SANDIA REPORT

SAND2017-10191
Unlimited Release
Printed August, 2017

FY17 CSSE L2 Milestone Report:
Analyzing Power Usage
Characteristics of Workloads
Running on Trinity

Ryan E. Grant, James H. Laros Ill, Michael Levenhagen, Stephen L. Olivier, Kevin
Pedretti, Lee Ward, Andrew J. Younge

Prepared by
Sandia National Laboratories
Albugquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated
by National Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http:/www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http:/www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2017-10191
Unlimited Release
Printed August, 2017

FY17 CSSE L2 Milestone Report:
Analyzing Power Usage Characteristics of Workloads
Running on Trinity

Ryan E. Grant, James H. Laros III, Michael Levenhagen,
Stephen L. Olivier, Kevin Pedretti, Lee Ward, Andrew J. Younge

Abstract

This report summarizes the work performed as part of a FY17 CSSE L2 milestone to in-
vestigate the power usage behavior of ASC workloads running on the ATS-1 Trinity plat-
form. Techniques were developed to instrument application code regions of interest using
the Power API together with the Kokkos profiling interface and Caliper annotation library.
Experiments were performed to understand the power usage behavior of mini-applications
and the SNL/ATDM SPARC application running on ATS-1 Trinity Haswell and Knights
Landing compute nodes. A taxonomy of power measurement approaches was identified and
presented, providing a guide for application developers to follow. Controlled scaling study
experiments were performed on up to 2048 nodes of Trinity along with smaller scale ex-
periments on Trinity testbed systems. Additionally, power and energy system monitoring
information from Trinity was collected and archived for post analysis of “in-the-wild” work-
loads. Results were analyzed to assess the sensitivity of the workloads to ATS-1 compute
node type (Haswell vs. Knights Landing), CPU frequency control, node-level power capping
control, OpenMP configuration, Knights Landing on-package memory configuration, and
algorithm /solver configuration. Overall, this milestone lays groundwork for addressing the
long-term goal of determining how to best use and operate future ASC platforms to achieve
the greatest benefit subject to a constrained power budget.

Acknowledgment

Numerous people have helped us throughout the course of this work. In particular, we
would like to thank: Simon Hammond for his many technical discussions with us and for
providing early access versions of MiniMD, LULESH, and MiniMD mini-apps instrumented
with the Kokkos profiling interfaces. Christian Trott for helping us understand how to best
configure our mini-app experiments and interpret results. Andrew Bradley for helping us
understand how to configure and measure the performance of the SPARC application and for
providing early access versions of SPARC with new optimized Trilinos solvers. Micah Howard
for helping us get up and running with SPARC and for suggesting appropriate input problems
to evaluate. Amanda Bonnie, Jim Brandt, Adam DeConinck, Ann Gentile, Jason Repik,
and Kevin Stroup for designing and setting up a method to retain long-term power and
energy system monitoring information for Trinity and its related testbed systems. Jason
Repik, Steven Martin, Matthew Kappel, and the rest of the Cray Advanced Power Manag-
ment Non-recurring Engineering (NRE) team for their numerous technical discussions with
us and for developing and deploying robust implementations of the PowerAPI for Trinity.
Courtenay Vaughan for helping us to configure and interpret our mini-app and application
power profiling experiments.

Contents

Executive Summary
Milestone Description
Impact Statement
Summary of Work Done

Path Forward
Nomenclature
1 Introduction

2 Background — Power Measurement Techniques
Power Sampling.

Using Power Measurements for Optimization.............

The Power AP . . .

Using the Power API

Implementation.

3 Power Control Techniques
Taxonomy of Power Measurement
Level 1: Job-wide Aggregate Information
Level 2: Periodic Sampling

Level 3: Application Instrumentation

5

11
11
11
12

13

14

15

17
17
20
21
21
22
24

25

31

Level 4: Multi-Level Correlation

4 Trinity Advanced Power Management
Platformso
Cray Systems Management Infrastructure
Power Management Database Overview
Cray Advanced Platform Monitoring and Control
PowerNRE — PowerAPI for Cray
Power Management Database Implementation..........................
Compute Node Implementation.
Power Aware Scheduling
Power Capping

Instrumentation.

5 Testbed Mini Application Experiments
Workloads
Mini-App Power Profiling Experiments
Job-wide Aggregate Information L.
Application Instrumentation
Out-of-band Periodic Sampling

Combining Out-of-band Periodic Sampling and Application Instrumentation .

6 Trinity TR2 Experiments
Mini Applications on TR2

In-the-Wild Analysis.

7 SPARC Experiments

SPARC: A Performance Portable Compressible CED Code

6

37
37
38
39
39
40
41
42
44
45

47

51
ol
52
52
52
54

57

61

61

65

71

Test Setup and SPARC Configuration.

Experimental Results

Sensitivity to OpenMP Configuration

Sensitivity P-state and Solver

Sensitivity to Knights Landing Memory Configuration

Out-of-band 5 Hz Power Sampling

P-state vs. Power capping control

8 Discussion

Power Profiling Lessons Learned

Power Profiling and Energy Efficiency.......

Architecture - Haswell v. Knights Landing

Algorithmic and System Software Advances

9 Conclusion

References

91
91
93
95
96

99

100

List of Figures

2.1

2.2

2.3

24

3.1

4.1
4.2

4.3

4.4

5.1

5.2

5.3

5.4

5.5

6.1

6.2

Example of a simple machine hierarchy for the Power API.

Top Level Conceptual Diagram representing the interaction of roles with dif-
ferent levels of the Power API interfaces.

Example of using Power API to measure energy usage of a function.........

Power API Energy data collection latency using multiple nodes.

Summary of measurement techniques - pros and cons

Offloaded network traffic stream bandwidth with varying CPU frequencies. . .
Onloaded network traffic stream latency with varying CPU frequencies

Power API power measurements used to understand node-level power capping
behavior with production application, CTH. CTH is a strong shock wave,
multi-material solid mechanics code

CTH and S3D application scalability when running under a node-level power
CAD. + e et e e
Out-of-band power sampling for workloads running on Trinity Knights Land-

ing at different CPU frequencies..

Out-of-band power sampling for LULESH and MiniMD running on the dif-
ferent test platforms.

MiniFE correlating out-of-band power sampling with in-band application re-
gion profiling.

MiniMD correlating out-of-band power sampling with in-band application re-
gion profiling.

Zoomed-in MiniMD correlating out-of-band power sampling with in-band ap-
plication region profiling.

Average node power of MiniMD, as a percent form Turbo frequency FOM. ..

Average node power of MiniFE, as a percent form Turbo frequency FOM . . .

8

23

27

29

57

58

o8

6.3

6.4

6.5

6.6

6.7

7.1
7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

Average node power of Lulesh, as a percent form Turbo frequency FOM 64
Lulesh Figure of Merit per node, scaling to 2197 nodes. 65

Node-level power over time for two of the PARTISN runs in workload 2.
Spikes likely correspond to application cycles indicating that any slowdown in
PARTISN 4 is not a large localized event. 68

Memory power over time (external DIMMS, does not include MCDRAM) for
two of the PARTISN runs in workload 2. 69

Histogram of node-level average power for two of the PARTISN runs in work-
load 2. The histograms include average power for each of the 1024 nodes in
each run, calculated from the per-node 1 Hz power samples recorded during
each run. There is an outlier node value in the PARTISN 4 allocation. 70

Baseline run configurations used for SPARC GRV problem on 32 nodes. 73

Power vs. time for different solver configurations for SPARC GRV problem on
32 N0dES. . . 76

Energy vs. time for different solver configurations for SPARC GRV problem on
32 NOAES. .« o 7

Linear equation solve time for different solver configurations for SPARC GRV
problem on 32 nodes. 78

Percentage of linear equation solve time of overall solve time for different
solver configurations for SPARC GRV problem on 32 nodes................. 79

Comparison of SPARC GRV problem on 32 nodes running from KNL on-
package memory vs. off-package DDR memory. 81

Aggregate results for static p-state selection for SPARC GRV input running on
32 N0des. . . 83

Time vs. power for static p-state selection for SPARC GRV input running on
32 nodes. Note that the x-axis limits in 7.8c¢ are different than in 7.8a and 7.8b. 85

Zoomed-in time vs. power for static p-state selection for SPARC GRV input
running on 32 NOdes. 86

Comparison of static p-state selection to static node-level power cap selection
for SPARC GRV input running on 32 nodes. 88

Time vs. power for static node-level power cap selection for SPARC GRV input
running on 32 NOAES. 89

List of Tables

4.1

4.2

5.1
5.2
5.3

6.1

6.2

7.1

7.2

8.1

Test Platform Specifications 38

Power capping settings on Trinity XC40 Haswell and Knights Landing nodes. 47

Power and Energy Efficiency Calculated from Cray RUR Aggregate Information 53

Application Profiling Region Durations For Trinity KNL 54
Overhead of Application Profiling For Trinity KNL...................... 55
Workload 1 Power and Energy Usage 67
Workload 2 Power and Energy Usage 67
Sweeping OpenMP configuration for SPARC GRV problem on 32 nodes. 74
Aggregate results for static p-state selection for SPARC GRV problem running

ON 32 NOAES. . o\ 82
SPARC potential energy savings of lower P-state at scale. 94

10

Executive Summary

The overall goal of this work was to utilize the Advanced Power Management (APM)
capabilities of the ATS-1 Trinity platform to understand the power usage behavior of ASC
workloads running on Trinity and gain insight into the potential for utilizing power manage-
ment techniques on future ASC platforms.

Milestone Description

As written in the ASC Implementation Plan, the milestone description is as follows:

In anticipation of practical power consumption limits, the ASC program requires
guidance for power management of future platforms and applications. The Trin-
ity program’s Advanced Power Management (APM) Non-recurring Engineering
(NRE) project is delivering integrated power monitoring and control capabilities
in the Trinity platform, building on prior work developing the Power API. This
milestone will utilize these capabilities to collect information on the power usage
characteristics of the ASC production workload running on Trinity. Methods
will be developed to assist with understanding and applied to assess the poten-
tial impact of power-constraints in future ASC platforms. This milestone will
lay groundwork for addressing the long-term goal of determining how to best use
and operate future ASC platforms to achieve the greatest benefit subject to a
constrained power budget.

Impact Statement

This work has provided insight into the power usage characteristics of ASC workloads
running on ATS-1 Trinity hardware. Energy efficiency was examined from the perspective
of compute node architecture, run configuration (e.g., OpenMP layout, on-package memory
configuration), algorithm, software power management control, and scale. Each of these di-
mensions were quantified and found to be important contributors to overall energy efficiency
improvements. For example, the SNL/ATDM SPARC application was found to perform 19%
better and use 40% less energy to solution when running on Trinity’s Knights Landing com-
pute nodes compared to running on Haswell nodes. This work indicates significant potential
for managing power as a resource in future ASC platforms. None of the workloads evaluated,
even highly-tuned applications such as SPARC, utilized more than 90% of their allocated

11

power budget, with most using 60-85%. Trinity’s node-level power capping mechanism was
evaluated and found to function effectively so long as the cap level was set at or above
the application’s natural power usage. Power capping could therefore be a useful tool for
reclaiming unused power headroom—the difference between wallplate power and an applica-
tion’s actual usage—to power additional compute nodes in future platforms. For example, a
Trinity-like system with a 20 MW power budget and wallplate-rated 400 W compute nodes
could potentially power an additional 25% more nodes by setting a 320 W power cap per
node with minimal performance impact for many ASC workloads.

Summary of Work Done

Experiments were performed to understand the power usage behavior of mini-applications
and the SNL/ATDM SPARC application running on ATS-1 Trinity Haswell and Knights
Landing compute nodes. Techniques were developed to instrument application code regions
of interest using the Power API (Publication 1) together with the Kokkos profiling interface
and Caliper annotation library. A taxonomy of power measurement approaches was iden-
tified and presented, providing a guide for application developers to follow (Publication 2).
Controlled scaling study experiments were performed on up to 2048 nodes of Trinity along
with smaller scale experiments on Trinity testbed systems. Additionally, power and energy
system monitoring information from Trinity was collected and archived for post analysis
of “in-the-wild” workloads (Publication 3). Results were analyzed to assess the sensitivity
of the workloads to ATS-1 compute node type (Haswell vs. Knights Landing), CPU fre-
quency control, node-level power capping control, OpenMP configuration, Knights Landing
on-package memory configuration, and algorithm/solver configuration (Publication 4, this
document).

Publications:

1. R. Grant, M. Levenhagen, S. Olivier, D. DeBonis, K. Pedretti, J. Laros, “Standardizing
Power Monitoring and Control at Exascale,” Journal Article, IEEE Computer, Vol. 49,
No. 10, pp. 3846, October 2016.

2. R. Grant, J. Laros, M. Levenhagen, S. Olivier, K. Pedretti, L. Ward, A. Younge,
“Evaluating Energy and Power Profiling Techniques for HPC Workloads,” Conference
Paper, International Green and Sustainable Computing Conference, October 2017.

3. A. DeConinck, H. Nam, D. Morton, A. Bonnie, C. Lueninghoener, J. Brandt, A.
Gentile, K. Pedretti, A. Agelastos, C. Vaughan, S. Hammond, B. Allan, M. Davis, J.
Repik, “Runtime collection and analysis of system metrics for production monitoring
of Trinity Phase II,” Conference Paper, Cray Users Group, May 2017.

4. R. Grant, J. Laros, M. Levenhagen, S. Olivier, K. Pedretti, L. Ward, A. Younge,
“FY17 CSSE L2 Milestone Report: Analyzing Power Usage Characteristics of Work-
loads Running on Trinity,” Sandia Technical Report, September 2017.

12

Path Forward

As mentioned above, the successful completion of this effort has given Sandia increased
understanding of the power measurement and control capabilities of Trinity and has char-
acterized the power usage behavior of ASC workloads running on Trinity. This insight will
be used to help specify power-related requirements of future platforms. The results of this
milestone also suggest significant potential for applying dynamic power management tech-
niques to the SPARC application and a next step is to determine how well this works in
practice on Trinity. Finally, the methods and tools developed by this milestone will be used
to analyze additional ASC workloads.

13

Nomenclature

DOE United States Department of Energy

NNSA National Nuclear Security Administration, a semi-autonomous agency within DOE
ASC Advanced Simulation and Computing, a program of NNSA

CSSE Computational Systems & Software Engineering, a subprogram within ASC
ATDM Advanced Technology Development and Mitigation, a subprogram within ASC
FY17 Fiscal Year 2017, October 1, 2016 to September 30, 2017

L2 Milestone Level 2 milestone, a significant deliverable requiring formal review
SNL Sandia National Laboratories

LANL Los Alamos National Laboratory

NRE Non Recurring Engineering

HPC High Performance Computing

HBM High Bandwidth Memory, used generically in this document, not the JEDEC stan-
dard

14

Chapter 1

Introduction

This report summarizes the results of an FY17 ASC CSSE L2 milestone to analyze
the power usage characteristics of workloads running on Trinity, a 42.3 PetaFLOP NNSA
supercomputer based on the Cray XC40 architecture. A description of this milestone is as
follows:

In anticipation of practical power consumption limits, the ASC program requires
guidance for power management of future platforms and applications. The Trin-
ity program’s Advanced Power Management (APM) Non-recurring Engineering
(NRE) project is delivering integrated power monitoring and control capabilities
in the Trinity platform, building on prior work developing the Power API. This
milestone will utilize these capabilities to collect information on the power usage
characteristics of the ASC production workload running on Trinity. Methods
will be developed to assist with understanding and applied to assess the poten-
tial impact of power-constraints in future ASC platforms. This milestone will
lay groundwork for addressing the long-term goal of determining how to best use
and operate future ASC platforms to achieve the greatest benefit subject to a
constrained power budget.

The goals of this L2 build upon functionality that has been in development at Sandia
National Laboratories for several years. The capabilities of Trinity to gather power mea-
surements and the work done on the Power API were critical to the success of this L2.
Understanding the history of the build up of capabilities that has enabled the work done in
this L2 is important to understand the context in which the work was performed.

The basis for work to understand the power/energy characteristics of large compute
systems began many years ago at Sandia in understanding that we needed to include power
as a first-class consideration in every aspect of High Performance Computing (HPC) as
it was predicted to become a major system constraint in the near future. With further
investigation into this areas, the lack of standard interfaces for power measurement and
control became more evident. Sandia National Laboratories (Sandia) began investigating
how to address this gap in 2012 by evaluating use cases revealed by early research in this
area. The result of this effort was a document[45] that outlined the scope and interfaces that
a power application programming interface should address if it were to meet the demanding

15

needs of HPC. Immediately following this effort, in January 2014, a team at Sandia formally
began creating the High Performance Computing - Power Application Programming Interface
specification[46] (Power API).

The Power API targets a broad range of interfaces ranging from low level capabilities
exposed by technology providers to higher level interfaces that address use cases involving
end users, applications and work-load managers, for example. Six months after focusing
primarily on the core interfaces of the specification an early draft was vetted by a range
of technology providers (Adaptive Computing, Cray, AMD, Penguin Computing, Intel, and
IBM), laboratory (National Renewable Energy Laboratory, Oak Ridge National Laboratory)
and university (University of New Mexico) representatives. The technology providers were
specifically targeted since the success of any proposed standard depends on it being imple-
mented. However, community involvement is just as critical to drive the development of the
specification in an unbiased manner and ensure that it remains vendor-neutral. One of the
primary goals of the Power API is to present a set of portable interfaces, shielding the end
user, no matter what role they serve, from vendor specific implementation details.

During the same time that Sandia was preparing to begin development of the Power
API, the Alliance for Computing at Extreme Scale (ACES), a collaboration between Sandia
and Los Alamos National Laboratory (Los Alamos), was preparing to release a Request for
Proposal (RFP) for Trinity, the DOE’s National Nuclear Security Administrations (NNSA)
first Advanced Technology System (ATS-1). An important aspect of this new effort by the
DOE is the investment in advanced technologies in the form of non-recurring engineering
(NRE). A portion of funding for each platform in the ATS line is invested in advanced
technologies selected for their potential impact to the DOE/NNSA mission. For the Trinity
(ATS-1) procurement, Burst-Buffer and Power were selected as the two focuses of NRE
investment. This report uses the work developed in collaboration with Cray on the Trinity
Advanced Power Management (APM) NRE program.

Measuring and understanding the power profiles of codes of interest is the first major
goal of this L2. We have used a variety of codes and benchmarks to obtain an understanding
of codes in general as well as a detailed study of SPARC to understand real application
power profiles on traditional and many-core architectures. In obtaining these profiles we
have developed a taxonomy for understanding the methods of gathering power profiles and
have developed best practices for power measurements based on the required level of detail.
We describe this methodology in Section 3.

This report will begin by providing background material on power measurements in
Section 2 including examples of the application of measurements to system optimizations.
Section 2 will also introduce the Power API including examples of its use and implementation
details. Section 3 provides a taxonomy for measurement techniques as well as best practices
for using these techniques to obtain the desired data outputs. Next, we discuss the Trinity
power management infrastructure in detail in Section 4. Section 5 illustrates power profiles
for mini-applications of interest and Section 7 details results from testing using SPARC. We
conclude with discussion on the lessons learned from this L.2 in Section 8 and final conclusions
in Section 9.

16

Chapter 2

Background — Power Measurement
Techniques

The fundamental concepts and mechanisms behind power measurement and control are
numerous and elaborate. This is furthermore the case when considering such energy con-
siderations within the context of extreme-scale HPC resources. As such, this section walks
through the fundamentals of advanced power management with a particular focus on some
of the latest supercomputing resources today.

Power Sampling

Power measurement of system components is a topic that has been studied for many
years. Accurate power measurements are essential when energy budgets are regulated and
finite, such as in mobile devices. Energy usage is important in real-time applications to
identify opportunities to reduce energy usage while satisfying required deadlines. Commer-
cial services such as cloud providers focus on overall system efficiency for cost optimization.
Power usage is also of interest to sites hosting HPC platforms, as such sites must meet statu-
tory regulations governing energy efficiency and seek to minimize electricity costs. However,
US DOE HPC facilities are often more concerned with limitations that constrain the amount
of power that can be provided to a given platform.

Approaches to power measurement are varied, and provide different types and rates of
data. Out-of-band measurement is the easiest approach to understand. It uses equipment
external to the compute resource to measure power consumption without perturbing com-
putational performance. Classic examples of out-of-band measurement include devices like
WattsUp! [18], WattProf [66], Powerlnsight [44], and integrated devices like IBM’s power
measurement capabilities [8]. Out-of-band measurements avoid perturbing the ongoing com-
putation, but they may not provide easily accessible information to the running processes.
Since these devices are necessarily not part of the CPU, they must be interrogated over
external device buses for data instead. Historically, simple out-of-band measurement tech-
niques have had relatively low sampling rates, however new integrated designs have greatly
improved sampling rate.

17

In-band measurement uses device-level integrated measurement capabilities, such as
Intel’s Running Average Power Limit (RAPL), or AMD’s Advanced Power Management
(APM). They provide real or estimated measurements of energy consumption through device-
level interfaces. RAPL and APM use CPU counters to express energy usage, and can provide
separate core, package and DRAM measurements. In-band measurements require active par-
ticipation of the compute cores in a system to gather data on a regular basis. Therefore,
point-in-time samples require frequent intervention to record the values in counters on the
device. This corresponds to a read of a CPU register on both Intel’s and AMD’s solutions. If
only total energy consumption of the whole application is needed, rather than point-in-time
samples, then in-band measurement can have very little impact on computational perfor-
mance. Point in time samples require several reads per second if the device’s maximum
sampling rate is used.

In-band measurement through CPU counters can often provide both CPU and mem-
ory subsystem energy measurement [4, 14]. This is not always possible with out-of-band
measurement, depending on where the external measurement hardware is placed and its
capabilities. Out-of-band measurement can capture whole node energy profiles more easily,
while this is generally not possible for in-band measurement that relies on CPU counters.
Whole node energy can be useful when other components such as network or motherboard
chip set consume a large amount of the power budget for a node.

Application instrumentation and profiling can take multiple forms. Timestamping is a
common practice amongst application developers to understand the performance charac-
teristics of their code. Other more in depth profiling techniques and tools such as Intel’s
Vtune [67] or Cray’s CrayPat [39] allow deeper inspection into program behavior through
call-graph traces and CPU performance monitoring counter data. The Power API [26] can
provide a portable solution to application level power measurement when application region
hints are integrated with power measurement through the framework.

The concept of investigating energy and power consumption of large-scale HPC resources
is not a new one. In the literature, most related work has addressed real power measurement
using solely out-of-band [73, 15, 56, 57, 28] or in-band [69, 29, 77, 25] techniques. Some
work has also sought to validate in-band measurements using out-of-band measurements at
the same time to determine the overall accuracy of the measurements or integrated power
model [14]. Previous work has used application instrumentation with power measurements
to estimate energy usage to within 10% of actual consumption [37]. Several works have used
estimated power values to determine the system energy consumption [9, 76, 24]. Other work
uses power measurements to illustrate methods for operating power constrained systems
(60, 23]. Work has also been done specifically on power consumption on very large systems
with custom power measurement frameworks [43, 47]. Several power estimation framework-
s/simulators exist as well such as WATTCH [11], and SST [34]. However, these simulators
rely on estimations of energy consumption and therefore have high margins of error, partic-
ularly for architectures that are not the explicit target of the simulation. Older simulators
were based on power profiles from DEC Alpha CPUs which may no longer be accurate for
modern architectures. APIs have addressed the topic of gathering power and energy data

18

from systems including the Power API [41], Redfish [32], CapMC [53] and AMESTER [40].
Many vendors also have proprietary interfaces to specific hardware. CapMC and AMESTER
are similar to these as they are only for Cray and IBM systems respectively, but they do
work with a range of systems as opposed to a specific measurement hardware device. Cray’s
CAPMC allows for power monitoring and control capabilities on Cray systems, it is a REST-
ful interface that uses JSON for issuing and interpreting commands [51, 30, 52]. Redfish al-
lows for collection of a variety of metrics on system performance on large parallel machines,
however it is not specific to power measurement. Redfish uses a JSON interface that can be
used for management of generic cloud infrastructures and provides basic support for man-
aging power reserouces in a cloud environment. The Power API is an HPC specific power
measurement and control API, and can be used by higher level APIs like Redfish or can serve
as a portable interface to lower level APIs like CapMC and AMESTER, as well as lowest
level readings like RAPL counters. Other APIs have been developed to gather power/energy
data from custom measurement hardware. Most of these APIs are device specific, such as
Powermon [7] and Powerpack [22]. Also, more recent out-of-band measurement devices have
had specific targeted APIs, like PowerInsight [44] and WattProf [66]. Out-of-band measure-
ment devices have provided fine-grained measurement and control via their device APIs,
and have allowed remote measurement to occur, such as the Powerlnsight [44] specific piapi.
Such APIs allow for collection from their respective devices in an efficient manner, and as
such are used in the Power API implementation through device-specific plugins. In addi-
tion to external or dedicated monitoring devices, some hardware has built in power/energy
monitoring and management functionality. Measurement directly from Running Average
Power Limit (RAPL) control mechanisms on Intel processors have been introduced through
MSR-safe [70]. Such user-level access to machine specific registers (MSRs) is critical to al-
low in-band energy measurement. The Power API provides similar functionality and can
utilize mechanisms like MSR-safe as plugins to allow for user-level access to privileged in-
formation. HP’s iLO [75] is a proprietary out-of-band interface for taking measurements,
including power/energy on HP clusters.

Previous work has been limited by the measurement capabilities available on extreme-
scale HPC platforms used. For example, Leon et al. [48] used out-of-band measurement and
application region marking. Additional work used in-line performance measurement counters
(not power counters) to better understand the behavior of individual regions [49]. However,
this work did not explore the capabilities nor trade-offs of in-band measurement, and used
only traditional multicore CPUs but on a variety of architectures. The work described
herein is the first known to address both in-band and out-of-band measurement techniques
together on the same hardware and coupled with application profiling for each measurement.
Furthermore, this work also contributes a detailed taxonomy to detail how, when, and why
HPC application developers can accurately evaluate power consumption.

Power measurement /monitoring APIs have been developed in the past. Global Energy
Optimization (GEO) is a energy optimization framework developed by Intel [17]. It manages
job power bounds in a cluster while also attempting to increase performance by tuning the
power consumption of systems involved in a job. GEO has a scalable collection mechanism
that is based on MPI communication for individual job measurement collection. Unlike the

19

Power API, GEO’s external interfaces are not proposed as a standard [17], though they
are open-source. PAPI [13] is an example of a high-level, portable API for performance
monitoring that seeks to solve similar problems to the PowerAPI, but in the performance
realm instead of power.

Using Power Measurements for Optimization

The area of energy optimization is a mature area. Several energy saving runtime tech-
niques [21, 35, 36, 50, 38, 72] having been proposed and implemented. Energy saving
techniques such as DVFS [63] and clock throttling [58] have been used to provide power
state governors for operating systems. Our previous work [27] has evaluated many different
energy saving techniques in addition to providing a survey of these techniques. We pro-
vide a breif overview of these techniques here in order to demonstrate how power control
mechanisms can be applied for overal system benefit from both a energy and performance
stanpoint.

CPUSPEED [20] is the default power management system for most Linux distributions.
It uses basic power-state governors to dynamically determine when to change power states on
a system. CPUSPEED was not designed with HPC in mind and therefore is more aggressive
than HPC energy saving techniques in terms of potential energy savings. It is the default
power state adjustment mechanism in Linux. CPU MISER [21], is a solution that examines
execution phases during runtime and makes decisions to lower CPU clock frequencies based
on observed phase states. It provides the ability for a user to specify a maximum acceptable
slowdown and attempts to adjust the power states such that the total runtime does not
fall below the cutoff. As is the case with many runtime energy saving methods, the best
energy savings occur for communication bound applications, with limited opportunities to
save energy for CPU bound applications. PART [35] was an early entrant into the energy-
saving HPC arena. It provided an algorithm for bounding the slowdown of applications
while attempting to save energy using the runtime history of an application. It should be
noted that the results for PART are only those for the CPU energy consumption, not total
system energy. Therefore, the overall energy savings reported for this method will be higher
than those for system level energy measurements, as only the CPU energy consumption is
reduced using PART. ECOD [36] is another performance-bounding and workload predicting
algorithm for energy saving. It is more accurate that past methods [21, 35|, and provides
tighter performance-bounding variance. Unlike PART, this algorithm does not consider the
entire workload runtime history when making power state decisions. The method presented
in [50] concentrates on communication periods and opportunities to reduce CPU power
consumption during blocking MPI communication. This method can operate in two modes,
one is on-the-fly and the other uses a priori information about the profile of an application.
Although the profiling method is more slightly more efficient, the on-the-fly method is used
for comparison here, as one cannot calculate the energy used in the profiling runs. Jitter [3§]
provides a method similar to that of the previously discussed method, in that it attempts to
exploit slack in MPI programs. However, it does not exploit communication slack, only that
caused by inter-node load imbalance. It requires manual changes to the application source

20

code, and only works for iterative programs. Green Queue [72] is a new (2012) energy savings
approach for HPC designed for scalability. It utilizes an intra-node methodology using phase
detection through profiling and offline simulation analysis of applications. It uses an SQL
database to store profiles on past application runs and simulation analysis. This makes it
somewhat different from the other approaches examined as it requires energy consumption
to generate the profiling and simulation data. Adagio [68] is an integration of multiple
methods, including Jitter, that exploits slack in MPI programs for both load imbalance and
communication slack. It exploits advanced DVFS techniques to provide improved energy
savings by allowing a ”task” (a slice of execution between two MPI blocking operations) to
be run over multiple frequencies, thereby better approximating the ideal frequency for which
that code should be run. It is designed to minimize the performance impact of energy-saving,
rather than finding a tradeoff between energy consumption and performance loss.

The Power API

The “High Performance Computing - Power Application Programming Interface Speci-
fication” [26] was developed at Sandia National Laboratories in collaboration with major
vendors, laboratory and academic partners. The organizational structure behind the API’s
development follows those of several other very successful standards, with a vendor-neutral
national laboratory funded through the federal government of the United States leading an
effort that has community input and public review feedback with the goal of becoming a
public community-led standard. The goal of developing a common API for power measure-
ment and control was realized with the first specification release in 2014. The API continues
to evolve and grow as further capabilities are added and new language bindings are sup-
ported. While most existing interfaces are mature, work continues on some of the highest
level interfaces as research and the development of future systems better informs the high
level reporting requirements. The Power API is specified primarily as a C API, as C is
the preferred language for low-level software on HPC systems and is universally supported,
however, alternative language bindings such as Python are provided. Implementations of
the Power API may internally use whatever language is most convenient. For example the
Power API reference implementation developed by Sandia is primarily written in C++ with
user-visible C interfaces provided externally.

High-Level Design

The design philosophy behind the Power API is to allow for flexibility in future system
architectures and power measurement and control capabilities. As such, it is designed to
allow great freedom in describing system architectures and handling requests to many de-
vices, including requests for information or capabilities that may not be supported in today’s
systems but are expected to be available in future Exascale class machines.

The Power API creates a system description in a hierarchical form, with basic sup-

21

ported, but not mandatory, objects starting with a platform and descending through the
system to cabinets, boards, nodes, sockets, and core object types. Additional devices can
be inserted where applicable in the system description, including memories, network inter-
faces, accelerators and more generic power plane objects. Power planes provide a useful
control /measurement point for cases where power measurements or controls are aggregated
amongst underlying objects. An example of this would be a power plane for a CPU where
the individual cores do not have individual measurements available, but an aggregate mea-
surement is available (two cores per power plane, for example. This hierarchical form can
be expressed statically or can be built dynamically through a system description tool. The
design of the hierarchy allows for current tools such as hwloc [12] to accurately describe cur-
rent systems while still allowing for possible future system architecture changes that depart
radically from contemporary systems. An example of this hierarchy in Figure 2.1 shows a
simple small scale system using core Power API object types.

User interaction with the API follows the philosophy of making hard tasks possible to
accomplish and easy tasks easy to accomplish. The Power API design also chooses potential
complexity in implementation rather than in the user interface whenever possible. The
rationale behind this approach is that the implementation can better deal with complexity
once, where experts can be utilized more easily, and avoid complexity in the code that will
be written more often, the Power API calls themselves at the user level.

Roles

The roles that users of the Power API can assume best illustrate the encompassing na-
ture of the API. A diagram showing all of the roles and how they interact with different
levels of the interface is shown in Figure 2.2. In the figure, role names are often proceeded
with “HPCS” as this particular example is for High Performance Computing Systems. How-
ever, the Power API can be easily used on systems from large commercial data centers to
individual desktops. One of the high level roles, Accounting, provides an interface for gen-
erating reports and metrics of the system at different levels of granularity, from the whole
system down to individual components. The System Manager role is provided to represent
the responsibility of dictating overall system-level policies, such as scheduling priorities and
facility limitations. The Administrator role represents the traditional I'T system administra-
tor function, managing day to day operation of the system, but from a power and energy
perspective. This interface is aimed at providing easy access to control power throughout
the system on both a coarse and fine-grained basis as well as providing useful information
on power measurements to better understand immediate and long term system needs. The
administrator can choose between C and Python interfaces for these tasks, where Python
scripts are desirable for quick unique scripting requirements, the C interface is useful for
building command line tools requiring high-performance for frequently used operations. The
Resource Manager role is oriented toward resource managers and job schedulers. Policy de-
cisions communicated by the System Manager are translated into job policy on the running
system, such as power caps that represent time of day differences in power costs. Interfaces
are available for the Resource Manager to mine information or leverage information provided

22

Figure 2.1. Example of a simple machine hierarchy for the Power API.

by the system from the Monitor and Control role (for example). The next role is the generic
User role. This interface provides all of the capabilities potentially exposed to end-users of
an HPC system, primarily taking measurements and potentially controlling power within

23

bounds enforced by the system administrators or resource manager. The Application role
is the first-person interface for user applications running on the system. In many ways this
is similar to the User role, but with lower-level requirements where necessary for describing
the needs of HPC applications. The last two roles directly interact with hardware and ex-
pose the fundamental measurement and control capabilities of the system. While user-space
level hardware interaction may be possible on some systems and therefore enable other roles
to interact with hardware directly, the Operating System (OS) and Monitor and Control
roles are required to interact with hardware on all systems. This is due to the high level of
privileges required to interact with most hardware. The OS role is primarily a node centric
role while the Monitor and Control role is a broader focused system level management role.
The Monitor and Control role is largely analogous to traditional Reliability Availability and
Serviceability (RAS) systems.

Using the Power API

The Power API provides many core functions shared by the different interfaces offered.
Upon initialization, the user is presented with a context, basically the user’s window into the
functionality available to their role/user combination by the implementation. The system
view exposed likewise depends on the combination of the role and the individual user. For
example, an application may only have access to the hardware (the node) that it is currently
executing on. A system administrator would commonly have access to all platform resources.
Navigation functions allow any user (or role) to navigate to the device (object) in the system
hierarchy with which the user seeks to interact. The API provides functions for creating
groups of objects, which can then operated upon using group functions that mirror the
capabilities of functions used to interact with individual system objects. Groups can also be
combined using several different functions to create unions or intersections and differences
of the two groups.

Each object in the system hierarchy has attributes associated with it, which correspond
to measurement or control interfaces available, and exposed, for that individual object. For
example, for a CPU core object, valid attributes may include power, energy, performance
state, sleep state and low level measurements such as voltage and current.

The metadata about object-attribute pairs can be easily fetched using the Power API
metadata interface. Metadata is particularly important for determining the utility of data
obtained using the Power API interfaces, such as the frequency or accuracy of measured
values.

Figure 2.3 demonstrates an example of using the Power API metadata and attribute
interfaces. After initializing a Power API context, the PWR_CntxtGetEntryPoint () interface
is used to get the object representing the caller’s entry point for navigating the machine
hierarchy. In the interest of space, this example assumes the entry point returned is the local
node’s object but in general the Power API’s navigation interfaces would be used to find the
desired object. Next, the PWR_0bjAttrGetMeta () metadata interface is used to retrieve the

24

expected accuracy of energy measurements obtained from the local node’s PWR_ATTR_ENERGY
attribute. Finally, the PWR_0bjAttrGetValue() attribute interface is used to measure the
energy consumed by the do_work() function. Since PWR_ATTR_ENERGY is an energy counter,
the difference of its value between calls is used to calculate the energy consumed.

Another powerful use case for the Power API is the collection of statistics. The API
provides a statistics interface that allows the user to gather statistics on individual objects
or groups of objects for individual attributes. These statistics, such as sum, max, min, and
average, can then be further reduced if desired to provide averages of sums on multiple
objects or find a maximum of maximums and the object that it occurred on.

High-level application interfaces are provided to allow the application to communicate
to the system (the OS or potentially an intelligent run-time layer). These “hints” include
informing the system about application phases such as serial or parallel regions that can be
exploited at the node level to potentially deliver more performance and power savings. The
application could also hint that it is in a communication phase on a particular node which
would allow node level alterations but also allow an intelligent runtime system to coordinate
between the nodes allocated to shift additional power to nodes which remain in computation
phases, for example.

Implementation

While commercial vendor implementations of the Power API are in development, an open
source reference implementation is available for early adopters. The Power API reference
implementation is architected to support the core functions of the API in a single implemen-
tation, with multiple measurement device support implemented through a plugin architec-
ture. This allows for rapid integration of new measurement devices as well as power control
points. The current implementation supports many low-level hardware power measurement
devices, from common off-the-shelf solutions such as WattsUp meters, to device/vendor spe-
cific methods such as Intel’s RAPL. Support for more comprehensive out-of-band power
measurement devices, such as Powerlnsight from Penguin Computing, is also provided.

The reference implementation is mostly complete. Core functions, aside from histori-
cal data collection and a subset of statistics functions for certain objects, are implemented.
The reference implementation is currently integrating and optimizing large-scale collection
methods. The current functionality in the reference implementation is sufficient for most
real-time data measurement and control use cases. The reference implementation is cur-
rently deployed as part of the Tri-lab operating system (TOSS) and is running on several
test and production platforms at DOE laboratories. Reference implementation development
and research is conducted at small scale on many of Sandia’s Advanced Architecture Test
Bed clusters [1]. Large scale testing and research is being accomplished on the production
Skybridge cluster at Sandia National Laboratories.

The reference implementation incorporates a scalable framework for collecting measure-

25

ments from many different objects in a group at one time. Although aggregation of results is
implicitly embedded in the object hierarchy of the Power API, distributing the aggregation
at multiple points instead of a single aggregation point is an implementation optimization.
The scalable distributed aggregation method for the implementation has shown good results
at this early stage, before significant performance optimization has been completed. Fig-
ure 2.4 shows the initial scaling of collecting basic energy samples from a number of nodes
in a large system. The microbenchmark used for the results in Figure 2.4 measures the time
that 1000 PWR_ObjAttrGetValue () requests take to complete and divides by 1000. The test
was performed on Chama, a production supercomputer at Sandia National Laboratories.

The Power API Reference Implementation was developed alongside the specification and
is publicly available at http://powerapi.sandia.gov.

26

Actor > [System]

Facility]

Hardware

HPCS HPCS
Manager Manager

v

HPCS 1 HPCS
Resource Resource
Manager | Manager

]
HPCS 1 HPCS
HPCS Admin Monitor & Monitor &>—
Control | Control

v

Facility
Manager

HPCS User

Y Yo

HPCS HPCS
Accbtl)zﬁfl *[Operating Operatm
ng System System

'

HPCS
Hardware

27

HPCS
Application

A’

Figure 2.2. Top Level Conceptual Diagram representing the interaction of roles with different levels of
the Power API interfaces.

PWR_Cntxt context;

PWR_0bj my_node;
PWR_Time timestampl, timestamp2;
double energyl, energy2, accuracy;

// Initialize and get my node object

PWR_CntxtInit (PWR_CNTXT_DEFAULT, PWR_ROLE_APP, "MyContext", \
&context) ;

PWR_CntxtGetEntryPoint (context, &my_node) ;

// Get accuracy of energy counter for my node
PWR_ObjAttrGetMeta(my_node, PWR_ATTR_ENERGY, PWR_MD_ACCURACY, \
&accuracy) ;

printf ("Accuracy +/- %f percent\n", accuracy);

// Measure energy consumed by do_work()

PWR_ObjAttrGetValue (my_node, PWR_ATTR_ENERGY, &energyl, \
×tampl) ;

do_work () ;

PWR_ObjAttrGetValue (my_node, PWR_ATTR_ENERGY, &energy2, \
×tamp2) ;

printf ("do_work() consumed %f J in %f ns\n", energy2-energyl, \
timestamp2-timestampl) ;

Figure 2.3. Example of using Power API to measure energy usage of a function.

28

Latency (ms)

Maximum Energy Collection Latency
10 [T T T T T T T T

01 1 1 1 1 1 1
1 2 4 8 16 32 64 128 256 512

Number of Nodes

Figure 2.4. Power API Energy data collection latency using multiple nodes.

29

30

Chapter 3

Power Control Techniques

Taxonomy of Power Measurement

Modern large-scale HPC platforms have incorporated several forms of power measurement
and energy accounting that expand the possibilities of gathering key data. However, it is
often difficult to know where to start or, in many cases, difficult to access the information that
is available. In this section, we describe a framework for understanding these capabilities and
discuss the potential insight they can provide. We envision this taxonomy can be directly
applied to the Trinity supercomputer [31], a 42 PF Cray XC40 at Los Alamos National
Laboratories as part of the ACES collaboration and related smaller-scale testbeds at Sandia
National Laboratories. Nevertheless, the framework detailed in Figure 3.1, as well as the
various pros, cons, and examples provided for each level, are general and intended to be a
useful tool for reasoning about the power measurement and control capabilities on current
and future HPC platforms.

We use black box and white box terminology to assess the level of insight that can be
gained with regards to power/energy consumption data within the region of interest. This
means that approaches like aggregate sampling treat the power /energy rates during execution
as a black box while approaches like out-of-band measurements provide insight in this area
at their given sampling rates and therefore are defined as white box techniques.

Level 1: Job-wide Aggregate Information

Many platforms track coarse-grained power and energy usage continuously, such as total
energy usage by each application executed. It may be broken down by component, e.g.,
separate CPU and memory energy values, but the information is usually aggregated over
an entire application run rather than point-in-time samples or per-node information. The
information collected may be available to users in a post-job report.

Job-wide energy information helps to understand how energy-to-solution changes for
different application optimizations, algorithm choices, or run configurations. It can also
be useful for performance tuning. High power usage levels (e.g., as a percent of the peak
available budget) often indicate a well tuned application, whereas low power usage levels

31

Effort

L1: Aggregate Information

gp Easily obtainable, quick summary info

mm Can give misleading conclusions

o - -

L2: Periodic Sampling
g8 In-band or out-band sampling

mm | imited access, overhead, difficult to interpret

KApp: S/¢ Cray PMDB, LDMS

/

L3: Application Instrumentation

g2 Users mark app regions, more info

mm Short region marking, missed information

KApp:

White Box

S/¢ PowerAPI, Kokkos, PAPI

/

L4: Multi-level Correlation

g# Information Fusion, intra-region insight

mm Time synch req, no standards, data formating

kAppi White Box i?%his manuscript

may indicate room for further optimization. A downside to this technique is that it only
provides insight into energy usage behavior in aggregate, not the varying rates of energy
consumption throughout an application’s execution.

This approach is very scalable as the number of sampling events is very low. It is also
a local operation to each core and therefore does not require network communication that
may incur overheads due to total process counts and data aggregation. Eventually all of this
information must be aggregated for analysis, but the aggregation can take place after the
application has finished.

Level 2: Periodic Sampling

Finer-grained detail is provided by periodically sampling power levels and energy usage
over time. This is often how level 1 information is derived. Sampling may be implemented
in-band or out-of band. With in-band, compute node resources are used to perform the
sampling, reducing the resources available for application execution. With out-of-band, the
platform’s control system infrastructure is used to implement the sampling without using
compute node resources. Many platforms store a short time window of power and energy
samples in a database for use by administrators and workload managers. The information
may be accessible to users, but obtaining access often requires administrator action.

This information can be used to plot power usage versus time. It is often possible to
identify different application regions by looking for changes in power level. Activities such
as idle periods, network polling, and 1/O phases can sometimes be identified and used to
diagnose load imbalance issues within an application. A downside to this technique is the
potentially large volume of point-in-time sample information that must be retained and the
difficulty of analyzing it.

A concern with in-band sampling is the performance degradation of the application itself
due to frequent interruption of the CPU to read the hardware counters. This interruption
not only pauses compute tasks but can also pollute the CPU cache, which may also impact
total energy consumption and effect time measurements. While it may seem a small impact
overall, previous experience with OS system noise shows that even minor interrumptions can
induce larger slowdowns when processes must synchronize across the application [19].

Level 3: Application Instrumentation

While the first two levels treat the application as a black box, or as a gray box when
application knowledge is used to interpret the recorded information, white box analysis is
useful to understand an application’s internal behavior at a finer level of detail. One can
modify an application to instrument code regions of interest. The instrumentation points can
then be used to record in-band power and energy samples during execution. This information
can be analyzed to characterize each instrumented region’s power and energy usage behavior.

33

The potential downsides of this technique are that it requires application modifications and
may reduce performance due to instrumentation overhead. The effort needed to instrument
an application can be reduced by using automated tools or amortized by leveraging the
instrumentation points for other purposes, such as for input to an introspective runtime
system.

Application profiling adds instrumentation to the start and end of any code regions of
interest, and then as the application is executing, record power and energy information
at each instrumentation point along with a timestamp. The information gathered can be
stored for later analysis or processed on-line while the application is still executing. Another
possibility is to modify the application to replicate level 1 or level 2 functionality, for example
by starting a helper thread that performs periodic power sampling. However, we regard this
as a workaround that should be avoided when the platform provides this functionality already.

Overheads from application instrumentation depend greatly on two different factors. The
first is the complexity of the instrumentation in terms of the data that must be gathered.
Some low overhead methods simply use time stamp and region tuples [48]. Timing has
been used for a long time in HPC applications, especially using MPI [59] timing functions
to instrument code regions of interest. Some instrumentation also incorporates information
from sources like performance monitoring counters [71], which can even be used to estimate
power consumption without hardware measurement support [37].

The second factor that impacts overhead is sampling frequency. Even with lightweight
sampling, for short regions the timestamp can be called so often that it begins to impact
performance. If a region is only 1000 cycles with 50 cycles to read and record the data then
5% overhead is incurred. Our evaluation uses regions long enough to amortize overheads for
simple sampling like timestamp-region tuples. However, the cost must be taken into account
when instrumenting applications to avoid high levels of overhead.

Level 4: Multi-Level Correlation

Finally, information gathered from previous levels can be cross-correlated and used to
derive information that is not otherwise available, or would be too costly to obtain using a
single level in isolation. For example, if the overhead of application instrumentation (level
3) is too high, power measurement at instrumentation points could be disabled with only
timestamps kept. The timestamps could then be correlated with out-of-band periodic power
samples (level 2) to obtain similar insight with less application overhead. As another ex-
ample, if a particular application run experienced an unexplained performance degradation
(e.g., a “slow run”), level 1 information could be inspected to look for anomalous power or
energy usage behavior. To probe deeper, the level 1 job start and end timestamps could then
be used to generate a power versus time plot from level 2 information. The plot may reveal
clues to the reason for the slowdown, such as a concentrated idle period (e.g., a system 1/O
issue or network quiesce event).

34

Aligning application instrumentation timestamps with in-band and out-of-band periodic
sampling measurements can be difficult. In-band measurements are typically the easier of the
two to align as they can use the same timestamp as the application instrumentation (region
timestamping). In this approach one can use system timestamps and reasonably expect them
to line up with relative ease. Out-of-band measurements can be much more complex to align
with region timestamps. Because the measurement hardware is separate and distinct from
the CPU, absolute timestamps from measurements, applications timestamps, and hardware
power samples are needed. To align these time samples, the user must find the minimum
timestamp for both the application region profile output and the out-of-band measurements.
Using this minimum, one can establish an offset for the individual timestamps and based
on a common start point ¢ = 0. From there timestamps can be lined up and produce useful
data for analysis.

35

36

Chapter 4

Trinity Advanced Power Management

The Trinity supercomputing represents the latest in a series of joint LANL/Sandia ACES
collaboration to host production ASC supercomputing resources. This ACES collaboration
looks to satisfy mission requirements with more capable production-class platforms, and
Trinity leads the way in driving next-generation HPC systems with many-core architectures,
solid-state burst buffers, and of particular importance to this manuscript, advanced power
management capabilities.

Trinity is in fact a single system based on a mixture of both Intel Xeon Haswell(HSW) and
Intel Xeon Phi Knights Landing (KNL) processors. While the Haswell portion was installed
first to meet FY16 mission needs, both node types are now connected across a single Aries
interconnect with a Dragonfly topology. Specifically, Trinity TR1 Haswell portion includes
9436 nodes and 1.15PB of DDR memory, and the Trinity TR2 Knights Landing portion
includes 9984 nodes with 0.91PB of DDR memory and 0.15PB of MCDRAM high bandwidth
memory. 1 Combined, Trinity provides over 2PB of DDR memory to satisfy current mission
requirements.

Platforms

Throughout the rest of this manuscirpt, a number of systems were used. The first, and
most obvious is the Trinity system, which consists of both HSW and KNL TR1 and TR2
deployments. Due to the network and access restriction on Trinity as well as queue lengths,
testbed systems were used for small-scale runs. Another platform, Volta, was a standalone
Cray XC30 testbed system with dual socket IvyBridge E5-2695v2 CPUs and 64GB RAM
and a max node power draw of 350W. The IvyBridge CPU has a frequency range of 1.2 -
2.4 Ghz with a turbo frequency of 3.2 Ghz. The Trinity testbed systems at Sandia, named
Mutrino, are identical to the Trinity system, and as such represent the Trinity name for
small-scale (sub-100 node jobs) experiments. As described previously, Trinity incorporates
two partitions, the first comprising a traditional dual socket Haswell E5-2698v3 CPUs and

"'While throughout the rest of this manuscript the terms MCDRAM and high bandwidth memory (HBM)
are used interchangeably, they are in fact different. MCDRAM is a specific implementation from Intel, and
HBM represents a JDEC standard for a new type of memory subsystem. Strictly speaking, MCDRAM in
KNL is not an HBM spec, but for the purposes of this manuscript, are functionally equivalent.

37

128GB RAM, and the second consisting of a single socket Knights Landing (KNL) Xeon Phi
7260 with 96GB RAM and 16GB MCDRAM. The Haswell XC40 has a max power draw of
415W per node and a CPU frequency range of 1.2 - 2.3 Ghz with max turbo of 3.6 Ghz,
whereas the KNL Phi has a max power draw of 345W per node and a frequency range
of 1.0 - 1.4 Ghz, with 1.6 Ghz turbo frequency. All three systems utilize the same Cray
Aries Interconnect. Here, the XC40 systems represent a small system that is identical to the

hardware and software of the Trinity supercomputer, currently the tenth fastest computer
on the Top500 list [55].

Table 4.1. Test Platform Specifications

Volta Trinity Trinity
“Ivy Bridge” “Haswell” “Knights Landing” (KNL)
System Architecture Cray XC30 Cray XC40 Cray XC40
Interconnect Cray Aries Cray Aries Cray Aries
Proessor Make Intel Intel Intel
Processor E5-2695v2 (x2) E5-2698v3 (x2) Phi 7250 (x1)
Cores / Node 24 32 68
Frequency Range 1.2-24GHz 1.2-2.3 GHz 1.0 - 1.4 GHz
Max Turbo Frequency 3.2 GHz 3.6 GHz 1.6 GHz
Memory Per Node 64 GB 128 GB 96 GB
Max Power / Node 350 W 415 W 345 W
Compiler Intel 16.0.1 Intel 17.0.1 Intel 17.0.1
Cray Linux Release 5.2.UP04 6.0.UPO3 6.0.UPO3
Cray Mgmt. Release 7.0.UP03 8.0.UP03 8.0.UP03

Cray Systems Management Infrastructure

To facilitate goals of Reliability, Availability, and Serviceability (RAS), Cray HPC sys-
tems dating from the XT-series systems to the current XC-series systems utilize a sepa-
rate, out-of-band management network in addition to the in-band high-speed network used
by compute resources. Over this out-of-band network, a head node known as the System
Management Workstation (SMW) is connected in a tree structure descending to embedded
cabinet controllers (CCs) and from CCs to embedded blade controllers (BCs). This, along
with the software that it supports, is known as the Hardware Supervisory System (HSS).
HSS orchestrates power, booting, environmental monitoring, hardware health monitoring
and logging, and response to hardware failures among other RAS-focused duties.

For power monitoring and management, Cray XC-series systems leverage the HSS infras-
tructure to:

38

e Monitor and store node-, blade-, and cabinet-level power, energy, and environmental
telemetry,

e Set power “knobs” on sets of nodes including P- and C-states and setting power caps,
e Enable in-band monitoring on compute nodes using the PM counters interface,

e Support queries of historical power, energy, and environmental telemetry coupled with
job and application data with a powerful PostgreSQL-based, time-series database, and

e Provide a backend system to support a RESTful interface for platform and power
monitoring and control.

In the following two sections, we will overview the database and the RESTful interface
for monitoring and control.

Power Management Database Overview

The Power Management Database (PMDB) is a round-robin, time-series database imple-
mented leveraging PostgreSQL alongside Cray-custom software [51]. The PMDB was first
released with SMW 7.0.UP02 in July 2013. Broadly, it stores node-, blade- and cabinet-level
power and energy telemetry, job- and APID-level information and timings, and System En-
vironmental Data Collections (SEDC) data, including thermals and hardware health data.
Power and energy telemetry is captured system-wide by default at 1 Hz (i.e., one observa-
tion per second), but for a subset of the system, this frequency can be increased to 5 Hz.
SEDC has long been part of the HSS infrastructure, existing prior to Cray’s power man-
agement efforts but, targeting narrower hardware debugging use cases, had previously only
been available in flatfile-form.

Because storage is unfortunately a finite resource, the PMDB is necessarily a round-robin
database. That is, once a defined storage threshold is exceeded, the oldest data are dropped
to make room for the newest data. These thresholds are defined on a per-table basis using
an SMW-resident utility called xtpmdbconfig. Customers may use the ztpmd hooks interface
to execute commands on rotation of old data, such as archiving the old data to a remote
server [3].

Cray Advanced Platform Monitoring and Control

With an eye toward allowing workload managers to actively manage power and node
configuration, Cray released the Cray Advanced Platform Monitoring Control (CAPMC)
with SMW 7.2.UP02 and CLE 5.2.UP02 in the fall of 2014. With CAPMC, a remote (and
authenticated) user may control the system by booting and shutting down nodes, setting
P- and C-states (i.e., frequency and sleep-state limits), setting power caps. etc. This re-
mote user may also monitor the system, by getting node state information, energy statistics

39

about sets of nodes, system- and cabinet-power information, etc. The CAPMC infrastructure
implements a RESTful interface using nginz in one of its common deployment roles. It pro-
vides encryption and user authorization capabilities to an independent, application-specific
server. In this case, that application-specific server is called ztremoted, a Cray-specific dae-
mon residing on the SMW. This provides bridge between the external world and HSS using
industry-standard security.

A full description of CAPMC functions and its APT is documented in [2]. Some technical
and use-case details about CAPMC are given in [52].

PowerNRE — PowerAPI for Cray

The decision of which area of the Power API to focus on involved many considerations. A
complete implementation of the Power API would likely require more time and funding than
available for the Trinity APM project. Since the team had to be more selective, we focused
on high priority areas that aligned well with capabilities that appeared in Cray’s roadmap
in the Trinity time-frame, even if these capabilities required modification or acceleration to
meet our combined goals. We also considered areas of the existing Cray systems management
infrastructure that we could leverage and align with, see Section 4.

An important System for the purposes of this paper (and the Trinity Power NRE project)
is the Monitor and Control system. The Monitor and Control system encapsulates the con-
cepts of systems management or RAS systems (Reliability, Availability and Serviceability).
Cray has been introducing measurement and control capabilities important for this topic
for a number of years. Cray’s Power Management Database (PMDB) is a collection point
for a wide range of power and energy related information, along with data important to
correlate this information with jobs that are and have executed on the platform (see Section
4). Exposing the information contained in the PMDB to the Admin Role is the first focus
area of the Trinity APM NRE collaboration with Cray that will be covered in Section 4.

The second area of focus for the ACES/Cray collaboration is a compute node imple-
mentation [42]. The Systems (Figure ?7?) relative to this area are Hardware and Operating
System. In general, the focus is exposing power and energy relevant measurement and con-
trol knobs to Roles such as the Application and the Resource Manager. The compute node
implementation is covered in Section 4.

The third focus area is power aware scheduling, a very broad topic. Adaptive and ACES
are actively working towards finalizing the goals for this project. In Section 4 we will discuss
some of the use cases that we hope to enable with this effort and some of the capabilities
implemented as part of the ACES/Cray collaboration that will be exercised.

40

Power Management Database Implementation

Cray has recently introduced a capability to retain historic information related to power
and energy called the Power Management Database (PMDB). See section 4 for a description
of the PMDB and type of information retained in the database. One of most important
aspects in any effort to modify a characteristic is to first understand the current condition of
that characteristic. Trying to affect power on an HPC platform is no different. Cray’s PMDB
provides a repository of information that allows a user (some Power API Role) to mine
power and energy relevant data (measure). The Role that Cray is initially implementing to
interface with the PMDB (essentially part of the Monitor and Control System) is the systems
administrator (Admin) Role. As mentioned previously, a system administrator typically has
the need to understand the entire HPC system. In the PMDB implementation, the Admin
Role will have a view of the entire HPC platform.

While the initial versions of the Power API were specified in the C language, systems ad-
ministrators more commonly use scripting or interpretive languages to do their jobs. Python
was selected due to its popularity for Roles like system administrators (Admin) and Re-
source Managers, for example. The PMDB implementation will include most of the core
functionality of the specification. This includes the attribute interface which allow the user
of the Power API to get (measure) information about specific objects or groups of objects.
For example, the administrator may desire to get a point in time power measurement from
a node (object) or a group of nodes (group of objects). Possibly more useful would be to
monitor the energy use of a node or group of nodes. Using the attribute interface the admin-
istrator could request the energy reading from a node or nodes, wait a period of time and
repeat the call to determine the energy used by that node or group of nodes over that period
of time. Note the specification states that the time-stamp related to the sample returned be
temporally as near as possible to when the sample was measured.

These low-level interfaces, while useful, are probably not as powerful when interacting
with a database as they are at lower levels, like interfacing in real-time directly with the
hardware. The PMDB implementation will additionally include the historic statistics in-
terface of the Power API. This interface will allow the user to obtain information like the
minimum and/or maximum of a power reading across a number of nodes (all of the nodes
assigned to a particular job) over a period of time. The average power of the same group of
nodes could be requested.

Probably the most common interaction with a data-base is generating a report. While
the Power API specification has the beginnings of some high-level interfaces for this purpose,
Cray and ACES are in the process of defining a flexible report interface that will enable the
user to request reports for a range of information available in the PMDB. This information
will contain job and system related information that the Power API does not currently
address but is clearly closely related and necessary for many reasons. For example, Cray is
working with ACES to develop two Python report programs that produce text output. The
first uses some combination of job ID, application ID, and user ID as input to generate report
output that includes data that are of general interest to the systems administrator (Admin)

41

Role. These data include: job ID, application ID, user ID, total energy, start time, end time,
and node count. Verbose detailed data for this type of report may include per-node power
and energy statistics. The second report type will deliver useful system- and cabinet-level
power and energy information, perhaps over a 24-hour window. This report will include data
targeted for data-center managers and site planning personnel. It will include statistics like
daily and hourly minimum, average, median, and maximum power usage for each compute
cabinet. Recall that the PMDB information is stored round-robin and information expires
dependent on space available. Generating reports withing the bounds of data expiration is
one way to retain important information on a more permanent basis.

An important value already realized by the ACES/Cray collaboration on the Trinity
APM NRE is the improvement of the Power API specification. Cray has been instrumen-
tal in vetting the Power API from the implementation perspective. In the short time we
have been collaboration we have discovered multiple opportunities for improvement that
have been included in the latest three point releases of the Power API specification. The
Python implementation of the Power API, when complete, will be included in the Power
API specification as the first alternative language binding. We anticipate release later in
2016.

Compute Node Implementation

Any effort to understand (measure) or control power and energy for HPC platforms
almost necessarily considers node level measurement and control. Early (and on-going)
research in this area focused on the potential of manipulating CPU frequencies to reduce
power or energy use, for example. For HPC, this is complicated by the need to maintain
performance, or minimally affect it. ACES and Cray consider this area of focus to be of
great importance in demonstrating and investigating advanced capabilities. Cray will be
delivering a C based compute node implementation of the Power API as part of the Trinity
APM NRE project. While we cannot cover every capability that will be implemented we will
discuss some common and high value characteristics of the implementation in this section.

The Roles that will be initially developed are the Application and Resource Manger
Roles. While these Roles could potentially have different needs from the perspective of
how much of the system description is exposed upon initialization, the initial efforts will
limit exposure to the node level, and below, to both Roles. As the collaboration proceeds
an expansion of the use cases addressed related to the Resource Manager Role may be
considered.

As with the Python PMDB implementation, the core functionality of the Power API
will be implemented as part of this effort. For the compute node implementation, the
core functionality has the potential of being of great value. For example, obtaining power or
energy information for the node, or specific component of the node like the CPU, is something
that any power-aware application or resource manager would require. The attribute interface
(part of the core functionality) allows the user (the Application or Resource Manager Role

42

in this case) to obtain point in time power samples or energy over a given time period. With
the exception of energy, measurement attributes, like power, are individual point in time
samples. The user will have access to attributes representing power, temperature, frequency,
and power cap, for example. The specification requires that the time-stamp returned with
any sample accurately represents the time the sample was measured. In the case of energy,
power over a period of time, two or more calls using the attribute interface are required.
For example, an application that is interested in the energy used over a certain phase can
make a call using the attribute interface to get the energy at the beginning of the phase.
This value will typically be an accumulator with an associated time-stamp. At the end of
the phase being examined the application can make a second call. In the typical use case,
the energy over the period of time between the first and second call is represented by the
difference between the first and second values returned.

One of the primary additions to typical production functionality that will be enabled by
this effort is the ability to control CPU frequency from a user space process. This capa-
bility opens up a wide range of potential use cases. Currently, Cray, through the CAPMC
interface enables the user (via the Resource Manager) to set CPU P-states that will remain
constant through the life of the job execution. Through the Power API implementation,
the ability to dynamically change CPU frequency will be exposed to user space processes.
This will enable more granular dynamic control during the entire application execution. A
power-aware application could, for example, run at a lower frequency P-state when it is in
a communication phase. Figure 4.1 shows that lower frequency P-states can be used with
little to no performance impact during communication phases [16] (given the network sup-
ports offloaded processing of network packets). While on-loaded networking solutions see
significant impact from P-state changes, as the CPU is used to process network traffic, such
systems can still benefit from P-state changes if applications use small messages that are la-
tency sensitive as shown in Figure 4.2. These P-state changes allow significant power savings
from a node perspective and in some cases may minimally impact application performance,
making power saving P-states feasible to exploit for some applications. Capabilities like
dynamic frequency/P-state and C-state control, implemented on the compute node can be
made available to the Resource manager and/or the Application.

The compute node implementation will also include the statistics interface. In this case
the real-time interfaces will be implemented (recall that the historic interfaces are being
implemented to interact with the PMDB (see Section 4)). The user will be able to create
statistics objects that represent a tuple of object, attribute and statistic that they wish
to collect. Statistics objects can be started, polled while active and stopped to mine the
particular time range of interest. The statistics interface is a very powerful tool that can
leverage lower level telemetry capabilities like those provided by Crays HSS (see Section 4).
For a complete description of the interface capabilities see the Power API specification.

The Power API specification contains the concept of application hints. The idea behind
this is that the application best understands what it is doing at any point in time, or will
be doing at some point in the future. While there are many open questions in implementing
this type of capability, this is one of the areas that ACES and Cray are interested in inves-

43

tigating as part of this collaboration. Given the capability of dynamically controlling CPU
frequency is available, the application is in a good position to provide hints regarding how
some underlying layer might manage the CPU, or other components, to obtain an optimal
balance between performance and power efficiency. Some of the hints available to the user
via the high-level application interface are: serial, parallel, compute, and communicate?. As
previously described we have shown potential power savings when using lower CPU P-states
during an application communication phase (Figure 4.1). The application hints interface
would be a convenient way for the application to communicate this to an intelligent run-
time layer. Once the communication phase is complete, the application could again hint
that it is about to enter a compute intensive region, for example. As applications adapt
to evolving node architectures it has become increasingly important to exploit parallelism
to take advantage of larger numbers of cores or accelerators. However, portions of current,
and likely future, applications still have serial phases. If the application can provide hints
that indicate a serial versus a parallel phase, the run-time could potentially deliver both
greater performance and power efficiency. For example, when an application is entering a
serial phase an intelligent run time could proactively shut down cores that will not be in use,
enabling the core executing the serial portion of the application to run at the highest fre-
quency available. This could result in greater performance for the application (serial phase
is accelerated) while potentially saving power (cores not in use are put in a minimal power
state). Once the serial phase is complete, the application can hint the end of the phase by
sending the default hint or some other hint that could help optimize performance, power
or both. The use case that was just described suggests that the application will provide
appropriate hints. It is also possible that another layer, like the Message Passing Interface
(MPI) layer, could send similar hints. This would allow this type of optimization without
requiring modification of the application.

Power Aware Scheduling

ACES recently began a collaboration with Adaptive Computing as part of the Trinity
APM NRE project. We will only discuss this briefly since we are in the very early stages of
this work. Power ramp control, the ability to control the rate at which the system increases
its power use, is being implemented by Cray as part of the compute node implementation (see
Section 4) Trinity APM NRE. ACES will be working with Adaptive computing to develop,
test and implement this capability which is controlled by the resource manager through the
CAPMC interface and will leverage the Power API interface on each compute node. One
of the challenges we see in the future is very large swings in power draw for our largest
platforms. While this may not present a problem for the facility in the Trinity time-frame,
it is likely to for the next ACES ATS platform, Crossroads. Refining this capability on
Trinity will allow ACES to be prepared for platforms that can experience multiple megawatt
swings in power in very short periods of time. Likewise, managing platform power within
pre-determined, or pre-negotiated lower and upper limits can prove to be a huge cost savings
for the facility. Using more or less of the pre-negotiated power results in much higher costs

2For a complete list please refer to the Power API specification.

44

Offload Stream Bandwidth (Put) With Power

_ 130
§_ 20000 | - 120
s - 110 g
P 15000 100
o -90 =
10000
3 80 &
S 5000 - 70
- 60
0 50
%

Message Size (bytes)

1.4GHz —— 3.4GHz —— 2.4 GHz power —----
1.9GHz —— 3.8GHz —— 2.9 GHz power ----
24GHz — 1.4 GHz power —--- 3.4 GHz power —----
29GHz —— 1.9 GHz power —--- 3.8 GHz power —----

Figure 4.1. Offloaded network traffic stream bandwidth with varying CPU frequencies

for a facility. Similar to the power ramping effort, ACES will be working with Adaptive to
exploit capabilities that Cray will expose, developed as part of the ACES/Cray Trinity APM
NRE, to operate the platform within pre-determined upper and lower bounds, even bounds
that differ throughout the day. In addition, we will be working with adaptive to execute
individual applications within power constraints to maximize the science output within a
given platform power constraint. The combination of the ACES/Adaptive and ACES/Cray
collaborations should result in power-aware scheduling and management capabilities that
have never been possible on a leader-ship class HPC platform.

Power Capping

Power Capping is another mechanism for controlling power utilization for a given job.
The XC40 system power capping mechanism attempts to keep the node’s power usage at
or below a set power level. On-node firmware monitors draw and makes decisions based
on an unspecified sliding time window. If a node’s power usage begins to exceed its power
cap, the node is throttled to a lower performance level — e.g., by running at a lower P-state
or performing clock gating — until the node’s power usage falls below the power cap for an
unspecified period of time. Node-level power capping in Mutrino is implemented using the
Intel Node Manager firmware. Each Node Manager instance operates autonomously and
independently with no cross-node coordination.

45

Onload Bi-directional Ping-Pong Latency With Power

500 | , B , B , . -140
130
400 | 120
[72] —
3. - 110 ;
> 300 100 T
2 90 2
(O]] /
: 200 80 o
100 gg

5
TP G I H G 76%_%4_6%_@623%\2‘{3;%
Message Size (bytes)

1.4GHz —— 3.4GHz —— 2.4 GHz power —----
1.9GHz —— 3.8GHz —— 2.9 GHz power —=---
24GHz — 1.4 GHz power ---- 3.4 GHz power —----
29GHz —— 1.9 GHz power ---- 3.8 GHz power —----

Figure 4.2. Onloaded network traffic stream latency with varying CPU frequencies

Table 4.2 describes the Power Capping mechanism and each setting for both Haswell and
Knights landing in detail. While the power cap setting may range from 0 to 100%, it is
important to note that there is a floor function associated with the minimum power a node
can be set at. This is 230 and 200 Watts for HSW and KNL, respectively.

We have already put the Power API to use in studies focusing on understanding the
power consumption of systems as well as understanding the effectiveness of power control
methods on platforms. Testing the power capping mechanism on this system with CTH, a
widely-used solid mechanics application, has shown the distribution of power samples under
different power caps. Figure 4.3 shows the cumulative distribution function for power samples
for several different node-level power caps for 96 nodes on the Trinity test system. The Power
API data show that the power capping mechanism allows limited time periods where the
power draw can exceed the power cap. These measurements reveal the consequences of the
power cap mechanism’s enforcement that is based only on an average of samples in a given
time window [61]. The Power API has enabled collection of all measurements on this system
and enables portable testing on other systems and with other applications.

Furthermore, we have begun to explore the use of power capping as a mechanism for
enforcing power budgeting decisions made by the workload manager. Cray’s CAPMC in-
frastructure enables workload managers to set a desired power budget for each compute
node in the system, which is then enforced by firmware running on each compute node. For
example, a workload manager may decide to power cap a given job’s compute nodes to 200

46

Table 4.2. Power capping settings on Trinity XC40 Haswell and Knights Landing nodes.

Trinity Haswell

Power Cap Power Cap (Watts) Savings Potential (Watts) Savings Potential (Percent)

100% 415 W 0w 0%
75% 369 W 46 W 11%
50% 322 W 93 W 22%
25% 276 W 139 W 33%
0% 230 W 185 W 45%

Trinity Knights Landing

Power Cap Power Cap (Watts) Savings Potential (Watts) Savings Potential (Percent)

100% 345 W 0w 0%
75% 309 W 36 W 10%
50% 273 W 2 W 21%
25% 326 W 109 W 32%
0% 200 W 145 W 42%

W of the maximum 400 W per node and shift the 200 W difference elsewhere in the system
where it can be better utilized. Our initial finding is that while node-level power capping on
Trinity is effective at maintaining the desired average power usage over multi-second time
windows, the scalability of some workloads is significantly impacted by the performance
variability introduced by the power capping mechanism [62]. As an example, Figure 4.4
shows the performance of the CTH and S3D applications running under a 230 W per-node
power cap setting on Mutrino, a small-scale Trinity testbed at Sandia. CTH performance
behaves as expected, with performance degrading gracefully under the power cap. S3D, on
the other hand, experiences significant performance degradation with scale when running at
the default Turbo-On p-state (2.3 GHz base with dynamic scaling up to 3.6 GHz). In this
case it is better to run S3D at a fixed 1.8 GHz p-state because it results in average power
usage being below the 230 W cap, which avoids the power capping mechanism from being
triggered. We are currently working to better understand this behavior and find ways to
mitigate it, as well as examining how node-level power capping affects power usage at the
facility level [10].

Instrumentation

The Cray platforms provide similar power measurement capabilities, all of which were
utilized for the experiments in the following chapters. Following from the taxonomy defined
in Chapter 3, we step through the instrumentation details of each level.

Level 1 information is provided by Cray’s RUR (Resource Utilization Reporting) tool [6],

47

230W 276W 322W 369W

100 | | ceip cap | cap | caip
- 230W cap = :
o 276W cap : :
S 322W cap : 3
S 80 | 369W cap —— :]
= :
No cap — :
< =
i) = =
5 E :
e = =
Eo60f :
& : :
w z
= E
S 407 : :
€ z :
= : :
O : :
S 20]
= : :
S :
L E :
0 : - T T 1 = 1
100 150 200 250 300 350 400

Node Power (W atts)

Figure 4.3. Power API power measurements used to understand node-level power capping behavior with
production application, CTH. CTH is a strong shock wave, multi-material solid mechanics code

which records various aggregate statistics about each job, including start time, end time,
and total energy consumed. Users can opt-in to receiving RUR reports, and in this case this
was done for all runs. The overhead of using the Cray RUR tool is effectively zero.

Level 2 out-of-band data is provided by Cray’s power monitoring infrastructure and
Power Management Database (PMDB). Per-node power is sampled at 5 Hz and stored in
the PMDB PostgresSQL database, with a rolling 4 hour window of samples kept for each
system. Each compute node contains a power measurement device with accuracy of +/- 3%
that is internally sampled at a rate higher than 5 Hz. We extract the relevant data from
the database for each of the runs by application ID. The PMDB is not available to regular
system users, it can only be accessed by users with root access to the system management
workstation. For the Trinity platforms, each 5 Hz power sample is the average of the internal

48

0.17 T T T T T T T 6000 T T T T T

Turbo-On —— Turbo-On ——
016 | 23GHz —— | 2.3 GHz ——
. 2.0 GHz 5500 2.0 GHz
1.9 GHz 1.9 GHz
o 015} 1.8 GHz —— 2 5000 | 18GHz ——
8 1.6 GHz —— S 1.6 GHz ——
$ 014 1.4 GHz —— 3 1.4 GHz ——
= 1.2 4500 1.2 GHz R
[} [}
o 0.13 o
g £ 4000]
o) £ T
b7 0.12 3 =
£ 2 3500 T 1
E 011} 15}
01k 1 3000 | 1
0.09 - 2500 —
1 2 4 8 16 32 64 96 1 2 4 8 16 32 64 96
Scale (# Nodes) Scale (# Nodes)

(a) CTH Performance with 230 W Power Cap (b) S3D Performance with 230 W Power Cap

Figure 4.4. CTH and S3D application scalability when running under a node-level power cap.

samples since the previous 5 Hz sample. The XC30 (Volta) runs an older Cray management
software release that does not perform this averaging, so the 5 Hz value recorded represents
the most recent internal sample available.

The PMDB is located on a single node, the system management workstation (SMW).
As such, it can be both difficult to insert many samples at high rate from many nodes and
slow to extract data from many nodes, as the node is also busy recording current samples.
Even extracting data for small numbers of nodes can be time consuming, and therefore this
approach can be limited for very large scale jobs or long running jobs unless the database is
routinely dumped to an alternative storage solution before the time window on the database
rolls over and begins overwriting data.

In-band measurements on our system use hardware counters to regularly record measure-
ments through register fetch operations. The granularity of the measurements is limited by
the register refresh rate of [regrant: XX]%. In-Band measurements are available on a variety
of hardware. We use the Running Average Power Limit (RAPL) measurements available
on Intel processors for this paper. RAPL counters are similar to approaches by other ven-
dors such as AMD’s APM [4], so the conclusions drawn here regarding the capabilities of
the measurement technique are generally applicable to x86 processors, and possibly even to
other ISAs entirely.

The scalability of in-band measurement is good as each measurement is node local and
recorded at that level. Consequently, the only concern with scalability is the collection of
the measurements at the conclusion of an application run. The main concern with in-band
measurement is the performance degradation of the application itself, which occurs due to
frequent interruption of the CPU in order to read the hardware counters. This interruption
not only causes a pause in compute tasks, but can also adversely impact the CPU cache
depending on how the CPU is interrupted to read the data. While this may seem like a small
impact overall, previous experience with OS system noise illustrates how the introduction of

49

small amounts of interruption in compute can cause larger slowdowns when processes must
synchronize across the application [64]. This is why user-level frameworks, such as the Power
API, consider additional metadata information necessary to pair with in-band measurement
data.

In-band measurement through CPU counters can provide both CPU and memory sub-
system energy measurement. This is not always possible with out-of-band measurement,
depending on where the external measurement hardware is placed and its capabilities. Out-
of-band measurement can capture whole node energy profiles easily, while this is not possible
for in-band measurement that uses CPU counters. Whole node energy is can be useful when
CPU external components consume a large amount of the power budget for a node, such as
with networks or motherboard chipsets.

Level 3 application instrumentation for this study uses the KokkosP [74] runtime profiling
hooks, part of the Kokkos Kernels library. KokkosP is a recent interface that provides low-
overhead profiling and instrumentation of applications. We have used KokkosP exclusively
to denote application region entry/exit with timestamps as described later. Some but not
all applications described herein use the Kokkos programming model, demonstrating that
the Kokkos lightweight profiling library can be used independently or in conjunction with
Kokkos. We developed a Power API plugin for KokkosP that is used to collect in-band power
and energy measurements.

50

Chapter 5

Testbed Mini Application
Experiments

Workloads

We used three different proxy/mini applications, MiniMD, LULESH and MiniFE, to
conduct initial experiments on Trinity tesbeds and the Volta machine.

MiniMD is a molecular dynamics simulation that is a proxy for the LAMMPS full featured
molecular dynamics simulator. MiniMD solves a single problem type out of the LAMMPS
suite [65], namely a Lennard-Jones liquid simulation. It is essentially equivalent to LAMMPS
in terms of behavior for this particular type of simulation. LAMMPS was run with one MPI
process per physical core and configured to run for 1000 cycles with a memory footprint of
approximately 7 GB per node (-n 1000 -s 280 -gn 0 --half neigh 0).

LULESH is a proxy application that solves an unstructured mesh Lagrangian explicit
shock hydrodynamics problem. This is essentially the explicit hydrodynamics section of the
larger ALE3D package [5]. LULESH was configured with 2 MPI processes per node with
OpenMP used to utilize the remaining physical cores. LULESH was configured to run for
800 cycles with a memory footprint of approximately 1.2 GB per MPI process (-s 100 -i
800).

MiniFE is an implicit finite element conduction simulation using a conjugate gradient
solver on a rectangular shaped problem. MiniFE, unlike other codes, is designed to represent
a large swath of applications instead of a specific portion of a larger application. As such, it
does not use a preconditioner, and uses a simple CG solver in order to approximate a larger
range of finite solvers. MiniFE was configured with 2 MPI processes per node and OpenMP
to utilize the remaining physical cores. MiniFE was configured to run with a ‘‘-nx 800
-ny 1600 -nz 800’ input problem that resulted in a memory footprint of about 7 GB per
MPI process.

These workloads were run on 32 nodes of each platform using all cores on each node. The
same input problem was used across test platforms, enabling cross architecture comparisons.
Input problems were chosen by consulting with subject matter experts to determine realistic
configurations that would produce high performance across the three platforms studied.

51

Mini-App Power Profiling Experiments

Job-wide Aggregate Information

Aggregate counts of total energy consumed or average wattage over a sampling period
are obtained using hardware registers that are polled for values only at the beginning and
end of an application execution. This is technically in-band as the commands are issued to
read the hardware counters from the CPUs executing the simulation code. Reading these
counters can be done with negligible overhead, as the code reads the counter before and after
the application execution, avoiding any interference while running the simulation.

To demonstrate the initial utility of HPC job aggregate information, we look at a com-
mon case study where a P-state sweep is performed to try to determine a configuration
for the highest performing, the lowest overall power consumption, or the least total energy
consumed per Figure of Merit (FOM). Given 3 architectures and turbo-boost frequencies,
we also use the 1.2 GHz frequency results to compare different CPU architecture types at
an identical clock speed. Results from this study are shown in Table 5.1. These results
demonstrate trends that are predictable: The fastest clock speeds are almost universally the
most performant mode of operation for all architectures. The exception is Haswell running
MiniFE, where non-turbo max frequency is slightly better than turbo but within the margin
of error. In terms of FOM per watt, the results are less straightforward. The Ivy Bridge
system should be run in non-turbo highest frequency for power efficiency and performance,
but for the Haswell and KNL systems the ideal frequency varies based on the architecture
and application. The KNL and Xeon core architectures are vastly different x86 implementa-
tions. The results show that the many Intel Atom-based cores in the KNL architecture are
better for both MiniMD and MiniFE. For the memory-intensive LULESH code, however, the
high bandwidth, low latency memory subsystem in the Xeon allows it to slightly outperform
KNL.

Unfortunately, we can also see in this case study the limitations of aggregate job infor-
mation. First, this aggregated data cannot tell us which particular phase of an application is
of concern or how energy is consumed throughout execution. Other techniques are necessary
to answer these questions. Perhaps more alarmingly, the total job energy consumption may
lead us to false conclusions about optimizing FOM per watt. With MiniFE, the Trinity
Haswell portion shows 1.2Ghz to be the best FOM per watt. However, as we find later when
application code regions are instrumented, MiniFE’s FOM is based on a single region that
is a small portion of the total runtime, effectively leading to a false conclusion regarding
selecting an optimal P-state FOM per Watt.

Application Instrumentation

While total job aggregate data may be initially useful, it alone can also lead to false
conclusions or miss more detailed information in regards to a given applications. Compared

92

Table 5.1. Power and Energy Efficiency Calculated from Cray RUR Aggregate Information
FOM Per Node AVG Watts Per Node FOM Per Watt

Volta Trinity Trinity Volta Trinity Trinity = Volta Trinity Trinity
IVB HSW KNL IVB HSW KNL IVB HSW KNL

Turbo 2.08e7 3.01e7 5.92e7 269 334 246 7.73e4 9.0led 2.41eb
MiniMD No Turbo 1.84e7 2.56e7 5.66e7 213 236 228 8.64e4 1.08e5 2.48eb
1.2 GHz 9.45e6 1.39¢7 4.93e7 138 142 194 6.85e4 9.79¢4 2.54e5
Turbo 1.36e4 1.85e4 1.51e4 291 346 218 46.7 53.5 69.3
LULESH No Turbo 1.24e4 1.75e4 1.43e4 236 295 208 52.5 59.3 68.8
1.2 GHz 6.75e3 1.09¢e4 1.25e4 156 175 180 43.3 62.3 69.4
Turbo 1.24e4 1.42¢4 3.00e4 185 212 138 67.0 67.0 217
MiniFE No Turbo 1.23e4 1.43e4 2.93e4 145 152 133 84.8 94.1 220
1.2 GHz 8.37e3 1.4led 2.76e4 104 104 127 80.5 136 217

to simplistic aggregate job data, application profiling requires significantly more effort and
knowledge of the applications under study than aggregate counter or out-of-band power mea-
surement. It can yield more insight into the power and energy characteristics of applications.
However, the detail and frequency at which application instrument is implemented can have
cascading impacts and considerations.

For more insight into application behavior we need to understand the phases of the appli-
cations themselves. Table 5.2 shows the region breakdown for each of the three applications.
The number of occurrences of each region are identical across architectures and only the
region timings vary. MiniMD has 5 main regions. Not all of these regions occur in every
timestep of the simulation. For example, NeighborBuild is only run every 20 timesteps. How-
ever, when it does occur it is a significant portion of the execution time for that timestep.
Like MiniMD, LULESH also has 5 regions in its main solve. Regions 2 and 5 are the most
significant in terms of time, while region 3 is very short. Like Exchange or Communicate
regions for MiniMD, region 3 is very difficult to profile for energy /power. This is because the
region is so short that measurement may not be possible inside of the region. For MiniFE,
we have only instrumented the assembly and CG solves as regions. Since both regions are
large, the power profile clearly differentiates these two regions in Figure 5.1c.

Power /energy profiling can be done inline in the application directly through in-band
measurement, such as calling the PowerAPI or interfacing with RAPL directly. However,
the overhead of in-band measurement can be significant when sampling at high frequency.
To quantify the potential overhead of inline application profiling, multiple experiments with
both power/energy readings and timestamps, as well as with only timestamps enabled, are
shown in Table 5.3. Our initial investigation for KNL yielded significant overheads of in-
band sampling with region profiling for MiniMD and LULESH, ranging form 4-8%, whereas
MiniFE in-band sampling was negligible compared to no sampling. These overheads are
significant even at a small scale. Given prior knowledge of how asynchronous noise in parallel

53

Table 5.2. Application Profiling Region Durations For Trinity KNL

Region Durations (seconds)

Region Name Count Mean SD MIN MAX
Exchange 1632 0.005 0.004 0.003 0.025
CommBorders 1632 0.010 0.008 0.006 0.085
MiniMD Communicate 30400 0.003 0.002 0.002 0.032
Force 32000 0.039 0.038 0.036 0.155
NeighborBuild 1600 0.600 0.600 0.595 0.624

IntegrateStress 25600 0.011 0.010 0.010 0.035
HourglassControl 25600 0.039 0.039 0.038 0.067
LULESH VelocityForNodes 25600 0.002 0.002 0.001 0.002
LagrangeElements 25600 0.018 0.018 0.017 0.066

MonotonicQ 25600 0.031 0.031 0.023 0.063
MiniFE Assemble 32 135.243 134.816 125.582 149.543
CGSolve 32 14.209 14.209 14.208 14.210

applications can have cascading effects at a large scale, these overheads could increase when
moving to an extreme scale such as the Trinity supercomputer.

When we disable profiling and use only timestamping, the performance overheads be-
come essentially non-observable when accounting for normal application runtime variance in
measurement. Timestamping is currently the best way to couple application profiling with
out-of-band power samples. Since out-of-band samples are detached from the application or
compute infrastructure entirely, the use of timestamps within the application becomes the
only feasible way to couple out-of-band data. While it requires significant additional effort
and synchronized clocks, the result is a near complete lack of perturbation or added overhead
due to profiling.

Out-of-band Periodic Sampling

Out-of-band power sampling can provide detailed information about application phases
and the impact of varying clock frequency on the CPU. Continuing with the case study
detailed in Table 5.1, we next look at P-states across the KNL system. In Figure 1, the
power versus time plots include level 2 power samples taken at 5 Hz for each of the 32
nodes for the respective run, with a solid horizontal line added to visualize the job-wide
average power calculated from level 1 information. MiniMD’s out-of-band measurements in
Figure 5.1a show expected behavior in the main solve of the application. The periodic power
consumption corresponds with known solver phases, and each P-state shows the expected
number of phases. Using a slower CPU frequency lengthens the phases but does not alter
any observable power consumption trends.

o4

Table 5.3. Overhead of Application Profiling For Trinity KNL

Power + Energy Timestamps
Region Profiling Only

Turbo 6.84% -0.08%

. 1.4 GHz 7.49% -0.08%
MiniMD - o oy, 7.711% 0.08%
1.0 GHz 8.15% 0.07%

Turbo 4.84% 0.24%

1.4 GHz 4.94% 0.35%

LULESH o oy, 5.23% 0.22%
1.0 GHz 4.73% ~0.08%

Turbo -1.22% 0.15%

» 1.4 GHz -0.59% -0.95%
MinifE o oy, -1.50% “1.42%
1.0 GHz -1.26% -1.96%

LULESH’s power consumption with varying CPU frequency for the KNL is shown in
Figure 5.1b. Its power consumption is much less periodic than MiniMD but shows similar
patterns of lowered power consumption and lengthened runtimes with different P-states.
Unlike MiniMD, where phases are obvious in the power consumption graph, LULESH has 5
phases, but all of them are similar in power consumption, even though the time periods of
the individual phases are not equal (some are very short, others are longer than average).

MiniFE shows multiple different phases throughout execution in Figure 5.1c. The first
long, low-power phase is the assembly phase while the increased power consumption regions
are the problem solve (CG). We can observe that power usage throughout the assembly phase
is slightly improved by lowering the CPU frequency. However, the difference is not as large
as the power savings during the main CG solve region. This will impact the performance
per watt of the lower frequency results as the assembly phase is the longest phase.

In addition to an analysis of P-states on KNL only, we can also directly compare all three
of our platforms with out-of-band measurement. The results for MiniMD, shown in Figure
5.2, illustrate some differences between the out-of-band measurement techniques across the
3 system platforms. The out-of-band measurement capabilities between these systems are
very similar, except that the Ivy Bridge system reports only point-in-time power samples,
while the Haswell and KNL systems average results between sampling reading points. This
leads to a much less noisy power profile for the newer systems, avoiding spurious data not
significant to the analysis of the power consumption of the system.

LULESH does not have periodic signals hidden in the noise of its power samples. This
can be contrasted to the results for MiniMD. The results can be significant for identifying
periodic power behavior in an application. In Figure 5.2 we observe that the KNL system

%)

300 dALEB ?-.r‘\‘\u\': ‘ Y L A & .‘\ 1.4 GHZ + TUrbo
® 250
S
S e
8
= 100
[A
Q 50 W
o
Time (Seconds)
(a) MiniMD
300 1.4 GHZ + TUIrDO
& 250 T2aH —
] 1.0 GHZ e
E 200 ’ Iz
5 150
= 100
& 50
(]
o 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Time (Seconds)
(b) LULESH
300 1.4 GHZ + TUIrbO
m 1.4 GHZ
= 1.2 GHZ
] 1.0 GHZ
E F4
]
s
Q,
o 50 100 150 200 250 300
Time (Seconds)
(c) MiniFE

Figure 5.1. Out-of-band power sampling for workloads running on Trinity Knights Landing at different
CPU frequencies.

56

400

o0 St

300

250
200
150

Power (Watts)

100 ||

Ivy Bridge - Volta
Haswell - Trinity s
Knights Landing - Trinity

50 |

4 10 20 30 40 50 60 70 80 90 100 110 120

Time (Seconds)

(a) LULESH

400
350
300
250
200
150 | |
100 |
50 §

Power (Watts)

o 25 50 75 100 125 150

Time (Seconds)
Haswell Turbo KNL Turbo

(b) MiniMD

Ivy Bridge Turbo

Figure 5.2. Out-of-band power sampling for LULESH and MiniMD running on the different test plat-
forms.

shows clear periodic behavior that we can relate back to known phases of the application
and timesteps in the simulation itself. Such results on the Ivy Bridge system yield a noisy
signal, and the periodicity of the underlying code regions was lost. This is not the case when
we have intra-sample averaging like on the KNL/Haswell system. While LULESH does not
have the same region periodicity, the noise from LULESH running on IvyBridge was even
greater, to the point of obscuring useful data.

Combining Out-of-band Periodic Sampling and Application Instru-
mentation

Region profiling with timestamps and in-band power/energy profiling paired with the
collection of out-of-band data allows significantly more insight than any one technique.
Specifically, the method of power data paired with profiling may have drastically differ-
ent resolutions that effect the perceived accuracy of the interpreted results. The out-of-band
results are samples taken through the PMDB on the platform, whereas the in-band results
show real samples taken alongside the application at region entry and exit.

For MiniFE in Figure 5.3, the regions are very coarse-grained, therefore the assumed
behavior throughout the region is very different than the out-of-band sampling throughout

57

300 Out-of-Band

Out-of-Band + In-Band

250

200

150

Power (Watts)

100 |§

50

o 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Time (Seconds)

Figure 5.3. MiniFE correlating out-of-band power sampling with in-band application region profiling.

300 ¢
250
200 ¢
7150

100 | WAV
T Ty Out-of-Band
50 In-Band

o 10 20 30 40 50 60
Time (Seconds)

Power (Watts)

Figure 5.4. MiniMD correlating out-of-band power sampling with in-band application region profiling.

the region. This illustrates a key issue with in-band measurement at the beginning and end
of a region: Region behavior is not guaranteed to be uniform. We can see notable differences
between the perturbation in out-of-band data compared to the simple measurements and
the assumptions they would lead to from in-band profiling.

Looking at MiniMD in Figure 5.4, the results show an issue of resolution that can be
introduced by power/energy profiling only at region entry and exit. The Figure shows that
all of the periodic data with timesteps (in black) of the application are not observable in
comparison to in-band measurements (in red), which are taken along region boundaries. We
can examine this closer in Figure 5.5, which provides a zoomed-in view of Figure 5.4. The
out-of-band measurements capture the periodic behavior from MiniMD and, when combined
with timestamps, application profiling clearly illustrates which regions correspond to the
periodic behavior. While the in-band measurement does accurately report the total energy
usage, the rate of usage throughout the region is incorrect as it is treated as a uniform
power/energy draw, seen by level line of red dots in Figure 5.5. Effectively, this in-band
approximation does not match the fine-grained out-of-band measurements or the higher
frequency periodic behaviors observed. Other studies have validated in-band measurements

58

300

200

150

Power (Watts)

100

50

Out-of-Band
In-Band + Out-of-Band

18 18.2 18.4 18.6 18.8 19 19.2 19.4
Time (Seconds)

Figure 5.5. Zoomed-in MiniMD correlating out-of-band power sampling with in-band application region
profiling.

using out-of-band measurement [54], so while in-band measurements are accurate, it is the
lack of the resolution with sampling rate that fails to properly illustrate the application’s
true power profile.

In-band sampling resolution could be increased by interrupting the application to query
the energy counters throughout the execution. One could also define finer-grained regions
if appropriate for the code under study, however as seen in Table 5.3, doing so would also
add overhead and potential perturbation to the application itself. Furthermore, for course-
grained application regions like MiniFE, the assumed behavior throughout the region is very
different than the out-of-band sampling throughout the region. This illustrates a key issue
with in-band measurement sampling only between regions: the behavior within a region is
not guaranteed to be uniform.

59

60

Chapter 6

Trinity TR2 Experiments

This chapter describes the dual-sided analysis of Advanced Power Management Trinity
system at scale. Specifically, this includes running the mini appliations described in Chapter
5 beyond what is possible on the testbed systems, scaling to thousands of nodes and hundreds
of thousands of cores. This includes investigating per-node power usage as scale increases, as
well as P-state configuration and its effect on total application performance. Furthermore,
we also look at a snapshot of an in-the-wild power analysis of real applications run on Trinity
in April 2017 to illustrate the effectiveness of continual power management on a large-scale
system.

Mini Applications on TR2

As part of the APM NRE project for Trinity described in Chapter 4, Cray’s advanced
power management features were enabled for the Trinity system. This includes updates to
the Cray RAS software and PMDB that allows for receiving detailed power measurements on
such a large-scale system. In this, we can evaluate vary P-states, power caps, and measure
total energy consumed, both at a node level and a job level. These capabilities will allow us
not only to discern the best performing application, but perhaps provide the best energy-
to-solution metric given a certain time envelope, or even a new way to evaluate overall
application efficiency as a function of current vs potential power draw.

Looking first at MiniMD in Figure 6.1, we can see a few things occur as we vary P-state
and scale. The first observation is that as P-state frequency is lowered, average node power
and performance (as a percent decrease of FOM) both decrease as well. What is interesting
is that this is not a linear progression. Instead, initial ramp-down from Turbo to the highest
base frequency (1.4Ghz for KNL), there is a generally smaller impact on FOM and a larger
decrease in node power draw, compared to the lower frequencies, whereby performance takes
deceases more than node power.

Another observation that as as scale increases, per-node power draw decreases. This is
expected as the amount of communication necessary increases with scale. The observation
of reduced power usage at increased node count may indicate room for potential overlap
of commutation and communication, or some other potential for algorithmic refinements,

61

Trinity KNL MiniMD

100 ‘
95
90
2 85 |
=
O
L 80 |
75
MiniMD 1 node —=—
MiniMD 64 node ——e—
70 MiniMD 512 node §
MiniMD 1024 node
MiniMD‘ 2048 nodeT

65 | | | |
120 140 160 180 200 220 240 260

Average Power

Figure 6.1. Average node power of MiniMD, as a percent form Turbo frequency FOM.

however this is application specific and may not apply to all systems. These initial observa-
tions confirm our expectations from testbed small-scale experiments, that small changes in
P-state equate to substantial power savings at some minimal decrease in performances, but
diminishing returns exist beyond.

Viewing MiniMD next in Figure 6.2, we see a number of interesting differences between
job node count. First, single-node MiniFE runs consume substantially more node power
than others at scale. However, once multi-node MiniFE runs exist, their per-node power
draw does not vary considerably from 64 to 2048 nodes, indicating that the performance
impact of multi-node parallelization is hit early and is potentially independent of job size.
Furthermore, we again see that low frequency P-states (such as 1.0 Ghz) have a considerable
impact on total application performance, as measured by FOM. Comparing 1.0 Ghz to Turbo
frequencies of MiniFE at large scales, we see there is only roughly a 8% power reduction per
node, yet up to a 20% impact on performance. As also observe with MiniFE that large-scale
runs generally have a low per-node power draw, operating at just 40 % of peak power draw
per node. With MiniFE, we expect this is due to the long assembly phase in MiniFe which is

62

Trinity KNL MiniFE

100 =
95 8
Q0 8
2
=
O
L
85 .
80 |- MiniFE 1 node —=— |
MiniFE 64 node ——e—
MiniFE 512 node
MiniFE 1024 node
25 | | | | MiniFE 2Q48 node |

120 125 130 135 140 145 150 155 160
Average Power

Figure 6.2. Average node power of MiniFE, as a percent form Turbo frequency FOM

not properly parallelized, but this example still shows how peak power draw may not match
expected power draw for HPC applications of interest.

Moving to LULESH in Figure 6.3, we again see a similar comparison between application
performance, normalized to Turbo frequency figure of merit, and power per per node. With
LULESH, the power curves are flattened, indicating that performance is more directly tied to
CPU frequency. Furthermore, varying CPU frequency has a predictable result independent
of scale, as per-node energy only changes by a few watts as scale increases from 1 node to
2197 nodes (13 cubed). The difference between Turbo and non-turbo frequencies is also
interesting, as giving up roughly 5% of performance gains around 7% decrease in power
utilization.

With LULESH, we also can evaluate the impact of scaling as a factor of FOM per node,
seen in Figure 6.4. Here, we can see first that FOM per node does not vary much as scale
increases, which is a strong factor for high scalability of LULESH itself. Second, we see
there is only a little decrease in FOM moving form Turbo to 1.4 Ghz P-state, independent
of scale. This again confirms that it is likely we can evaluate power profiles of applications

63

FOM %

100

95

90

85

80

75

70

Trinity KNL Lulesh

Lulesh 1 node —=—

Lulesh 64 node ——e—
Lulesh 512 node
Lulesh 1000 node
Lulesh‘ 2197 nodq

120

140

160

180 200
Average Power

220 240

260

Figure 6.3. Average node power of Lulesh, as a percent form Turbo frequency FOM

64

Trinity KNL Lulesh

TurBo N
20000 1.4 Ghz —e—
1.2 Ghz ——
1.0 Ghz ——

15000 :\\H'\._,ﬂ |
e G S

10000 .

FOM per node

5000 a

0 . | . | . | . | . | .
1 4 16 64 256 1024 4096

nodes

Figure 6.4. Lulesh Figure of Merit per node, scaling to 2197 nodes

at a smaller scale using testbeds with tens or hundreds of nodes, with expected conclusions
when scaling is increased to thousands of nodes.

In-the-Wild Analysis

As part of this milestone and in collaboration with LANL and Cray, a method was devel-
oped to collect and archive 1 Hz node-level power samples for the duration of the three month
Trinity TR2 open science period from March to May 2017. This power data is available for
post analysis together with job scheduler logs and other system logs, enabling per-job energy
usage over time to be evaluated. The volume of data collected was approximately 30 TB
(2.7 TB compressed), making this a challenging data set to work with. Work is currently
underway to analyze this data set in more detail, but our initial analysis focused on a series
of large-scale application runs performed during a dedicated system time on April 18, 2017.

65

Two workloads consisting of multiple simultaneous application runs were evaluated. The
first workload, shown in Table 6.1, consisted of four 1024 node CTH runs, two 1024 node
SPARC runs, and one 2048 node SPARC run that were all launched more or less simultane-
ously on the TR2 system. The second workload, shown in Table 6.2 consisted of the same
four CTH jobs as workload 1 running together with four 1024 node PARTISN runs. The
tables include summary power and energy statistics for each run.

Run-to-run performance variation was higher than expected in several cases. For exam-
ple, in Workload 1 (Table 6.1) the final CTH run was 14% slower than the fastest CTH
run, even though each of the four CTH runs were configured identically. More alarmingly,
the Baselinel run of the final PARTISN run, Workload 2 (Table 6.2), was 32% slower than
the others, with no obvious explanation. To investigate further, we analyzed the archieved
power and energy information collected during each run to look for possible explanations.

We focused on comparing the fastest and slowest PARTISN runs in Workload 2, “PAR-
TISN 27 and “PARTISN 4”7 respectively, as these had the largest run-to-run variation ob-
served. As can be seen in Table 6.2, there was not a significant difference in average power
per node between PARTISN 2 (201.90 W) and PARTISN 4 (202.75 W). The average power
was calculated by dividing the total energy used by the job, as recorded by Cray’s RUR tool,
by the run’s total execution time and then dividing by the number of nodes (1024). RUR
additionally breaks down the total energy into CPU and memory components. At this level,
there is a more significant 12% difference in memory power between the two jobs. However,
PARTISN was configured to run exclusively out of on-package MCDRAM, which is counted
in the CPU energy measurement rather than memory energy (external DIMM slots). This
suggests the 12% difference may be more a result of part-to-part differences in idle external
memory power for the different set of nodes used by each run.

The aggregated job-wide energy usage values reported by RUR obscure the individual
node-level details. It could be the case that one node out of the 1024 nodes has a very different
power usage behavior than the others, possibly suggesting a “slow node”. To probe further,
we plotted the 1 Hz power samples recorded for each individual node, shown in Figure 6.5.
The plot includes 1024 separate curves, but they largely overlap making it difficult to see the
fine detail. There are roughly 100 spikes evident in each plot, which likely correspond to the
100 cycles that PARTISN was configured to run. In the PARTISN 4 run, the spikes are more
spread out than in PARTISN 2, indicating that the slow down in PARTISN 4 is spread out
over the entire run rather than centralized to a single time period. If there were slowdowns
due to network or I/O contention, we would expect there to be large dips in power usage
during each cycle. This is either not the case or the dips are obscured by the overlapping
waveforms for the 1024 nodes. As analyzing each of the waveforms by hand is not practical,
it might be useful to apply a clustering algorithm or some other automated technique to
look for outliers. This is a possible area for future work.

As a final effort to understand the run-to-run variation, we plotted histograms of the
per-node average power usage for each run. The histograms count the number of nodes that
had the average power usage shown on the x-axis, with 50 bins used. Separate distributions
for total node power, CPU power, and memory power are plotted. In general, the histograms

66

for the two runs look very similar. The primary difference seems to be in memory power,
with the slower PARTISN 4 run having a narrower range of values, except for one outlier
node that is barely visible with an average memory power of 27 W. This is further confirmed
by plotting the 1 Hz memory power samples, shown in Figure 6.6. We have not yet been
able to confirm the reason for this outlier node, but it could be due to a miscalibrated power
sensor or the node’s memory mode somehow being misconfigured (e.g., set to quad-cache
instead of quad-flat). A second run of Workload 2 produced the same outlier behavior, but
in the second run the PARTISN 4 performance was as expected (i.e., not significantly slower
than the other runs). Hence, we do not believe the high memory power outlier node is the
reason for the slower PARTISN 4 run, but we continue to investigate.

While this analysis of the archived power samples did not provide a “smoking gun” for the
observed performance variability, it does demonstrate how this information could be useful.
In this case, the time vs. power plots clearly showed that the slowdown in the PARTISN 4
run was evenly spread out across its entire runtime. This provides valuable information and
allows certain classes of problems, such as a long I/O or network interruption, to be ruled
out.

Table 6.1. Workload 1 Power and Energy Usage

Avg Power | Avg CPU Power | Avg Mem Power
Nodes | Runtime | Total Energy | Per Node Per Node Per Node

(s) (J) (W) (W) (W)
CTH 1 1024 1343 278268114 207.28 148.84 12.39
CTH 2 1024 1339 281224066 205.10 147.28 12.03
CTH 3 1024 1304 274096754 205.27 148.24 12.31
CTH 4 1024 1485 310102646 203.93 146.73 12.20
SPARC 1 | 1024 1371 312268221 222.43 145.78 28.54
SPARC 2 | 1024 1369 306805951 218.86 145.02 26.58
SPARC 3 | 2048 1512 685787490 221.47 145.82 27.89

Table 6.2. Workload 2 Power and Energy Usage

Avg Power | Avg CPU Power | Avg Mem Power
Nodes | Runtime | Total Energy | Per Node Per Node Per Node

(s) (J) (W) (W) (W)
CTH 1 1024 1236 264790220 209.21 149.87 12.30
CTH 2 1024 1249 264785934 207.03 148.33 11.95
CTH 3 1024 1196 254463798 207.78 149.72 12.23
CTH 4 1024 1424 299234211 205.21 147.28 12.12
PARTISN 1 | 1024 1120 233431163 203.54 146.73 11.57
PARTISN 2 | 1024 1019 210674495 201.90 146.32 10.53
PARTISN 3 | 1024 1039 215450107 202.50 146.94 10.87
PARTISN 4 | 1024 1343 278823301 202.75 145.69 11.81

67

250
e
200 ot ek
z‘: 150
L ¥ k
IS i |
5o i i \
0
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300
Time (Seconds)
(a) PARTISN 2
250 - TNV »
z‘: 150 “ \
§ o0 il
2 ‘
50 |/ #

400 500 600 700 800 900 1000 1100 1200 1300
Time (Seconds)

(b) PARTISN 4 (runtime +32%)

Figure 6.5. Node-level power over time for two of the PARTISN runs in workload 2. Spikes likely
correspond to application cycles indicating that any slowdown in PARTISN 4 is not a large localized event.

68

Power (Watts)

300

400 500 600 700 800 900 1000 1100 1200 1300
Time (Seconds)

(a) PARTISN 2

Power (Watts)

A TR T T

J fwiww s wt rmmr'lww i vmv MNMM i M
AN A RKIR WA, NN 1 T
g '%”’

m&um A
b

==
=

300

Figure 6.6. Memory power
PARTISN runs in workload 2.

400 500 600 700 800 900 1000 1100 1200 1300
Time (Seconds)

(b) PARTISN 4 (runtime +32%)

over time (external DIMMS, does not include MCDRAM) for two of the

69

HEE Node Il Node
200 = CPU | 200 3 CrU i
3 MEM 3 MEM

150 150F

50 ,ﬁ\ |‘ 4 50
0 0 . -

0 50 100 150 200 250 0 50 100

Average Watts

Node Count
Node Count

150 200 250
Average Watts

(a) PARTISN 2 (b) PARTISN 4 (runtime +32%)

Figure 6.7. Histogram of node-level average power for two of the PARTISN runs in workload 2. The
histograms include average power for each of the 1024 nodes in each run, calculated from the per-node 1
Hz power samples recorded during each run. There is an outlier node value in the PARTISN 4 allocation.

70

Chapter 7

SPARC Experiments

This chapter presents our analysis of the power and energy usage characteristics of the
SPARC application running on ATS-1 Trinity hardware. The Advanced Power Management
(APM) capabilities of the Trinity platform are utilized to measure and control the power
usage of SPARC running on Trinity’s Haswell and Knights Landing compute nodes. We
perform controlled experiments on a small-scale Trinity testbed system to better understand
the sensitivity of SPARC to compute node type, OpenMP configuration, static P-state control
(CPU frequency), solver configuration, Knights Landing on-package memory configuration,
and static node-level power capping control.

SPARC: A Performance Portable Compressible CFD
Code

SPARC is a next-generation compressible computational fluid dynamics (CFD) code being
developed by Sandia National Laboratories as part of the NNSA’s Advanced Technology
Development and Mitigation (ATDM) subprogram. Howard et. al. [33] describe SPARC as
follows:

SPARC is a compressible computational fluid dynamics (CFD) code being de-
veloped to solve aerodynamics and aerothermodynamics problems primarily for
NNSA’s nuclear security programs. In its present state, SPARC solves the Navier-
Stokes and Reynolds-Averaged Navier-Stokes (RANS turbulence models) equa-
tions on structured and unstructured grids using a cell-centered finite volume
discretization scheme and is targeted towards the transonic flow regime to sup-
port gravity bomb analyses and the hypersonic flow regime to support re-entry
vehicle analyses. SPARC also solves the transient heat equation and associated
equations for non-decomposing and decomposing ablators on unstructured grids
using a Galerkin finite element method. One and two-way multiphysics couplings
exist between the CFD and ablation solvers within the code. Current develop-
ment is being driving by the re-entry application space, which nominally involves
hypersonic flows, ablator /thermal response, and structural response of the vehicle
under normal and hostile environments.

71

A key goal of the effort to develop SPARC is to produce a performance portable code,
meaning that it should run well on a diversity of HPC architectures with as little application
code as possible being aware of architectural differences. Specific targets include traditional
multi- and many- core CPU-based systems (e.g., ATS-1 Trinity Haswell and Knights Land-
ing compute nodes, respectively) and accelerator-based systems (e.g., ATS-2 Summit Volta
GPUs). The Kokkos programming model is being used by SPARC to assist with performance
portability, enabling application developers to focus on core algorithm design and exposing
parallelism while Kokkos takes care of mapping computation and data structures to the
underlying hardware architecture [74].

In this work, we analyze SPARC running on ATS-1 Trinity hardware. This platform
provides an interesting case study because it includes two types of compute nodes that
otherwise provide the same execution model — multiple traditional CPU cores per node —
and a similar x86 instruction set architecture, but significantly different implementations.
The Trinity Haswell compute nodes represent an evolution of Intel’s traditional multi-core
server line of processors. The Trinity Knights Landing compute nodes represent a new
“many-core” design that provides a larger number of cores with relatively lower performance
per core compared to Haswell. Additionally, Knights Landing includes 16 GB of on-package
high bandwidth memory (HBM ') that provides over 4x the memory bandwidth of Haswell’s
DDRA4-based main memory. These architectural characteristics were chosen to target highly-
parallel HPC workloads, particularly those with working sets that fit within the Knights
Landing’s on-package memory. A key question is whether the new design of Knights Landing
benefits realistic NNSA workloads such as SPARC.

Test Setup and SPARC Configuration

We performed a series of controlled experiments on the ‘Mutrino’ Cray XC40 testbed
system at Sandia. Mutrino consists of 100 Haswell and 100 Knights Landing compute nodes
that are identical to those used on Trinity. Due to the system being in high demand,
experiments were limited to 32 nodes of each compute node type. This was deemed large
enough to provide a reasonable test case while not significantly impacting system availability
to application code teams.

We obtained SPARC from the developer git repository in early August, 2017. The In-
tel Parallel Studio XE compilers version 17.0.1 were used to build an optimized executable
for each compute node type by following the instructions provided on the SPARC devel-
oper website. The default Trinity programming environment was used with the appropriate
sparc-dev module loaded.

A “Generic Reentry Vehicle” (GRV) input problem was used for all testing. This problem
was recommended by SPARC developers as a good test case and has been used in previous

'We use the term high bandwidth memory (HBM) in the generic sense, not the JEDEC standard. Knights
Landing’s HBM is implemented with MCDRAM technology.

72

Trinity Haswell (HSW) Configuration
#SBATCH --nodes=32 --ntasks-per-node=32 --partition standard

export OMP_NUM_THREADS = 1

export OMP_PLACES = threads

export OMP_PROC_BIND = close

srun --nodes 32 --ntasks 1024 --cpu_bind=cores sparc.exe

Trinity Knights Landing (KNL) Configuration
#SBATCH --nodes=32 --ntasks-per-node=32 --partition knl \
--constraint quad, flat -S 4

export OMP_NUM_THREADS = 8

export OMP_PLACES = threads

export OMP_PROC_BIND = close

srun --nodes 32 --ntasks 1024 --cpu_bind=cores \
--cpus -per-task=8 numactl --membind=1 sparc.exe

Figure 7.1. Baseline run configurations used for SPARC GRV problem on 32 nodes.

studies [33]. The GRV problem was configured for 1000 time steps with 10 linear iterations
per timestep and no norm calculations. All testing was performed on 32 nodes with 32 MPI
ranks per node (1024 MPI processes total), resulting in a memory footprint of 13 GB per
compute node. This enables the problem to fit entirely within the Knights Landing’s 16 GB
of on-package memory.

Figure 7.1 shows the recommended run configuration that were used for each compute
node type. From this baseline, we experimented with changing OpenMP configuration, static
P-state selection, solver configuration, and static power cap configurations. Additionally, for
Knights Landing nodes we compared running the problem from on-package memory vs.
off-package DDR4 memory.

Experimental Results

Sensitivity to OpenMP Configuration

Prior experience with running SPARC on Trinity has shown that it benefits significantly
from using multiple hardware threads per physical core on Knights Landing nodes but not
Haswell nodes. Table 7.1 shows the results of our OpenMP configuration experiments, which
confirm this is the case. On Haswell nodes, using two OpenMP threads per physical core
results in a slowdown of 2.4% for the total elapsed time reported by SPARC. Energy and

73

average power per node are also slightly increased.

The situation is reversed for Knights Landing nodes, where running four threads per
physical core (OMP-8, each MPI process is allocated two physical cores that run four threads
each) results in a 1.2x performance speedup compared to running one thread per core (OMP-
2, each MPI process is allocated two physical cores that run one thread each). However,
since energy-to-solution remains about the for these two cases, there is no energy-efficiency
penalty for the increased performance.

It is interesting to observe that running two threads per core (OMP-4, each MPI process
is allocated two physical cores that run two threads each) achieves essentially the same
performance as running four threads per core. Furthermore, energy-to-solution improves by
5%, resulting in the average power draw per node dropping by 12 W. This suggests that
there is little benefit from using the extra two threads per core. Nonetheless, since most
runs of SPARC on Knights Landing in practice are using four hardware threads per core, we
continue to use this configuration throughout the rest of our experiments.

Table 7.1. Sweeping OpenMP configuration for SPARC GRV problem on 32 nodes.
Job-wide Aggregate Information

OpenMP SPARC Total Wall Time Energy Power % Peak

Threads Elapsed (s) (s) (MJ) (W) Power
HSW OMP-1 445.92 458 5.15 352 85%
OMP-2 456.56 468 5.31 354 85%
OMP-1 797.26 804 4.72 183 53%
OMP-2 431.59 439 3.15 224 65%
KNL-HBEM OMP-4 355.81 364 297 255 74%
OMP-8 355.71 366 3.13 267 7%

Sensitivity P-state and Solver

We performed a set of experiments to explore three dimensions simultaneously: compute
node type, solver configuration, and P-state setting (CPU frequency). SPARC is undergoing
active development to improve solver efficiency. In particular, we wished to evaluate the
Trilinos block-tridiag solver that has been in development over the past year and compare
it to the block-triag solver built into SPARC.

Figure 7.2 shows an overall comparison of three different solver configurations running on
Haswell nodes (in black) and Knights Landing (in red) nodes. The curves labeled ‘SPARC’
present results for the built-in sparc/block-tridiag solver, which is the default for our input
problem. Next, the curves labeled ‘Trilinos’ present results for the new tpetra-blockers/block-
tridiag solver. This solver has been designed to provide performance similar to or better than

74

the SPARC built-in solvers, while being less application-specific, making it better suited for in-
clusion in a general-purpose library suite such as Trilinos. Finally, the curves labeled ‘Naive’
present results for the existing tpetra/belos solver. This solver was originally incorporated
into SPARC to provide support for GPU-based systems. It was only intended to be used for
unit testing on CPU-based systems. The data points in the figure are labeled with the static
P-state (CPU frequency) that was used for the duration of the respective run, set via the
--cpu-freq option to SLURM srun. For example, a label of ‘1.2” means that the application
run using a fixed CPU frequency of 1.2 GHz. The "Turbo’ label means up to 3.6 GHz on
Haswell and up to 1.6 GHz on Knights Landing. Turbo is the default run configuration on
Trinity.

As can be seen in Figure 7.2, the new Trilinos solver consistently provides the best
performance at a given P-state. It also consistently achieves the best energy efficiency, as
shown in Figure 7.3. Compared to the built-in SPARC solver, the new Trilinos solver improves
overall runtime by approximately 9% for Haswell and 8% for Knights Landing compute nodes
with approximately the same average power draw per node (-1.7 W for HSW, +1.2 W for
KNL).

Comparing the node types head-to-head for the best observed performance (Trilinos/-
Turbo), Knights Landing provides 15% higher performance, 24% lower average power per
node, and 41% lower energy-to-solution than Haswell. This demonstrates the energy-efficiency
improvements of the Knights Landing architecture for a realistic NNSA-relevant workload.

It is interesting to point out the similarity and overlap of the ‘Naive’ curve for Haswell and
Knights Landing in Figure 7.2. This indicates that both architectures are achieving roughly
the same FLOPS/clock with this solver. This is likely because it is poorly vectorized (or not
vectorized at all) and more CPU bound than memory bound. The SPARC and Trilinos solvers
have been heavily optimized to be memory bandwidth bound, as indicated by their more
horizontal slopes. This is shown more clearly in Figure 7.4, which plots P-state vs. linear
equation solve time. For the SPARC built-in and Trilinos solvers, the absolute solve time is
nearly flat, suggesting these solvers are highly memory bandwidth bound. The performance
of the Naive solver, on the other hand, is highly dependent on CPU frequency.

Figure 7.5 shows the percentage of the overall solve time that is spent in the linear
equation solver. For Haswell, this increases with CPU frequency because assembly is sped
up significantly while the linear equation solve time reamins roughly constant because it is a
memory bandwidth bound operation. This effect is present but less pronouced for Knights
Landing. With Naive, both assembly and linear equation solve are equally sped up by
increases in clock frequency.

Sensitivity to Knights Landing Memory Configuration

The Trinity Knights Landing have a two-level memory consisting of 16 GB of on-package
high bandwidth memory and 96 GB of external DDR4 memory. The on-package memory

1)

1400

1.0 "SPARC HSW —+—
1300 |4 Trilinos HSW —a— -
1200 1.1 Naive HSW ----&-- |
g S, SPARC KNL —+—
S 1100 iy Trilinos KNL —a— _
S 1"‘2{:"’ L3 Naive KNL ----a----
& 1000 W
~ *.:‘v..
qé 900 1.4 n.;::_‘iiibo
I= 800 16 e
é lf.é%...*"m.
T 700 . A L
S 600 w4 N
tq-l_i_z 1.3, — +
400 N\¢ -2 Turbo —A
300 ——%

160 180 200 220 240 260 280 300 320 340 360
Measured Average Power Per-Node (Watts)

Figure 7.2. Power vs. time for different solver configurations for SPARC GRV problem on 32 nodes.

76

1400

SPARC HSW ——

1300 Trilinos HSW —a— A

1000 | Naive HSW --ra-.- h
) SPARC KNL —+— &
€ 1100 | Trilinos KNL —a— i
§ Naive KNL ----a--- H
& 1000 I
“g’ 900 i
€ 800 x‘.
T 700 aia
s 600 '8 ‘
3 {5,
O 500 Nt

1‘-{ i
400 15
300 !

25 3 35 4 45 5 55 6 65 7 75 8
Measured Energy (Megadoules)

Figure 7.3. Energy vs. time for different solver configurations for SPARC GRV problem on 32 nodes.

7

1000 : :

T, SPARC HSW ——

900 |a Trilinos HSW —a— |

- Naive HSW ----a«---
T 800 f % SPARC KNL —+— |
S an Trilinos KNL —a—
o 700 s Naive KNL ----a-- -
2 A A
2 600 A
= 500 A)
g
S 400
n
S 300 | : .
] N K T T T }
5 00 o T 4

.(

A:.'\.'.:"!——l-

100 A
1 15 2 25 3 3.5 4

CPU Frequency (GHz)

Figure 7.4. Linear equation solve time for different solver configurations for SPARC GRV problem on 32
nodes.

78

80

e Aekh--A.p A-....A
° 75 A A
(?) 70 Aeeendhensinndheennlendiedhe
g 65
S 60 |
S 55 .
Q\O/ 50 4/*/;":"(‘/
:G_>) 45 B ?/
g 40 SPARC HSW —+—
= Trilinos HSW —a— 7]
S st Naive HSW -rrders
30 faat Trilinos KNL —&— -
i} 25 ‘ Naive KNL ----a----
1 1.5 2 25 3 3.5 4

CPU Frequency (GHz)

Figure 7.5. Percentage of linear equation solve time of overall solve time for different solver configurations
for SPARC GRV problem on 32 nodes.

79

achieves roughly 400 GB/s of memory bandwidth on the STREAM memory bandwidth
microbenchmark, which is about 4x better than memory bandwidth to the external DDR4
memory. This should result in significantly improved performance for a memory bandwidth
sensitive code such as SPARC, especially for the linear equation solver portion of the code.

Figure 7.6 shows the results of our experiments running our test problem using solely
on-package memory (labeled HBM, solid lines) and using solely external DDR4 memory
(labeled DDR, dashed lines). The Knights Landing on-package memory was configured
in the quad-flat mode and the numactl tool ws used to bind memory allocation to the
appropriate memory type. As can be seen, both the SPARC and Trilinos linear solvers exhibit
little performance sensitivity to CPU frequency for both types of memory. Using the on-
package memory with these solvers provides roughly a 4.2x performance advantage, which
closely matches the 4x improvement measured by STREAM. The Naive solver, in contrast,
only sees a 1.2x advantage, suggesting it is not as memory bandwidth bound as the other
solvers. This is further indicated by its greater dependence on CPU frequency.

For the SPARC and Trilinos solvers running with HBM, there is very little performance dif-
ference between the fastest (Turbo, up to 1.6 GHz) and slowest (1.0 GHz) P-states, however,
there is a 27% average power draw difference. This indicates there is significant potential
for energy savings, and reduced node-level power usage, during the linear solver portion of
SPARC’s runtime. We have measured the overhead of changing P-state configurations to be
less than 100 microseconds using Cray’s compute node Power API implementation, which is
three orders of magnitude less than the fastest linear solve time we measured (100 ms per
timestep). This suggests dynamic P-state switching may be feasible for SPARC for certain
input problems with minimal induced performance overhead.

We aslo examined running the Knights Landing’s on-package memory in cached mode,
which uses the 16 GB of on-package memory as a direct mapped last-level cache. This mode
of operation should result in our test problem, which has a 13 GB memory footprint per
node, being cached fully by the on-package memory. Our experimental results shown in
Table 7.2 confirm this. Explicitly using the Knights Landing’s on-package memory (KNL-
HBM) provides roughly the same performance and power usage as using it as an implicit
cache (KNL-CACHE). The Haswell results do not include finer-grained CPU and Memory
(external DDR memory, does not include on-package memory) breakdowns because these
components are not measured separately on Trinity Haswell nodes. Figure 7.7 provides a
visualization of the results in Table 7.2.

Out-of-band 5 Hz Power Sampling

All of the aggregate power and energy information presented for SPARC thus far has been
obtained by post-processing Cray’s out-of-band node-level power sampling. This infrastruc-
ture samples each node’s power usage at 1 Hz intervals and records this information in a SQL
database on a separate system administration network. We increase the sampling rate to the
maximum available, which is 5 Hz for each node. Analyzing the raw 5 Hz samples enables

80

1100

1000 A
000 | oo,
800 A A, .

700
600
500
400 Apsepanssshhpsscessbegeocizsbi gz
300
200 e :
100 - :
170 180 190 200 210 220 230 240 250 260 270
Measured Average Power Per-Node (Watts)
SPARC KNL-HBM —+— Trilinos KNL-DDR ----a----

SPARC KNL-DDR -==-4=--- Naive KNL-HBM —a—
Trilinos KNL-HBM —a— Naive KNL-DDR ----a«---

Linear Solve Time (Seconds)

Il }
LYY

b=

Figure 7.6. Comparison of SPARC GRV problem on 32 nodes running from KNL on-package memory vs.
off-package DDR memory.

81

Table 7.2. Aggregate results for static p-state selection for SPARC GRV problem running on 32 nodes.

Average Power Per-Node

P-state Job Runtime Node CPU MEM

(GHz) (s) (W) (W) (W)
2.3+Turbo 458 352 - —
2.3 468 306 ~ —
2.0 491 277 - ~
HSW 1.9 501 268 - —
1.6 535 237 ~ —
1.2 614 209 —~ —
1.4+Turbo 372 264 195 13
14 385 247 181 13
1.3 407 231 169 13
KNL-HBM 1.2 435 216 157 13
1.1 465 205 148 13
1.0 506 195 140 13
1.4+Turbo 684 255 166 39
1.4 700 242 154 39
1.3 716 229 145 38
KNL-DDR 1.2 731 219 136 38
1.1 754 210 129 37
1.0 777 204 125 37
1.4+ Turbo 382 277 199 19
1.4 381 249 184 13
1.3 406 232 170 13
KNL-CACHE 1.2 432 218 159 13
1.1 462 205 149 13
1.0 506 196 141 13

82

800 = T 1.0 T T T T

0 HSW ——]|
L i (HBM) KNL —%¢— |
700 | - o]
©
2 650 .
S)
® 600 |]
2
_g 550 r 1
5 500t -
o Turbo
450 t —F -
400 r .
350 1 1 1 1 1 1 1 1
180 200 220 240 260 280 300 320 340 360
Measured Average Power Per-Node (Watts)
(a) Power
800 T T T T T l 0 T
750 1'112 .
1.3
700 r 1.4 i
— Turbo
[0
© 650 .
3
@ 600 r .
.Gé 550 r 1
S 500 o -
o 1 Turbo
450 .
) HSW ——
400 1 (HBM) KNL —¢—
Turbo (DDR) KNL
350 1 1 1 1 1 1
3 3.5 4 4.5 5 5.5 6
Measured Energy (Megajoules)

(b) Energy

Figure 7.7. Aggregate results for static p-state selection for SPARC GRV input running on 32 nodes.

83

additional statistical values to be calculated, such as high-water marks and percentiles.

Figure 7.9 show the point-in-time power draw for a sweep of static P-state settings for
each Trinity node type. We have examined many more power traces for SPARC and all exhibit
similar behavior—relatively constant power draw over the entire runtime with progressively
reduced average power draw and lower performance as P-state (CPU frequency) is reduced.
Figure 7.9 presents a zoomed in view of this same data. The periodic nature of SPARC’s
timesteps are visible for several P-state configurations. When this is the case, there are
roughly 1000 peaks for our test problem.

Access to the SQL database that stores the recorded power samples requires system
administrator privilege and is not easily automatible. In the future it would be useful to
provide a way for users to obtain this information automatically. Many of the users we have
shown this information to would be interested in getting this information themselves, without
needing to involve an administrator, in particular for diagnosing “slow node” problems and
other issues that may be visible in their application’s power usage signature. The tools and
infrastructure developed by the Trinity Advanced Power Management NRE effort help to
enable this, but more effort is required to deploy these capabilities on Trinity and make them
accessible to users.

P-state vs. Power capping control

The Trinity platform includes a mechanism for setting the desired power budget for
each compute node. This capability could be used, for example, by a power-aware resource
manager to enforce power usage limits on specific jobs or the system as a whole. In a
power constrained system—one where facility power and cooling infrastructure limits how
much computing equiment can be powered at full speed—an intelligent workload manager
or runtime system may be able to shift the available power budget to jobs where it will
have the greatest performance impact. In prior work we performed an initial evaluation of
power capping on Trinity’s Haswell nodes [61], which highlighted the potential for significant
performance degradation for some workloads when running under a power cap.

We performed a series of experiments to evaluate Trinity’s node-level power capping
mechanism for our SPARC workload. We analyzed the 5 Hz power samples from previous
uncapped SPARC experiments for the default Turbo P-state to determine target power cap
settings to test, including the maximum power value recorded for an uncapped run, the
95th percentile across all samples recorded on all nodes, the 75th percentile, 50th percentile,
25th percentile, and minimum power cap setting possible for each node type (230 W on
Haswell nodes, 200 W on Knights Landing nodes). The range of node-level power cap
savings available on each compute node with potential power savings are shown in Table 4.2.

Figure 7.10 summarizes the results of our experiments. For Haswell nodes, there is
little performance impact when capping at the 25th percentile (354 W) and higher. This
matches our expectation that capping near or above an application’s natural power usage

84

400

Turbo
350 - 2 2.3 GHz
" " 2.0 GHz
300 [WE P 1.6 GHz
@ 10 A g 1.2 GHz
ﬁ 250v‘ i o il I 1 U
E 200 | !!
E ”‘ il ; ‘ il ‘M hia | m L
150 | | " I L VAN i
I yl
100 “
fedl
50 |
a " n n n n
0 100 200 300 400 500 600
Time (Seconds)
(a) HSW
400 T
Turbo
350 1.4 GHz
1.3 GHz
300 | | j 1.2 GHz
> ‘ ‘ ‘ N 1.1 GHz
£ 250 [EEREGLEG W.‘,Erlv‘gjﬁ!{aﬁ\"‘lbm[i *{;lﬂm‘nm\l\wmm bl 1.0 GHz
S 200 !
Qo i
§ 150
100
50
0
0 100 200 300 400 500 600
Time (Seconds)
(b) KNL-HBM
400
Turbo
350 - 1.4 GHz
1.3 GHz
300) 1.2 GHz
= ‘ ‘ Wl ‘ ity ‘ . Ul v b 1.1 GHz
EJIRRRI v i 0 i i Y T U 01 o e s AR
< 200 ‘ ‘
H |
150 A |
Iy) |
100
|
50
0 L
0 100 200 300 400 500 600 700 800
Time (Seconds)
(¢) KNL-DDR

Figure 7.8. Time vs. power for static p-state selection for SPARC GRV input running on 32 nodes. Note

that the x-axis limits in 7.8c are different than in 7.8a and 7.8b.

85

400

350
300
250

150

Power (Watts)

100
50

100

400

200 7

104

Time (Seconds)

(a) HSW

106

108

Turbo
2.3 GHz
2.0 GHz
1.6 GHz
1.2 GHz

110

350
300
250
200
150

Power (Watts)

100
50

100

400

104

Time (Seconds)

(b) KNL-HBM

106

108

110

350
300
250
200
150

Power (Watts)

100
50

Turbo
1.4 GHz
1.3 GHz
1.2 GHz
1.1 GHz
1.0 GHz

100

104

Time (Seconds)

(¢) KNL-DDR

106

108

110

Figure 7.9. Zoomed-in time vs. power for static p-state selection for SPARC GRV input running on 32

nodes.

86

should not cause significant performance degradation. The capping mechanism will only be
triggered, and hence potentially reduce performance, when the average power draw over an
approximately 1 second rolling window exceeds the desired limit. Capping at lower levels,
for example 276 W and 230 W on Haswell, leads to the capping mechanism being frequently
triggered. As can be seen in the figure, this results in lower performance than using P-state
control for a given average node-level power draw.

For Knights Landing nodes, there is a more noticeable performance penalty when power
capping at SPARC’s natural power usage levels. Capping at the 75th percentile (277 W)
and below leads to reduced performance compared to static P-state control. Furthermore,
capping we observed that capping far below that level, for example below the 5th percentile
of uncapped power samples (241 W), led to seemingly random node crashes that required
a reboot. The KNL 230 W and 236 W power cap settings required many tries to get a full
run in and runs using the 200 W setting were never successful. This could be due to broken
hardware on our test system, but it could also be indicative of a less mature node-level power
capping implementation on Knights Landing.

Figure 7.11 show point-in-time power plots for several of the power cap configurations
tested. The power cap mechanism is visible as acting to reduce power at application startup
time (far left) and then maintains a relatively steady power draw for the remainder of the
run. The 200 W cap configuration for KNL failed shortly after startup at timestep 57.

87

620 T T T T T T T T
P-states HSW —+—
600 | °° P-caps HSW —»— .

580 |
560
540
520
500 |

Runtime (Seconds)

480
460

440 1 1 1 1 1 1 1 1
200 220 240 260 280 300 320 340 360

Measured Average Power Per-Node (Watts)
(a) HSW

580 r | P-states KNL —+— |
560 P-caps KNL —%¢— -

540 |]
520 |]
500 |, * 200 (*Est.)]
480 |
460 |
440 |
420 |
400 |
380 |
360

Runtime (Seconds)

190 200 210 220 230 240 250 260 270
Measured Average Power Per-Node (Watts)
(b) KNL-HBM

Figure 7.10. Comparison of static p-state selection to static node-level power cap selection for SPARC
GRYV input running on 32 nodes.

88

400 : : . .

No Cap
350 322 W Cap
" N . y Y 276 W Cap
300 4 e ‘ I | 230 W Cap
m "\ !
% 250 “‘ !
§ ‘
}:’ 200 -“ ‘[‘
N
150
< |
100 ‘\‘
50 il
1] L " L L L
0 100 200 300 400 500 600
Time (Seconds)
(a) HSW
400 ! . : .
No Cap
350 271 W Cap
230 W Cap
300 - .) i ' 200 W Cap
[2)
§ 250 1 0 A 00 s 0 A WA A e At Ot
] il)
3 i
Q°. 150 f i
100 |
il
50 il
0
0 100 200 300 400 500 600
Time (Seconds)
(b) KNL-HBM

Figure 7.11. Time vs. power for static node-level power cap selection for SPARC GRV input running on
32 nodes.

89

90

Chapter 8

Discussion

One of the key aspects of this L.2 milestone is the vast knowledge and experience gained
with advanced power measurement and control on large scale leadership class supercomput-
ing resources. Without this effort, there are a number of key aspects to energy efficiency
that would be left undiscovered. This section summarizes some of the key advancements
and lessons learned as part of this L2 milestone.

Power Profiling Lessons Learned

The key lessons learned from our study can help to guide HPC application profiling for
measuring power and energy. One must first decide what level scope is necessary when
conducting power profiling. The taxonomy given in Section 3 assists in determining the level
of detail desired, the amount of data available, and the amount of effort required.

If only total energy usage or average power for an application are needed but not phase
data or periodic consumption rates, aggregate data collection is the best initial option. This
is also the first approach to use when detailed application information is not available, such
as in-depth knowledge of code regions. Aggregate data has low overhead and requires less
storage space and analysis time than the other studied measurement techniques. If more
data is required than aggregate collection can provide, then determine what further level
of detail is needed. If application code knowledge is limited, out-of-band data collection or
timed in-band periodic counter polling are the best next options. Out-of-band data is the
preferred collection method but is often not available since it requires specialized out-of-band
hardware like that of the Cray platforms. Moreover, out-of-band data may be available only
to administrators, an active policy issue to be resolved at HPC facilities. Time-averaging
of samples, if supported in the measurement system, is helpful to discover trends in the
application. Phases are more easily discernible if adjacent regions of code do not have
similar power profiles.

Application developers will often be able to correlate high-frequency out-of-band data
measurements with specific details. Experts in the application domain can sometimes iden-
tify features in power profiles that correspond to specific code regions. In both cases where
regions were clearly identifiable in our results (miniFE and miniMD), consultation with the

91

application developers resulted in immediate feedback on the behavior of the code and the
observed phases. This feedback is useful both to the researcher conducting the test and for
the application developer in determining new information about the intensity of given code
regions with respect to the power consumption of different system components.

If detailed information on application code regions is necessary and sufficient knowledge
of the application is given, then in-line application profiling should follow. Application pro-
filing can be aligned to in-band data through measurement tools like RAPL to sample values
surrounding code regions. However, in-band application instrumentation may significantly
perturb performance, especially for short regions. Therefore, the best form of measurement
for the most in depth understanding is to combine code regions with timestamps and corre-
late with out-of-band measurements. This method provides low-overhead, fine-grained data
over the entire execution to enable useful observations that would not be visible otherwise.
However, this approach requires the greatest amount of effort and knowledge of both the
system and application, as well as specialized out-of-band hardware support that is still not
yet commonplace. Automating this process is difficult, and the proprietary nature of out-
of-band hardware can be limiting. This situation motivates standardization efforts, such as
the Power API [26], that can provide a common interface for both application instrumenta-
tion timings and out-of-band data. The Power API [26] provides such functionality and if
available for the platform it can ease the burden of developing tools for data alignment in
the future.

In order to understand adjacent code regions with similar power profiles, researchers
need to understand more about the code to be tested than data from out-of-band or in-band
counter polling measurements alone. Application instrumentation provides an easy route
for application developers and domain experts, but can be difficult for those unfamiliar
with potentially large code bases. Investing the time to understand the code enables better
understanding of power profiles and allows identification of different regions of code that
share similar power profiles. When these regions are adjacent, they can be indistinguishable
from a single region without application instrumentation. This is especially true for highly
optimized code regions that operate near peak power, which can be common for many HPC
bulk synchronous parallel codes. If timestamping in applications is used, times should be
absolute rather than relative to allow for proper data alignment with external measurement
hardware that may have timestamp drift from the local compute hardware.

To summarize, no single contemporary measurement technique is sufficient to gather
power measurements for all HPC use cases. Instead, the measurement taxonomy introduced
can be applied to determine the appropriate level of detail and effort, as demonstrated by
our thorough investigation of multiple proxy HPC applications across multiple production
platforms using both in-band and out-of-band data. In particular, we that show that the
combination of application region profiling and out-of-band power measurement provides an
accurate view of application power profiles with negligible overhead. Our recommendations
provide actionable guidance for HPC application profiling to better understand power and
energy usage on HPC systems.

92

Power Profiling and Energy Efficiency

Throughout the L2, we have investigated methods and functionality to control and mea-
sure the efficiency of HPC applications of interest. The APM and NRE efforts effectively
implemented techniques for power control such as P-state and Power capping control at a
job-level and node-level. Furthermore, both in-band and out-of-band measurement was pos-
sible, allowing not only for aggregate job data, but also fine-grained analysis of HPC codes
that can be in-lined with application code regions. However, there are no silver bullets found
for increasing application energy efficiency; instead there are guidelines and best practices
developed that can help.

First, we've learned that power capping, or limiting node-level or job-level power can have
a number of consequences. While power capping is relatively easy for users and administra-
tors to use, we see that basic power capping is less effective than anticipated. First, power
caps may actually exceed their specified cap for small periods of time, as illustrated in Figure
4.4. Second, even small power caps can have a considerable impact on performance, and not
necessarily correlated to optimal energy-to-solution. Basic all-node power capping may be
less effective than simple P-state controls. However, what still may be useful is dynamic
power capping, whereby certain nodes can be capped at different rates compared to others.
This could be used for reducing iteration idle time and inconsistencies between runs to help
minimize computation and communication overlap. Effectively, we expect future research to
take advantage of ”dynamic power allocation” based on a per-job allocation, whereby Power
caps can be adjusted on a per-node basis across a large parallel job to meet iteration barriers
or communication regions.

P-state control methods, or the process by which CPU frequency and voltage are varied,
can have a large impact on potential energy efficiency, however again no simple rules are
illuminated. In most cases, utilizing the Turbo boost setting for an entire application run,
which allows for CPU frequencies to extend beyond base designed frequencies, often comes
at a energy efficiency cost, with potentially only minor improvement in FOM. Turbo boost
max frequencies, which in the case of Haswell is over 1 Ghz of base max frequency, is often
rarely achieved for a sustained period of time due to the thermal limits of the CPU and the
parallel nature of codes effective at saturating CPU thermal design power(TDP). However,
turbo P-states may be useful for small yet targeted code regions. For instance, a small serial
code portion may benefit most from turbo mode, or it could be used selectively on some
nodes when aligned with iterations, again to speed-up collectives or barriers.

Table 8.1 investigates in detail the utility of Turbo mode for the SPARC application.
Here, we learn that the default turbo mode is only 2% or 3% faster than non-turbo yet
use 11% and 3% more energy for the total run for Haswell and KNL, respectively. If we
consider a future Exascale supercomputing system that is constrained by a 20MW facility
power limit rather than compute resources, effectively over-provisioning of hardware, these
small power savings become substantial. at 20MW, we can utilize 15% more nodes within
the same power envelope. While a detailed SPARC run at this scale is currently infeasible,
it is likely that performance will benefit far more form an additional 15% or 7% node count,

93

Table 8.1. SPARC potential energy savings of lower P-state at scale.

Runtime Energy =~ AVG Power/Node #Nodes @ 20MW

HSW Turbo 458 s 5222854 J 357 Watts 56 K
HSW No-Turbo 468 s 4639255 J 310 Watts 65 K
% Diff +2 % -11 % -13 % +15 %
KNL Turbo 372s 3137315 J 264 W 76 K
KNL No-Turbo 385s 3040528 J 247 W 81 K
% Diff +3 % 3% -6 % +7 %

rather than the small boost in performance from turbo frequencies alone due to the scalable
nature of bulk synchronous parallel applications.

Given the extensive experimentation with P-states throughout the L2 milestone, we’ve
learned that a P-state sweep, where all available P-states are evaluated, can be the most
useful investigatory technique for evaluating the optimal energy-to-solution of a given appli-
cation. This is because various applications can be either compute, memory, or I/O bound,
or any mixture in between, and varying P-state can have a non-linear impact depending on
resource bounds. For instance, codes with high levels of AVX vectorization often are most
efficient running near or at the AVX frequency, which is currently at 1.9 Ghz and 1.2 Ghz for
Haswell and KNL, respectively. When P-state is reduced to match AVX frequency of highly
vectorized codes, there is often little performance impact yet substantial energy savings.
This may not be the case, however, for large portions of serial code which may benefit more
from a Turbo P-state. Only when a complete P-state sweep is done and the total aggregate
energy consumed for the job is calculated can the best energy-to-solution be chosen. For
the ATDM SPARC workload, we found that this is often near the AVX frequency and less
than the base maximum frequency, and that applying turbo boost to SPARC results in little
performance improvement with significant power cost.

Beyond just P-state sweeps of an entire application, the abilities of the techniques created
by this L2 allow for further investigation of P-state within specific code regions of applica-
tions. Looking into ATDM SPARC workload’s P-state sweep for the Solve region in Figure
7.6, a key observation is made that decreasing P-state for the Solve region of SPARC does
has only a small impact, while total node power can be reduced by an upwards of 27%. As
the Solve region within SPARC can dominate total application runtime, decreasing P-state
to the a lower CPU frequency for just the Solve region could have substantial energy savings
without impact on total application performance. Given the tools available as part of this
APM and NRE effort and the Power API, as well as the small P-state control delay com-
pared to the total Solve region runtime, we expect in future work to demonstrate the effect
of sub-region P-state having dramatic reduction in total energy consumed without impacting
performance. However, further investigation is still needed to confirm this hypothesis.

Another factor that can effect total energy efficiency of an application is the number of

94

threads per MPI rank used with the KNL architecture. As KNL represents a real many-core
node architecture, it is often advisable to use as many OpenMP threads as possible to keep
each small KNL core busy with computation. This is a key aspect in utilizing complete
memory bandwidth for particular applications. However with SPARC in section 7, we see
that the difference in performance between 2 and 4 threads is effectively negligible at under
1 second, however there is in fact a 12 Watts per node power saving in running only 2 OMP
threads. With a SPARC run of 32 nodes, this equates to an every savings of 384 Watts, or
enough energy to power a new Cray XC40 KNL compute node. Similar to the consideration
at a facilities 20MW power limit, this could lead to substantially more nodes that can be
allocated to a job at full scale.

Architecture - Haswell v. Knights Landing

Throughout this investigation, a number of architectural differences between Intel’s Haswell
and Knights Landing CPUs have been identified that would have not been possible without
the APM and NRE efforts. First, we’ve been able to directly compare total energy usage
between mini applications of both Haswell and KNL, seen in Table 5.1. Not only do we see
here that KNL nodes are often (with MiniMD, MiniFE, and SPARC) offer the best total
performance per node in terms of FOM, all applications evaluated (including LULESH) have
found the KNL system to offer the best overall performance per Watt. For future supercom-
puting platforms that are expected to be primarily limited by available facility power, the
KNL many-core architecture may be an ideal choice for Sandia applications.

However, analysis between architectures does not stop there. With KNL, we've also
investigated how differences between HBM and DDR RAM have drastic improvements as
well. While it has been well known and documented that HBM can offer large improvements
in memory bandwidth, this report also confirms that such memory bandwidth improve-
ments also translate to improved total energy-to-solution. For SPARC, observe that the
total energy-to-solution for using HBM on KNL is just 3 Megajoules, compared to at best
5.1 Megajoules using DDR on KNL and just over 4 Megajoules for HSW. This leads to a
25% energy savings over Haswell. Given that the restraints in supercomputing resources
at Exascale will be power-limited, using HBM with a many-core architecture like Knights
Landing can allow for considerable additional hardware provisioning compared to traditional
server-class CPUs and DDR memory.

In summary, we confirm that not only do we find KNL to be more performant than
Haswell for most cases, we’ve also confirmed KNL to be more energy efficient as well for
many of Sandia’s benchmarks and applications of interest. This bodes well for some of
the architectural changes brought by KNL, most notably including a low-power many-core
architecture coupled with HBM memory availability and the ability of future architecture to
drive towards Exascale computing within constrained power envelopes.

Considering running the ATDM SPARC workload at current testbed scale, KNL reduces

95

runtime by 19%, energy-to-solution by 40%, and individual node power by 26%. It is cur-
rently expected that Exascale demands will require strict facilities power limits that reduce
resource provisioning of such supercomputers. From these findings, if a hypothetical 20MW
facility were to be built today to meet the needs of SPARC workloads at extreme scale,
the KNL node architecture would provide 35% more nodes than compared to the Haswell
architecture.

Algorithmic and System Software Advances

Throughout the L2, a number of different applications, benchmarks, runtime configura-
tions, and hardware platforms were all considered. While this lead to some of the findings
above, there are also some other important lessons learned beyond initial P-state and Power
capping measurement and controls.

First, we've found that while mini applications are useful for initial investigation of
performance and energy, in fact they may not always be representative of power behavior
of real applications. For instance, MiniFE’s runtime is mostly a long, low-power setup
and assembly phase with only a small portion of total runtime as a factor in the FOM.
As seen in chapter 5, this can lead to potentially false conclusions. As a result, special
region marking through the PowerAPI or Kokkos Profiling is necessary to identify only
the region(s) contributing to FOM, and matching power and energy information to that,
resulting in significantly more effort.

This L2 also inadvertently became more involved in a longstanding debate within the
research community about the best ways in which software can help energy efficiency. This
debate is as to whether improving algorithmic efficiency or improving system software will
have a more drastic impact on overall power and energy for a given application. After a
detailed analysis with SPARC, it becomes clear the answer is ¢) All of the above. Specif-
ically, we found that power capping and P-states can improve energy efficiency and that
total energy-to-solution minimization is best found at lower P-states, as seen in Figure 7.3.
Furthermore, we’ve illustrated that careful consideration of on-node runtime parameters can
also have an effect, as detailed in the previous section regarding OpenMP thread counts on
KNL. However, we’ve also seen that improvements into the Solver on SPARC have also made
drastic improvements in overall application performance, which in turn improve energy effi-
ciency. Taken all these factors together, it is clear that a dual-edge approach of algorithmic
advancements couple with system software and runtime improvements can together have a
greater collective impact than either effort individually, effectively strengthening an argu-
ment for application and system software co-design at Exascale.

One of the major challenges we faced in completing the milestone was the move to the
SLURM job scheduler roughly 2/3rd of the way through the year. While the move to SLRUM
has generally been considered a good one, there was some impact on the power NRE efforts.
This included job-wide power capping features that were being developed in conjunction

96

with Cray and Adaptive Computing. While developing these features were successful, the
switch to SLURM meant that such extensive features were never evaluated or tested as
originally desired or intended. Furthermore, some initial features, especially Cray’s RUR
data as generated during job runs with Moab, was subsequently lost with SLURM. As the
RUR job data is the main key aspect of initial job aggregate data collection within the
power profiling taxonomy in Chapter 3, missing this data with the SLURM upgrade limits
researcher abilities to even conduct an initial investigation of application power profile. While
this data can be easily re-created, there is still integration to be done with SLURM to do so.

97

98

Chapter 9

Conclusion

In anticipation of practical power consumption limits on extreme-scale HPC platforms,
the ASC program requires guidance for power management of future platforms and applica-
tions. This becomes especially concerning as the DOE envisions supercomputing resources
to top 40 MW for the first Exascale systems. The Trinity supercomputer, the ASC’s ATS-1
Peta-scale leadership class system, provides the ability to initiate practices regarding HPC
energy efficiency at scale today.

The Trinity program’s Advanced Power Management (APM) Non-recurring Engineering
(NRE) project delivers integrated power measurement and control capabilities, building on
the prior work of developing the Power API. This milestone has utilized the capabilities of the
NRE and APM techniques on the power usage characteristics of ASC proxy applications as
well as an ASC production workload running on Trinity and its associated testbed systems.
The specialized techniques developed as part of these combined efforts have lead to a number
of key contributions. First, we have created a taxonomy for profiling HPC applications of
interest for energy efficiency, defining a methodology for how to investigate power metrics for
large-scale HPC systems. Second, we have demonstrated the ability to apply this taxonomy
to analyze a number of mini applications on Trinity and testbed systems, finding ideal
energy-to-solution configurations, conducting scalability studies, and characterizing power
profile differences between applications. We also apply a detailed analytical evaluation of
energy usage of the ATDM SPARC production workload, producing a number of insights into
the application itself as well as how to best understand the application’s energy efficiency.
This experimentation and evaluation is distilled into a discussion of lessons learned on how
to best evaluate energy efficiency of HPC systems and applications.

The methods developed in this work effectively demonstrate the ability to measure and
control power at a detail and specificity for HPC systems and applications that has yet to be
seen. Furthermore, this L2 milestone illustrates how the techniques of power profiling and
management described herein can have direct impact on workloads today and are applied to
assess the potential impact of power-constraints in future ASC platforms. Furthermore, this
milestone lays groundwork for addressing the long-term goal of determining how to best use
and operate future ASC platforms to achieve the greatest benefit subject to a constrained
power budget.

99

100

References

1]
2]
[3]
[4]

[5]

[9]

[10]

[11]

[12]

Sandia national laboratories advanced architecture test beds.
CAPMC API documentation release 1.1, 2015.
Monitoring and managing power consumption on the Cray XC system, 2015.

AMD. BIOS and kernel developer’s guide (BKDG) for AMD family 15h models 00h-0Fh
processors, January 2013.

A Anderson, R Cooper, R Neely, A Nichols, R Sharp, and B Wallin. Users manual for
ALE3D — an arbitrary Lagrange/Eulerian 3D code system. Technical report, Lawrence
Livermore National Laboratory, 2003.

Andrew Barry. Resource utilization reporting. In Proc. Cray Users’ Group Technical

Conference (CUG), 2013.

Daniel Bedard, Min Yeol Lim, Robert Fowler, and Allan Porterfield. Powermon: Fine-
grained and integrated power monitoring for commodity computer systems. In Proc. of
the IEEE Region 3 Southeast Conference 2010 (SoutheastCon), pages 479-484. IEEE,
2010.

Ramon Bertran, Yutaka Sugawara, Hans M Jacobson, Alper Buyuktosunoglu, and
Pradip Bose. Application-level power and performance characterization and opti-
mization on IBM Blue Gene/Q systems. IBM Journal of Research and Development,
57(1/2):4-1, 2013.

William Lloyd Bircher and Lizy K John. Complete system power estimation using
processor performance events. IEEE Transactions on Computers, 61(4):563-577, 2012.

Jim Brandt, David DeBonis, Ann Gentile, Jim Lujan, Cindy Martin, Dave Martinez,
Stephen Olivier, Kevin Pedretti, Narate Taerat, and Ron Velarde. Enabling advanced
operational analysis through multi-subsystem data integration on trinity. Proceedings

of the Cray User Group (CUG), 2015.

David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A framework for
architectural-level power analysis and optimizations, volume 28. ACM, 2000.

Francois Broquedis, Jérome Clet-Ortega, Stéphanie Moreaud, Nathalie Furmento, Brice
Goglin, Guillaume Mercier, Samuel Thibault, and Raymond Namyst. hwloc: A generic
framework for managing hardware affinities in HPC applications. In 2010 18th FEuromi-
cro Conference on Parallel, Distributed and Network-based Processing, pages 180-186.
IEEE, 2010.

101

[13]

[14]

[15]

[16]

[17]

[20]

[21]

[22]

Shirley Browne, Jack Dongarra, Nathan Garner, Kevin London, and Philip Mucci. A
scalable cross-platform infrastructure for application performance tuning using hardware
counters. In Supercomputing, ACM/IEEE 2000 Conference, pages 42-42. IEEE, 2000.

Howard David, Eugene Gorbatov, Ulf R Hanebutte, Rahul Khanna, and Christian Le.
RAPL: memory power estimation and capping. In ACM/IEEE Intl. Symposium on
Low-Power Electronics and Design (ISLPED), pages 189-194. IEEE, 2010.

Jack Dongarra, Bernard Tourancheau, Shuaiwen Song, Rong Ge, Xizhou Feng, and
Kirk W Cameron. Energy profiling and analysis of the HPC challenge benchmarks.
The Intl. Journal of High Performance Computing Applications, 23(3):265-276, 2009.

Matthew GF Dosanjh, Ryan E Grant, Patrick G Bridges, and Ron Brightwell. Re-
evaluating network onload vs. offload for the many-core era. In Cluster Computing
(CLUSTER), 2015 IEEFE Intl. Conference on, pages 342-350. IEEE, 2015.

Jonathan Eastep, Steve Sylvester, Christopher Cantalupo, Federico Ardanaz, Brad
Geltz, Asma Al-Rawi, Fuat Keceli, and Kelly Livingston. Global extensible open power
manager: A vehicle for hpc community collaboration toward co-designed energy man-
agement solutions. In Intl. Conference on Supercomputing (1CS), 2017.

Electronic Educational Devices. Watts up PRO, 2009.

Kurt B Ferreira, Patrick Bridges, and Ron Brightwell. Characterizing application sen-
sitivity to os interference using kernel-level noise injection. In International Conference
for High Performance Computing, Networking, Storage and Analysis, pages 1-12. IEEE,
2008.

Rong Ge, Xizhou Feng, and Kirk W Cameron. Performance-constrained distributed
DVS scheduling for scientific applications on power-aware clusters. In Proc. of the 2005
ACM/IEEE Conference on Supercomputing, page 34. IEEE Computer Society, 2005.

Rong Ge, Xizhou Feng, Wu-chun Feng, and Kirk W Cameron. CPU miser: A
performance-directed, run-time system for power-aware clusters. In Intl. Conference
on Parallel Processing (ICPP), pages 18-18. IEEE, 2007.

Rong Ge, Xizhou Feng, Shuaiwen Song, Hung-Ching Chang, Dong Li, and Kirk W
Cameron. Powerpack: Energy profiling and analysis of high-performance systems and
applications. IEEE Transactions on Parallel and Distributed Systems, 21(5):658-671,
2010.

Neha Gholkar, Frank Mueller, and Barry Rountree. Power tuning hpc jobs on power-
constrained systems. In Proc. of the 2016 Intl. Conference on Parallel Architectures and
Compilation, pages 179-191. ACM, 2016.

Ryan E Grant and Ahmad Afsahi. Power-performance efficiency of asymmetric mul-
tiprocessors for multi-threaded scientific applications. In 20th Intl. Parallel and Dis-
tributed Processing Symposium (IPDPS), pages 8pp. IEEE, 2006.

102

[25]

[26]

[27]

28]

[29]

[30]

[31]

[34]

Ryan E Grant, Michael Levehagen, Stephen Olivier, David DeBonis, Kevin Pedretti,
and James H. Laros. Overcoming challenges in scalable power monitoring with the power
api. In Proc. 20th IEEE Intl. Parallel € Distributed Processing Symposium, Workshop
on High-Performance Power-Aware Computing (HPPAC). IEEE, IEEE, 2016.

Ryan E Grant, Michael Levenhagen, Stephen L Olivier, David DeBonis, Kevin T Pe-
dretti, and James H Laros III. Standardizing power monitoring and control at exascale.
Computer, 49(10):38-46, 2016.

Ryan E Grant, Stephen L Olivier, James H Laros, Ron Brightwell, and Allan K Porter-
field. Metrics for evaluating energy saving techniques for resilient hpc systems. In
Parallel & Distributed Processing Symposium Workshops (IPDPSW), 2014 IEEE In-
ternational, pages 790-797. IEEE, 2014.

Taylor Groves and Ryan Grant. Power aware, dynamic provisioning of hpc networks.
Sandia National Labs report, 21, 2015.

Marcus Hahnel, Bjorn Dobel, Marcus Volp, and Hermann Hartig. Measuring energy
consumption for short code paths using RAPL. ACM SIGMETRICS Performance
Evaluation Review, 40(3):13-17, 2012.

Alastair Hart, Harvey Richardson, Jens Doleschal, Thomas Ilsche, Mario Bielert, and
Matthew Kappel. User-level power monitoring and application performance on Cray
X(C30 supercomputers. Proceedings of the Cray User Group (CUG), 2014.

K Scott Hemmert, Michael W Glass, Simon D Hammond, Rob Hoekstra, Mahesh Rajan,
Shawn Dawson, Manuel Vigil, Daryl Grunau, James Lujan, David Morton, et al. Trinity:
Architecture and early experience. In Cray Users Group, 2016.

Hewlett Packard Enterprise. Redfish API implementation on iLO RESTful API for
HPE iLO 4. Technical report, 2016.

Micah Howard, Andrew Bradley, Steven W. Bova, James Overfelt, Ross Wagnild, Derek
Dinzl, Mark Hoemmen, and Alicia Klinvex. Towards performance portability in a com-
pressible cfd code. In Proc. 23rd AIAA Computational Fluid Dynamics Conference,
2017.

Mingyu Hsieh, Kevin Pedretti, Jie Meng, Ayse Coskun, Michael Levenhagen, and Arun
Rodrigues. SST + gem5 = a scalable simulation infrastructure for high performance
computing. In Proc. of the 5th Intl. ICST Conference on Simulation Tools and Tech-
niques, pages 196-201. ICST, 2012.

Chung-hsing Hsu and Wu-chun Feng. A power-aware run-time system for high-
performance computing. In Proc. of the 2005 ACM/IEEE Conference on Supercom-
puting, page 1. IEEE Computer Society, 2005.

S Huang and W Feng. Energy-efficient cluster computing via accurate workload charac-
terization. In Proc. of the 2009 9th IEEE/ACM Intl. Symposium on Cluster Computing
and the Grid, pages 68-75. IEEE Computer Society, 2009.

103

[37]

[38]

[44]

[45]

[46]

[47]

Russ Joseph and Margaret Martonosi. Run-time power estimation in high performance
microprocessors. In Proc. of the 2001 Intl. Symposium on Low power electronics and
design, pages 135-140. ACM, 2001.

Nandini Kappiah, Vincent W Freeh, and David K Lowenthal. Just in time dynamic
voltage scaling: Exploiting inter-node slack to save energy in MPI programs. In 2005
Intl. Conference for High Performance Computing, Networking, Storage and Analysis,
page 33. IEEE Computer Society, 2005.

Steve Kaufmann and Bill Homer. Craypat-cray x1 performance analysis tool. Cray
User Group (May 2003), 2003.

Michael Knobloch, Maciej Foszczynski, Willi Homberg, Dirk Pleiter, and Hans Bottiger.
Mapping fine-grained power measurements to HPC application runtime characteristics
on IBM POWERT. Computer Science - Research and Development, 29(3-4):211-219,
2014.

James H. Laros, Ryan E. Grant, Micheal Levenhagen, Stephen Olivier, Kevin T. Pe-
dretti, Lee Ward, and Andrew Younge. High performance computing — power applica-
tion programming interface specification version 2.0, 2017.

James H. Laros, Kevin Pedretti, Ryan E. Grant, Olivier Stephen, Michael Levenhagen,
David DeBonis, Scott Pakin, Steven Martin, Matthew Kappel, and Paul Falde. Aces
and cray collaborate on advanced power management for trinity. In Cray User’s Group,
2016.

James H Laros, Kevin T Pedretti, Suzanne M Kelly, John P Vandyke, Kurt B Ferreira,
Courtenay T Vaughan, and Mark Swan. Topics on measuring real power usage on

high performance computing platforms. In Cluster Computing and Workshops, 2009.
CLUSTER’09. IEEE International Conference on, pages 1-8. IEEE, 2009.

James H Laros, Phil Pokorny, and David DeBonis. Powerlnsight - a commodity power
measurement capability. In 2013 Intl. Green Computing Conference (IGCC), pages 1-6.
I[EEE, 2013.

James H Laros III, ;, Suzanne M Kelly, Steven Hammond, Ryan Elmore, and Kristen
Munch. Power/energy use cases for high performance computing. Sandia National
Laboratories, Tech. Rep. SAND2013-10789, 2013.

James H Laros I1I, David DeBonis, Ryan Grant, Suzanne M Kelly, Michael Levenhagen,
Stephen Olivier, and Kevin Pedretti. High performance computing-power application
programming interface specification version 1.0. Sandia National Laboratories, Tech.

Rep. SAND201/-17061, 2014.

James H Laros III, Kevin T Pedretti, Suzanne M Kelly, Wei Shu, and Courtenay T
Vaughan. Energy based performance tuning for large scale high performance comput-
ing systems. In Proceedings of the 2012 Symposium on High Performance Computing,
page 6. Society for Computer Simulation International, 2012.

104

[48]

[49]

[52]

[53]

[54]

[55]

[56]

[57]

Edgar A Leén, Ian Karlin, and Ryan E Grant. Optimizing explicit hydrodynamics
for power, energy, and performance. In IEEE Intl. Conference on Cluster Computing
(CLUSTER), pages 11-21. IEEE, 2015.

Edgar A Leén, lan Karlin, Ryan E Grant, and Matthew Dosanjh. Program optimiza-
tions: The interplay between power, performance, and energy. Parallel Computing,
58:56-75, 2016.

Min Yeol Lim, Vincent W Freeh, and David K Lowenthal. Adaptive, transparent fre-
quency and voltage scaling of communication phases in MPI programs. In 2006 Intl.

Conference for High Performance Computing, Networking, Storage and Analysis, pages
14-14. IEEE, 2006.

S Martin and M Kappel. Cray XC30 power monitoring and management. Proceedings
of CUG, 2014.

S Martin, D Rush, and M Kappel. Cray advanced platform monitoring and control
(CAPMC). Proceedings of CUG, 2015.

SJ Martin, D Rush, and M Kappel. Cray advanced platform monitoring and control
(CAPMC). In Proc. Cray Users’ Group Technical Conference (CUG), 2015.

Abdelhafid Mazouz, Benoit Pradelle, and William Jalby. Statistical validation method-
ology of CPU power probes. In FEuropean Conference on Parallel Processing, pages
487-498. Springer, 2014.

Hans Meuer, Erich Strohmaier, Jack Dongarra, Horst Simon, and Martin Meuer. Top500
supercomputing sites, 2017.

Bryan Mills, Ryan E Grant, Kurt B Ferreira, and Rolf Riesen. Evaluating energy savings
for checkpoint /restart. In Proc. 1st Intl. Workshop on Energy Efficient Supercomputing,
page 6. ACM, 2013.

Bryan Mills, Taieb Znati, Rami Melhem, Kurt B Ferreira, and Ryan E Grant. Energy
consumption of resilience mechanisms in large scale systems. In Parallel, Distributed
and Network-Based Processing (PDP), 2014 22nd Euromicro International Conference
on, pages 528-535. IEEE, 2014.

Millind Mittal and Robert Valentine. Performance throttling to reduce IC power con-
sumption, February 17 1998. US Patent 5,719,800.

MPI Forum. MPI: A Message-Passing Interface Standard. Version 3.1, June 2015.

Tapasya Patki, David K Lowenthal, Barry Rountree, Martin Schulz, and Bronis R
de Supinski. Exploring hardware overprovisioning in power-constrained, high perfor-
mance computing. In 2013 Intl. Conference for High Performance Computing, Net-
working, Storage and Analysis, pages 173-182. ACM, 2013.

105

[61]

[62]

[65]

[66]

[67]

[68]

[69]

[71]

[72]

Kevin Pedretti, Stephen L Olivier, Kurt B Ferreira, Galen Shipman, and Wei Shu. Early
experiences with node-level power capping on the Cray XC40 platform. In Proc. of the
3rd Intl. Workshop on Energy Efficient Supercomputing, page 1. ACM, 2015.

Kevin Pedretti, Stephen L. Olivier, Kurt B. Ferreira, Galen Shipman, and Wei Shu.
Early experiences with node-level power capping on the cray xc40 platform. In Proceed-

ings of the 3rd International Workshop on Energy Efficient Supercomputing (E2SC),
2015.

Trevor Pering, Tom Burd, and Robert Brodersen. Dynamic voltage scaling and the
design of a low-power microprocessor system. In Power Driven Microarchitecture Work-
shop, attached to ISCA9S, pages 96-101, 1998.

F. Petrini, D. J. Kerbyson, and S. Pakin. The case of the missing supercomputer
performance: Achieving optimal performance on the 8,192 processors of ASCI Q. In
Proc. of the 2003 ACM/IEEE Conference on Supercomputing, page 55, 2003.

Steve Plimpton, Paul Crozier, and Aidan Thompson. LAMMPS - large-scale atomic/-
molecular massively parallel simulator. Technical report, Sandia National Laboratories,
2007.

Mohammad Rashti, Gerald Sabin, David Vansickle, and Boyana Norris. WattProf: A
flexible platform for fine-grained HPC power profiling. In 2015 IEEE Intl. Conference
on Cluster Computing (CLUSTER), pages 698-705. IEEE, 2015.

J Reinders. Vtune performance analyzer essentials: Measurement and tuning techniques
for software developers. 2005.

Barry Rountree, David K Lownenthal, Bronis R de Supinski, Martin Schulz, Vincent W
Freeh, and Tyler Bletsch. Adagio: making DVS practical for complex HPC applications.
In Proc. of the 23rd Intl. Conference on Supercomputing, pages 460-469. ACM, 2009.

Osman Sarood, Akhil Langer, Laxmikant Kalé, Barry Rountree, and Bronis De Supin-
ski. Optimizing power allocation to CPU and memory subsystems in overprovisioned
HPC systems. In IEEFE Intl. Conference on Cluster Computing (CLUSTER), pages 1-8.
IEEE, 2013.

Kathleen Shoga, Barry Rountree, Martin Schulz, and Jeff Shafer. Whitelisting MSRs
with msr-safe, 2014.

Brinkley Sprunt. The basics of performance-monitoring hardware. I[IEFEE Micro,
22(4):64-71, 2002.

Ananta Tiwari, Michael Laurenzano, Joshua Peraza, Laura Carrington, and Allan
Snavely. Green queue: Customized large-scale clock frequency scaling. In 2012 Sec-
ond Intl. Conference on Cloud and Green Computing (CGC), pages 260-267. IEEE,
2012.

106

[73]

Ananta Tiwari, Michael A Laurenzano, Laura Carrington, and Allan Snavely. Modeling
power and energy usage of HPC kernels. In IFEE 26th Intl. Parallel and Distributed
Processing Symposium Workshops €& PhD Forum (IPDPSW), pages 990-998. IEEE,
2012.

Christian Robert Trott, Harold C Edwards, Nathan David Ellingwood, and Simon David
Hammond. Kokkos - portability performance productivity. Technical report, Sandia
National Laboratories, USA, 2016.

Adrian Richard White. Methods and apparatus for diagnosing and correcting faults in
computers by a support agent at a remote location, April 2 2002. US Patent 6,367,035.

Michal Witkowski, Ariel Oleksiak, Tomasz Piontek, and J Weglarz. Practical power
consumption estimation for real life HPC applications. Future Generation Computer
Systems, 29(1):208-217, 2013.

Huazhe Zhang and H Hoffman. A quantitative evaluation of the RAPL power control
system. Feedback Computing, 2015.

107

DISTRIBUTION:

MS ,

Y

1 MS 0899 Technical Library, 9536 (electronic copy)

108

v1.40

109

@ Sandia National Laboratories

110

