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1. Executive Summary  
Solar power penetration in the United States is growing rapidly, and the SunShot Vision Study 
reported that solar power could provide as much as 14% of U.S. electricity demand by 2030 and 
27% by 2050.1,2 At these high levels of penetration, solar power forecasting will become very 
important for electricity system operations because it is the least expensive way to integrate larger 
amount of solar energy into the electric grid. However, solar forecasting is a very difficult task with 
different challenges for transmission and distribution networks and inaccuracies can result in 
substantial economic losses and power system reliability issues because electric grid operators 
must continuously balance supply and demand. 

The goal of the project was the development and demonstration of a significantly improved solar 
forecasting technology (short: Watt-sun), which leverages new big data processing technologies 
and machine-learnt blending between different models and forecast systems. The technology 
aimed demonstrating major advances in accuracy as measured by existing and new metrics 
which themselves were developed as part of this project. Finally, the team worked with 
Independent System Operators (ISOs) and utilities to integrate the forecasts into their operations.  

The technical thrust of the work lies in the idea of injecting state-of-the-art big data machine-
learning to the field of meteorology and solar forecasting. To put the achievements of this project 
into perspective, numerical weather prediction (NWP) models have been improving forecasting 
accuracies by (only) ~6% per decade (basically by refining the physics of the forecasting models 
as well as improved data assimilation techniques3. Key accomplishments of this project are: 

• A full suite of metrics (including economic and reliability ones) for measuring the accuracy 
of solar forecasts was established, which enables grid operators to assess the accuracy 
of different forecasting systems in a consistent and scientific sound manner.4,5 

• Methods for deriving “baseline” and “target” values for those metrics were developed, 
which provide guidance to system operators on what forecasting accuracies can be 
expected from a standard as well as state-of-the art forecasting system.6,7 

• A new method (Watt-sun) for solar forecasting was developed, which leverages big data 
technologies and a novel machine-learning approach (called situation-dependent, multi-
model blending).8 

• Demonstrated with the Watt-sun forecasting system improved forecasting accuracies in 
average by more than 100% over baseline (or by > 30% compared to the next best 
forecast system/model) at multiple locations for point, regional and continental forecasts 
as measured by the suite of metrics (for all forecast horizons from 15 mins to 48 hours 
ahead).9  

• A “open” replicate of the Watt-sun forecasting system was created at the National 
Renewable Energy Laboratory (NREL) ensuring that it can be continued to be used for 
the larger public good. 

• Operational day-ahead forecasts in various forms were provided to the ISO-New England 
and Green Mountain Power throughout the last two years of the project. 

• Team won the 2017 Utility Variable-Generation Integration Group (UVIG) Achievement 
Award “For major contributions to advancing the state-of-the-art of solar energy 
forecasting.  
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2. Project Objectives  
Solar forecasting will become an integral part of the energy future as increasingly renewable 
energy is becoming online. Therefore, the project will have significant impacts to the national 
goals of clean energy progression of the US.  
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1. The project yielded the first consistent set of methods for measuring, comparing and 
assessing the accuracy of a solar power forecasts, which is not only critically important as 
solar forecasting information is being integrated in power system operations but also for 
gauging the technical progress in this field.   

2. A novel approach for solar forecasting was invented by combining traditional forecasts 
with state-of-the-art big data machine learning. The validity of the approach was 
demonstrated and piloted with utilities and ISOs. The improvements in forecasting 
accuracy will enable much more cost-effective operations of the power grid.  

The project had three main tasks with the following objectives:  

1. Task#1: To develop a suite of metrics (statistical, uncertainty quantification, ramp 
characterization, economic, and reliability ones) for assessing the accuracy of solar 
forecasting for the industry and to evaluate the performance of these metrics; this included 
developing methods for determining proper baseline and target values for such metrics. 

2. Task#2: To develop a new approach to solar forecasting (Watt-sun) which improves 
accuracy of solar forecasting by >100% above a baseline; this task included evaluation of 
Watt-sun at five test sites using the metrics as developed in task #1. 

3. Task#3: To integrate these forecasts into the operations of at least one ISO and one utility 
and demonstrate benefits to these end-users.    

Table 1 provides a more detailed view of the milestones and deliverables of this project organized 
by the tasks (task#1 to 3 are in red, blue and green respectively). Go/No-Go milestones are in 
bold. Table 1 also shows the budget period (BP). More prescriptive information about the different 
tasks can be obtained from the quarterly reports and the Statement of Project Objectives (SOPO). 

BP Task Short Description 
1 1.1.1.2 Development of Deterministic Metric Suite  
1 1.1.1 A suite of generally applicable, value-based metrics  
2 1.1.2A Develop a detailed plan/process how to quantify the benefits of the Watt-sun system 
2 1.2.2A/1.3.2A Baseline and target values for each metrics including economic ones  
2 1.1.2A Report on the benefits of the Watt-sun system to the ISO, utility, and energy producer 
2 1.1.2B White paper and submission to a peer-reviewed journal on metrics development 
2 1.2.2B/1.3.2B White paper and submission to a peer-reviewed journal article on target/baseline values. 
3 1.1.1 / 1.1.2 Present results from a simulation study of a high penetration solar in the FESTIV modeling 

environment to evaluate reliability and economic impacts of better solar power forecasts.  
3 1.1.1 / 1.1.2 Demonstrate and quantify measurable improvements in power system reliability metrics 

(ACE, AACEE, CPS2 scores) and reserve levels (economic metric) to maintain reliability 
levels from improved solar power forecasts in high penetration solar scenarios  

   

1 2.1.1 Complete infrastructure of Watt-sun system 
1 2.1.1 Demonstration of operational forecasting 
1 2.2.1 Trained categorization/machine learning algorithms, 
1 2.2.1 Demonstrate at least 33 % forecasting improvements 
1 2.2.1 Provide initial feedback to NOAA 
1 2.3.1 Identified at least two different, geographically diverse test sites 
2 2.1.2/2.2.2/2.3.2 Demonstrate at least 50 % forecasting improvements 
2 2.1.2/2.2.2/2.3.2 A report describing the architecture of the 2nd Gen Watt-sun system 
2 2.1.2/2.2.2/2.3.2 Detailed DoE deep dive webinar/presentation on the Watt-sun architecture 
3 2.1.2.3 Demonstrate superiority of the developed 3D radiative transfer model vs. a state-of-art 1D 

radiative transfer model using NAM inputs and SurfRad, ISIS and ARM validation data and 
using metrics developed as part of Activity A. Validation will be performed with > 6 months 
of data for each individual validation site and results presented for each site separately. 
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3 2.3.1 Provide publically available irradiance 0 to 48 hour ahead forecast (accessible via a web 
page) from the Watt-sun system. The forecasts will have a spatial resolution of 0.05 degrees 
and cover the entire continental US with a temporal resolution of 1 hour. 

3 2.3.2 Replicate the Watt-sun system in a public cloud environment and train/enable NREL 
personnel to provide forecasting to all five test sites (GMP, Smyrna, TEP, CAISO and ISO-
NE). This milestone includes showing replicability and scalability of the Watt-sun system 
without proprietary technologies. The replication includes all components of the Watt-sun 
system and will be a “stand-alone” system. 

3 2.1.3 Demonstrate at least 100 % improved forecasting (towards all base target metrics as 
developed in activity A during 2nd budget period) and (in addition) less than 8 % normalized 
root mean square error for all time horizons at all five different test sites (GMP, Smyrna, 
TEP, CAISO and ISO-NE) using 3rd Gen Watt-sun system. Demonstration includes 
providing forecasts, validation and verification. Forecasts horizons will range from at least 
15 minutes to 48 hours ahead with an interval of 15 minutes or shorter. The 3rd Gen Watt-
sun system has updated modules of (1) a big data bus, (2) a radiative transfer module, (3) 
a radiance to power module, (4) an information blending module, and (5) a categorization/ 
machine learning module. Progress towards target metrics will be measured as relative 
improvement ((A-B)/(T-B) with A as the achieved, B the baseline, and T the target value for 
a given base metric as developed in activity A). The performance of the Watt-sun system 
will be also evaluated using enhanced metrics, which will be developed in this budget period 
including economic and reliability metrics as well as compared to analog ensemble 
forecasts used by the forecasting industry. 

3 2.3.4 Demonstrate more than 30 % improvements over “corrected” ECMWF based solar 
forecasts (including the ECMWF forecasts in our blend) and by more than 15 % without the 
ECMWF for all time horizons and metrics for all test sites (GMP, Smyrna, TEP, CAISO and 
ISO-NE). For individual cases (point forecasts) we will demonstrate more than 35 % 
improvements over “corrected” ECMWF based solar forecasts.   

3 2.1.2.6 Publication or detailed report describing the architecture of the 3nd Gen Watt-sun system 
including how to interface (input/output) using standard, open data formats (GRIB2, 
netCDF, HDF, XML etc.) so that other models can be incorporated. 

3 2.1.2.7 Detailed DoE deep dive webinar/presentation on all the aspects of the Watt-sun 
architecture, machine-learning, and all other associated elements. This includes how to 
interface (input/output) with the Watt-sun system using standard, open data formats 
(GRIB2, netCDF, HDF, XML etc.) so that other models can be incorporated and/or the 
system can be customized. This deep dive will be structured such that anyone viewing this 
webinar/presentation will be able to gather the necessary knowledge to reconstruct the 
Watt-sun architecture, and be able to create forecasts upon feeding various model data to 
Watt-sun. This deep-dive will be recorded and made available for public dissemination. 

3 2.3.3 Comprehensive publication of the architecture and all methods and procedures used in the 
Watt-sun system; this includes detailed results from the field tests.  

   

1 3.1.1 Comprehensive set of use cases for the integration 
2 3.1.2 Fully working instance of the Watt-sun technology 
3 3.1.3 Successful integration of Watt-sun at the ISO-New England and Green Mountain Power 

and other stakeholder with the forecasts being used in operations for more than 12 months 
providing tangible benefits. Success is gauged by public feedback from the utility and ISO 
partner(s). This includes showing tangible improvements to the load forecasts for the ISO-
New England of more than 20% per unit solar penetration (for example, this means that we 
will demonstrate 2% relative load forecast improvements for 10% solar penetration). 
Furthermore, benefits are measured by the set of economic metrics (see task 1) 

3 3.1.4 Development of detailed business plan/strategy for the Watt-sun technology to ensure that 
the Watt-sun will be further developed and maintained after the project has ended. 

Table 1: Summary of all milestones and deliverables organized by budget period (=BP). 



DE-EE0006017 
A Multi-scale, Multi-Model, 

Machine-Learning Solar Forecasting Technology 
IBM TJ Watson Research Center 

 

Page 6 of 50 

 

 

3. Project Results and Discussion 

3.1 Metrics for Assessing the Accuracy of Solar Forecasting 
3.1.1 Development of Basic Metrics  
A key gap in developing solar forecasting models was the unavailability of a consistent and robust 
set of metrics to measure and assess forecasting accuracy. Previously, each person (forecast 
provider, system operator etc) used its own metrics to describe the forecasting accuracy. 
Furthermore, it was not clear that the existing metrics (such as mean absolute error) were very 
suitable for power system operators considering that the predictability of large events (e.g., 
ramps) is much more relevant to the electric grid than mean deviations. To develop a consistent 
set of metrics addressing the needs of power system operations three workshops were held, 
where feedback and guidance from stakeholders was obtained: (i) 93rd American Meteorological 
Society Annual Meeting: Solar Forecasting Metrics Workshop, Austin, Texas (2013); (ii) UVIG 
Workshop on Variable Generation Forecasting Applications to Power System Planning and 
Operations: Solar Forecasting Metrics Workshop, Salt Lake City, Utah (2013); (iii) UVIG 
Workshop on Variable Generation Forecasting Applications to Power System Planning and 
Operations: Solar Forecasting Metrics Workshop, Tucson, AZ (2014).Table 2 shows a summary 
of the metrics developed in this project, which includes statistical, uncertainty quantification, ramp 
characterization and economic ones, which are now discussed in more detail. 

3.1.1.1 Statistical Metrics 
The distribution of forecast errors is a graphical representation of the raw forecasting error data, 
which provides a good overview of the performance of forecasts for longer time periods. In 
addition, interval forecasts of solar power can help determining the reserve requirements needed 
to compensate for forecast errors, which is an important consideration in the commitment and 
dispatching of generating units. Multiple distribution types have been analyzed in the literature to 
quantify the distribution of solar (or wind) power forecast errors, including the hyperbolic 
distribution, kernel density estimation (KDE), the normal distribution, and Weibull and beta 
distributions.5,10,11 In this project, the distribution of solar power forecast errors was estimated 
using the KDE method.  

In conjunction with the distribution of forecast errors, statistical moments (mean, variance, 
skewness, and kurtosis) can provide additional information to evaluate forecasts. Assuming that 
forecast errors are equal to forecast power minus actual power, a positive skewness of the 
forecast errors leads to an over-forecasting tail, and a negative skewness leads to an under-
forecasting tail. A distribution with a large kurtosis value indicates a peaked (narrow) distribution; 
whereas a small kurtosis indicates a flat (wide) rttot distribution. 

The Kolmogorov-Smirnoff integral (KSI) and OVER ( part of the KSI which integrates above (over) 
the Kolmogorov-Smirnov critical value) metrics were originally proposed by others.12 The KSI test 
is a nonparametric test to determine if two data sets are significantly different. The KSI parameter 
is defined as the integrated difference between the two cumulative distribution functions (CDF). 
Instead of comparing forecast error directly, the KSI metric evaluates the similarities between the 
forecasts and the actual values. In addition, the KSI metric contains information about the 
distribution of the forecast and actual data sets, which are not captured by metrics such as root 
mean square error (RMSE), mean absolute error (MAE), maximum absolute error (MaxAE), and 
mean bias error (MBE). A smaller value of KSI shows that the forecasts and actual values behave 
statistically similarly, which thereby indicates a better performance of the solar power forecast. A 
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zero KSI index means that the CDFs of two sets are equal. The OVER metric characterizes the 
integrated differences between the CDFs of the actual and forecast solar power. In contrast to the 
KSI metric, the OVER metric evaluates only large forecast errors beyond a specified value, 
because large forecast errors are more important for power system reliability. KSIPer and 
OVERPer are used to represent the KSI and OVER in the form of percentages, respectively (i.e., 
KSIPer = 100*KSI and OVERPer = 100*OVER).  

Type Metric Description/Comment 

Statistical Metrics  

Distribution of forecast 
errors 

Provides a visualization of the full range of forecast errors and 
variability of solar forecasts at multiple temporal and spatial 
scales 

Pearson’s Correlation 
coefficient Linear correlation between forecasted and actual solar power 

Root mean square error 
(RMSE) and normalized 
root mean square error  
(NRMSE) 

Suitable for evaluating the overall accuracy of the forecasts 
while penalizing large forecast errors in a square order 

Root mean quartic error 
(RMQE) and normalized 
root mean quartic error 
(NRMQE) 

Suitable for evaluating the overall accuracy of the forecasts 
while penalizing large forecast errors in a quartic order 

Maximum absolute error  
(MaxAE) Suitable for evaluating the largest forecast error 

Mean absolute error (MAE) 
and mean absolute 
percentage error (MAPE) 

Suitable for evaluating uniform forecast errors 

Mean bias error (MBE) Suitable for assessing forecast bias 
Kolmogorov–Smirnov test 
integral (KSI) or KSIPer 

Evaluates the statistical similarity between the forecasted and 
actual solar power 

OVER or OVERPer Characterizes the statistical similarity between the forecasted 
and actual solar power on large forecast errors 

Skewness  
Measures the asymmetry of the distribution of forecast errors; 
a positive (or negative) skewness leads to an over-forecasting 
(or under-forecasting) tail 

Excess kurtosis 

Measures the magnitude of the peak of the distribution of 
forecast errors; a positive (or negative) kurtosis value 
indicates a peaked (or flat) distribution, greater or less than 
that of the normal distribution 

Uncertainty 
Quantification 

Metrics 

Rényi entropy Quantifies the uncertainty of a forecast; it can utilize all of the 
information present in the forecast error distributions 

Standard deviation Quantifies the uncertainty of a forecast 
Ramp 

Characterization 
Metrics 

Swinging door algorithm Extracts ramps in solar power output by identifying the start 
and end points of each ramp 

Economic Metrics 95th percentile of forecast 
errors 

Represents the amount of non-spinning reserves service held 
to compensate for solar power forecast errors 

Table 2: Suite of metrics for solar power forecasting. A smaller value indicates a better forecast for most of the metrics, 
except for Pearson’s correlation coefficient, skewness, kurtosis, distribution of forecast errors, and swinging door 
algorithm. 

3.1.1.2 Metrics for Uncertainty Quantification and Propagation  
Two metrics were used to quantify the uncertainty in solar forecasting: (i) the standard deviation 
of solar power forecast errors and (ii) the Rényi entropy of solar power forecast errors. Forecasting 
metrics such as RMSE and MAE are unbiased only if the error distribution is Gaussian; therefore, 
new metrics were proposed based on the use of concepts from information theory, which can 
utilize all the information present in the forecast error distributions.13,14 This information entropy 
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approach based on Rényi entropy was adopted here to quantify the uncertainty in solar 
forecasting, where generally, a larger value of Rényi entropy indicates a higher uncertainty in the 
forecasting. 

3.1.1.3 Metrics for Ramps Characterization: Swinging Door Algorithm 
One of the biggest concerns associated with integrating a large amount of solar power into the 
grid is the ability to handle large ramps in solar power output, which are often caused by cloud 
events and extreme weather events.15 Naturally, different temporal and spatial scales influence 
the severity of up- or down-ramps in solar power output. In this project, the swinging door 
algorithm was used to identify ramps over varying time frames because of its flexibility and 
simplicity.16,17  

The swinging door algorithm extracts ramp periods in a series of power signals by identifying the 
start and end points of each ramp. The user sets a threshold parameter that influences the 
algorithm’s sensitivity to ramp variations. This threshold parameter, the only tunable parameter in 
the algorithm, is the width of a “door”. The width of the door directly characterizes the threshold 
sensitivity to noise and/or insignificant fluctuations to be specified. With a smaller door, many 
small ramps will be identified; with a larger door, only a few large ramps will be identified. 

Metrics One Plant Denver Colorado Western 
Interconnection 

Day-
Ahead 

1-Hour-
Ahead 

Day-
Ahead 

1-Hour-
Ahead 

Day-
Ahead 

1-Hour-
Ahead 

Day-
Ahead 

1-Hour-
Ahead 

Corr. coefficient 0.65 0.76 0.87 0.94 0.91 0.96 0.990 0.995 
RMSE (MW) 22.07 17.12 438.25 284.36 624.19 378.65 2,711.31 1,488.28 

NRMSE 0.22 0.17 0.13 0.08 0.10 0.06 0.04 0.02 
RMQE (MW) 32.58 26.05 695.25 432.95 978.04 575.01 4,136.96 2,476.55 

NRMQE 0.33 0.26 0.20 0.13 0.16 0.09 0.06 0.04 
MaxAE (MW) 84.10 74.33 2,260.94 1,304.73 3,380.28 1,735.24 17,977.53 16,127.32 
MAE (MW) 14.81 11.34 286.65 191.17 413.11 256.69 1,973.90 1,064.52 

MAPE 0.15 0.11 0.08 0.06 0.07 0.04 0.03 0.02 
MBE (MW) 4.27 2.19 131.82 31.64 172.54 43.32 1,497.29 132.13 
KSIPer (%) 216.73 104.42 184.30 52.84 143.38 48.28 132.92 47.76 

OVERPer (%) 136.36 28.16 94.43 0.77 54.65 0.37 41.43 0.00 
Std dev. (MW) 21.65 39.57 418.00 282.62 599.94 376.20 2,260.09 1,482.44 

Skewness -0.19 0.08 0.20 -0.20 0.18 -0.21 0.62 -0.23 
Kurtosis 2.04 2.40 3.79 2.52 3.35 2.47 3.76 4.82 

95th % (MW) 50.59 39.57 990.66 637.45 1,394.85 838.27 5,652.60 3,079.32 
Capacity (MW) 100.00 100.00 3,463.00 3,463.00 6,088.00 6,088.00 6,4495.00 6,4495.00 

Table 3: Metrics values by using an entire year of WWSI-2 data (see explanation in the text). 

3.1.1.4 Economic Metrics 
Power system operators typically rely on reserves to manage the anticipated and unanticipated 
variability in generation and load. These reserves are usually referred to as “operating reserves” 
and are used to manage variability in the timescale of minutes to multiple hours, which is also the 
period of solar variability. High solar penetration can necessitate additional operating reserves 
that need to be procured to manage the inherent variability of solar generation. Improving solar 
forecasting accuracy is expected to decrease the amount of these additional operating reserves: 
the greater the predictability and hence the certainty of power output from solar, the less variability 
from solar that needs to be managed with additional operating reserves. Therefore, reduction in 
the cost of additional operating reserves that need to be procured for managing solar variability 
is a good metric to assess the economic impact of accuracy improvements in solar forecasting. 
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Using the 95th percentile of forecast errors is a generally accepted method in the power industry 
for load and other variability forecasts to determine the amount of operating reserves needed; 
therefore, this paper uses the 95th percentile of solar power forecast errors as an approximation 
of the amount of reserves that need to be procured to accommodate solar generation. 

3.1.1.5 Evaluation and testing of metrics 
The suite of metrics as summarized in Table 2 was first tested using a data set from the Western 
Wind and Solar Integration Study Phase 2 (WWSIS-2), which is one of the world’s largest regional 
renewable integration studies to date.18,19 This study included solar data based on a 1-minute 
interval using satellite-derived, 10-km x 10-km gridded, hourly irradiance data as well as 60-
minute solar power plant output data. The solar power output data comprised distributed 
generation rooftop photovoltaic, utility-scale photovoltaic, and concentrating solar power with 
thermal storage. In addition, the WWSIS-2 data included day-ahead solar forecasts, which were 
produced by 3TIER based on NWP simulations. The 1-hour-ahead forecasts were synthesized 
using a 1-hour-ahead persistence-of-cloudiness approach. 

Four scenarios were analyzed: (1) for a single solar power plant with a 100-MW capacity; (2) 46 
solar power plants near Denver, Colorado, with an aggregated 3,463-MW capacity; (3) 90 solar 
power plants in the state of Colorado with an aggregated 6,088-MW capacity; (4) solar power 
plants in the entire Western Interconnection in the United States, including 1,007 solar power 
plants with an aggregated 64,495-MW capacity. The evaluation included a sensitivity analysis, 
e.g. how would the metrics change if the forecasting accuracy would increase: (i) uniform 
improvements excluding ramping periods; (ii) ramp forecasting magnitude improvements (iii) 
ramp forecasting threshold changes. By way of example, using the WWSIS-2 data, the values for 
different metrics are reported in Table 3 for the four geographical scenarios. Uncertainty metrics 
for the four geographical scenarios are shown in Table 4. 

One Plant Denver Colorado Western 
Interconnection 

Day-
Ahead 

1-
Hour-
Ahead 

Day-
Ahead 

1-
Hour-
Ahead 

Day-
Ahead 

1-Hour-
Ahead 

Day-
Ahead 

1-Hour-
Ahead 

4.83 4.64 4.24 4.63 4.33 4.73 4.47 4.01 
Table 4: Uncertainty metrics for the four geographical scenarios. 

The main impact (for the major forecasting improvement) and the total impact (for all forecasting 
improvements) for each metric is listed in Table 5. The larger the value of the main effect (or total 
effect) index, the more sensitive the metrics are to the type of forecasting improvement. Most 
metrics are highly sensitive to the uniform improvement (compared to ramp forecasting 
improvements and ramp threshold changes), indicating that these metrics can consistently and 
effectively show the difference in the accuracy of solar forecasts with uniform improvements. In 
addition, the skewness, kurtosis, and Rényi entropy metrics are observed to be sensitive to all 
three types of forecasting improvements. These three metrics (skewness, kurtosis, and Rényi 
entropy) could be adopted to evaluate the improvements in the accuracy of solar forecasts with 
ramp forecasting improvements and ramp threshold changes that are important to the economics 
and reliability of power system operations.  

3.1.2 Baseline and Target Values 
To properly gauge the quality of solar forecasts it is important to establish a baseline as well as 
an appropriate target, which can be expected from such an improved forecast. Evidently, this is 
not a trivial task given that the accuracy for forecasting is highly dependent on location, time of 
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year, forecasting horizon, spatial extent and other factors. Generally, a baseline model is used for 
comparison, which is selected from: (i) persistence models 20,21,22 ;(ii) numerical weather 
prediction (NWP) models without bias correction23,24 ;and (iii) NWP models with bias 
correction.25,26 

Metrics Uniform Improvement Ramp Improvement Ramp Threshold 
Main Effect Total Effect Main Effect Total Effect Main Effect Total Effect 

Correlation Coefficient 0.836 0.905 0.070 0.119 0.004 0.069 
RMSE 0.783 0.862 0.114 0.169 0.001 0.072 

NRMSE 0.783 0.862 0.114 0.169 0.001 0.072 
RMQE 0.771 0.883 0.099 0.187 0.001 0.061 

NRMQE 0.771 0.883 0.099 0.187 0.001 0.061 
MaxAE 0.753 0.900 0.065 0.196 0.008 0.093 
MAE 0.788 0.849 0.112 0.164 0.004 0.085 

MAPE 0.788 0.849 0.112 0.164 0.004 0.085 
MBE 0.659 0.734 0.211 0.282 0.085 0.113 

KSIPer 0.657 0.731 0.211 0.285 0.113 0.114 
OVERPer 0.803 0.889 0.067 0.143 0.010 0.094 

Standard deviation 0.815 0.899 0.083 0.143 0.001 0.060 
Skewness 0.436 0.876 0.113 0.528 0.004 0.058 
Kurtosis 0.313 0.887 0.061 0.546 0.031 0.218 

95th percentile 0.788 0.891 0.088 0.162 0.001 0.071 
Rényi entropy 0.207 0.716 0.221 0.682 0.052 0.197 

Table 5: Sensitivity analysis of metrics to three types of forecasting improvements (see text for details). 

In this project and as shown in Table 6, we used two different methods to establish a baseline for 
short-term and long-term forecasts, respectively. For the short-term, we adopted a smart 
persistence approach6,7,27, while for the long-term a NWP model (here the North American 
Mesoscale Forecast System (NAM)28 was used to obtain the atmospheric conditions. The reason 
for using the NAM model only for longer term-forecasts is due to the fact that NWP models rarely 
achieve useful skill at lead times smaller than a few hours because of the (spin-up) period they 
require to achieve numerical stability. The output from NAM was fed to a two-streamer Radiative 
Transfer Model (RTM)29 and the PVLib tool box30 to derive the solar power forecasts. To remove 
substantial bias errors, a first order machine learning (linear regression model) model is applied 
based on the data from the previous three days.  

Forecast Horizon Weather 
Information 

Irradiance 
Forecasts Power Forecasts 

15-min-ahead, 1-hour-ahead, 
and 4-hour-ahead Persistence Streamer RTM Persistence of cloudiness 

Day-ahead up to 48 hours 
 NAM Streamer RTM 

(1) PVLib + linear regression; or 
(2) linear least square fit (if no PV 

specifications available) 
Table 6: Overall approach to determining baseline forecasts at different forecast horizons. 

The forecasting is divided into two parts: non-ramping period and ramping period. The target 
values for solar forecasting metrics are derived by the following procedure: (i) for the non-ramping 
period, applying uniform forecasting improvements by x% based on the baseline forecasting; (ii) 
for the ramping period, applying ramp forecasting improvements by y% based on the baseline 
forecasting; and (iii) deriving a complete set of target metrics. The values of x% and y% are 
determined based on the economic impacts of improved solar power forecasting (i.e., a reduction 
of 25% in reserve levels. This level was confirmed by our ISO and utility partner. 
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3.1.2.1 Flexibility Reserves for 15MA, 1HA, 4HA, and DA Forecasting 
The reduction in the amount of reserves whether this is for 15 minutes ahead (15MA), 1 hour 
ahead (1HA), 4 hour ahead (4HA) or day ahead (DA) that must be carried to accommodate the 
uncertainty of solar power output is anticipated to be one of the significant cost savings associated 
with improved solar power forecasting. Following previous work31,32, improved forecasting (on 
average) reduces the amount of reserves that must be held. More specifically, the various types 
of flexibility reserves are defined by: 

For 15MA, 1HA, and 4HA solar power forecasting, spinning reserves are used to derive the target 
solar forecasting values. Spinning reserves represent the online capacity that can be deployed 
very quickly (seconds to minutes) to respond to variability. The spinning reserve for 0- to 4-hours-
ahead forecasting (𝑅𝑅𝑠𝑠𝐻𝐻𝐻𝐻) is defined as the 95% confidence interval (∅95) of solar power forecast 
errors (𝑒𝑒𝐻𝐻𝐻𝐻) at the 15MA, 1HA, or 4HA horizon. 𝑅𝑅𝑠𝑠𝐻𝐻𝐻𝐻 = ∅95(𝑒𝑒𝐻𝐻𝐻𝐻)                                                                          

For DA solar power forecasting, both spinning and non-spinning reserves are used to derive the 
solar forecasting target. Non-spinning reserves represent the off-line or reserved capacity, or load 
resources (interruptible loads), capable of deploying within 30 minutes for at least 1 hour. The 
spinning reserve for the DA forecasting (𝑅𝑅𝑠𝑠𝐷𝐷𝐷𝐷) is defined as the 70% confidence interval (∅70) of 
the DA solar power forecast errors (𝑒𝑒𝐷𝐷𝐷𝐷).31 The non-spinning reserve (𝑅𝑅𝑛𝑛𝑛𝑛𝐷𝐷𝐷𝐷) is defined by the 
difference between a 95% confidence interval (∅95) and a 70% confidence interval (∅70) of the 
DA solar power forecast errors (𝑒𝑒𝐷𝐷𝐷𝐷): 𝑅𝑅𝑠𝑠𝐷𝐷𝐷𝐷 = ∅70(𝑒𝑒𝐷𝐷𝐷𝐷) and 𝑅𝑅𝑛𝑛𝑛𝑛𝐷𝐷𝐷𝐷 = ∅95(𝑒𝑒𝐷𝐷𝐷𝐷) − ∅70(𝑒𝑒𝐷𝐷𝐷𝐷). To 
estimate the economic benefits it was assumed that the cost of non-spinning reserve per MW 
(𝐶𝐶𝑛𝑛𝑛𝑛𝑀𝑀𝑀𝑀) is twice the cost of spinning reserve per MW (𝐶𝐶𝑠𝑠𝑀𝑀𝑀𝑀) 𝐶𝐶𝑛𝑛𝑛𝑛𝑀𝑀𝑀𝑀 = 2 × 𝐶𝐶𝑠𝑠𝑀𝑀𝑀𝑀 , which includes (i) 
start-up costs of two types of generators used for spinning and non-spinning reserves (gas turbine 
and oil turbine); and (ii) heat rates and fuel costs of four fuel types (biomass, nuclear, coal, and 
combined cycle). The costs were selected according to the ISO-New England system.7 

 
Figure 1: Locations of the three point and two regional test sites. 

3.1.2.2 Test Sites: System Operators, Utilities, and Energy Producers 
Three PV plants were chosen among hundreds of sites available for which the Watt-sun system 
is forecasting (see Figure 1): Smyrna, Green Mountain Power (GMP), and Tucson Electric Power 
(TEP). In addition, two regional test cases, ISO-New England (ISO-NE) and California-ISO 
(CAISO) were chosen to cover two distinct atmospheric conditions: a cloudier and more humid 
climate for the ISO-NE region, in contrast to relatively drier climate in the CAISO region.  
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3.1.3 Baseline and Target Metrics Values for Test Sites 
The above mentioned five test sites were chosen to determine baseline and target metrics. 
Further below we will also compare the forecasting results from the Watt-sun syste. For brevity, 
we show here only the results for baseline and target values for 2 of those 5 test sites (ISO-NE 
and GMP). Additional results from the other three test sites were reported in the detail 
elsewhere.27  

 

Test 
sites Role 

Forecast Horizon 
Validation Evaluation Period 15MA, 1HA, 

and 4HA 
Day-

ahead 
ISO-NE System operator Persistence NAM GHI –12 MesoWest sites 03/05/13 – 30/10/13 
CAISO System operator Persistence NAM Aggregated Power 04/05/13 – 30/10/13 
GMP Utility Persistence NAM Direct Power measurements 03/05/13 – 30/10/13 
TEP Utility Persistence NAM Direct Power measurements 02/06/13 – 30/10/13 

Smyrna Energy producer Persistence NAM Direct Power measurements 03/05/13 – 30/10/13 
Table 7: Test sites of system operators, utilities, and energy producers. 

    

                       (a) Day-ahead forecasts at ISO-NE                   (b) 15MA, 1HA, and 4HA forecasts at ISO-NE 

Figure 2: Target reserves values based on uniform and ramp forecasting improvement (ISO-NE) 

3.1.3.1 ISO-NE Baseline and Target Metrics Values 
For ISO-NE, solar generation is mostly behind the meter and interconnected to the distribution 
system. Therefore, the value of an improved forecast technology will lead to improved net load 
(i.e., the load minus the PV) forecasts – especially for the day-ahead unit commitment process. 
Therefore, the metrics were calculated based on solar irradiance instead of power. The baseline 
and target metrics for ISO-NE are summarized in Table 8. The capacity used for normalization is 
1000 W/m2. DA (both 0-23 and 24-47 hours ahead) baseline forecasts performed better than the 
4HA baseline forecasts, which can be partially attributed to the cloudy weather of ISO-NE region; 
the cloud movement significantly affects the persistence forecast.  It is important to note that for 
the ISO-NE case, the irradiance is calculated by averaging a set of sites. However, since the 
available sites are closely located in a small geographical region, their irradiance values are 
correlated.  

Figure 2 shows the baseline and target reserves values (in terms of irradiance) at different 
forecast horizons. To achieve the target reserves, there is more ramp forecasting improvement 
required than uniform improvement for DA and 4HA forecasts, and there is more uniform 
improvement than ramp forecasting improvement for shorter timescale forecasts (1HA and 15MA) 
required. Figures 3(a) and 3(b) illustrate the distributions of solar power forecast errors for ISO-
NE baseline and target forecasting, respectively. 
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                                                             (a) Baseline                                                               (b) Target 

Figure 3: Distribution of baseline and target solar power forecast errors at DA, 4HA, 1HA, and 15MA forecast horizons 
(ISO-NE) 
 

Metrics 
DA 

(24-47) 
Baseline 

DA 
(24-47) 
Target 

DA 
(0-23) 

Baseline 

DA 
(0-23) 
Target 

4HA 
Baseline 

4HA 
Target 

1HA  
Baseline 

1HA 
Target 

15MA  
Baseline 

15MA 
Target 

Correlation coefficient 0.80 0.90 0.86 0.93 0.73 0.85 0.96 0.97 1.00 1.00 
RMSE (W/m2) 152.55 115.75 122.27 89.73 192.21 143.12 73.25 55.19 18.32 13.68 

NRMSE by capacity 0.15 0.12 0.12 0.09 0.19 0.14 0.07 0.06 0.02 0.01 
MaxAE (W/m2) 617.54 528.96 513.11 369.03 715.12 553.44 357.36 265.00 129.05 91.99 
MAE (W/m2) 119.13 88.80 92.58 67.83 147.58 107.52 52.99 40.12 13.02 9.81 

MAPE by capacity 0.12 0.09 0.09 0.07 0.15 0.11 0.05 0.04 0.01 0.01 
MBE (W/m2) 24.05 19.62 15.98 14.80 52.87 39.39 18.57 14.12 4.60 3.51 
KSIPer (%) 170.83 148.47 147.98 121.29 144.25 131.54 60.92 47.50 20.74 17.21 

OVERPer (%) 89.12 67.55 68.99 47.07 75.54 62.44 7.85 4.48 0.00 0.00 
Std. dev. (W/m2) 150.69 114.11 121.25 88.52 184.85 137.63 70.87 53.36 17.73 13.23 
4RMQE (W/m2) 212.81 165.39 175.62 128.06 261.63 198.49 107.36 80.52 28.17 20.91 

N4RMQE by capacity 0.21 0.17 0.18 0.13 0.26 0.20 0.11 0.08 0.03 0.02 
95th percentile 

(W/m2) 315.68 234.01 254.17 184.18 380.34 286.38 154.16 116.37 38.41 28.55 
Renyi entropy 5.29 5.11 5.18 5.16 5.22 5.10 4.74 4.80 4.42 4.48 

NRMSE by clear sky 
irradiance 0.28 0.22 0.22 0.16 0.30 0.23 0.12 0.09 0.03 0.02 

MAPE by clear sky 
irradiance 0.22 0.17 0.17 0.12 0.23 0.17 0.09 0.07 0.02 0.02 

Table 8: Baseline and target metrics values for ISO-NE at different forecast horizons. 

3.1.3.2 GMP Baseline and Target Metrics Values 
GMP has relatively high solar penetration. At the time of the study, there was approximately 47 
MW PV installed behind the meter, which represents about 5% of peak load in the GMP region. 
Table 9 summarizes the baseline and target values at different forecast horizons. Figure 4 shows 
the baseline and target reserves. For all forecast horizons, there are more uniform improvements 
than the ramp forecasting improvements required. Figures 5(a) and 5(b) illustrate the distributions 
of solar power forecast errors for baseline and target forecasting, respectively. The 4HA forecast 
tends to under forecast the power generation compared to other forecast horizons, which might 
be due to morning clouds in the region and the shading by mountains.   
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                             (a) Day-ahead forecasts at GMP                         (b) 15MA, 1HA, and 4HA forecasts at GMP 

Figure 4: Target reserves values based on uniform and ramp forecasting improvement (GMP). 

  

                                                          (a) Baseline                                                                                     (b) Target 

Figure 5: Distribution of baseline and target solar power forecast errors at DA, 4HA, 1HA, and 15MA forecast 
horizons (GMP). 
 

3.1.4 Reliability Metrics 
In addition to the metrics discussed above, the team worked on metrics to quantify the practical 
reliability benefits of forecasts enhancements. Towards that end, a methodology was developed 
which utilized a multi-timescale power system operation model (Flexible Energy Scheduling Tool 
for Integration of Variable Generation (FESTIV)33-35) to calculate the area control area (ACE), the  
absolute area control error in energy (AACEE), the standard deviation of the area control error 
(𝜎𝜎𝐴𝐴𝐴𝐴𝐴𝐴) and the North American Electric Reliability Corporation Control Performance Standard 2 
(CPS2) score based on the unit commitment, economic dispatch, and automatic generation 
control processes. In addition, a new integrated reliability metric, namely the Expected Synthetic 
Reliability (ESR) was developed, which quantifies the reliability performance from the improved 
solar power forecasts as 

𝐸𝐸𝐸𝐸𝐸𝐸 = 1
4� [𝐶𝐶𝐶𝐶𝐶𝐶2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝜎𝜎𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑁𝑁𝑉𝑉 ]𝜋𝜋𝑟𝑟2, where 𝑁𝑁𝑉𝑉  is the number of violation periods.  

For this work a representative IEEE 118-bus system was adopted to simulate different scenarios 
with different levels of improvements, locations, forecast horizons, and solar penetration levels. 
The results are presented further below.  
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Metrics 
DA 

(24-47) 
Baseline 

DA 
(24-47) 
Target 

DA 
(0-23) 

Baseline 

DA 
(0-23) 
Target 

4HA 
Base
line 

4HA 
Target 

1HA  
Baseline 

1HA 
Target 

15MA  
Baseline 

15MA 
Target 

Correlation 
coefficient 0.67 0.82 0.72 0.85 0.66 0.80 0.91 0.95 0.94 0.97 

RMSE (MW) 9.44 7.19 8.63 6.47 10.87 8.02 5.21 3.83 4.29 3.23 
NRMSE by 

capacity 0.20 0.15 0.18 0.14 0.23 0.17 0.11 0.08 0.09 0.07 
MaxAE (MW) 38.10 30.06 30.05 24.45 45.43 35.00 29.10 22.42 31.16 23.81 
MAE (MW) 7.03 5.35 6.21 4.69 7.89 5.74 3.64 2.64 2.42 1.73 
MAPE by 
capacity 0.15 0.11 0.13 0.10 0.17 0.12 0.08 0.06 0.05 0.04 

MBE (MW) 0.07 0.21 -0.36 -0.21 -3.76 -2.68 -1.25 -0.90 -0.07 -0.04 
KSIPer (%) 138.02 147.06 108.81 119.86 213.1 148.51 79.73 57.25 10.06 12.87 

OVERPer (%) 63.21 67.18 32.46 42.56 126.4 62.94 13.99 1.19 0.00 0.00 
Standard dev. 

(MW) 9.45 7.19 8.63 6.47 10.20 7.56 5.06 3.73 4.29 3.23 
4RMQE (MW) 13.42 10.25 12.28 9.17 15.91 11.98 8.00 5.99 7.77 6.09 
N4RMQE by 

capacity 0.28 0.22 0.26 0.19 0.34 0.25 0.17 0.13 0.16 0.13 
95th percentile 

(MW) 20.38 15.31 19.51 14.51 23.70 17.32 11.38 8.55 10.04 7.53 
Renyi entropy 5.33 5.24 5.34 5.31 4.95 4.86 4.56 4.45 3.40 3.17 

NRMSE by clear 
sky power 0.34 0.26 0.35 0.27 0.41 0.30 0.21 0.15 0.18 0.13 

MAPE by clear 
sky power 0.25 0.19 0.26 0.19 0.29 0.21 0.14 0.10 0.10 0.07 

Table 9: Baseline and target metrics values for GMP at different forecast horizons. 

3.2 The Watt-sun Forecasting System 
The main research theme in this task was to explore how accurate and scalable (thus low cost) 
forecasting may be enabled by blending multiple forecasting models using a novel machine 
learning approach. The foundation of renewable energy forecasting is physical modeling including 
NWP models24,36 as well as models based on the advection of total sky imager37,38 and satellite 
images39,40. Moreover, the accuracy of these models can be boosted by statistical post-
processing. Established methods include model output statistics (MOS)41,42, multi-model 
averaging43-45, and the dynamic integrated forecast (DICast)46,47 approach. DICast effectively 
combines MOS and model averaging - several MOS forecasts are averaged using weights 
optimized using typically a few days of history. More recently, aided by progresses in computation 
and the advent of Big Data48,49 which enables convenient retrieval and processing of large 
volumes of historical data, more sophisticated machine learning techniques50,51 begin to be 
employed52-55. In contrast to MOS or DiCast, which largely are based on linear regression, state-
of-the-art machine learning promises the correction of forecasting errors which are nonlinear to 
the input variables or which are dependent on the interactions between the variables. Typically, 
machine learning is used to train a regression between historical measurements (e.g., solar 
power) as the response variable and historical forecasts (e.g., solar power, solar angles, 
temperature, etc.) as the predictor variables. The trained regression is then applied for future 
forecasts.  

More specifically, we explored an approach of machine learning based, situation-dependent, 
multi-model blending for renewable energy forecasting. The salient feature is that a set of 
appropriately chosen parameters are used to create different weather situation categories in 
which the input models exhibit different error characteristics. Historical data are binned into 
different weather situations, and machine learning models for statistically correcting the forecasts 
are trained separately for each situation. This practice avoids some common pitfalls of the 
machine learning as it will become clear in the discussion below.  
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Figure 6: Architectural view of situation-dependent, machine learning based multi-model blending. 

3.2.1 Overview of the Watt-sun Forecasting Method 
In its simplest form, the situation-dependent multi-model blending method can be represented by 
the following equation yielding an optimal forecast ( blendC ) for a given parameter (wind, irradiance, 
etc.) using a linear combination of models,  

∑=
m

mmblend xCEsxwEsxC ),())(,,())(,,( τττ  

where τ  is the forecast horizon, x is the spatial extent of the forecast, and s is the weather 
situation defined by a set of parameters E.  is a forecast associated with an input physical 

model (e.g., an NWP model) and mw is its respective machine-learnt weighting coefficient, which 
is a function of forecast horizon, location, and weather situation s. The index m corresponds to 
different physical models and forecast systems.  

Figure 6 provides a simplified architectural overview of the system applied to renewable energy 
forecasting assuming historically measurements are available for the training targets. A “big data” 
bus provides forecasts of atmospheric conditions (such as temperature, wind speed, cloud 
properties, etc.) from various input forecasting models. A radiative transfer model module 
converts forecasted atmospheric conditions first into irradiance and then an irradiance to power 
model determines the generated solar power forecasts. If the method is applied to wind power 
forecasting a wind to power model would have to be deployed. The different power forecasts are 
blended by the information blending module. A categorization module classifies the weather 
situation and a machine learning module provides the blending for each weather situation as we 
will discuss in much more detail below. Initially the system is trained on historical data, but as new 
measurements become available it continually retrains. Next, a typical implementation of situation 
categorization and machine learning is represented, as summarized in Figure 7, including the 
rationale behind it, and a display of exemplary results. 

For the analysis which we are discussing below, global horizontal irradiance (GHI), diffusive 
normal irradiance (DNI), surface temperature at 2 m height (T2m), and wind speed at 10 m above 
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ground (W10m) measurements were taken from seven stations of the surface radiation (SurfRad) 
network56. GHI and DNI forecasts are calculated from the vertical atmospheric and cloud profiles 
(temperature, pressure, humidity, cloudy liquid water, and ice content) and surface albedo 
forecasted by the NWPs using a plane-parallel multi-layer radiative transfer model 29. T2m and 
W10m forecasts are taken from the NWPs directly. Daily 18h Coordinated Universal Time (UTC) 
runs of the North American Mesoscale (NAM)57 model (resolution is 5 km) and the Global Forecast 
System (GFS)58  (resolution is 0.5 deg), and 15h UTC run of the Short Range Ensemble Forecast 
(SREF)58 (40 km resolution with the advanced research Weather Research Forecast (WRF) core, 
central member)59 are used to extract the day-ahead forecasts of GHI, DNI, T2m, and W10m. 
Forecasts of 12 to 36 hours ahead for NAM (18z run) and GFS and 15 to 39 hours for SREF (15z 
run) ahead are extracted and validated against the measurements. The validation time is one 
year from 2015-03-01 to 2016-02-28. The training of the RF model and situation-dependent 
blending is performed on data from 2013-03-01 to 2015-02-28.  

3.2.2 Categorization of Weather Situations 
The categorization of weather situations starts with analyzing how the systematic errors of the 
individual forecast models depend on the atmospheric state parameters including forecasted 
ones. To illustrate the process, we show here the results for GHI forecasts from the NAM model. 
The GHI forecasting errors are quantified using measurements from the SurfRad station in 
Bondville (BND), Champagne, IL.56 The forecasting error dependences on atmospheric 
parameters, such as Direct Normal Irradiance (DNI), cloud liquid water and cloud ice contents, 
cloud base and top heights, surface temperature at 2 m (T2M), surface pressure, etc., are derived 
from the daily run of the NAM model at 18 UTC hour using Functional Analysis of Variance 
(FANOVA).   

 
Figure 7: Flow chart showing the steps of situation categorization and machine learning.  

3.2.2.1 Functional Analysis of Variance 
Feeding the input data from the forecasts into a quantile regression forest60 learning model, one 
fits of the relationship between the GHI forecast error and the forecasted parameters, 
EGHI=F(x1, x2, …, xn),     

where EGHI = GHIforecasted 
 - GHImeasured, is the GHI forecast error, x1 is GHIforecasted, and x2, …, xn are 

the additional forecasted parameters.  

Limited by the size of the available training dataset and high dimensionality of the input 
parameters, such statistical fitting of forecast error is noisy. To counter the limitation, the errors of 
the forecasts are then broken to its 0th, 1st, 2nd … order dependence on individual input parameters 
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using FANOVA61. , FANOVA  decomposes the overall error into mean bias, the dependence on 
individual parameters, the interaction between two-parameter pairs, etc. The zeroth order term f0  
is the mean bias error of a forecast. The first order term fi provides the error dependence on xi 
only, while the effects of all other parameters are averaged out (with zeroth order term removed). 
The second order term  fi,j  provides the error dependence on xi and xj (with zeroth and first order 
terms removed): ...),()( ,0 ∑∑

≠

+++=
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jijii
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Figure 8: Significance of Input Parameters on FANOVA 1st Order Error 

 
Figure 9: Significance of Input Parameters on FANOVA 2nd Order for the NAM and the High Resolution Rapid Refresh 
(HRRR) model. 

 

3.2.2.2 Parameter Selection 
For any FANOVA term (0th,1st, 2nd order, or beyond) as shown in Figure 10, we computed the 
variance of the error. Generally, a large variance means the FANOVA term has a large 
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dependence on the parameter(s). Thus, it is important to include the parameter(s) for situation 
categorization. As shown in Figure 8 and 9 for 24 parameters, the importance of the parameters 
towards situation categorization is site and model dependent thus important parameters and 
weather situation categorization need to be determined using the training dataset on a case-by-
case basis. The importance of a given parameter is quantified by summing up the variance of all 
the 1st and 2nd order FANOVA terms relating to it. All parameters derived from the NWP models 
are ranked and the top parameters of importance beyond a threshold (1 W/m2 for GHI forecasting) 
are selected. The max number of parameters is limited by the size of the training data, as a 
practical rule of thumb, about 1/100 of the number of training labels available.  

 
 

Figure 10: Salient examples of NAM GHI forecast error obtained from FANOVA. (A) and (B) show 1st order dependence 
on NAM forecasts of GHI and surface pressure, respectively. (C) and (D), respectively, show salient 2nd order GHI 
forecast error dependences on GHI and surface pressure (C) and on 2 m temperature and zenith angle (D). 

3.2.2.3 Examples for Situation Categories 
Figure 10 shows illustrative examples of salient the FANOVA estimated 1st and 2nd order NAM 
GHI forecasting error dependences. Additional examples and discussions are included further 
below.  Figures 10A and 10B show the 1st order error dependence on GHI and surface pressure, 
respectively. A negative 1st order error (under-prediction) occurs for small GHI or large surface 
pressure, while a positive 1st order error (over-prediction) occurs for large GHI or small surface 
pressure. Two examples of 2nd order GHI error dependence on input parameters are shown in 
Figures 10C and 10D. We observe that the forecasting error vs. GHI and surface pressure 
forecasts (Figure 10C) can be roughly divided into four regions or situations.  For small (large) 
GHI and small (large) pressure, the 2nd order forecasting error is negative, otherwise the 2nd order 
error is positive. Similarly, a strong interaction between forecasts of 2 m temperature and zenith 
angle is observed in Figure 10D. More examples from the FANOVA analysis are shown below. 
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Figure 11: Additional examples of 1st order and 2nd order NAM GHI forecast error dependence at the Surfrad BND 
station in Champagne, IL. 
Such error dependences are high-order systematic errors of the forecasting model (mean bias 
error is the 0th order systematic error). While it is of separate interest to investigate their underlying 
causes for improving the different forecasting models, which was done throughout the project with 
Stan Benjamin from the Earth System Research Laboratory (ESRL) of the National Oceanic and 
Atmospheric Agency (NOAA), here for machine learning aimed at statically minimizing error, their 
implication is two-fold. First, the error dependence provides information on selection of important 
parameters carrying information to improve model accuracy. Second, the pattern of error 
dependences on the important parameters suggests that one may divide the entire space into 
subspaces (i.e., situation categories) based on the expected model error, as illustratively marked 
by dashed lines in Figures 10C and 10D. Such situation categorization ensures the forecasting 
error of an input physical model is similar in the same category. This enables the more effective 
forecasting error reduction using machine learning because forecasts can be trained using data 
of similar nature.  

When multiple input models are involved, the dimensionality of the space (formed by the important 
parameters from the multiple models) increases. For such situation categorization, since we are 
ultimately concerned about combining the different weather models so that their errors can be 
reduced, an intuitive way is to categorize according to the expected errors of the individual 
models, which in turn is linked to the important parameters via the FANOVA derived error 
dependences. For simplicity of visualization, Figure 12 gives an example of the GHI forecast error 
for the BND SurfRad site using NAM and GFS models. Figure 13 shows a three-model situation 
categorization. An unsupervised classification learning algorithm, Gaussian mixture models62, is 
used to classify situation categories. The color of each point visualizes the resulting categories. 
We constrain the maximum number of situation categories to be up to ten, while the optimal 
number of categories is determined by the Bayesian Information Criteria. It is worth noting that 
such situation categorization, even though entirely data driven (using model error), it nevertheless 
is correlated with empirically defined meteorological weather situations (such as clear-sky, 
partially cloudy, overcast, etc.) as discussed below. For a given forecasting data point, we first 
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compute the expectation of the error of the individual models using FANOVA by summing up the 
error dependences on all important parameters, and then use the trained Gaussian mixture 
model63 to categorize the data points. 

 

Figure 12: Color of the dots shows the situation categories created by the error of NAM and GFS forecasts for the BND 
SurfRad site. 

 
Figure 13: Color of the dots shows the situation categories created by the error of NAM, GFS, and SREF forecasts for 
the BND Surfrad site. 
 

3.2.3 Machine Learning Models  
For each situation category within given periods of training data and forecast data, a supervised 
machine learning model is independently trained on the training time period (establishing a 
regression between the predictor variables and the response variables by minimizing a certain 
cost function = metrics) and applied to the forecast time period. Generally, the response variables 
are the measurements of the quantity of interest such as solar irradiance. In the simplest form, 
predictor variables are the forecasts of the quantity of interest by different NWPs or other physical 
models. Including predictions of selected important parameters such as temperature, pressure, 
etc. often leads to better accuracy. Testing an array of supervised learning algorithms, we found 
that significant forecasting error reduction with respect to the best model can be achieved.  
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The situation categorization ensures that the input models have relatively similar error values in 
the same situation category, so that a learning model can more effectively reduce the error of the 
forecast. Take for example the Random Forest (RF) model64, which is commonly used for 
forecasting when there is sufficient data. RF is a type of bagging method65. It averages an 
ensemble of over-fitted tree models, each model fitted on a subset of training data and using a 
subset of predictor variables, which makes the RF model robust - even if the training data contain 
predictor variables which are irrelevant or highly correlated with each other, RF performance does 
not degrade significantly. Such benefit of a RF model, however, at the same time can cause 
difficulty for accurate prediction of infrequent cases. Since there is relatively small number of such 
training data, most trees in the ensemble will not see them, the averaged prediction of the 
ensemble is thus biased towards the “mean” (i.e., the fitting of the common cases). The situation 
categorization helps RF by grouping the common cases and the infrequent cases into the training 
data in different situation categories, thus mitigates the “bias towards mean” problem. In addition, 
the categorization also prevents a few erroneous outlier training data points from significantly 
impacting the forecasting performance as these data points, due to their different error 
characteristic, tend to be classified as a separate situation category.  

 
Figure 14: (A) Exemplary GHI forecasted day-ahead by GFS (gray line), random forest learning without situation 
categorization (red line), and situation dependent blending (blue line) compared to measurements (black squares). The 
data is for SurfRad BND station in Champaign, Illinois 05/08/15 to 05/21/15. Forecasts were issued at 18h UTC for the 
12 to 36 hours ahead. The three individual models used to create the blending are NAM, GFS, and SREF. (B) repeats 
the situation dependent blending forecasts (blue line in A) with the situation categories represented by the color of each 
data points.  

In addition to RF, Linear Model (LM) and Support Vector Machine (SVM)66,67 are also used for the 
forecasting. LM provides explicit situation-dependent blending weight coefficients, thus helps 
evaluating the performance of the different models in different situations. LM is also favored when 
the training data set becomes excessively large given its lower computing cost68. SVM (with radius 
basis function kernel) using selected predictor variables provides a comparable accuracy to RF, 
but is often more accurate when only a short period of training data is available. Given no single 
machine learning algorithm covers accuracy, robustness, and flexibility, a multi-expert learning 
system combining them is one way to achieve the best overall performance. A multi-expert 
learning system which dynamically selects an individual learning algorithm from a set of 
competing ones according to recent performance is employed. By using a set of learning 
algorithms of different complexities (thus of training data requirement), the multi-expert learning 
mitigates common troubles associated with training data (for example changes in the NWP model 
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or missing training data). It thus improves the robustness of the forecasting system in absence of 
manual intervention, which in turn improves the scalability.  

3.2.3.1 Multi-Expert Learning  
Robustness of the forecasts is of importance for providing operational forecasts at low cost. 
Methods need to be scalable to many sites and different forecasting targets with the least 
involvement of a human expert. Some of the hurdles include the upgrade or temporary 
unavailability of an individual models, missing or undetected erroneous measurement data, and 
events that cannot be reliably predicted such as unplanned maintenance at a solar farm. A multi-
expert learning approach mitigates their impact. The tradeoff is the cost of more computation 
which is becoming increasingly affordable. For multi-expert learning, a dozen machine learning 
models are set-up. The individual machine learning algorithms are run in parallel, the algorithm 
provides the best accuracy for the last two days is selected for future forecasts. To automatically 
choose the best performing model setting, we varied the following configurations: (1) the selection 
of the input models, (2) the selection of the training data size, (3) the maximum number of situation 
categories, and (4) the machine learning algorithm. A typical mix of machine learning models for 
12 to 36 hours ahead forecasting as shown in Table 10. The different selection of input models 
deals issues relating to model change or unavailability of a model data. The different training data 
size deals with issues relating to model changes, data availability, or potential changes in site 
specification (such as degradation of efficiency). In such cases, it is advantageous to exclude 
specific models or old training data. We also note that the accuracy for some sites benefits from 
including only training data from the same season. While overall the situation categorization 
improves forecasting accuracy, accuracy may reduce if forecasting data points are misclassified. 
This problem is mitigated by varying the maximum number of situation categories (including the 
limiting case of no categorization). The combination of RF, SVM, and LM enables both high 
accuracy and robustness as discussed. Additionally, two “no-learning” experts taking directly GFS 
model output and persistence are also included to handle rare case of no data availability or 
certain unpredictable events (such as PV plant electrical failures).  

 Input models Training data size Situation categories Learning 
Algorithm 

1 NAM/SREF/GFS All data, hourly Yes RF 
2 NAM/SREF/GFS All data, hourly Yes SVM 
3 NAM/SREF/GFS All data, hourly Yes LM 
4 NAM/SREF/GFS All data, hourly No RF 
5 NAM/SREF/GFS Same season, hourly Yes RF 
6 NAM/SREF/GFS 3 months, hourly Yes SVM 
7 NAM/SREF/GFS 1 months, hourly No SVM 
8 GFS 1 month, hourly No RF 
9 NAM 1 month, hourly No RF 

10 NAM 1 week, hourly No LM 
11 GFS None No None 
12 Persistence None No None 

Table 10: A typical mix of machine learning models for multi-expert learning. 
 

3.2.4 Forecasting Error Reduction  
Figure 14A shows an exemplary period of GHI measurements (black squares) at BND station 
versus forecasts by GFS (gray line), conventional machine learning using RF model (red line), 
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and situation dependent blending (blue line). Here the RF model is used to establish a baseline, 
as after testing different learning models we found that it reflects the best accuracy of a 
conventional machine learning approach without situation categorization have to offer. While the 
RF model (red line) reduced the forecasting errors, compared to individual models (such as the 
GFS forecasts, gray line), its short-coming is a tendency towards the mean irradiance value. For 
the two clear sky days, 05/13/15 and 05/19/15, the RF forecasts are below the measurements, 
while for the cloudy days 05/08/15 and 05/09/15, the RF forecasts are higher than the 
measurements. This indeed reflects the bias towards “mean” of the RF learning algorithm as 
elucidated previously. Using situation categorization, the forecasts (blue line) are improved for 
both clear sky and cloudy days. The situation categorization based forecasts are shown in Figure 
10B. It is observed that the two clear sky days belong mostly to one category (blue) while the 
cloudy days belong to other categories. Note that the situation categories were created using 
FANOVA predicted forecasting errors of the individual models without explicitly dealing with clear 
sky or cloudy. The clear sky days are nevertheless put into the same category (blue), presumably 
because clear sky days have distinct error characteristics. As the situation categorization enables 
different learning models to be fitted for clear sky vs. cloudy days, a reduction of overall error 
follows.  
Figure 15 summarizes the mean absolute error of the four parameters predicted by the NAM, 
GFS, SREF models as well as by RF model and situation-dependent blending. The MAE of the 
GHI forecasts (Fig. 15A) by the uncorrected NAM, GFS, and SREF models are respectively 94, 
115, and 103 W/m2 (red bars). The MAE of machine learning (RF model) without situation 
categorization is 80 W/m2 (green bar). In contrast, the situation-dependent blending reduces the 
MAE to 72.5 W/m2 (blue bar), a ~30% improvement with respect to the best individual model 
NAM, and a ~10% reduction with respect to RF learning. Similar degrees of improvement are also 
seen for DNI, T2m, and W10m as shown in Figure 15(B,C,D). The detailed GHI forecasting 
accuracy comparisons of individual models, RF learning, and situation-dependent blending using 
different metrics, are provided in the Table 11 for all Surfrad stations. 

 
Figure 15 summarizes day-ahead forecast error of (A) global horizontal irradiance (GHI), (B) direct normal irradiance 
(DNI), (C) temperature at 2 m above ground (T2m), and (D) wind speed at 10 m above ground (W10m) using different 
methods. Red: uncorrected NAM, GFS, and SREF. Green: conventional machine learning using random forecast model 
without situation categorization. Blue: Situation-dependent model blending. The data shown are the average forecast 
error (day-time only) of the seven SurfRad stations from 02/28/15 to 02/28/16. The error bars show the standard 
deviation of the errors at the seven stations. Forecasts were issued at 18h UTC for the 12 to 36 hours ahead. The three 
individual models used to create the blending are NAM, GFS, and SREF. 
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Station Bondville (BND), Champaign, IL 
BND 

Metrics 
 

NAM 
 

GFS 
 

SREF 
 

RF ML 
Situation-Dependent 

Blending 
Capacity (W/m2) 1000 1000 1000 1000 1000 

Correlation Coefficient 0.863 0.836 0.842 0.905 0.914 
RMSE (W/m2) 144 176 166 115 110 

NRMSE 0.144 0.176 0.166 0.115 0.11 
MaxAE (W/m2) 947 846 812 667 631 
MAE (W/m2) 90.9 118 106 77.6 72.6 

MAPE 0.0909 0.118 0.106 0.0776 0.0726 
MBE (W/m2) 23.4 37 55.6 -7.01 -4.89 

KSIPer 4.784 6.57 9.435 4.685 4.292 
Std Deviation (W/m2) 142 173 157 115 110 

Skewness 0.38 0.298 0.696 0.459 0.175 
Kurtosis 4.32 2.78 3.46 3.31 3.45 

RMQE_4 (W/m2) 237 274 265 181 175 
NRMQE_4 0.237 0.274 0.265 0.181 0.175 

Percentile95(W/m2) 276 359 368 186 180 
Station Table Mountain (TBL), Longmont, CO 

TBL 
Metrics 

 
NAM 

 
GFS 

 
SREF 

 
RF ML 

Situation-Dependent 
Blending 

Capacity (W/m2) 1000 1000 1000 1000 1000 
Correlation Coefficient 0.846 0.836 0.81 0.887 0.906 

RMSE (W/m2) 173 176 176 132 120 
NRMSE 0.173 0.176 0.176 0.132 0.12 

MaxAE (W/m2) 875 846 848 607 562 
MAE (W/m2) 107 118 117 91.5 79.7 

MAPE 0.107 0.118 0.117 0.0915 0.0797 
MBE (W/m2) 63.3 37 22.3 -15.3 -6.51 

KSIPer 10.042 6.57 5.656 6.37 5.173 
Std Deviation (W/m2) 161 173 175 131 120 

Skewness 0.779 0.298 0.251 0.236 -0.00909 
Kurtosis 3.54 2.78 2.71 2.32 2.89 

RMQE_4 (W/m2) 276 274 273 198 187 
NRMQE_4 0.276 0.274 0.273 0.198 0.187 

Percentile95(W/m2) 388 359 355 216 196 
Station Fort Peck (FPK), Poplar, MT 

FPK 
Metrics 

 
NAM 

 
GFS 

 
SREF 

 
RF ML 

Situation-Dependent 
Blending 

Capacity (W/m2) 1000 1000 1000 1000 1000 
Correlation Coefficient 0.887 0.836 0.878 0.913 0.922 

RMSE (W/m2) 136 176 134 103 97.7 
NRMSE 0.136 0.176 0.134 0.103 0.0977 

MaxAE (W/m2) 837 846 781 649 648 
MAE (W/m2) 88.1 118 84.8 68.6 63.8 

MAPE 0.0881 0.118 0.0848 0.0686 0.0638 
MBE (W/m2) 54.2 37 42.7 -5.13 -2.34 

KSIPer 9.466 6.57 7.881 4.171 3.299 
Std Deviation (W/m2) 124 173 127 103 97.7 

Skewness 0.404 0.298 0.599 0.798 0.637 
Kurtosis 5.92 2.78 5.63 4.36 4.24 
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RMQE_4 (W/m2) 225 274 226 169 160 
NRMQE_4 0.225 0.274 0.226 0.169 0.16 

Percentile95(W/m2) 276 359 272 178 159 
Station Goodwin Creek (GCM), Goodwin Creek, Mississippi 

GCM 
Metrics 

 
NAM 

 
GFS 

 
SREF 

 
RF ML 

Situation-Dependent 
Blending 

Capacity (W/m2) 1000 1000 1000 1000 1000 
Correlation Coefficient 0.837 0.836 0.835 0.887 0.907 

RMSE (W/m2) 167 176 191 131 120 
NRMSE 0.167 0.176 0.191 0.131 0.12 

MaxAE (W/m2) 866 846 899 677 743 
MAE (W/m2) 105 118 118 87.4 77.2 

MAPE 0.105 0.118 0.118 0.0874 0.0772 
MBE (W/m2) 37.1 37 85.2 1.27 5.14 

KSIPer 7.23 6.57 13.656 6.077 5.625 
Std Deviation (W/m2) 163 173 171 131 120 

Skewness 0.554 0.298 1.44 0.9 0.628 
Kurtosis 4.05 2.78 2.9 3.81 4.2 

RMQE_4 (W/m2) 273 274 306 213 197 
NRMQE_4 0.273 0.274 0.306 0.213 0.197 

Percentile95(W/m2) 331 359 458 240 219 
Station Sioux Falls (SXF), Garretson, SD 

SXF 
Metrics 

 
NAM 

 
GFS 

 
SREF 

 
RF ML 

Situation-Dependent 
Blending 

Capacity (W/m2) 1000 1000 1000 1000 1000 
Correlation Coefficient 0.856 0.836 0.833 0.895 0.908 

RMSE (W/m2) 150 176 163 116 109 
NRMSE 0.15 0.176 0.163 0.116 0.109 

MaxAE (W/m2) 902 846 758 714 675 
MAE (W/m2) 90.3 118 103 77.2 70.9 

MAPE 0.0903 0.118 0.103 0.0772 0.0709 
MBE (W/m2) 41 37 39.1 -6.75 -4.97 

KSIPer 6.447 6.57 7.54 4.327 4.128 
Std Deviation (W/m2) 144 173 158 116 109 

Skewness 0.455 0.298 0.483 0.604 0.57 
Kurtosis 5.66 2.78 3.66 3.77 3.98 

RMQE_4 (W/m2) 254 274 262 186 176 
NRMQE_4 0.254 0.274 0.262 0.186 0.176 

Percentile95(W/m2) 301 359 341 203 189 
Station Desert Rock (DRA), Desert Rock, NV 

DRA 
Metrics 

 
NAM 

 
GFS 

 
SREF 

 
RF ML 

Situation-Dependent 
Blending 

Capacity (W/m2) 1000 1000 1000 1000 1000 
Correlation Coefficient 0.895 0.836 0.885 0.916 0.922 

RMSE (W/m2) 145 176 141 119 114 
NRMSE 0.145 0.176 0.141 0.119 0.114 

MaxAE (W/m2) 899 846 812 732 655 
MAE (W/m2) 84.5 118 87 77.6 69.6 

MAPE 0.0845 0.118 0.087 0.0776 0.0696 
MBE (W/m2) 52 37 21.6 -6.64 -5.15 

KSIPer 8.371 6.57 5.738 5.423 3.389 
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Std Deviation (W/m2) 136 173 139 119 114 
Skewness 1.15 0.298 1.74 1.14 0.253 
Kurtosis 6.9 2.78 4.99 5.11 5.24 

RMQE_4 (W/m2) 255 274 242 199 193 
NRMQE_4 0.255 0.274 0.242 0.199 0.193 

Percentile95(W/m2) 305 359 315 215 178 
Station Penn State University (PSU), Pennsylvania Furnace, PA. 

PSU 
Metrics 

 
NAM 

 
GFS 

 
SREF 

 
RF ML 

Situation-Dependent 
Blending 

Capacity (W/m2) 1000 1000 1000 1000 1000 
Correlation Coefficient 0.839 0.836 0.838 0.891 0.901 

RMSE (W/m2) 153 176 170 121 116 
NRMSE 0.153 0.176 0.17 0.121 0.116 

MaxAE (W/m2) 779 846 840 652 746 
MAE (W/m2) 96.7 118 109 81.1 75.7 

MAPE 0.0967 0.118 0.109 0.0811 0.0757 
MBE (W/m2) 26.3 37 61.3 -4.85 -0.9 

KSIPer 7.694 6.57 11.145 5.541 4.881 
Std Deviation (W/m2) 151 173 158 121 116 

Skewness 0.128 0.298 0.881 0.305 0.287 
Kurtosis 3.68 2.78 3.11 3.13 3.79 

RMQE_4 (W/m2) 245 274 269 190 187 
NRMQE_4 0.245 0.274 0.269 0.19 0.187 

Percentile95(W/m2) 292 359 378 209 196 

Table 11: Comparison of GHI day-ahead (12 - 36 hours) forecasting error for the seven NOAA   Surfrad stations using 
the suite of metrics developed in this project. Forecasts are generated using uncorrected NAM, GFS, SREF, random 
forecast model, and situation-dependent model blending. The data are for time period 02/28/15 to 02/28/16. 
 
The underlying reason for such performance improvement may be understood by revisiting the 
situation-dependent error of the forecasts. Statistical post-processing corrects the systematic 
error of one or more forecast models. The conventional multi-model averaging method largely 
reduces important parameters in the predictor variables, machine learning approaches are 
capable of correcting higher order errors dependences, thus achieving an overall improved 
forecast accuracy. For instance, recalling the NAM model GHI forecasting has a significant 2nd 
order error dependence on 2m Temperature and zenith angle ranging from -3.5 to 3.5 W/m2 
(Figure 10C). The corresponding 2nd order error plots of GHI forecasts from conventional machine 
learning (RF model) and situation-dependent blending are shown in Figure 16. Both RF learning 
and situation-dependent blending reduce the 2nd order error to a range of -2.5 to +2.5 W/m2. 
Furthermore, even compared to RF learning (Figure 16A), the situation-dependent blending 
(Figure 16B) apparently has further reduced the 2nd order error dependence on 2m Temperature 
and zenith angle. (The variances of 2nd order error plots are 0.45 and 0.92, respectively.) In 
situation-dependent blending, the weather situations are categorized according to the forecasting 
errors of the input models that are linked to the important parameters via the FANOVA derived 
error dependences exemplified by Figure 10. Such observed reduction of high order error 
indicates that machine learning becomes more effective for error reduction in each situation 
individually, which is at the core of the better overall accuracy of situation-dependent blending 
compared to conventional approaches. 
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Figure 16: Second order GHI forecast error dependences on NAM temperature 2 m forecast and zenith angle. (A) is 
the result from forecast using random forest model without situation categorization and (B) is from situation-dependent 
model-blending. 

 

3.2.5 Results from 5 Test Sites 
Site 504 TEP FRV           

Time horizon 24 to 47 hr 0 to 23 hr 4 hr 1 hr 15 min 
BaseLine 3.56 4.03 4.09 2.14 1.11 

Target 2.67 2.94 3.017 1.618 0.78 
Status 2.41 1.6 2.151 1.695 0.976 

Improvement 129.21% 222.94% 180.65% 85.22% 40.61% 
Site 101 Smyrna           

Time horizon 24 to 47 hr 0 to 23 hr 4 hr 1 hr 15 min 
BaseLine 0.13 0.12 0.14 0.122 0.03 

Target 0.1 0.09 0.11 0.087 0.02 
Status 0.099 0.088 0.106 0.088 0.028 

Improvement 103.33% 106.67% 113.33% 97.54% 18.00% 
Site 901 GMP 

PostRoad           
Time horizon 24 to 47 hr 0 to 23 hr 4 hr 1 hr 15 min 

BaseLine 7.03 6.21 7.89 6.64 2.42 
Target 5.35 4.69 5.74 4.816 1.73 
Status 4.83 4.54 4.936 4.463 1.95 

Improvement 130.95% 109.87% 137.40% 119.34% 68.12% 
Site 2000 CAISO           

Time horizon 24 to 47 hr 0 to 23 hr 4 hr 1 hr 15 min 
BaseLine 98.56 98.91 111.97 93.98 22.24 

Target 71.74 72.68 85.35 70.95 15.45 
Status 90.3 82.7 83.500  81.300  19.3 

Improvement 30.80% 61.80%  105.950%  55.059% 43.30% 
Site 12201 ISONE 

SEMA           
Time horizon 24 to 47 hr 0 to 23 hr 4 hr 1 hr 15 min 

BaseLine 119.13 92.58 147.58 52.99 13.02 
Target 88.8 67.83 107.52 40.12 9.81 
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Status 52.6 59 48.4 46.500  10.9 
Improvement 219.35% 135.68% 247.58%  50.427% 66.04% 
AVERAGE      

Time horizon 24 to 47 hr 0 to 23 hr 4 hr 1 hr 15 min 
Ave. for 5 sites 122.73% 127.39% 157.18% 81.52% 47.21% 

 

Table 12: Summary of the MAE (in MW) forecasting results for the 5 test cases. The validation time period is one year 
from 2015-03-01 to 2016-02-28. The training of the RF model and situation-dependent blending is performed on data 
from 2013-03-01 to 2015-02-28.  

Detailed results from the Watt-sun system for the 5 test sites have been reported at UVIG 2016 
DoE Solar Forecasting workshop in Denver, in previous reports and other publications.  Here we 
focus on the summary of the results for the MAE and RMSE metrics as shown in Table 12 and 
Table 13, respectively. Improvements are defined as ((A-B)/(T-B) with A as the achieved (status), 
B the baseline, and T the target value. 
 

Site 504 TEP FRV      

Time horizon 
24 to 47 

hr 0 to 23 hr 4 hr 1 hr 15 min 
BaseLine 5.3 5.82 5 3.12 2.04 

Target 3.99 4.21 3.68 2.34 1.55 
Status 3.71 3.1 3.46 2.52 1.75 

Improvement 121.37% 168.94% 116.67% 76.92% 59.18% 
Site 101 Smyrna      

Time horizon 
24 to 47 

hr 0 to 23 hr 4 hr 1 hr 15 min 
BaseLine 0.17 0.17 0.19 0.1 0.05 

Target 0.13 0.12 0.14 0.07 0.04 
Status 0.12 0.115 0.142 0.072 0.047 

Improvement 125.00% 110.00% 96.00% 93.33% 30.00% 
Site 901 GMP PostRoad      

Time horizon 
24 to 47 

hr 0 to 23 hr 4 hr 1 hr 15 min 
BaseLine 9.44 8.63 10.87 5.21 4.29 

Target 7.19 6.47 8.02 3.83 3.23 
Status 7.2 6.6 6.42 3.72 3.32 

Improvement 99.56% 93.98% 156.14% 107.97% 91.51% 
Site 2000 CAISO      

Time horizon 
24 to 47 

hr 0 to 23 hr 4 hr 1 hr 15 min 
BaseLine 168.39 150.54 184.62 119.91 29.01 

Target 120.05 110.82 149.17 90.75 21.42 
Status 145.3 120.23 145.2 105.2 24.56 

Improvement 47.77% 76.31% 111.20% 50.45% 58.63% 
Site 12201 ISONE SEMA      

Time horizon 
24 to 47 

hr 0 to 23 hr 4 hr 1 hr 15 min 
BaseLine 152.55 122.27 192.21 73.25 18.32 

Target 115.75 89.73 143.12 55.19 13.68 
Status 79 86 74.8 57.2 16.2 

Improvement 199.86% 111.46% 239.17% 88.87% 45.69% 
AVERAGE      
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Time horizon 
24 to 47 

hr 0 to 23 hr 4 hr 1 hr 15 min 
Ave. for 5 sites 118.71% 112.14% 143.84% 83.51% 57.00% 

 

Table 13: Summary of the RMSE (in MW) forecasting results for the 5 test cases. The validation time period is one year 
from 2015-03-01 to 2016-02-28. The training of the RF model and situation-dependent blending is performed on data 
from 2013-03-01 to 2015-02-28.  

There are two key results: First, the Watt-sun system very successfully enables the forecasting 
accuracy to reach target value (>100% improvement) for longer forecasting time horizon (over 4 
hours). Second, the 1-hour-ahead forecasting performance improvement is close to target, while 
the 15-minute-ahead is close to the mid-point between baseline and target This trend is not 
surprising because for the shorter forecasting time horizon, the smart persistence forecast is used 
as the baseline. The numerical weather models, due to the time required to spin up with data 
assimilation and uncertainties in the initial boundary conditions, turn out to be often less accuracy 
compared to persistence. Despite the accuracy improvement enabled by blending the models, 
the results, though easily outperform smart persistence, still have difficulty reaching target 
accuracy. 

As an example, for the improvement in reliability, the absolute area control error in energy 
(AACEE) is being reported in Table 14 showing in most cases significant improvements in 
reliability using the Watt-sun forecasting system.  

 

 5.08% penetration 15.24% penetration 25.40% penetration 
Baseline Target  Watt-sun Baseline  Target  Watt-sun Baseline Target     Watt-sun 

GMP Value [MWh] 1785 926  908 1861 1387  1339 2569 2034  1832 
2DA Improvement 

 
- 48.12  49.13 - 25.47  28.05 - 20.83  28.69 

GMP Value [MWh] 1632 925  762 1771 1381  1339 2476 1903  1526 
1DA Improvement 

 
- 43.32  53.31 - 22.02  24.39 - 23.14  38.37 

GMP Value [MWh] 1957 1356  1225 2024 1507  1473 2674 2437  2229 
4HA Improvement 

 
- 30.71  37.40 - 25.54  27.22 - 8.86  16.64 

GMP Value [MWh] 851 756  926 1339 1179  1429 1586 1477  2141 
1HA Improvement 

 
- 11.16  -8.81 - 11.95  -6.72 - 6.87  -34.99 

TEP Value [MWh] 1446 1029  689 1541 1256  992 2317 1982  1381 
2DA Improvement 

 
- 28.84  52.35 - 18.49  35.63 - 14.46  40.41 

TEP 
1DA 

Value [MWh] 
Improvement 

 

1563 
- 

1117 
28.53 

 589 
62.32 

1662 
- 

1341 
19.31 

 871 
47.59 

2404 
- 

2012 
16.31 

 1345 
44.05 

TEP Value [MWh] 1306 849  879 1342 1153  1161 2164 1682  1962 
4HA Improvement 

 
- 34.99  32.71 - 14.08  13.49 - 22.27  9.33 

TEP Value [MWh] 826 607  699 1069 975  1055 1614 1369  1612 
1HA Improvement 

 
- 26.51  15.38 - 8.79  1.31 - 15.18  0.12 

Smyr
 

Value [MWh] 1804 1543  1427 2043 1857  1832 2696 2212  1984 
2DA Improvement 

 
- 14.47  20.91 - 9.11  10.33 - 17.95  26.41 

Smyr
 

Value [MWh] 1765 1499  1188 1949 1852  1668 2603 2025  1946 
1DA Improvement 

 
- 15.07  32.69 - 4.98  14.42 - 22.21  25.24 

Smyr
 

Value [MWh] 1916 1677  1488 2093 1931  1832 2727 2393  1988 
4HA Improvement 

 
- 12.47  22.34 - 7.74  12.47 - 12.25  27.11 

Smyr
 

Value [MWh] 1402 943  1254 1821 1378  1751 1982 1691  1959 
1HA Improvement 

 
- 32.74  10.56 - 24.33  3.84 - 14.68  1.16 

ISO-
 

Value [MWh] 2199 1483  1774 2209 1683  1784 2673 1841  2353 
2DA Improvement 

 
- 32.56  19.33 - 23.81  19.24 - 31.13  11.97 

ISO-
 

Value [MWh] 1693 1186  1286 1758 1526  1665 2193 1794  1807 
1DA Improvement 

 
- 29.95  24.04 - 13.21  5.29 - 18.19  17.61 

CAIS
 

Value [MWh] 1985 1258  1061 2048 1901  1787 2625 2216  2079 
2DA Improvement 

 
- 36.62  46.55 - 7.18  12.74 - 15.58  20.81 

CAIS
 

Value [MWh] 1599 991  691 1941 1767  1334 2343 1885  1569 
1DA Improvement 

 
- 38.02  56.79 - 8.96  31.27 - 19.55  33.03 

Table 14: Overall results for AACEE under three solar power penetration levels. 
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3.2.6 Comparison to ECMWF 
Besides comparing the performance of the Watt-sun system to the baseline and targets it was 
also compared to ECMWF69 (European Centre for Medium-Range Weather Forecasts), which is 
a propitiatory forecasting model costing ~$250,000 annually and considered to be the “gold” 
standard. The Watt-sun forecast system is all applied to provide forecasting with and without the 
ECMWF model in the blending. ECMWF is updated only twice a day at 0-hour UTC and 12 hour 
UTC, which made it not useful for intra-day forecasting. The ECMWF also provides most accuracy 
advantage for longer forecasting time horizon (2DA and beyond).  Figure 17 summarizes 2DA 
power forecast error (MAE) for the three-point test sites, Smyrna, TEP, and GMP Post road sites. 
The comparison is between 1st order learning corrected ECMWF model (red bar), situation-
dependent model blending using NOAA public models without ECMWF (green bar), and with 
ECMWF (blue bar). The test time is 2014-12-1 to 2015-06-30 for the Smyrna site and 2015-1-1 
to 2015-12-31 for TEP FRV and GMP Post road sites. The situation dependent blending excluding 
ECMWF provided 21% improvement (target 15%) upon 1st order corrected ECMWF. This shows 
the value of the blending methodology – by blending three public models, the forecast accuracy 
surpasses ECMWF. With ECMWF included in the forecasting itself, the blended forecasting 
shows 24% improvement (close to the target of 30%) upon 1st order corrected ECMWF.  

 
Figure 17: Summary of 2 day-ahead AC power forecast error (MAE) for the three “point-test” sites, Smyrna, TEP, and 
GMP Post road sites using different methods. Red: 1st order learning corrected ECMWF mode. Green: Situation 
dependent model blending using NOAA public models (NAM, GFS, and SREF) without ECMWF. Blue: Situation 
dependent model blending using NOAA public models and ECMWF.  

 

3.2.7 Nation-wide Solar Forecasting 
For forecasting for the entire US we leveraged the Remote Automatic Weather Stations (RAWS) 
system, which is a dense network (~1600 in the continental US) of weather stations run by the 
U.S. Forest Service and Bureau of Land Management.70 RAWS provides hourly global horizontal 
irradiance measurements. Figure 18 shows next to the RAWS instrumentation a map of all RAWS 
stations, which we are using for developing a gridded forecast.  
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Figure 18: Location of the RAWS stations across the US (left) and RAWS instrumentation (right). 

A critical step for developing a gridded forecast lies in the understanding whether or how proxy 
measurement sites can used for training / machine-learning (rather than actual co-located 
measurement sites). We note that this is – beyond the goal of developing gridded forecasts – a 
very important aspect of the Watt-sun system because if one could use proxy sites, the 
requirement of actual measurements from the forecast sites is not as stringent anymore and the 
applicability of Watt-sun would be clearly broadened. 

 
Figure 19: RAWS station in the Los Angeles area (left) and forecasting results (i.e., mean absolute error) for the target 
site just using proxy sites (right). 

 
Figure 20: Illustration of the blending approach to develop a gridded forecast. 
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Figure 19 illustrates an example of the studies, which we have undertaken to understand the 
viability of the use of proxy sites for our machine-learning approach. In this Figure, we show 
different RAWS sites in the Los Angeles metro area with a “target” site in the center. We note that 
we have 5 proxy sites within 20 miles of the test site. We have an additional 10 RAWS stations 
within 40 miles and yet another 3 stations within 60 miles. Figure 19 shows on the right-side 
irradiance (GHI) forecast errors for the target site where we have used only the proxy sites within 
40 miles. We compare the Watt-sun forecast error with the NAM and SREF forecast error 
demonstrating more than 25 % improved accuracy (less error). 

Figure 21: It shows a 48 hour ahead forecast of global horizontal irradiance (color scale) of contiguous US obtained via 
machine-learning based situation-dependent blending of two weather models – the north American mesoscale (NAM) 
model and the short-range ensemble forecast (SREF) model. This forecast is issued at 2015-06-11 00:00 UTC for 
2015-06-13 00:00 UTC. The model blending is trained by historical forecasts and measurements at ~1600 remote 
automatic weather stations (RAWS) of the MesoWest network (yellow circles).  

The results shown in Figure 19 certainly show how we can use our machine-learning approach 
to develop gridded forecasts. Clearly, as further away the proxy sites are from the actual test site 
the less viable the approach is but it is certainly not only distance. For understanding the validity 
of a proxy site, we studied systematically the correlations between the RAWS station across the 
whole continental US to develop a sophisticated map of weights. A paper is being prepared 
describing this approach. Figure 20 shows an example, where we have blended two GHI 
forecasts (NAM and SREF) using more than 1600 RAWS sites across the country.  

Figure 21 shows a screenshot of the web interface, which was developed to share these 
continental US-wide irradiance forecasts. Each point (yellow circle) shows a RAWS station, where 
the performance of the Watt-sun system is being reported and compared with other weather 
models – using the metrics which were developed earlier in this project. In average, we show 
more than 30 % improvements across the 1600 sites. The data is available at 
https://pairs.res.ibm.com/.   

 

2015-06-13 00:00 UTC 
Solar Irradiance 

https://pairs.res.ibm.com/
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Figure 22: Schematic showing the necessity of a 3D radiative transfer model given the apparent deficiency of a 1D 
model in a partially cloudy scenario. 

3.2.8 3D Radiative Transfer 
A three-dimensional (3D) radiative transfer model was also developed for the Watt-sun forecast 
system. Towards that end, first we investigated the “potential” improvements of a 3D RTM versus 
a 1D or 2D model, which is what most forecasting systems are using today. Namely, the 
atmospheric states (pressure, temperature, cloud, and aerosol) are assumed to be uniform 
horizontally. As illustrated in Figure 22, such simplification has clear limitations in partial cloudy 
condition in which the solar irradiation may penetrate through “clear sky” between clouds and 
reach the solar panels. The 1D model cannot take full advantage of the high horizontal resolution 
of the latest cloud-resolving numerical weather prediction (NWP) models. To enhance forecasting 
accuracy, needed is a 3D model capable of handling horizontal distribution of the clouds as 
predicted by NWP models.  

Our work is based upon (a) the existing 1D RT module and (b) the open source MCARATS (Monte 
Carlo Atmospheric Radiative Transfer Simulator). MCARATS is a general purpose 3D radiative 
transfer simulator.71 MCARATS is essentially a Monte Carlo solver of the RT equations. It cannot 
read inputs from NWPs and it does not contain the necessary parameterization of wavelength 
dependent scattering or absorption by gas species, aerosols, and clouds etc. Thus, the existing 
1D RT module has been modified to parse NWP inputs into 3D grid and supply the necessary 
scattering/absorption parameterization; then it calls the MCARATS to solve the RT equations, 
and finally read out the results from MCARATS. The accuracy of the 3D RT module with respect 
to the 1D module has been tested using 6 months of measurement data (2015-1-1 to 2015-6-30) 
on the NOAA SurfRad sites as summarized below. The NOAA 5 km NAM model (6z run 0 to 24 
hour ahead) is used as the input NWP. For fair comparison, the output of both RT models are 
used as-is. There is no statistical correction applied. 



DE-EE0006017 
A Multi-scale, Multi-Model, 

Machine-Learning Solar Forecasting Technology 
IBM TJ Watson Research Center 

 

Page 35 of 50 

 

 

 
Figure 23: Comparison of 1D (red) and 3D (blue) radiative transfer models as a function of cloud cover percentage. 
The four panels show mean absolute error results for four SurfRad stations. Time period is 2015-1-1 to 2015-6-30. 
Inputs for the radiative transfer calculation are provided by the 5 km NAM model 06z run 0 to 24 hour ahead (except 
aerosol and surface albedo are provided MODIS).  

 
Site BND TBL FPK GCM PSU SXF 

RT model 1D 3D 1D 3D 1D 3D 1D 3D 1D 3D 1D 3D 
Capacity (W/m2) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

pcoe 0.86 0.802 0.808 0.767 0.896 0.872 0.807 0.774 0.83 0.814 0.837 0.803 
RMSE (W/m2) 153 154 204 182 147 122 206 184 174 161 170 155 

NRMSE 0.153 0.154 0.204 0.182 0.147 0.122 0.206 0.184 0.174 0.161 0.17 0.155 
MaxAE (W/m2) 618 586 875 698 650 599 732 741 815 834 708 730 
MAE (W/m2) 93.9 114 133 134 100 83 141 123 110 110 109 108 

MAPE 0.0939 0.114 0.133 0.134 0.1 0.083 0.141 0.123 0.11 0.11 0.109 0.108 
MBE (W/m2) 76.2 2.02 110 2.88 91.1 -4.63 116 42 83.5 29.3 87.5 7.39 

KSIPer 15.758 4.242 17.391 4.831 15.453 3.311 19.595 8.784 14.861 8.564 15.122 4.878 
StdDev (W/m2) 133 154 172 182 115 122 171 180 153 159 146 155 

Skewness 1.76 0.697 1.36 0.64 1.6 0.856 1.12 0.683 1.72 1.31 1.16 0.74 
Kurtosis 3.45 1.62 2.39 1.47 3.48 3.62 1.43 2.2 4.16 3.59 3.21 3.23 

RMQE_4 (W/m2) 251 227 317 265 230 194 307 283 289 265 267 246 
NRMQE_4 0.251 0.227 0.317 0.265 0.23 0.194 0.307 0.283 0.289 0.265 0.267 0.246 

Percentile95(W/m2) 382 319 486 360 329 199 451 353 383 343 374 284 
Table 15: Comparison of 1D and 3D radiative transfer accuracy for six SurfRad stations under partially cloudy condition 
(cloud cover between 10% to 90%). Time period 2015-1-1 to 2015-6-30. Inputs for radiative transfer are provided by 
the 5 km NAM model 06z run 0 to 24 hour ahead (except aerosol and surface albedo are provided MODIS). TBL= 
Table Mountain, Boulder, Colorado, PSU=Penn State University, Pennsylvania   
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Figure 23 below shows the comparison of the two models as a function of NAM reported cloud 
cover percentage for four SurfRad sites. For near zero cloud cover, the 1D (red) and 3D (blue) 
models have comparable mean absolute error (MAE), which is not surprising since the 3D model 
essentially reduces to a 1D where there is no horizontal variation of cloud cover. For higher cloud 
cover, the 3D model has overall better performance. For example, as shown in Figure 23, the 
FPK, GCM sites shows a substantial error reduction for cloud cover greater than 10%. For SXF 
site the two models have comparable MAE. BND is an outlier for which the 1D model has smaller 
MAE.  

The full suite of metrics 4,5 for the 1D/2D and 3D RT models is calculated for time period 2015-01-
01 to 2015-06-30 and shown in Table 15. The comparison is done for six SurfRad sites in partial 
cloudy hours (cloud cover 10% to 90%), which usually have the larger irradiance forecast error 
compared to overcast (100% cloud cover) or clear sky conditions. Note that among the seven 
SurfRad stations, the DRA site located in Nevada desert is left out in this comparison since it does 
not have statistically significant number of cloudy hours in the 6-month time period.  

 
Figure 24: Comparison of the accuracy of 1D (red) vs. 3D (blue) radiative transfer models under partially cloudy 
condition (cloud cover between 10% to 90%). Comparison of four key metrics, (a) mean absolute error, (b) mean bias 
error, (c) root mean quartic error, and (d) the 95th percentile of forecast error is shown. 

From Table 15, the comparison of four selected metrics is presented in Figure 24 below. Figure 
24A shows the mean absolute error comparison. Among the six sites, two sites (FPK and GCM) 
have markedly reduced MAE using the 3D model, three sites (TBL, PSU, SXF) have comparable 
MAE using the 1D or the 3D model, while BND site has worse MAE using the 3D model. The 
average MAE is 114.5+18 W/m2 and 112.0+17 W/m2 for the 1D and 3D model, respectively. No 
statistically significantly reduction of MAE is achieved using the 3D model. In contrast to the MAE, 
however, the bias of the 3D model is significantly less than the 1D model (Figure 24B). The mean 
bias error (MBE) of the six sites on average is 94.0+16 W/m2 for the 1D model and 13.2+18 W/m2 
for the 3D model.  
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Moreover, importantly for the use-cases of the forecasts, the metrics results (Table 15) shows 
that the 3D model significantly reduces the occurrence of the relatively large forecast error as 
characterized by the root mean quadratic error (RMQE) metrics as shown in Figure 24C. All six 
sites show substantial reduction of RMQE using the 3D RT model. The average RMQE is 
276.8+33W/m2 for the 1D model and 246.6+32W/m2 for the 3D model, a reduction of over 10%. 
As well known, such large forecast errors are the most significant for economic value of the 
forecast. Towards this end we look at the 95th percentile of forecast errors (Percentile95), which 
represents the amount of non-spinning reserves required to compensate the forecast error. As 
shown in Figure 24D, all six sites show substantial reduction of Percentile95. The average 
Percentile95 is 400.8+57W/m2 for the 1D model and 309.6+61W/m2 for the 3D model, i.e. a 
reduction of non-spinning reserve by over 25%.  

3.2.9 Short-term forecasting 
A new algorithm for short-term solar energy forecasting from a sequence of GOES satellite 
images was developed and implemented. Conventionally short-term forecasting algorithms36,72 
perform cloud advection using either (a) wind velocity field derived from numerical weather 
prediction (NWP) models or (b) optical flow analysis of a sequence of satellite images. In the 
former case, even the NWP model is perfectly accurate, the error in determining cloud height may 
lead to large error of the velocity field. In the latter case, the wind velocity field is assumed to be 
static and does not reflect the dynamics of the wind in the future.  

 
Products Sets of Sites Forecasted Parameters Measurement Available 

ISONE GHI forecast 
0 to 3 DA 

RAWS Point Sites 
(15) 

Hourly averaged GHI Hourly averaged GHI 

ISONE POA Irradiance 
Forecast 
0 to 3 DA 

Solren Point Sites 
with Irradiance 

Measurements (19) 

Hourly averaged GHI 
Hourly averaged POA 

Irradiance 

Hourly averaged POA 
Irradiance 

ISONE Load Zone 
Forecast 
0 to 3 DA 

LoadZone 
Forecasts (8) 

Hourly averaged PV 
normalized by nameplate 

AC 

Hourly averaged PV 
normalized by nameplate 

AC from ~900 solren sites. 
GMP PV Forecast 

0 to 1 DA 
PV Point Sites (14) Hourly averaged PV 

normalized by nameplate 
AC 

Hourly averaged PV 
normalized by nameplate 

AC 
Table 16:  Forecasting products for stakeholders (POA=plane of array). 

In contrast, the new algorithm combines optical flow and 2D Navier-Stokes Equation (NSE) which 
not only accurately captures the current wind velocity field but also, to a certain degree, the wind 
dynamics in the future. The algorithm is inspired by the following observation of satellite cloud 
images: the dynamics of clouds (represented by cloud optical depth (COD)) resembles the motion 
(transport) of a density in the fluid flow. This suggests that, to forecast the motion of COD images, 
a parametric model of the fluid flow can be “learned” from the COD images, observed in the past, 
to forecast the fluid flow. Hence, the learning phase of the algorithm is composed of the following 
two steps: (1) optical flow estimation: given a sequence of COD images, the snapshots of the 
optical flow based velocity fields are estimated from two consecutive COD images using standard 
optical flow techniques. (2) Navier-Stokes Equation (NSE) fitting: these snapshots are then 
assimilated into a NSE, i.e. an initial velocity field for NSE is selected so that the corresponding 
NSE’ solution is as close as possible to a sequence of optical flow snapshots of velocity fields. 
The prediction phase consists of utilizing a linear transport equation, which describes the transport 
of COD images in the fluid flow predicted by NSE, to estimate the future motion of the COD 
images. Using the algorithm, we demonstrated around 30% error reduction of irradiance 
forecasting on one-hour ahead time scale with respect to smart persistence and NWP models on 
typically partially cloudy days. Efforts are underway to implement the algorithm in C++ (current 
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implementation in Matlab) on a parallel computing platform and then to port it into the Watt-sun 
forecasting system. 

3.3 Integration of the Watt-sun Forecasting System 
An important task was to deliver operational forecasts to the ISO-NE and GMP. More specifically, 
the forecast products listed in Table 16.  

 
Figure 25: ISO-NE forecasting accuracy of GHI at RAWS point sites. 

Figure 25 shows the ISO-NE GHI forecasting accuracy of the 1DA, 2DA, and 3DA GHI at RAWS 
point sites between July 2015 and April 2016. The average normalized forecasting MAE errors at 
the 1DA, 2DA, 3DA horizons are 7.0%, 7.5%, and 8.4%, respectively. For 1DA forecasts, the 
normalized MAE errors are varying between approximately 5% and 8%. Figure 26 shows the 
plane of array (POA) irradiance forecasting accuracy of the 1DA, 2DA, and 3DA GHI at Solren 
point sites between July 2015 and April 2016. The average normalized forecasting MAE errors at 
the 1DA, 2DA, 3DA horizons are 7.5%, 8.3%, and 9.4%, respectively. Figure 27 shows the 
forecasting accuracy of the 1DA, 2DA, and 3DA PV power at different load zones of ISO-NE. The 
MAE values are normalized by the nameplate power from ~900 Solren sites. The 1DA PV power 
forecasting MAE errors are varying between approximately 2% and 7% among different load 
zones. Most of the 2DA and 3DA forecasting MAE errors are below 10%. Figure 28 shows the 
forecasting accuracy of the 1DA PV AC power at different point sites at GMP. The corresponding 
nameplate PV capacities normalize the MAE values. The 1DA PV power forecasting MAE errors 
are varying between approximately 4% and 10.5% at different PV sites.  

The accurate forecasting is an essential tool for facilitating the integration of solar photovoltaic 
(PV) power into the bulk power system. The quantification of the practical benefits of the forecasts 
from the perspectives of both reliability and economic value were performed using a multi-
timescale power system operation model was discussed earlier. The representative IEEE 118-
bus system has been adopted to simulate 400 scenarios with different levels of improvements, 
locations, forecast horizons, and penetration levels. The simulations show that: (i) Watt-sun 
forecasts perform better (compared to baseline forecasting) for most cases in terms of power 
system reliability performance; (ii) reliability benefits are gradually enhanced by the solar power 
forecasting improvement in multi-timescale power system operations; and (iii) benefits of 
improved forecasting increases drastically with higher penetration levels of solar energy. 
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Figure 26: ISO-NE forecasting accuracy of POA irradiance at Solren point sites 

 
Figure 27: ISO-NE PV power forecasting accuracy at different load zones 

Moreover, through interaction with ISO-NE, the team discovered that snow detection plays an 
important role in winter time. Snow cover induces low PV output (despite high irradiance) and can 
drastically reduce forecasting accuracy. The negative effect can be long lasting due to the 
contamination of training dataset. At the request of ISO-NE, a methodology for snow detection 
are developed and tested. A detailed manuscript is being prepared describing the details of this 
method. 



DE-EE0006017 
A Multi-scale, Multi-Model, 

Machine-Learning Solar Forecasting Technology 
IBM TJ Watson Research Center 

 

Page 40 of 50 

 

 

 
Figure 28: GMP- PVAC power point forecast accuracy  

 

4. Significant Accomplishments and Conclusions  
The projected has resulted into several key accomplishments. 

1. The work has led to a commonly accepted method and set of metrics how to measure the 
accuracy of solar forecasting, which is a very important step towards further developing 
improved forecasting methods. The metrics include statistical, uncertainty quantification, 
ramp characterization, economic and reliability metrics. Even more important a 
methodology was developed how to determine baseline and target values for these 
metrics, which can now be used to compare forecasts and set “expectations” of a standard 
and a state-of-art forecast, respectively. 

2. Most importantly, the team advanced the state of forecasting significantly. The noticeable 
feature of the Watt-sun forecast system is that a set of appropriately chosen parameters 
is used to create different weather situation categories in which the input models exhibit 
different error characteristics. This approach (i.e., situation dependent, machine-learnt, 
multi-model blending has been demonstrated to advance the accuracy of the next best 
standard bias corrected model by more 30% and by more than 15% compared to a DiCast 
approach. These improvements are significant given the fact that traditional the accuracy 
of forecasting has only improved by ~6% each decade.3 The Watt-sun forecasts were 
provided operational to the ISO-New England and Green Mountain Power throughout the 
project. 

3. The Watt-sun forecasts met in average the target values for all 5 test sites and for all time 
horizons using the set of metrics, which were developed in this project. However, at short 
forecast horizons (1 hour ahead and 4 hour ahead) the Watt-sun forecast improvements 
have been less than for longer forecast horizons. This is at least partially due to the fact 
that “smart persistence” as a baseline is already quite accurate. 

4. The Watt-sun system is being ported to the Physical Analytics Integrated Data Repository 
and Services (PAIRS)49,73, which is completely scalable data and analytics platform and 
which  may provide a smooth way for further commercializing the developed technology 
and to integrate it into other IBM offerings. 

5. The team published 7 full papers, participated in 25 conferences, conducted 2 public 
webinars (one on the metrics and another one of the Watt-sun system), organized jointly 
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with the NCAR team and DoE 2 special sessions at annual UVIG  conference, won 3 
awards and had countless press mentioning. A replicate of Watt-sun forecasting system 
was also created at the National Renewable Energy Laboratory to ensure that the 
technology can be used for the public good. 

 

5. Inventions, Patents, Publications  

5.1 Full papers 
1. A Methodology for Quantifying Reliability Benefits from Improved Solar Power Forecasting in Multi-

Timescale Power System Operations                                                                                                                                                    
M. Cui, J. Zhang, B.-M. Hodge, S. Lu, and H. F. Hamann                                                                
submitted to IEEE Transactions on Smart Grid 

2. Machine Learning based Situation-Dependent Multi-Model Blending for Enhancing Renewable 
Energy Forecasting                                                                                                                                             
S. Lu, Y. Hwang, I. Khabibrakhmanov, X. Shao, A. Florita, C. B. Martinez-Anido, B.-M. Hodge, J. 
Zhang, E. F. Campos, and H. F. Hamann                                                                                                    
submitted to Solar Energy. 

3. The value of day-ahead solar power forecasting improvement                                                            
C.B. Martinez-Anido, B. Botor, A. Florita; S. Lu; H.F. Hamann; B.-M. Hodge                                  
Solar Energy 129, 192 (2016)                                                                                                              
doi:10.1016/j.solener.2016.01.049 

4. On the usefulness of solar energy forecasting in the presence of asymmetric costs of error                                                                                                                       
I. Khabibrakhmanov, S. Lu, H. F. Hamann, K. Warren                                                                            
IBM J. Res. & Dev. 60, 7:1 (2016)                                                                                     
doi:10.1147/JRD.2015.2495001 

5. Baseline and Target: Road to a Better Solar Power Forecasting                                                                   
J. Zhang, S. Lu, B.-M. Hodge, H.F. Hamann, B. Lehman, J. Simmons, E. Campos                                                                                                    
Solar Energy 122, 804 (2015)                                                                            
doi:10.1016/j.solener.2015.09.047 

6. A Suite of Metrics for Assessing the Performance of Solar Power Forecasting                                     
J. Zhang, B.-M. Hodge, A. Florita, S. Lu, H.F. Hamann, V. Banunarayanan, A. Brockway                                                                                                                                
Solar Energy 111, 157 (2015).                                                                                                                       
doi:10.1016/j.solener.2014.10.016 

7. Recent Trends in Variable Generation Forecasting and Its Value to the Power System                                                                                                                                  
K. D. Orwig, M. Ahlstrom, V. Banunarayanan, M. Marquis, J. Sharp, J. Wilczak, J. Freedman, S. 
Haupt, J. Cline, O. Bartholomy, D. Bartlett, H.F. Hamann, Bri-M. Hodge, C. Finley, D. Nakafuji, J. 
Peterson, D. Maggio                                                                                                                                    
IEEE Transaction on Sustainable Energy 99, 1 (2014).                                                                           
doi:10.1109/TSTE.2014.2366118 

5.2 Conferences 
1. Short-term Global Horizontal Irradiance Forecasting Based on Sky Imaging and Pattern Recognition 

(best paper award)                                                                                                                                  
C. Feng, M. Cui, M. Lee, J. Zhang, B.-M. Hodge, S. Lu, and H. F. Hamann                                     
IEEE Power & Energy Society General Meeting (2017) (accepted) 

http://dx.doi.org/10.1016/j.solener.2016.01.049
http://www.nrel.gov/docs/fy15osti/63876.pdf
http://dx.doi.org/10.1016/j.solener.2015.09.047
http://www.sciencedirect.com/science/article/pii/S0038092X14005027
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6996049&sortType%3Dasc_p_Sequence%26filter%3DAND%28p_IS_Number%3A5433168%29
http://dx.doi.org/10.1109/TSTE.2014.2366118
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2. A machine-learning approach for regional photovoltaic power forecasting                                           
Li, Yuan, Qian Sun, Brad Lehman, Siyuan Lu, Hendrik F. Hamann, Joseph Simmons                      
IEEE Power & Energy Society General Meeting (2016)                                                                              
doi: 0.1109/PESGM.2016.7741991 

3. Solar Irradiance Forecasting by Machine Learning for Solar Car Races                                                
X. Shao, S. Lu, T.G. van Kessel, H.F. Hamann, L. Daehler, J. Cwagenberg, A. Li                                      
IEEE Big Data (2016)                                                                                                                             
doi: 10.1109/BigData.2016.7840851 

4. Solar radiation forecast with machine learning                                                                                                     
X. Shao, S. Lu, H.F. Hamann                                                                                                                  
The 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices, 19-206 (2016).                                                                                                                                        
doi:10.1109/AM-FPD.2016.7543604 

5. Smart Solar Field Instrumentation for Development of Site-Specific Irradiance to Power Models                                                                                                                                                    
J.C. Simmons, C. Bokrand, B.J. Potter, S.Lu, H.F. Hamann                                                                              
5th PV Performance Modeling Workshop (2016). 

6. Physical Analytics: Bringing big data together with physics (invited)                                                    
H.F. Hamann                                                                                                                                  
Physics Informed Machine Learning (2016). 

7. DoE Solar Forecasting Project: Progress in Short-Term Forecasting  (invited)                                            
H.F. Hamann                                                                                                                                               
UVIG Forecasting Workshop (2016).                                                                                                   

8. DoE Solar Forecasting Project: Overview of the IBM Project (invited)                                                         
H.F. Hamann                                                                                                                                              
UVIG Forecasting Workshop (2016). 

9. A Two-Dimensional Gridded Solar Forecasting System using Situation-Dependent Blending of 
Multiple Weather Models                                                                                                                                  
S. Lu, Y. Hwang, I. Khabibrakhmanov, X. Shao, H.F. Hamann                                                                                                                         
American Geophysical Union Fall Meeting, A11H-0164 (2015).   

10. Towards Gridded Foundational Solar Forecast of Enhanced Accuracy: Weather “Situation” Dependent 
Forecast Error and Machine-Learnt Multi-Model Blending                                                                             
S. Lu, Y. Hwang, X. Xiao, H. F. Hamann                                                                                                           
3rd International Conference Energy and Meteorology (2015). 

11. Improvement of Solar Irradiance Forecast Using Machine Learning                                                         
S. Lu, X. Shao, Y. Hwang, I. Khabibrakhmanov, H. F. Hamann                                                                   
9th Annual Machine Learning Symposium of the New York Academy of Sciences (2015). 

12. Physical Analytics: An emerging field with real-world applications and impact (invited)                                        
H.F. Hamann                                                                                                                                         
American Physical Society March Meeting (2015). 

13. Situation-dependent blending of multiple forecasting models based on machine learning (invited)                                                                                                                                                             
H.F. Hamann, S. Lu                                                                                                                                           
SPIE Newsroom (2015).                                                                                                                                
doi:10.1117/2.1201510.00614 

14. Baseline and target values for PV forecasts: Toward improved solar power forecasting                                                                                           
J.Zhang, B.M. Hodge, S.J. Simmons, S. Lu, E. Campos, B. Lehman, V. Banurarayan                        
Proceedings of IEEE Power & Energy Society General Meeting, 1 (2015).                                                                               
doi:10.1109/PESGM.2015.7286239 

http://ieeexplore.ieee.org/document/7741991/
https://aminer.org/archive/solar-irradiance-forecasting-by-machine-learning-for-solar-car-races/58416266b52b8b27eca079b6
http://ieeexplore.ieee.org/document/7543604/
http://www.slideshare.net/sandiaecis/1-4-epri-sandia-cuiffi-050916-43
http://www.cvent.com/events/physics-informed-machine-learning/custom-21-7cd2f46ebc144bdeb6e5f4106887ea04.aspx
http://uvig.org/wp-content/uploads/2015/12/2016_Forecasting_Workshop_Agenda7.pdf
http://uvig.org/wp-content/uploads/2015/12/2016_Forecasting_Workshop_Agenda7.pdf
https://agu.confex.com/agu/fm15/meetingapp.cgi/Paper/66390
https://agu.confex.com/agu/fm15/meetingapp.cgi/Paper/66390
http://icem2015.org/wp-content/uploads/2015/04/ICEM2015-programme-April-WEB.pdf
http://icem2015.org/wp-content/uploads/2015/04/ICEM2015-programme-April-WEB.pdf
http://www.nyas.org/ML2015
http://absuploads.aps.org/presentation.cfm?pid=11244
http://spie.org/x116086.xml
http://www.utdallas.edu/%7Ejiezhang/Conference/JIE_2015_IEEE_PES_solar_forecasting.pdf
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15. Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis                                                                                                                    
W. Cheung, J. Zhang, A. Florita, B.-M. Hodge, S. Lu, H. F. Hamann, Q. Sun, B. Lehman                                                                                                        
5th Solar Integration Workshop: International Workshop on Integration of Solar Power into Power 
Systems, Brussels, Belgium (2015). 

16. A Multi-faceted approach towards solar forecasting                                                                                
E. Campos, E. Constantinescu, Y. Feng, J. Wang, Z. Zhou, A. Botterud, D. Cook, H.F. Hamann, S. Lu                                                                                                                                                                     
95th Annual Conference of the American Meteorological Society, Phoenix (2015). 

17. Machine Learning Based Multi-Physical-Model Blending for Enhancing Renewable Energy Forecast – 
Improvement via Situation Dependent Error Correction                                                                                            
S. Lu, Y. Hwang, I. Khabibrakhmanov, F. J. Marianno, X. Shao, J. Zhang, B. Hodge, H F. Hamann                                                                                                                                         
95th Annual Conference of the American Meteorological Society, Phoenix (2015).  

18. Situation Dependent Machine Learning based Multi-Model Blending for Enhancing Renewable 
Energy Forecasting (invited)                                                                                                                                    
H.F. Hamann                                                                                                                                                
2015 Forecasting Workshop, Denver, Colorado (2015). 

19. Machine Learning Based Multi-Physical-Model Blending for Enhancing Renewable Energy Forecast – 
Improvement via Situation Dependent Error Correction (invited)                                                                             
S. Lu, Y. Hwang, I. Khabibrakhmanov, F. J. Marianno, X. Shao, H.F. Hamann                             
European Journal of Control Conference, Linz, Austria (2015).                                                                  
doi:10.1109/ECC.2015.7330558 

20. A multi-scale solar energy forecast platform based on machine-learned adaptive combination of 
expert systems (invited)                                                                                                                         
H.F. Hamann                                                                                                                                               
2014 Forecasting Workshop, Tucson, Arizona (2014) 

21. Solar Forecast Improvement Project: A Public-Private Collaboration                                                        
M. Marquis, S. Benjamin, E. James, A. Heidinger, C. Molling, J. Michalsky, K. Lantz, V. 
Banunarayanan , S. Haupt, H. F. Hamann                                                                                                     
4th International Workshop on Integration of Solar Power into Power Systems, Berlin, Germany 
(2014). 

22. A multi-scale solar energy forecast platform based on machine-learned adaptive combination of 
expert systems                                                                                                                                           
S. Lu, J. Lenchner, G. J. Tesauro, C. M. Corcoran, F. J. Marianno, J. Zhang, B.-M. Hodge, E. 
Campos, H. F. Hamann                                                                                                                           
American Meteorological Society 2014 Annual Meeting, Atlanta (2014).  

23. Metrics for Evaluating the accuracy of solar power forecasting                                                                 
J. Zhang, Bri-M. Hodge, A. Florita, S. Lu, H.F. Hamann, V. Banunarayanan                                                  
3rd International Workshop on Integration of Solar Power into Power Systems, London, UK (2013). 

24. Creating a Standard Set of Metrics to Assess Accuracy of Solar Forecasts: Preliminary Results                                                                                                                                                                 
V. Banunarayanan, A. Brockway, M. Marquis, S. Haupt, B. Brown, T. Fowler, T.  Jensen, H.F. 
Hamann, S. Lu,B. Hodge,J. Zhang, A. Florita                                                                                        
American Geophysical Union Fall Meeting A13G-0306 (2013). 

25. DoE Solar Forecasting Project: A Multi-scale, Multi-Model, Machine-Learning Solar Forecasting 
Technology(invited)                                                                                                                            
H.F. Hamann                                                                                                                                            
American Meteorological Society 2013 Annual Meeting, Austin (2013).  

 

http://www.utdallas.edu/%7Ejiezhang/Conference/JIE_2015_SIW_solar_forecasting.pdf
https://ams.confex.com/ams/95Annual/webprogram/Paper269845.html
https://ams.confex.com/ams/95Annual/webprogram/Paper264696.html
https://ams.confex.com/ams/95Annual/webprogram/Paper264696.html
http://uvig.org/newsroom/
http://uvig.org/newsroom/
https://controls.papercept.net/conferences/conferences/ECC15/program/ECC15_ContentListWeb_2.html
https://controls.papercept.net/conferences/conferences/ECC15/program/ECC15_ContentListWeb_2.html
http://uvig.org/newsroom/
http://uvig.org/newsroom/
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&ved=0CEwQFjAH&url=http%3A%2F%2Fwww.solarintegrationworkshop.org%2Fbrussels2015%2Fdownloads%2FSIW14_Proceedings_Content_Overview.pdf&ei=jO9VVeTJNYq3sAWehYCwBg&usg=AFQjCNF3uxC_K2-OL-EqsFVaglR5Ab0
https://ams.confex.com/ams/94Annual/webprogram/Paper234392.html
https://ams.confex.com/ams/94Annual/webprogram/Paper234392.html
http://www.google.com/url?url=http://www.nrel.gov/docs/fy14osti/60142.pdf&rct=j&frm=1&q=&esrc=s&sa=U&ei=IYZfVMqvBZCeyAS48YHgBA&ved=0CBkQFjAA&usg=AFQjCNFe10dc_La6KDwKQrFxc54yXU-mRg
http://adsabs.harvard.edu/abs/2013AGUFM.A13G0306B
https://ams.confex.com/ams/93Annual/webprogram/Paper226120.html
https://ams.confex.com/ams/93Annual/webprogram/Paper226120.html
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5.3 Patents 
1. US Patent: 9,471,884; H.F. Hamann, Y. Hwang, T.G. van Kessel, I.K. Khabibrakhmanov, S. Lu, R. 

Muralidhar                                                                                                                                                         
Multi-model blending 

2. US Patent Application: 20150186904; S. Guha, H.F. Hendrik, K.I. Klein, S.A. Bermudez Rodriguez                                                                                                                        
System and Method for Managing and Forecasting Power From Renewable Energy Sources - 
pending 

3. US Patent Application: 20140327769; H.F. Hamann, S. Lu                                             
Multifunctional Sky Camera System for Total Sky Imaging and Spectral Radiance 
Measurement - pending 

4. US Patent Application: 20140324352; H.F. Hamann, S. Lu                                                                
Machine Learning Approach for Analysis and Prediction of Cloud Particle Size and Shape 
Distribution - pending 

5. US Patent Application: 20140324350; H.F. Hamann, S. Lu                                                               
Machine Learning Approach for Analysis and Prediction of Cloud Particle Size and Shape 
Distribution - pending 

6. US Patent Application: 20140320607; H.F. Hamann, S. Lu                                            
Multifunctional Sky Camera System for Total Sky Imaging and Spectral Radiance 
Measurement  

 

5.4 Press (Selected) 
1. Vu C (2015) Machine learning helps IBM boost accuracy of US Department of Energy solar forecasts 

by up to 30 percent. 

2. Staff (2015) Better Solar and Wind Forecasting.  (Energy Matters). 

3. Staff (2015) IBM Boosts Accuracy of DOE Forecasts by 30%.  (Solar Industry Magazine). 

4. Staff (2015) Interview with Hendrik Hamann, Physical Analytics Manager at IBM Research.  
(AltEnergyMag). 

5. Staff (2015) IBM Improves Solar Forecasts with Machine Learning.  (Inside HPC). 

6. Solomon DB (2015) Machine 'learners' compute cloud cover to balance power supplies.  (Los Angeles 
Times). 

7. Mearian L (2015) IBM's machine-learning crystal ball can foresee renewable energy availability.  
(Computer World). 

8. Martin R (2015) Solar and wind forecasts are new wave of weather reporting.  (Mashable). 

9. Martin R (2015) Weather Forecasting Enters a New Era.  (MIT Technology Review). 

10. Hock L (2015) Machine Learning’s Impact on Solar Energy.  (R&D Magazine). 

11. Hall-Geisler K (2015) Solar Race Team Gets Help from a Superforecast.  (Popular Science). 

12. Glasner J (2015) IBM's Machine Learning Tech Takes on Solar Power's Flakiness.  (Data Center 
Knowledge). 
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5.5 Awards 
2017 Best Conference Paper (“Short-term Global Horizontal Irradiance Forecasting Based on Sky Imaging 
and Pattern Recognition”) submitted to the 2017 Power & Energy Society General Meeting 

2017 UVIG Achievement Award 

2016 Industrial Physics Award from the American Institute of Physics 

 

6. Path Forward 
 There are a couple of important directions how to move forward with this project  

• Certain capabilities must be added for advancing the Watt-sun system: (1) The technology 
must be expanded to support automatic generation of probabilistic forecasts. For this, 
various techniques should be explored, for example whether to train for each quantile 
separately or using appropriate machine-learning algorithms to quantify directly the 
uncertainty for a given result. (2) The work with ISOs and utilities demonstrated that there 
must be a tighter integration between the forecasts and the actual use case for the end 
user. Examples for this would be to provide ramp forecasting products directly (rather than 
for example DNI etc) or perhaps regional solar load modification forecasts. (3) Another 
key area for additional research is to improve the accuracy of the Watt-sun system for 
short-term forecasting, which would require exploring even more and bigger data sources 
(see discussion below) and models such as improved cloud tracking mechanisms. 

• One of the big lessons learnt from this project was that the data which is required for better 
and more advanced machine-learning, requires a more sophisticated compute 
infrastructure than originally envisioned. While the originally developed “big data bus” 
fulfilled all the requirements of this project, it will not be sufficient for the future (the data 
volume for the WRF models just used in this research has increased by more than 20x in 
the last 4 years). Towards that end, IBM has started to develop separately a very powerful 
big data platform for geo-spatial data processing and analytics (PAIRS= Physical Analytics 
Integrated Data Repository and Services). This platform has two very important features, 
by which it differentiates itself. First, the computation or processing is “independent” of 
data size because the computation is done without moving the data. Second, due to 
unique indexing scheme the platform also provides contextual data to support the various 
use cases for the power industry. One of the next technical tasks will be to “port” the Watt-
sun system completely onto the PAIRS platform, which is also the conduit for 
commercializing the technology. 

• Another very interesting area of research which has emerged from this work is the notion 
of “physics-informed machine-learning”. Evidently, the work presented herein constitutes 
an interesting example how to combine physical models – attempting to model a very 
complex phenomenon – with big data analytics and statistics. The interesting research is 
whether this concept of situation-dependent, machine-learnt, multi-model blending can be 
further developed to a general framework to fuse domain knowledge and first-principle 
models with purely data-driven methods and whether this might be applicable for other 
applications where a complex physical phenomenon needs to be modeled.  

https://www.uvig.org/uvig-announces-annual-achievement-awards-tucson-arizona/
https://www.aip.org/news/2016/pioneer-and-innovator-hendrik-hamann-wins-major-industrial-physics-prize-aip
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8. Glossary 
 

15MA 15 minute ahead 

1HA 1 hour ahead 

4HA 4 hours ahead 

AACEE Absolute Area Control Error in Energy 

ACE Area Control Error 

ARM Atmospheric Radiation Measurement 

BND Bondville Surfrad Station 
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BP Budget Period 

CAISO California Independent System Operator 

CDF Cumulative Distribution Function 

CPS2 North American Electric Reliability Corporation Control Performance Standard 2 

DA day ahead 

DiCast Dynamic Integrated foreCast 

DNI Direct Normal Irradiance 

DRA Desert Rock Surfrad Station 

ECMWF European Centre for Medium-Range Weather Forecasts 

ESR Expected Synthetic Reliability 

ESRL Earth System Research Laboratory 

FANOVA Functional Analysis of Variance 

FESTIV Flexible Energy Scheduling Tool for Integration of Variable Generation 

FPK Fort Peck Surfrad Station 

GCM Goodwin Creek Surfrad Station 

GFS Global Forecasting System 

GHI Global Horizontal Irradiance 

GMP Green Mountain Power 

Grib2 Gridded binary or general regularly-distributed information in binary form 

HDF Hierarchical Data Format 

HRRR High Resolution Rapid Refresh 

ISIS Integrated Surface Irradiance Study 

ISO Independent System Operator 

ISO-NE Independent System Operator of New England 

KDE Kernel Density Estimation 

KSI Kolmogorov-Smirnoff Integral 

LM Linear Model 

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

MaxAE Maximum Absolute Error 

MBE Mean Bias Error 

MOS Model Output Statistics 
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NAM North American Mesoscale 

netCDF Network Common Data Form 

NOAA National Oceanic and Atmospheric Administration 

NREL National Renewable Energy Laboratory 

NWP Numerical Weather Prediction 

OVER part of the KSI which integrates above (over) the Kolmogorov-Smirnov critical value) 

PAIRS Physical Analytics Integrated Data Repository and Services 

POA Plane of Array 

PSU Penn State University Surfrad Station 

PV Photovoltaic 

PV  Photovoltaic 

PVLib PVLIB is a set of open source modeling functions that simulate PV system performance 

RF Random Forest 

RMSE Root Mean Square Error 

RTM Radiative Transfer Model 

SOPO Statement Of Project Objectives 

SREF Short Range Ensemble Forecast 

SurfRad Surface Radiation network 

SVM Support Vector Machine 

SXF Sioux Falls Surfrad Station 

T2M surface temperature at 2m above ground 

TBL Table Mountain Surfrad Station 

TEP Tuscon Electric Power 

UVIG Utility Variable-Generation Integration Group 

W10M wind speed at 10m above ground 

Watt-sun IBM's renewable and weather forecasting technology  

WRF Weather Research Forecast 

WWSIS-2 Western Wind and Solar Integration Study Phase 2 

XML eXtensible Markup Language 
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