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Outline

" |iquid-liquid, insulator-to-metal transition (LL-IMT) in
deuterium

= Observed to be density driven and relatively insensitive to
temperature

* |ow-density IMT along the Hugoniot in deuterium

= Recent results show nearly an order-of-magnitude
improvement in precision

Part of a Jovian Science Z Fundamental Science Project




lydrogen at high pressures —
the known phase dlagram SO far
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Recent predictions of the LL-IMT in hydrogen
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Proposed Experiment: Shock - Ramp
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Two-step pulse shape provides shock-ramp profile
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Measured observables in deuterium @&:.
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SVS system provides data to infer reflectivity &=
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SVS system provides data to infer reflectivity
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Measured observables in deuterium @&:.
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P(t) obtained from v(t) and LiF EOS
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P(t) between ~1000-2000 K
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Reflectmty 5|gnals mapped to pressure
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T(t) and p(t) obtained from D, EOS (Kerley03) T 5.
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Experimental PT Paths
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Location of the LL-IMT in deuterium T
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Location of the LL-IMT in deuterium
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Extended P-p diagram for deuterium T
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Outline

» |iquid-liquid, insulator-to-metal transition (LL-IMT) in
deuterium

= Observed to be density driven and relatively insensitive to
temperature

" |ow-density IMT along the Hugoniot in deuterium

= Recent results show nearly an order-of-magnitude
improvement in precision

Part of a Jovian Science Z Fundamental Science Project
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Magnetic pressure can also be used to launch (@&,

flyer plates to high velocity
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Previous Hugoniot data for deuterium has ) e,
relatively large uncertainty and scatter
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VISAR was used to obtain precise flyer plate an@r:.::f;:;m
shock velocities in the D, and quartz

I I I I I I I
22— . - —

21 |- —

‘I

aluminum |
¢/ quartz R ans

V. O\ S T

—h
oo
I

—
\l
I

Velocity (km/s)

—h —h
o o
I I

VISAR —

—h
N

\

| L Do | | | | |

1460 1480 1500 1520 1540 1560 1580
Time (ns)

—
w




Shock response of D, is determined through  ([@g=.
with quartz standard

impedance matching
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Quartz Hugoniot and release has been ) e,
extensively studied in the multi-Mbar regime
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Recent results show significant improvement in
precision with respect to previous data
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Conclusions from Principal Hugoniot experiments ().,

are corroborated by reshock measurements
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Conclusions from Principal Hugoniot experiments ().,
are corroborated by reshock measurements
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Experimental reshock less compressible than DFT ) £z
and is better described by PBE than DF1
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Conclusions

= Shock-ramp technique enabled experimental access to the
liquid-liquid, insulator-metal transition (LL-IMT)

= Experiments show clear evidence of metallization of deuterium

= Relative insensitivity to T at low temperature suggests this is a
p-driven transition in the low temperature regime
» patthe transition is inferred to be ~2-2.1 g/cc in deuterium

= Experiments at higher T in good agreement with previous work
of Weir et al.

= High precision Hugoniot experiments enable evaluation of
various quantum simulation methods
= Experimental results do not agree with any one xc-functional

= Perhaps best described by PBE with the understanding that the IMT
occurs at ¥3-4 GPa higher pressure than predicted by PBE
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Recent results show significant improvementin (@&,
precision with respect to previous data ;
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Dzyabura experiment
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There is a significant temperature difference

at the deuterium/LiF interface
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Thermal conduction simulations
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Reflectivity signals mapped to pressure
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Extended P-T diagram for hydrogen
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Reanalysis of Weir et al data
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P(p) relatively insensitive to EOS model
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Giant planets in the Solar system S
Interior composed of the lightest elements H & He, hydrides NH;, OH,,
CH, (ices) and small amounts of heavier elements (cores)
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H-He de-mixing appears to be precipitated
at low T and P by metallization in hydrogen
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Recent results show significant improvementin (@&,
precision with respect to previous data
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Processed VISAR signals
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Stripline experimental profiles ) £
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