(qx + iτqy)
2− η

2 q2(qx− iτqy)

κ(qx− iτqy)
2− η

2 q2(qx + iτqy) βq2

)
, (160)

where the numerical values of the parameter based on the DFT calculations are α = 1.72 eV Å2,
β =−0.13 eV Å2, κ =−1.02 eV Å2, and η = 8.52 eV Å3.

Recall that we are mostly interested in the region around the Dirac cones where the direct
bandgap occurs. Particularly we are interested within |q| < 1 rad/Å region where the exciton
envelope wavefunction ψν(q) is significant. Figure 6 shows some difference in the band structure
between the second-order perturbative solution in equation (159) and the numerically calculated
energy eigenvalues from the higher-order corrected Hamiltonian using equation (160). Certainly
what is shown in the figure is that the higher-order corrected numerical solution has a larger valence
band effective mass than the conduction band.
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(a) Perturbative (b) HOC numerical

(c) ∆Ec(q) (d) ∆Ev(q)

Figure 6: Comparison of band energy dispersion of (a) the perturbative analytical solution (159),
(b) the higher-order corrected (HOC) numerical solution. Also shown are the differences between
the two (c) the conduction band, and (d) the valence band.

3.3 Dipole moment calculation

3.3.1 Analytical solution and comparison with numerical solution

To calculate the dipole moment, we use the well known Blount formula [1]:〈
ψk,λ

∣∣r ∣∣ψk′,λ ′
〉
=−i∇k

〈
ψk,λ |ψk′,λ ′

〉
+ iδk,k′

〈
uk,λ

∣∣∇k
∣∣uk,λ ′

〉
, (161)

where the first term on the right hand side describes the contribution from the phase term in case
k = k′,λ = λ ′. Unless there is discontinuity in

∣∣ψk,λ
〉

with respect to k such as Riemann sheet
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branch cuts, the first term is ignorable. Then, most of the cases we have〈
ψk,λ

∣∣r ∣∣ψk′,λ ′
〉
= iδk,k′

〈
uk,λ

∣∣∇k
∣∣uk,λ ′

〉
. (162)

Putting k = k′ and λ = c,λ ′ = v, we obtain

dcv(q) = e〈c(q)|r |v(q)〉= ie
〈
uq,c
∣∣∇q

∣∣uq,v
〉

(163)

From equation (159),

∇q
∣∣uq,v

〉
= x̂
(
− h̄vτ

∆

∣∣u0,c
〉
−2

h̄2v2

∆2 qx
∣∣u0,v

〉)
+ ŷ
(

i
h̄v
∆

∣∣u0,c
〉
−2

h̄2v2

∆2 qy
∣∣u0,v

〉)
. (164)

Hence,

dcv(q) =iex̂
(
− h̄vτ

∆
+

h̄3v3τq2

∆3 −2
h̄3v3qτ

∆3 qxe−iτφq

)
+ ieŷ

(
i
h̄v
∆
− i

h̄3v3q2

∆3 −2
h̄3v3qτ

∆3 qye−iτφq

)
. (165)

This is accurate up to the second order of q around the Dirac cone. if q approaches zero, the dipole
moment is proportional to the ration h̄v/∆. The parameter v is related to the hopping strength, and
therefore, the oscillation strength is proportional to the hopping strength while inversely propor-
tional to the bandgap.

If we calculate the dipole moment elements for the σ+ light that has a polarization ε̂ = 1√
2
(x̂+

iŷ), we obtain for τ = 1:

dcv(q) = dcv(q) · ε̂ =−i

√
2eh̄v
∆

. (166)

This is a correct answer up to the second order of q. Note that the second-order perturbative
solution is a constant imaginary value over the region of the Dirac cones.

Figure 7 shows the numerically evaluated dcv(q) according to the unperturbed full Dirac cone
approximated eigenvectors of the Hamiltonian in equation (142), corrected by the higher-order
correction term in equation (160). Compared to the analytical value of dcv(q) = −

√
2ieh̄v/∆ =

−3.64i×10−29 (C-m), using the second order perturbation result in (166), the numerically evalu-
ated Dirac cone approximated dcv(q) is not much different for the |q| < 0.1 rad/Å, which appears
to be nearly constant. Nonetheless, the higher-order corrected numerical values exhibits non-zero
real values and varying imaginary values of dcv(q) over the Diraction region.

We also calculate gν according to equation (28):

gν = ∑
k

dcv(q)ψ∗ν(q). (167)

Using the second-order perturbative result in equation (166), we then obtain

gν =

(
−i

√
2eh̄v
∆

)
∑
q

ψ
∗
ν(q) =

(
−i

√
2eh̄v
∆

)
ψ
∗
ν(r = 0). (168)
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(a) Real (b) Imaginary

Figure 7: Numerically evaluated dcv(q) for the σ+ circularly polarized incoming photons, based
on the second-order corrected Dirac cone approximation.

Using the result in table 1, one obtains gν = gn,m as follows. The nonzero element occurs only for
m = 0 since ψν(r) ∝ r for m 6= 0, and the first couple of nonzero gν are

g(0,0) =−i

√
A
π

(
4eh̄v
a0∆

)
, g(1,0) =−i

√
A

3π

(
4eh̄v
3a0∆

)
, g(2,0) =−i

√
A

5π

(
4eh̄v
5∆a0

)
. (169)

It can be easily shown that

g(n,0) =−i

√
A

(2n+1)π

(
4eh̄v

(2n+1)a0∆

)
. (170)

For the numerical evaluation based on the higher-order corrected Dirac cone approximation,
we use the following conversion from sum to integral:

∑
q
→ A

(2π)2

∫
d2q (171)

where we used the infinitesimal areal element d2q = (2π)2/A. Then, it follows that

gν = ∑
k

ψ
∗
ν(q)dcv(q) =

A
(2π)2

∫
d2q ψ

∗
ν(q)dcv(q). (172)

Table 3 shows the calculated gν based on the analytical solution in equation (170), on the
numerical evaluation of the gapped Dirac cone Hamiltonian to obtain the eigenvectors, and on the
numerical evaluation of the higher-order corrected gapped Dirac cone Hamiltonian to obtain the
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ν perturbative analytic gν gapped Dirac cone gν higher-order Dirac cone gν

(0,0) 4.34i 2.43i 2.15i
(1,0) 0.84i 0.41i 0.33i
(2,0) 0.39i 0.19i 0.15i
(3,0) 0.23i 0.12i 0.10i
(4,0) 0.16i 0.02i 0.01i

Table 3: Comparison of the calculated gν based on the second-order perturbative analytic solution,
the numerical evaluation of the gapped Dirac cone approximation, and the higher-order corrected
numerical evaluation of the gapped Dirac cone approximation. The unit is 10−20/

√
A(C-m).

Figure 8: Comparison of the calculated gν for the perturbative analytic (blue), the gapped
Dirac cone approximation (red), and the higher-order corrected gapped Dirac cone approximation
(green).

eigenvectors. Since gν with ν = (n,m 6= 0) is negligible as expected since ψν(r) ∝ r, we present
only the results for ν = (n,0). It is easily seen that the perturbative analytic solution is not so
accurate for the most important ν = (0,0) exciton state. In addition, the most accurate result
of the numerically evaluated higher-order corrected gapped Dirac cone model shows the strong
dominance of g(0,0) over all others. It is well expected that the exciton absorption spectra of MoS2
would be dominated by the peak at ω(0,0) = Eg−4E0/h̄.

Next, we calculate fν(k) which is given by

fν(q) = e∑
q′

ψν(q′)〈c(q)| ε̂ · r
∣∣c(q′)〉 . (173)

Using the formula in equation (162), we calculate

〈c(q)|r
∣∣c(q′)〉= iδq,q′

〈
uq,c
∣∣∇q

∣∣uq,c
〉
. (174)
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Let us calculate

∇q
∣∣uq,c

〉
= x̂
(
−2h̄2v2qx

∆2

∣∣u0,c
〉
+

h̄vτ

∆

∣∣u0,v
〉)

+ ŷ

(
−

2h̄2v2qy

∆2

∣∣u0,c
〉
+ i

h̄v
∆

∣∣u0,v
〉)

(175)

Then, we obtain

〈
uq,c
∣∣∇q

∣∣uq,c
〉
= x̂
(
−2h̄2v2qx

∆2 +
h̄2v2

∆2 (qx− iτqy)

)
+ ŷ

(
−

2h̄2v2qy

∆2 + i
h̄2v2τ

∆2 (qx− iτqy)

)

= x̂
(
− h̄2v2

∆2 qeiτφq

)
+ ŷ
(

i
h̄2v2τ

∆2 qeiτφq

)
(176)

Hence, we obtain

dcc(q) = iex̂
(
− h̄2v2

∆2 qeiτφq

)
− eŷ

(
h̄2v2τ

∆2 qeiτφq

)
. (177)

for σ+ light with ε̂ = x̂+ iŷ, we obtain

dcc(q) = dcc(q) · ε̂ =−ie(1+ τ)
h̄2v2

∆2 qeiτφq. (178)

Therefore, we obtain

fν(q) =−ieψν(q)(1+ τ)
h̄2v2

∆2 qeiτφq. (179)

It is noteworthy that fν(q) and dcc(q) both exhibit the selection rule where σ+ light works for
τ = 1 valley and σ− light works for τ =−1 valley, but not cross.

Next, let us calculate hν0 which is given by

hν0 = e〈xν |r · ε̂ |x0〉 . (180)

Using the closure in equation (188), we calculate for the case of σ+ light with a circular polariza-
tion ε̂ = x̂+ iŷ:

hν0 = e
∫ d2r

A
〈xν |r〉〈r|r · ε̂ |x0〉= e

∫ d2r
A

ψ
∗
ν(r)(r · ε̂)ψ0(r)

= e
∫ dxdy

A
ψ
∗
ν(x,y)(x+ iy)ψ0(x,y)

=
e
A

∫
∞

0
rdr

∫ 2π

0
dφψ

∗
ν(r,φ)reiφ

ψ0(r,φ). (181)

Note that this produces a natural selection rule that for σ+ light only the transition
∣∣x0,0

〉
↔
∣∣xn,1

〉
is allowed due to the φ integral. We obtain hν0 using the wavefunction of the bound excitons in
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table 1:

h(1,1)(0,0) =
9

32

√
3
2
|e|a0, h(1,0)(0,0) = h(1,−1)(0,0) = 0,

h(2,1)(0,0) =
25

162

√
5
6
|e|a0, h(2,−2)(0,0) = h(2,−1)(0,0) = h(2,0)(0,0) = h(2,2)(0,0) = 0,

h(3,1)(0,0) =
147
√

21
8192

|e|a0, h(4,1)(0,0) =
1944

15625
√

5
|e|a0, h(5,1)(0,0) =

15125
1119744

√
55
6
|e|a0,

h(6,1)(0,0) =
54756

5764801

√
78
7
|e|a0, h(7,1)(0,0) =

3781575
1073741824

√
105

2
|e|a0, · · · (182)

so on. Note that hν0 keeps reducing as ν increases, and h(6,1)(0,0) is about ten times smaller than
h(1,1)(0,0).

Finally, hν1ν2 for σ+ light, which is defined as

hν1ν2 = e〈xν1|r · ε̂ |xν2〉 (183)

is similarly calculated:

hν1ν2 =
e
A

∫
∞

0
rdr

∫ 2π

0
dφψ

∗
ν1
(r,φ)reiφ

ψν2(r,φ). (184)

According to the selection rule due to φ integration, the first few that are not zero are:

h(1,−1)(2,−2) =
10125

√
5

8192
|e|a0, h(1,0)(2,−1) =

2025
2048

√
5
2
|e|a0, h(1,1)(2,0) =

1125
4096

√
15
2
|e|a0,

h(1,−1)(3,−2) =
27783
31250

√
7
5
|e|a0, h(1,0)(3,−1) =

3969
√

7
15625

|e|a0, h(1,1),(3,0) =
3087
31250

√
21
2
|e|a0,

h(2,−2)(3,−3) =
7503125
1119744

√
7
6
|e|a0,

h(2,−1)(3,−2) =
1071875

√
7

559872
|e|a0, h(2,0)(3,−1) =

373625
373248

√
35
3
|e|a0,

h(2,1)(3,0) =
248675
279936

√
35
6
|e|a0, h(2,2)(3,1) =

300125
1119744

√
35
2
|e|a0, (185)

so on.
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ν1 ν2 hν1ν2

(1,−1) (2,−2) 2.76
(1,−1) (3,−2) 1.05
(1,0) (2,−1) 1.56
(1,0) (3,−1) 0.67
(1,1) (2,0) 0.75
(1,1) (3,0) 0.32
(2,−2) (3,−3) 7.24
(2,−1) (3,−2) 5.07
(2,0) (3,−1) 3.42
(2,1) (3,0) 2.15
(2,2) (3,1) 1.12

Table 4: Calculated hν1ν2 . The unit is ea0 (C-m). For MoS2, a0 = 6.0 Å.

46



Figure 9: Numerically evaluated χ(1) based on the higher-order corrected Dirac cone approxima-
tion. Real value of χ(1) in blue and imaginary value of chi(1) in red.

4. Numerical evaluation of susceptibilities

In this section, we apply the numerically evaluated various dipole moments calculated in the pre-
vious section to the fomula for the linear and the nonlinear susceptibilities in the table 2. Since we
saw some significant discrepancies in the dipole moments among the various approaches, namely
(1) the second-order perturbative Dirac cone, (2) the numerical Dirac cone, and (3) higher-order
corrected Dirac cone, we will exclusive use the dipole moments based on the higher-order cor-
rected Dirac cone.

4.1 Linear susceptibility

We calculated χ(1), which is shown in figure 9. Both the real and the imaginary values are shown in
the graph. Five exciton resonances are prominent, which corresponds to

∣∣ψ(0,0)
〉
,
∣∣ψ(1,0)

〉
,
∣∣ψ(2,0)

〉
,
∣∣ψ(3,0)

〉
,

and
∣∣ψ(4,0)

〉
, corresponding to 1.776, 2.050, 2.072, 2.078, 2.080 eV, respectively. For the broad-

ening factor, we used γν = γ0 uniformly. The line broadening is due to the radiative transition, for
which we used 200 fs as the lifetime.

We then calculate the absorption as αdeff = 2deffIm[
√

1+χ(1)]ωq/c where we used deff =
6.5 Å. The absorption leaves a long tail beyond the first resonance frequency. The peak absorption
is estimated to be approximately 23 % at the resonance frequency 1.776 eV of

∣∣ψ(0,0)
〉
. Com-

pared to the experimental values of 10 ∼ 15%, our predicted value is approximately double. This
discrepancy is due to (1) the 2D treatment of the problem and (2) the gapped Dirac Hamiltonian
approximation. To compensate for this discrepancy, we introduce a fitting parameter ξ such that
we replace gν → ξ gν . We chose ξ = 0.5, resulting in the maximum absorption at the resonance to
be 11.6%.
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(a) Absorption (b) Refractive index

Figure 10: The deduced absorption of the monolayer MoS2 material and the refractive index spec-
tra.

We also calculated the refractive index through n = Re[
√

1+χ(1)]. The refractive index has a
long tail below the first exciton state resonance.

4.2 Second-order susceptibility

We then calculate the second-order susceptibility. We are primarily interested in the low-frequency
second-harmonic generation in the figure 3, where the input light has a frequency ωq ≈ e0/2. For
the χ(2)(ωq ∼ e0/2), one needs to use gν ,hν0,g0 as is shown in the table 2, which are all calculated
and listed in the previous section. While performing the summation over ν , we summed up to
ν = (n,0) = (7,0). The difference of the maximum |χ(2)| between summing up to n = 7 and up to
n = 6 is only 0.7 %. Hence, we concluded summing up to n = 7 is sufficient.

As we described in the appendix E, the intensity of the second harmonic at the exciton resonant
frequency e0 depends on the absolute value |χ(2)| whereas the phase of χ(2) explains the phase
delay of the second harmonic light. The estimated maximum value of |χ(2)| at frequency e0/2 is
approximately 8×10−8 m/V. The order or magnitude of this result matches the experimental result
found in Kumar, et al. of ∼ 10−7 m/V [13] and the experimental result found in Malard, et al., of
∼ 10−7 m/V [14].

Compared to the typical χ(2) value 20 pm/V of lithium niobate, which is the common material
for the second harmonic generation, the χ(2) of MoS2 monolayer exciton is about four orders of
magnitude larger.
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Figure 11: Numerically evaluated χ(2) based on the higher-order corrected Dirac cone approxima-
tion. The real value (blue), the imaginary value (red), and the absolute value (green) of χ(2) are
shown.

4.3 Third-order susceptibility

4.3.1 Third harmonic generation

We are primarily interested in the case where the fundamental frequency is one third of the low-
est exciton resonance frequency: ωq ∼ e0/3 (see figure 5 (a)). The formula of χ(3)(ωq ∼ e0/3)
involves the dipole moment hν2ν1 multiplied by h0ν2 . Note that h0ν2 has nonzero element for σ+
incoming photons, only when ν2 = (n2,m2) with m2 = −1. Hence, we are only concerned with
hν2ν1 in the case where ν1 = (n1,m1) with m1 =−2. These are the coefficients such as h(1,−1)(2,−2),
h(1,−1)(3,−2), h(2,−1)(3,−2), h(2,−1)(4,−2), and so on. Table 5 shows the useful values of both h0ν2 and
hν2ν1 for calculating the susceptibility relevant to the third-harmonic generation process.

Using the values in the table 5, we evaluated the third-harmonic generation χ
(3)
T H(ωq ∼ e0/3).

The maximum |χ(3)| is found to be 5.5×10−17 m2/V2.

4.3.2 Two photon process

We also primarily focus on the case where the upper level of the two photon process involves
the lowest exciton bound state |ψ0〉, as shown in the figure 5 (b). Let us recall that the relevant
susceptibility calculated is given in equation (136). If we set |ψν〉 → |ψ0〉 in the equation, we
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ν2 ν1 h0ν2 hν2ν1

(1,−1) (2,−2) 0.344 2.76
(3,−2) 1.05
(4,−2) 0.61
(5,−2) 0.42
(6,−2) 0.31
(7,−2) 0.25

(2,−1) (3,−2) 0.141 5.07
(4,−2) 2.05
(5,−2) 1.22
(6,−2) 0.85
(7,−2) 0.64

(3,−1) (4,−2) 0.082 8.01
(5,−2) 3.25
(6,−2) 1.94
(7,−2) 1.35

(4,−1) (5,−2) 0.056 11.6
(6,−2) 4.65
(7,−2) 2.76

(5,−1) (6,−2) 0.041 15.8
(7,−2) 6.27

(6,−1) (7,−2) 0.032 20.7

Table 5: Calculated hν1ν2 that is useful to calculate χ
(3)
T H(3ωq ∼ e0,ωq). The unit is ea0 (C-m). For

MoS2, a0 = 13.4 Å.

obtain

χ
(3)
T P(ωq ∼ e0/2)

=− ∑
ν1,ν2

 (e0−eν2)Negν1h0ν1h∗0ν2
g∗ν2

ωqε0h̄3

× 1
((eν1−ωq)−iεν1)((e0−2ωq)−iε0)((e0−eν2−ωq)−iεν2)

 . (186)

For σ+ light having the polarization vector ε̂ = (1/
√

2)(x̂+ iŷ), we showed that gν ′ ≈ ψν(r =
0)dcv(0) is nonzero only for ν ′ = (n,m) with m = 0, due to the multiplication by rm in ψν(r) as
shown in the table 1. Then, the nonzero contribution occurs only if ν1 = (n1,m1),ν2 = (n2,m2)
have both m1 = m2 = 0. In addition, we also showed that for σ+ light, the nonzero value hν ′0
occurs only if ν ′ = (n′,m′) with m′ = 1 (see the equation (182)). Therefore, for σ+ light, the
two photon process does not occur since gν1h0ν1 = 0 for any ν1. Then, for σ+ light, χ

(3)
T P(ωq ∼

e0/2) is nonzero only if we include the unbound exciton states and sum over them for the virtual
levels whose contribution is diminished, due to a large values of the frequency difference in the
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Figure 12: Numerically evaluated χ(3)(ωq ∼ e0/3) based on the higher-order corrected Dirac cone
approximation. This process corresponds to the figure 5 (a) where the input light frequency is
approximately one third of the lowest exciton resonant frequency e0. The real value (blue), the
imaginary value (red), and the absolute value (green) of χ(2) are shown.

denominator. Thus, it is expected that χ
(3)
T P(ωq ∼ e0/2) will be very small for σ+ light photons.

Instead, the two photon process involving |ψν〉 →
∣∣ψ(1,−1)

〉
with the corresponding χ

(3)
T P(ωq ∼

e(1,−1)/2) will be more significant as it involves the quantities such as g(n,0) 6= 0 and h(n,0)(1,−1) 6= 0.
The two-photon susceptibility is for ν = (1,1):

χ
(3)
T P(ωq ∼ e(1,1)/2)

=− ∑
ν1,ν2

 (e(1,1)−eν2)Negν1h(1,1)ν1
h∗(1,1)ν2

g∗ν2

ωqε0h̄3

× 1
((eν1−ωq)−iεν1)((e(1,1)−2ωq)−iε(1,1))((e(1,1)−eν2−ωq)−iεν2)

 . (187)

The useful dipole moments h(1,1)ν1 with ν1 such that gν1 is nonzero are shown in table 6.

The numerically evaluated χ
(3)
T P(ωq ∼ e(1,1)/2) is shown in figure 13. As we stated in the

Appendix E, the imaginary value is real two-photon absorption and the real value is related to
the Kerr effect where the refractive index changes proportionally to the intensity of light. The
maximum of the real value of χ

(3)
T P is shown to be approximately 1×10−18 m2/V2. The maximum

of the imaginary is shown to be approximately 2×10−18 m2/V2.

For the Kerr nonlinearity applications, one wants that the photon changes the refractive index of
the material while not suffering from the incoherent effect of the two-photon absorption. Therefore,
the ratio between the real and the imaginary values of χ

(3)
T P is important. The ratio reaches quite

large values of > 50 while the absolute value of the real χ
(3)
T P is still large. The negative sign

appearing in equation (13) is significant: the fact that h(1,1)(1,0) is both dominant and negative is
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ν1 h(1,1)ν1

(0,0) 0.344
(1,0) −3.18
(2,0) 0.752
(3,0) 0.320
(4,0) 0.194
(5,0) 0.135
(6,0) 0.102
(7,0) 0.080

Table 6: Calculated h(1,1)ν1 that is useful to calculate χ
(3)
T P(2ωq ∼ e(1,1),ωq). The unit is ea0 (C-m).

For MoS2, a0 = 13.4 Å.

(a) Larger scale (b) Zoomed in

Figure 13: Numerically evaluated χ
(3)
T P(ωq ∼ e(1,1)/2) based on the higher-order corrected Dirac

cone approximation. This process corresponds to the figure 5 (b) where the input light frequency
is approximately one half of the

∣∣ψ(1,1)
〉

exciton resonant frequency e(1,1). The real value (blue)
and the imaginary value (red) χ(2) are shown. Also shown is the ratio between the real and the
imaginary values of χ

(3)
T P (green).

combined with the negative sign to produce a positive imaginary value, which nicely explains the
two photon absorption.
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5. Conclusion

We have calculated the optical nonlinear susceptibilities of the monolayer MoS2, based on the
second-order corrected gapped Dirac cone approximation around K points. The calculated optical
nonlinearities are impressively large compared to other 3D bulk materials. Particularly the Kerr
optical nonlinearity of the monolayer MoS2 is quite large in the spectral region where the two-
photon absorption is negligibly small, which indeed is a promising result to use the MoS2 material
for the cavity QED configuration to operate the qubits on a semiconductor platform. Although
graphenes also exhibits a large third-order susceptibility [20], graphene suffers from the linear loss
for all incoming light’s frequencies, due to the gapless Dirac cone dispersion. Unlike graphene,
MoS2’s Kerr effect does not suffer from the linear absorption and one can expect a sufficiently
coherent operation utilizing a strong Kerr nonlinearity in the monolayer MoS2 platform. Combined
with the newly developed CVD capabilities to deposit sheet-by-sheet on the existing photonic
circuits, our results indicate that MoS2 is indeed a good candidate for chip-scale qubit operator as
well as low energy optical transitors on chip.

We found that our result is within an order of magnitude compared with a few existing ex-
perimental results for the second and the third harmonic generation from the excitonic levels of
the monolayer MoS2. This indeed is a good agreement as a nonlinearity calculation. We did not
include the sophisticated higher order effect such AC stark shift or self-coupling as in [20], which
however are expected to be a small correction compared to the two-photon absorption or direct
Kerr effect.
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Appendices
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A. Fourier transforms

In this section, we clarify the normalization constants for the state kets. For this, we will clearly de-
fine the Fourier transforms with appropriate normalization constants. We begin with two important
closures (completeness of the Hilbert spaces):∫

V
d3r |r〉〈r|= 1,

∑
k
|k〉〈k|= 1, (188)

where V is the quantizing volume. We treat r as the continuous eigenvalues of the operator r̂, while
we treat k as the discrete eigenvalues of the operator k̂. Note that the definition of this closure is
consistent with the interpretation that |ψ(r)|2 = 〈ψ|r〉〈r|ψ〉 is the probability density for a particle
to be found at r since, putting the above closure into a normalized state |ψ〉:

〈ψ|ψ〉= 1 =
∫

V
d3r 〈ψ|r〉〈r|ψ〉=

∫
V

d3r|ψ(r)|2. (189)

This ensures that the integration of the probability density must be unity.

We know that the wavefunction in the position basis for a particle of a state |k〉 is 〈r|k〉 ∝ eik·r.
The way to calculate the normalization constant is to set 〈r|k〉 = Ceik·r and use the following
normalization condition:〈

k|k′
〉
= δk,k′ =

∫
V

d3r 〈k|r〉
〈
r|k′
〉
= |C|2

∫
V

d3rei(k′−k)·r =

{
|C|2V, if k = k′,

0, if k 6= k′.
(190)

The above holds because k,k′ are discrete quantities such that k · al = 2mπ,k′ · al = 2m′π where
m,m′ are integers and al is the lattice constant. Therefore,∫

V

d3r
V

ei(k−k′)·r =

{
1, if k = k′,
0, if k 6= k′

}
= δk,k′. (191)

Then, we obtain C = 1/
√

V and consequently

〈r|k〉= 1√
V

eik·r. (192)

Then, the Fourier transform of a wave function is clearly defined as

ψ(r) = 〈r|ψ〉= ∑
k
〈r|k〉〈k|ψ〉= 1√

V ∑
k

ψ(k)eik·r,

ψ(k) = 〈k|ψ〉=
∫

V
d3r 〈k|r〉〈r|ψ〉= 1√

V

∫
V

d3rψ(r)e−ik·r. (193)

Extending to the two particle wavefunctions follows easily: using the closures∫
V

d3rd3r′
∣∣r,r′〉〈r,r′∣∣= 1,

∑
k,k′

∣∣k,k′〉〈k,k′∣∣= 1, (194)
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one obtains the normalized wavefunction:〈
r,r′|k,k′

〉
=

1
V

eik·r+ik′·r′, (195)

which leads to the Fourier transforms:

ψ(r,r′) =
〈
r,r′|ψ

〉
= ∑

k,k′

〈
r,r′|k,k′

〉〈
k,k′|ψ

〉
=

1
V ∑

k,k′
ψ(k,k′)eik·r+ik′·r′ ,

ψ(k,k′) =
〈
k,k′|ψ

〉
=
∫

V
d3rd3r′

〈
k,k′|r,r′

〉〈
r,r′|ψ

〉
=

1
V

∫
V

d3rd3r′ψ(r,r′)e−ik·r−ik′·r′. (196)
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B. Exciton creation operator

According to the anticommutation relation of the electron operators in (2), we obtain the following
anticommutators for the lowering and raising operators of the electrons and holes:

{αk,αk′}=
{

αk,β
†
k′

}
= {αk,βk′}= {βk,βk′}= 0,{

α
†
k ,α

†
k′

}
=
{

α
†
k ,βk′

}
=
{

α
†
k ,β

†
k′

}
=
{

β
†
k ,β

†
k′

}
= 0,{

αk,α
†
k′

}
= δk,k′,

{
βk,β

†
k′

}
= δk,k′ . (197)

We treat the bound exciton in a second quantized context. Let us now derive the creation
operator for the exciton state. If we denote the exciton state as |νK〉 where ν = (n, l,m) is the
exciton state index and K is the total momentum vector of the exciton, one can express the exciton
creation operator using the Dirac notation as

B†
ν ,K = |νK〉〈0| , (198)

where |0〉 represents the ground state where all valence band states are filled and all conduction
band states are empty (i.e., the Fermi sea), with zero energy eigenvalue.

Note that the exciton state |νK〉 is a dual-particle state where there is one electron-hole pair.
One can use a single electron-hole pair basis |k,−k〉 that represents a free electron (in the conduc-
tion band) with the momentum h̄k, and a free hole (in the valence band) with the momentum −h̄k.
Any single electron-hole pair then lives in a Hilbert space that is spanned by basis {|k,−k〉}. In
this subspace, the closure relation is

∑
k,k′

∣∣k,−k′
〉〈

k,−k′
∣∣= 1. (199)

Then, we obtain

B†
νK = ∑

k,k′

∣∣k,−k′
〉〈

k,−k′|νK
〉
〈0|

= ∑
k,k′

〈
k,−k′|νK

〉∣∣k,−k′
〉
〈0|

= ∑
k,k′

〈
k,−k′|νK

〉
α

†
k β

†
−k′ , (200)

where α
†
k ,β

†
−k′ are the creation operators for the free electron and the free hole, respectively. We

calculate the following using the closure
∫

d3rd3r′ |r,r′〉〈r,r′|= 1 and the equation (195):〈
k,−k′|νK

〉
=
∫

V
d3rd3r′

〈
k,−k′|r,r′

〉〈
r,r′|νK

〉
≈
∫

d3rd3r′
1
V

e−ik·reik′·r′
ψν(r− r′)

1√
V

eiK· r+r′
2 , (201)
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where ψν(r′′) is the solution to the exciton Schrödinger equation in equation (4), with the quantum
number ν = (n, l,m), and we approximated the electron and the hole pair states as the free electron
and free hole states. Then, we Fourier-transform ψν by using equation (193) to obtain〈

k,−k′|νK
〉

=
1

V 2 ∑
k′′

∫
d3rd3r′ exp

[
i
(

K · r+ r′

2
− k · r+ k′ · r′+ k′′ · (r− r′)

)]
ψν(k′′)

=
1

V 2 ∑
k′′

∫
d3rd3r′ exp

[
i
(

r ·
(

K
2
− k+ k′′

)
+ r′ ·

(
K
2
+ k′− k′′

))]
ψν(k′′) (202)

Using the equation (191), we finally obtain

〈
k,−k′|νK

〉
= δK,(k−k′)ψν

(
k+ k′

2

)
. (203)

Hence, we obtain

B†
νK = ∑

k,k′
δK,(k−k′)ψν

(
k+ k′

2

)
α

†
k β

†
−k′

= ∑
k

ψν

(
k− K

2

)
α

†
k β

†
K−k. (204)

This coincides with those appearing in the references [23, 22].

One can calculate the boson commutator for the lowest order ν = 0 exciton operator as follows:

[B0,0,B
†
0,0] = ∑

k,k′
ψ0(k)ψ0(k′)[β−kαk,α

†
k′β

†
−k′]

= ∑
k
|ψ0(k)|2(1−α

†
k αk−β

†
−kβ−k)

= 1−O(nad
0), (205)

where n is the density of the excitons, a0 = h̄2
ε0/e2mr is the Bohr radius of the exciton, and

d = 2,3 is the dimension. Hence, in the limit of a vanishing number of excitons (nad
0 → 0), we

obtain the boson commutator for the excitons. Hence, the excitons are approximately bosons when
the exciton density is sufficiently small.

If we assume that K ≈ 0, viewed in the scale of the crystal momentum since the incoming
photon’s momentum is negligibly small, we interchangeably use the notation |ν0〉 = |xν〉. Then,
from the definition of the exciton creation operator and the derived result of equation (204), we
obtain

B†
ν = |xν〉〈0|= ∑

k
ψν(k)α

†
k β

†
−k. (206)

From this, the following is obvious:

B†
ν |0〉= |xν〉 , B†

ν |xν〉= 0. (207)
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(a) Fermi sea (b) Single electron-hole pair (c) Exciton

Figure 14: Band representation of many body states for the Fermi sea (|0〉), the single electron-hole
pair excitation (not bounded by the Coulomb interaction) (|C(k)〉= |k,−k〉), and the exciton state
(|xν〉)

We can obtain the reverse relation to express α
†
k β

†
−k using B†

ν as follows. Note that

δk,k′ = 〈k|k′〉= ∑
ν

〈k|ν〉〈ν |k′〉= ∑
ν

ψ
∗
ν(k)ψν(k′). (208)

We multiply ψ∗ν(k
′) on the left of both sides in equation 206 and sum over ν :

∑
ν

ψ
∗
ν(k
′)B†

ν = ∑
k,ν

ψ
∗
ν(k
′)ψν(k)α

†
k β

†
−k = ∑

k
δk,k′α

†
k β

†
−k = α

†
k′β

†
−k′. (209)

Hence, we obtain the reverse relation:

α
†
k β

†
−k = ∑

ν

ψ
∗
ν(k)B

†
ν . (210)

Also note that, explicitly, the Fourier transformed ψ0(k) for the lowest exciton state is given by
[7]

ψ0(k) =


8
√

πa3
0

V
1

(1+(ka0)2)2 , (3D)√
2π

A a0
1

(1+(ka0/2)2)3/2 , (2D).

, (211)

where V,A are the volume and the area of the sample, respectively. These are relatively flat for
0 < k < 1/a0 and rapidly decreasing for k > 1/a0. Therefore, the exciton size a0 determines what
portion of k points in the FBZ would participate in creating the exciton significantly. For example,
MoS2 has a unit cell size of 3.2 Å[16], while it has the lowest exciton radius a0 of 10.5 Å. Since
the size of the FBZ is 2π/al where al is the lattice constant, it implies that about 10 % of FBZ k
points strongly participating in building an exciton state.

Figure 14 shows the many body state represented by the band structure of a solid. The Fermi
sea state has a fully occupied valence band and a fully empty conduction band. The single electron-
hole pair state is not bounded by the Coulomb potential (i.e., above the Coulomb bounded state
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Figure 15: Energy levels of various many body states.

- excitons). The exciton state is a superposition of the single electron-hole pairs for all possible
k, with a weight ψν(k). This is somewhat a remarkable physical insight for an exciton, which
is originally a bound electron-hole pair state by the Coulomb potential, which turns out to be a
superposition state of all possible k, with the Fourier-transformed exciton wave function ψν(k) as
the superposing weight.

Figure 15 shows the energy levels of the various many body states. We regard the Fermi sea
state energy to be zero. The first excited state is the lowest exciton state |x0〉, and the next levels are
the exciton states |x1〉 , |x2〉 · · · which are bound state according to the Coulomb potential. Then,
the unbounded states C(k) starts, which is more or less like a continuum of an energy band.
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C. Optical selection rule for ±K valleys

The result in section 3.3.1 also nicely explains the selection rule. Let us consider the σ± light that
has the polarization ε̂± ∝ x̂± iŷ. Then, the dipole moment at the band extrema is proportional to
dx

cv(0)± idy
cv(0) where dx,y

cv (0) is the x,y component of the dipole moment in equation (165). For
K valley, we set τ = 1:

d+
cv,K = [dx

cv(0)+ idy
cv(0)]τ=+1 = ie

(
− h̄v

∆
− h̄v

∆

)
=−2ie

h̄v
∆
. (212)

However, we calculate

d−cv,K = [dx
cv(0)− idy

cv(0)]τ=+1 = ie
(
− h̄v

∆
+

h̄v
∆

)
= 0. (213)

Therefore, at K valleys, only σ+ light is absorbed. At −K valleys, one can show that

d+
cv,−K = [dx

cv(0)+ idy
cv(0)]τ=−1 = ie

(
h̄v
∆
− h̄v

∆

)
= 0,

d−cv,−K = [dx
cv(0)− idy

cv(0)]τ=−1 = ie
(

h̄v
∆

+
h̄v
∆

)
= 2ie

h̄v
∆
. (214)

Therefore, at −K valleys, only σ− light is absorbed. Hence, by adjusting the light polarization,
one can selectively excite either K valleys or −K valleys.

According to (165), the optical selection rule starts deviating from the above result for the cases
qx 6= qy. However, note that the deviation from the valley selection rule is a second-order effect.
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D. Lifetime of an electron hole pair

When an electron-hole pair is excited, the recombination takes place either through a radiative or
a non-radiative process. The radiative process is the spontaneous emission while the non-radiative
process is the scattering involving phonons. At zero temperature, the dominant process is the
radiative process due to the lack of phonon excitations.

According to the Fermi’s golden rule (first order perturbation theory), the differential transition
rate dWf i from an initial state |i〉 to a final state | f 〉 subject to a perturbation from an interaction
Hamiltonian HI is given by [3]

dWf i =
2π

h̄
| 〈 f |HI |i〉 |2ρ f (E)δ (E− h̄ω)dE, (215)

In our case, the interaction Hamiltonian is given by

HI =−∑
k

[
dcvα

†
k β

†
−ki

√
h̄ωq

2V ε0
bq−d∗cvi

√
h̄ωq

2V ε0
b†

qαkβ−k

]
, (216)

where α
†
k ,β

†
k are the raising operators for the electron and hole, respectively, and b†

q is the photon
creation operator.

Note that the states are tensor states |i〉=
∣∣0q
〉
⊗|k,−k〉=α

†
k β

†
−k

∣∣0q
〉
⊗|0〉, describing the state

where the number of photons is zero and an electron hole pair is excited, and | f 〉 =
∣∣1q
〉
⊗|0〉 =

b†
q
∣∣0q
〉
⊗ |0〉 where one photon state is excited and the solid is in the ground state (Fermi sea).

Hence, we find

〈 f |HI |i〉=+d∗cvi

√
h̄ωq

2V ε0

〈
0q
∣∣⊗〈0|bqb†

q
∣∣0q
〉
⊗|0〉

= d∗cvi

√
h̄ωq

2V ε0

〈
0q
∣∣(b†

qbq +1)
∣∣0q
〉

= d∗cvi

√
h̄ωq

2V ε0
. (217)

The photon energy is given through

Eq = h̄ωq = h̄cq, q =
Eq

h̄c
, (218)

and the count of states

Nq = 2
V

(2π)3
4π

3
q3, dNq = 2

V
(2π)3 4πq2dq = 2

V
(2π)3 4π

E2
q

h̄2c2

dEq

h̄c
, (219)
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where we put extra factor 2 for counting two possible polarization. Hence, the density of states is

ρq(Eq) =
dNq

dEq
=

V E2
q

π2h̄3c3
=

V ω2
q

π2h̄c3 . (220)

On the other hand, the solid state band energy is given through

E(k) = Eg +
h̄2k2

2mr
, kdk = dE(k)

mr

h̄2 (221)

The count of states is

N =
A

(2π)2 πk2, dN =
A

(2π)2 2πkdk =
A

4π2 2π
mr

h̄2 dE(k) =
Amr

2π h̄2 dE(k). (222)

Hence, the density of states is

ρ(E(k)) =
dN

dE(k)
=

Amr

2π h̄2 (223)

Then, we obtain the total spontaneous emission rate

W =
∫

dWf i =
2π

h̄
|dcv|2

2
h̄ωq

2V ε0

V ω2
q

π2h̄c3 =
ω3

q

2πε0h̄c3 |dcv|2 =
1
τ
, (224)

where τ is the lifetime. Here, we put the extra factor 1/2 to average out |dcv|2 for all possible
polarization (2D). Putting the parameters of the MoS2, we obtain τ ∼ 5 ns.
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E. Nonlinear propagation of light

We briefly remind of the nonlinear propagation of light at harmonic frequencies affected by the
nonlinear optical susceptibilities. We follow the treatment in Boyd [2]. We start with the Maxwell
equations:

∇ ·D = ρ,

∇ ·B = 0,

∇×E =−∂B
∂ t

,

∇×H =
∂D
∂ t

+ J, (225)

which is supplemented by the materials without free charges or currents:

ρ = 0, J = 0, (226)

but, having the polarization
D = ε0E +P. (227)

The material is assumed to be non-magnetic:

B = µ0H, (228)

where µ0 is the vacuum permeability. Then, differentiating the Maxwell equation, we obtain

∇
2E− 1

c2
∂ 2

∂ t2 E =
1

ε0c2
∂ 2P
∂ t2 , (229)

where µ0ε0 = 1/c2 is used, and ∇ ·E is assumed to be negligibly small even for the non-isotropic
medium (P varies over space). By splitting the linear and the nonlinear parts of polarization such
that P = PL +PNL with PL = ε0χ(1)E, we obtain

∇
2E− ε(1)

c
∂ 2E
∂ t2 =

1
ε0c2

∂ 2PNL

∂ t2 , (230)

where ε(1) = 1+ χ(1). Assuming a plane wave and using the complex tilde envelopes such that,
for example,

E(r, t) = Ẽ(r)e−iωnt + c.c., (231)

we obtain

∇
2Ẽ +

ω2
q

c2 ε
(1)(ωq)Ẽ =−

ω2
q

ε0c2 P̃
NL

. (232)

For the second harmonic generation,

P̃
(2)
(ωq) = ε0χ

(2)(ωq/2)Ẽ
2
(ωq/2). (233)

64



Let us use the plane wave approximation Ẽ = ε̂A(z)eikz, and calculate only for the envelope A(z),
while applying the slowly varying envelope approximation where∣∣∣∣d2A(z)

dz2

∣∣∣∣� ∣∣∣∣kdA(z)
dz

∣∣∣∣ , (234)

where k = nωq/c with the refractive index n at ωq, the differential equation for the z propagating
plane wave at ωq is givenas

2ik
dA(ωq)

dz
'−

χ(2)ω2
q

c2 A2(ωq/2)ei∆kz, (235)

where ∆k = 2k(ωq/2)− k(ωq) is the phase mismatch term. This leads to

dA(ωq)

dz
= i

χ(2)ωq

2cn
A2(ωq/2)ei∆kz, (236)

The solution after propagating distance of L is

A(ωq;L) = i
χ(2)ωq

2cn
A2(ωq/2)

∫ L

0
dz ei∆kz = i

χ(2)ωq

2cn
A2(ωq/2)

ei∆kL−1
i∆k

. (237)

The intensity is given as
I = 2nε0c|A|2. (238)

Hence, we find

I(ωq) =
ε0ω2

q |χ(2)(ωq/2)|2

2cn
L2 sin2(∆kL/2)

(∆kL/2)2 . (239)

From this, we see that, for the intensity of the second harmonic, the absolute value |χ(2)| at the
fundamental frequency ωq/2 matters, and the phase of χ(2) enters in equation (237) to describe the
phase lag of the second harmonic envelope.

Third harmonic is similarly calculated, and what matters for the intensity of the third harmonic
is the absolute value |χ(3)| at the fundamental frequency ωq/3, and the phase of χ(3) enters to
describe the phase lag of the third harmonic envelope.

The two photon process is somewhat different since the nonlinearity is given as

P̃
NL

(ωq) = 3ε0χ
(3)
T P(ωq = ωq +ωq−ωq)|Ẽ(ωq)|2Ẽ(ωq) (240)

Hence, the total polarization (excluding the second order) is given as

P̃(ωq) = ε0χ
(1)Ẽ(ωq)+3ε0χ

(3)
T P(ωq)|Ẽ(ωq)|2Ẽ(ωq). (241)

Therefore, the effective susceptibility is

χeff = χ
(1)+3χ

(3)
T P |Ẽ(ωq)|2. (242)

Recall that the complex refractive index n is given as

n2 = 1+χeff. (243)

Hence, the real value of χ
(3)
T P serves as the self phase modulation (modifying the refractive index

depending on the intensity ∝ |A(ωq)|2), while the imaginary value of χ
(3)
T P is indeed a loss term,

describing the two photon absorption, which is also intensity dependent.
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F. Derivation of Blount formula

In this section, we study the Blount formula given in equation (161), which is repeated here:〈
ψk,λ

∣∣r ∣∣ψk′,λ ′
〉
=−i∇k′

〈
ψk,λ |ψk′,λ ′

〉
+ iδk,k′

〈
uk,λ

∣∣∇k
∣∣uk,λ ′

〉
. (244)

Let us consider the Bloch theorem: 〈
r|ψk,λ

〉
= eik·r 〈r|uk,λ

〉
. (245)

Then, we calculate

∇k′
〈
ψk,λ |ψk′,λ ′

〉
= ∇k′

∫
d3r
〈
uk,λ |r

〉
e−ik·reik′·r 〈r|uk′,λ ′

〉
= i
∫

d3r
〈
ψk,λ |r

〉
r
〈
r|ψk′,λ ′

〉
+
∫

d3r
〈
uk,λ |r

〉
e−ik·reik′·r 〈r|∇k′

∣∣uk′,λ ′
〉

= i
〈
ψk,λ

∣∣r ∣∣ψk′,λ ′
〉
+
〈
uk,λ

∣∣(∫ d3r |r〉〈r|ei(k′−k)·r
)

∇k′
∣∣uk′,λ ′

〉
. (246)

Note that, for any normalized state kets |φ〉 , |φ ′〉:

〈φ |
(∫

d3r |r〉〈r|ei(k′−k)·r
)∣∣φ ′〉= ∫ d3rφ

∗(r)φ ′(r)ei(k′−k)·r. (247)

If k′ = k, the right hand side is equal to 〈φ |φ ′〉. Otherwise, the phase rapidly changes for large r,
and the net contribution must become zero. Hence, we conclude∫

d3r |r〉〈r|ei(k′−k)·r = δk,k′1. (248)

From this, we obtain

∇k′
〈
ψk,λ |ψk′,λ ′

〉
= i
〈
ψk,λ

∣∣r ∣∣ψk′,λ ′
〉
+δk,k′

〈
uk,λ

∣∣∇k′
∣∣uk′,λ ′

〉
. (249)

This is equivalent to the Blount formula in equation (244).

Things become complicated when k′→ k. Taking this limit on the left, we obtain〈
ψk,λ

∣∣r ∣∣ψk,λ ′
〉
=−i lim

k′→k
∇k′
〈
ψk,λ |ψk′,λ ′

〉
+ i
〈
uk,λ

∣∣∇k
∣∣uk,λ ′

〉
. (250)

We know that
〈
ψk,λ |ψk,λ ′

〉
= δλ ,λ ′ since

∣∣ψk,λ
〉

and
∣∣ψk,λ ′

〉
are the eigenvectors of the Hamilto-

nian, which is a Hermitian operator. The real question is whether we can bring the limit inside the
derivative ∇k′ . This in general is not possible, due to, for example, the dependence of the phase of∣∣ψk,λ ′

〉
on k′. Unless the phase is discontinuous as in the Riemann branch cuts, indeed the function

value of ∇k′
〈
ψk,λ |ψk′,λ ′

〉
must be continuous as k′ passes through k. Hence, as Blount stated in his

paper [1], the first term is in most cases δkδλ ,λ ′ = 0.
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In case of the monolayer MoS2, there is no reason to believe that the phase of
∣∣ψk,λ

〉
becomes

discontinuous at any point of k around ±K points. Hence, we obtain〈
ψk,λ

∣∣r ∣∣ψk,λ ′
〉
= i
〈
uk,λ

∣∣∇k
∣∣uk,λ ′

〉
. (251)

Next, we show that the well known formula of the velocity operator

v =
1
h̄

∇kH , (252)

where H is a Hamiltonian, is consistent with the above result. For this, let us consider

〈c|v |v〉= 〈c| ṙ |v〉= 1
ih̄
〈c| [r,H ] |v〉= i(ωc−ωv)〈c|r |v〉 , (253)

where |c,v〉 are the kets of the conduction and the valence band states, and h̄ωc,v is the energy of
the conduction and the valence band, respectively. Hence, we obtain

〈c|r |v〉= i
h̄(ωv−ωc)

〈c|∇kH |v〉 . (254)

Note that
∇k (H |v〉) = (∇kH ) |v〉+H ∇k |v〉 . (255)

On the other hand, since H |v〉= h̄ωv |v〉, we have

∇k (H |v〉) = (∇kh̄ωv) |v〉+ h̄ωv∇k |v〉 . (256)

From these two, we obtain

(∇kH ) |v〉= (∇kh̄ωv) |v〉+ h̄ωv∇k |v〉−H ∇k |v〉 . (257)

We take bra on left:

〈c|(∇kH ) |v〉= (∇kh̄ωv)〈c|v〉+ h̄ωv 〈c|∇k |v〉− h̄ωc 〈c|∇k |v〉
= h̄(ωv−ωc)〈c|∇k |v〉 . (258)

From equations (254) and (258), we obtain

〈c|r |v〉= i〈c|∇k |v〉 . (259)

On the other hand, we calculate

〈c|∇k |v〉=
∫

d3r 〈uc|r〉e−ik·r 〈r|∇k

(
eik·r |uv〉

)
=
∫

d3r [(ir)〈uc|r〉〈r|uv〉+ 〈uc|r〉〈r|∇k |uv〉]

= ir 〈uc|uv〉+ 〈uc|∇k |uv〉
= 〈uc|∇k |uv〉 . (260)

From these two equations (259) and (260), we finally obtain

〈c|r |v〉= i〈uc|∇k |uv〉 , (261)

which exactly matches the Blount formula in equation (251). Therefore, we verified that the well
known formula of the velocity operator in equation (252) is consistent with the Blount formula in
equation (251).
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