
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed 
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. 

Reactor image? IBL image?

Dynamic compression experiments 
on deuterium and their implications 

for first-principles theory

Marcus D. Knudson
mdknuds@sandia.gov /   mknudson@wsu.edu

Dynamic Material Properties Group
Sandia National Laboratories

Albuquerque, NM

Institute for Shock Physics
Washington State University

Pullman, WA

SAND2016-9359C



Acknowledgements

2

Mike Desjarlais

Andreas Becker

Winfried Lorenzen

Ronald Redmer

QMD Calculations

Experiment

Design/Analysis

Planetary Modeling

Pulse Shaping

Diagnostics

Nadine Nettelmann

Andreas Becker

Ronald Redmer

Marcus Knudson

Ray Lemke

Kyle Cochrane

Devon Dalton

Dustin Romero

Ray Lemke

Jean-Paul Davis

Mark Savage

Ken Struve

Keith LeChien

Brian Stoltzfus

Dave Hinshelwood

Charlie Meyer

Jeff Gluth

Devon Dalton

Anthony Romero

Dave Bliss

Alan Carlson

Entire Z crew

University of Rostock



Outline

 liquid-liquid, insulator-to-metal transition (LL-IMT) in 
deuterium

 Observed to be density driven and relatively insensitive to 
temperature

 low-density IMT along the Hugoniot in deuterium

 Recent results show nearly an order-of-magnitude 
improvement in precision
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Part of a Jovian Science Z Fundamental Science Project
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Recent predictions of the LL-IMT in hydrogen

M. Morales, et al. Proc. Natl. Acad. Sci. U.S.A. 107, 12799 (2010)W. Lorenzen, et al. in Frontiers and Challenges in Warm Dense Matter (2014)M. Morales, et al. Phys. Rev. Lett. 110, 065702 (2013)V. Dzyabura, et al. Proc. Natl. Acad. Sci. U.S.A. 110, 8040 (2013)G. Mazzola, et al. Nature Comm. 5, 3487 (2014); PRL 114, 105701 (2015)M.D. Knudson et al., Science 348, 1455 (2015)
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Proposed Experiment:  Shock - Ramp

M.D. Knudson et al., Science 348, 1455 (2015)
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Experimental configuration



9

CathodeAnode

Aluminum 
front plate

Sapphire 
window

LiF
window

Deuterium 
sampleReflective 

coating

Fiber probes

Few 
hundred 

micron gap

Anode 
drive plate

Experimental configuration



10

First step accelerates 
drive plate across few 
hundred micron gap

Subsequent current 
rise produces ramp 
compression from 

initial shocked state

Two-step pulse shape provides shock-ramp profile
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Measured observables in deuterium

Al D2 LiF
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457.9 nm 589.3 nm532 / 543.5 nmWavelength range ~450-700 nm

Reflection from aluminum coating Reflection from deuterium 

SVS system provides data to infer reflectivity
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SVS system provides data to infer reflectivity

Lower T
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Measured observables in deuterium

Al D2 LiF
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P(t) obtained from v(t) and LiF EOS
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P(t) between ~1000-2000 K
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Reflectivity signals mapped to pressure
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T(t) and (t) obtained from D2 EOS (Kerley03)
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Experimental PT Paths
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Location of the LL-IMT in deuterium

M.D. Knudson et al., Science 348, 1455 (2015)
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Location of the LL-IMT in deuterium

Experimental
LL-IMT

Weir et al.
hydrogen

Weir et al.
deuterium

Strong optical
absorption in

the visible

Dyzabura
et al.

DF2

DF2
w/ NQE

DF1
w/ NQE

PBE
w/ NQE

PBE

PBE melt line



22

Extended P- diagram for deuterium

Laser-shocked DAC, Loubeyre et. al

Shock ring-up, Weir et. al

Shock-ramp, Knudson et. al

PBE DF2



Outline

 liquid-liquid, insulator-to-metal transition (LL-IMT) in 
deuterium

 Observed to be density driven and relatively insensitive to 
temperature

 low-density IMT along the Hugoniot in deuterium

 Recent results show nearly an order-of-magnitude 
improvement in precision
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Part of a Jovian Science Z Fundamental Science Project
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Anode/Flyer Plate

Target

Cathode
Anode

J

B

Magnetic pressure can also be used to launch 
flyer plates to high velocity

Lemke et al., J. Appl. Phys. 98, 073530 (2005)



Kerley03

Desjarlais QMD

Z Data
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All of the previous data 

used aluminum as an 

impedance match 

standard with 

uncertainties in /0 of 

order 10%

Hicks et al., PRB 79, 014112 (2009)Knudson et al., PRB 69, 144209 (2004)Boriskov et al., PRB 71, 092104 (2005)

Previous Hugoniot data for deuterium has 
relatively large uncertainty and scatter
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aluminum

quartz

D2

VISAR

VISAR was used to obtain precise flyer plate and 
shock velocities in the D2 and quartz
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Shock response of D2 is determined through 
impedance matching with quartz standard

• Measured Us in quartz 
determines (P, up) for 
drive plate

• The empirical release 
model is used to 
calculate the release 
adiabat

• Intersection of the 
release adiabat and first 
shock Rayleigh line 
determines (P1, up1) for 
deuterium

• Measured Us in quartz 
rear plate determines 
(P2, up2) in deuterium
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• Nearly 300 Hugoniot points for quartz have 
been obtained between 1 and 15 Mbar

• A release model was developed using 
release measurements obtained from TPX, 
and both ~200 mg/cc and ~100 mg/cc 
aerogel 

TPX

~200 mg/cc
aerogel

~100 mg/cc
aerogel

quartz

Knudson and Desjarlais, PRB 88, 184107 (2013)Knudson and Desjarlais, PRL 103, 225501 (2009)

Quartz Hugoniot and release has been 
extensively studied in the multi-Mbar regime
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Recent results show significant improvement in 
precision with respect to previous data
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Conclusions from Principal Hugoniot experiments 
are corroborated by reshock measurements

Sesame72

vdW-DF1

PBE

Kerley03

Lenosky

PBE

vdW-DF1

Z Quartz

More 
compressible 

models tend to 
predict higher 

reshock pressure



vdW-DF1

PBE

PBE + 4 GPa

vdW-DF1

Z Quartz

31

Sesame72

Kerley03

Lenosky

PBE

Conclusions from Principal Hugoniot experiments 
are corroborated by reshock measurements
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Experimental reshock less compressible than DFT 
and is better described by PBE than DF1

vdW-DF1

PBE

PBE

PBE + 4 GPa

vdW-DF1

Z Quartz

Less compressible

More compressible

Overall trend 
in the DFT 
results is 

consistent with 
experimental 
observations
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Conclusions
 Shock-ramp technique enabled experimental access to the 

liquid-liquid, insulator-metal transition (LL-IMT)

 Experiments show clear evidence of metallization of deuterium

 Relative insensitivity to T at low temperature suggests this is a 

-driven transition in the low temperature regime

  at the transition is inferred to be ~2-2.1 g/cc in deuterium

 Experiments at higher T in good agreement with previous work 

of Weir et al.

 High precision Hugoniot experiments enable evaluation of 

various quantum simulation methods

 Experimental results do not agree with any one xc-functional

 Perhaps best described by PBE with the understanding that the IMT 

occurs at ~3-4 GPa higher pressure than predicted by PBE
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Recent results show significant improvement in 
precision with respect to previous data
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V. Dzyabura, et al. Proc. Natl. Acad. Sci. U.S.A. 110, 8040 (2013) 37

Dzyabura experiment
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deuterium 
temperature

aluminum 
temperature

LiF
temperature

~1545 K

~1100 K

There is a significant temperature difference
at the deuterium/LiF interface
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Thermal conduction simulations
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Reflectivity signals mapped to pressure
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Extended P-T diagram for hydrogen
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Reanalysis of Weir et al data
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P() relatively insensitive to EOS model

Solid lines from QMD (vdW-DF2)

Dashed lines from Kerley03
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Giant planets in the Solar system
Interior composed of the lightest elements H & He, hydrides NH3, OH2, 

CH4 (ices) and small amounts of heavier elements (cores)



45W. Lorenzen, B. Holst, and R. Redmer, Phys. Rev. B 84, 235109 (2011)

H-He de-mixing appears to be precipitated
at low T and P by metallization in hydrogen
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Recent results will 

enable critical 

comparison with different 

density functionals in the 

vicinity of dissociation

Knudson et al., PRB 69, 144209 (2004) Desjarlais, PRB 68, 064204 (2003)

Results with quartz 
standard have 

uncertainty in /0

of  ~1.5%

Averages of 
several data 

points

Typical uncertainty 
of single datum

Recent QMC

Z data is in strong 

disagreement with recent 

QMC calculations

Tubman et al., PRL 115, 045301 (2015)

vdW-DF2

vdW-DF1

Recent results show significant improvement in 
precision with respect to previous data



Processed VISAR signals
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Aluminum / D2 InterfaceD2 / LiF Interface



Stripline experimental profiles

aluminum/deuterium 
interface

deuterium/LiF
interface
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