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1. Executive Summary

Solar power penetration in the United States is growing rapidly, and the SunShot Vision Study
reported that solar power could provide as much as 14% of U.S. electricity demand by 2030 and
27% by 2050.'2 At these high levels of penetration, solar power forecasting will become very
important for electricity system operations because it is the least expensive way to integrate larger
amount of solar energy into the electric grid. However, solar forecasting is a very difficult task with
different challenges for transmission and distribution networks and inaccuracies can result in
substantial economic losses and power system reliability issues because electric grid operators
must continuously balance supply and demand.

The goal of the project was the development and demonstration of a significantly improved solar
forecasting technology (short: Watt-sun), which leverages new big data processing technologies
and machine-learnt blending between different models and forecast systems. The technology
aimed demonstrating major advances in accuracy as measured by existing and new metrics
which themselves were developed as part of this project. Finally, the team worked with
Independent System Operators (1ISOs) and utilities to integrate the forecasts into their operations.

The technical thrust of the work lies in the idea of injecting state-of-the-art big data machine-
learning to the field of meteorology and solar forecasting. To put the achievements of this project
into perspective, numerical weather prediction (NWP) models have been improving forecasting
accuracies by (only) ~6% per decade (basically by refining the physics of the forecasting models
as well as improved data assimilation techniques®. Key accomplishments of this project are:

» A full suite of metrics (including economic and reliability ones) for measuring the accuracy
of solar forecasts was established, which enables grid operators to assess the accuracy
of different forecasting systems in a consistent and scientific sound manner.*®

* Methods for deriving “baseline” and “target” values for those metrics were developed,
which provide guidance to system operators on what forecasting accuracies can be
expected from a standard as well as state-of-the art forecasting system.®’

* A new method (Watt-sun) for solar forecasting was developed, which leverages big data
technologies and a novel machine-learning approach (called situation-dependent, multi-
model blending).®

» Demonstrated with the Watt-sun forecasting system improved forecasting accuracies in
average by more than 100% over baseline (or by > 30% compared to the next best
forecast system/model) at multiple locations for point, regional and continental forecasts
as measured by the suite of metrics (for all forecast horizons from 15 mins to 48 hours
ahead).’

A “open” replicate of the Watt-sun forecasting system was created at the National
Renewable Energy Laboratory (NREL) ensuring that it can be continued to be used for
the larger public good.

* Operational day-ahead forecasts in various forms were provided to the ISO-New England
and Green Mountain Power throughout the last two years of the project.

e« Team won the 2017 Utility Variable-Generation Integration Group (UVIG) Achievement
Award “For major contributions to advancing the state-of-the-art of solar energy
forecasting.
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2. Project Objectives

Solar forecasting will become an integral part of the energy future as increasingly renewable
energy is becoming online. Therefore, the project will have significant impacts to the national
goals of clean energy progression of the US.
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1. The project yielded the first consistent set of methods for measuring, comparing and

assessing the accuracy of a solar power forecasts, which is not only critically important as
solar forecasting information is being integrated in power system operations but also for
gauging the technical progress in this field.

A novel approach for solar forecasting was invented by combining traditional forecasts
with state-of-the-art big data machine learning. The validity of the approach was
demonstrated and piloted with utilities and 1SOs. The improvements in forecasting
accuracy will enable much more cost-effective operations of the power grid.

The project had three main tasks with the following objectives:

1. Task#l: To develop a suite of metrics (statistical, uncertainty quantification, ramp

characterization, economic, and reliability ones) for assessing the accuracy of solar
forecasting for the industry and to evaluate the performance of these metrics; this included
developing methods for determining proper baseline and target values for such metrics.

Task#2: To develop a new approach to solar forecasting (Watt-sun) which improves
accuracy of solar forecasting by >100% above a baseline; this task included evaluation of
Watt-sun at five test sites using the metrics as developed in task #1.

Task#3: To integrate these forecasts into the operations of at least one ISO and one utility
and demonstrate benefits to these end-users.

Table 1 provides a more detailed view of the milestones and deliverables of this project organized
by the tasks (task#1 to 3 are in red, blue and green respectively). Go/No-Go milestones are in
bold. Table 1 also shows the budget period (BP). More prescriptive information about the different
tasks can be obtained from the quarterly reports and the Statement of Project Objectives (SOPO).

BP | Task Short Description

1 1.1.1.2 Development of Deterministic Metric Suite

1 111 A suite of generally applicable, value-based metrics

2 1.1.2A Develop a detailed plan/process how to quantify the benefits of the Watt-sun system

2 1.2.2A/1.3.2A Baseline and target values for each metrics including economic ones

2 1.1.2A Report on the benefits of the Watt-sun system to the ISO, utility, and energy producer

2 1.1.2B White paper and submission to a peer-reviewed journal on metrics development

2 1.2.2B/1.3.2B White paper and submission to a peer-reviewed journal article on target/baseline values.

3 1.11/11.2 Present results from a simulation study of a high penetration solar in the FESTIV modeling
environment to evaluate reliability and economic impacts of better solar power forecasts.

3 111/11.2 Demonstrate and quantify measurable improvements in power system reliability metrics
(ACE, AACEE, CPS2 scores) and reserve levels (economic metric) to maintain reliability
levels from improved solar power forecasts in high penetration solar scenarios

1 211 Complete infrastructure of Watt-sun system

1 2.11 Demonstration of operational forecasting

1 221 Trained categorization/machine learning algorithms,

1 2.2.1 Demonstrate at least 33 % forecasting improvements

1 221 Provide initial feedback to NOAA

1 2.3.1 Identified at least two different, geographically diverse test sites

2 2.1.2/2.2.2/2.3.2 | Demonstrate at least 50 % forecasting improvements

2 2.1.2/2.2.2/2.3.2 | Areport describing the architecture of the 2nd Gen Watt-sun system

2 2.1.2/2.2.2/2.3.2 | Detailed DoE deep dive webinar/presentation on the Watt-sun architecture

3 2123 Demonstrate superiority of the developed 3D radiative transfer model vs. a state-of-art 1D

radiative transfer model using NAM inputs and SurfRad, I1SIS and ARM validation data and
using metrics developed as part of Activity A. Validation will be performed with > 6 months
of data for each individual validation site and results presented for each site separately.
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231

Provide publically available irradiance 0 to 48 hour ahead forecast (accessible via a web
page) from the Watt-sun system. The forecasts will have a spatial resolution of 0.05 degrees
and cover the entire continental US with a temporal resolution of 1 hour.

2.3.2

Replicate the Watt-sun system in a public cloud environment and train/enable NREL
personnel to provide forecasting to all five test sites (GMP, Smyrna, TEP, CAISO and ISO-
NE). This milestone includes showing replicability and scalability of the Watt-sun system
without proprietary technologies. The replication includes all components of the Watt-sun
system and will be a “stand-alone” system.

2.1.3

Demonstrate at least 100 % improved forecasting (towards all base target metrics as
developed in activity A during 2nd budget period) and (in addition) less than 8 % normalized
root mean square error for all time horizons at all five different test sites (GMP, Smyrna,
TEP, CAISO and ISO-NE) using 3rd Gen Watt-sun system. Demonstration includes
providing forecasts, validation and verification. Forecasts horizons will range from at least
15 minutes to 48 hours ahead with an interval of 15 minutes or shorter. The 3rd Gen Watt-
sun system has updated modules of (1) a big data bus, (2) a radiative transfer module, (3)
a radiance to power module, (4) an information blending module, and (5) a categorization/
machine learning module. Progress towards target metrics will be measured as relative
improvement ((A-B)/(T-B) with A as the achieved, B the baseline, and T the target value for
a given base metric as developed in activity A). The performance of the Watt-sun system
will be also evaluated using enhanced metrics, which will be developed in this budget period
including economic and reliability metrics as well as compared to analog ensemble
forecasts used by the forecasting industry.

234

Demonstrate more than 30 % improvements over “corrected” ECMWF based solar
forecasts (including the ECMWF forecasts in our blend) and by more than 15 % without the
ECMWEF for all time horizons and metrics for all test sites (GMP, Smyrna, TEP, CAISO and
ISO-NE). For individual cases (point forecasts) we will demonstrate more than 35 %
improvements over “corrected” ECMWEF based solar forecasts.

2.1.2.6

Publication or detailed report describing the architecture of the 3nd Gen Watt-sun system
including how to interface (input/output) using standard, open data formats (GRIB2,
netCDF, HDF, XML etc.) so that other models can be incorporated.

2.1.2.7

Detailed DoE deep dive webinar/presentation on all the aspects of the Watt-sun
architecture, machine-learning, and all other associated elements. This includes how to
interface (input/output) with the Watt-sun system using standard, open data formats
(GRIB2, netCDF, HDF, XML etc.) so that other models can be incorporated and/or the
system can be customized. This deep dive will be structured such that anyone viewing this
webinar/presentation will be able to gather the necessary knowledge to reconstruct the
Watt-sun architecture, and be able to create forecasts upon feeding various model data to
Watt-sun. This deep-dive will be recorded and made available for public dissemination.

2.3.3

Comprehensive publication of the architecture and all methods and procedures used in the
Watt-sun system; this includes detailed results from the field tests.

3.1.1

Comprehensive set of use cases for the integration

3.1.2

Fully working instance of the Watt-sun technology

3.1.3

Successful integration of Watt-sun at the 1ISO-New England and Green Mountain Power
and other stakeholder with the forecasts being used in operations for more than 12 months
providing tangible benefits. Success is gauged by public feedback from the utility and 1ISO
partner(s). This includes showing tangible improvements to the load forecasts for the ISO-
New England of more than 20% per unit solar penetration (for example, this means that we
will demonstrate 2% relative load forecast improvements for 10% solar penetration).
Furthermore, benefits are measured by the set of economic metrics (see task 1)

3

3.1.4

Development of detailed business plan/strategy for the Watt-sun technology to ensure that
the Watt-sun will be further developed and maintained after the project has ended.

Table 1: Summary of all milestones and deliverables organized by budget period (=BP).
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3. Project Results and Discussion

3.1 Metrics for Assessing the Accuracy of Solar Forecasting
3.1.1 Development of Basic Metrics

A key gap in developing solar forecasting models was the unavailability of a consistent and robust
set of metrics to measure and assess forecasting accuracy. Previously, each person (forecast
provider, system operator etc) used its own metrics to describe the forecasting accuracy.
Furthermore, it was not clear that the existing metrics (such as mean absolute error) were very
suitable for power system operators considering that the predictability of large events (e.g.,
ramps) is much more relevant to the electric grid than mean deviations. To develop a consistent
set of metrics addressing the needs of power system operations three workshops were held,
where feedback and guidance from stakeholders was obtained: (i) 93 American Meteorological
Society Annual Meeting: Solar Forecasting Metrics Workshop, Austin, Texas (2013); (ii)) UVIG
Workshop on Variable Generation Forecasting Applications to Power System Planning and
Operations: Solar Forecasting Metrics Workshop, Salt Lake City, Utah (2013); (iii) UVIG
Workshop on Variable Generation Forecasting Applications to Power System Planning and
Operations: Solar Forecasting Metrics Workshop, Tucson, AZ (2014).Table 2 shows a summary
of the metrics developed in this project, which includes statistical, uncertainty quantification, ramp
characterization and economic ones, which are now discussed in more detail.

3.1.1.1 Statistical Metrics

The distribution of forecast errors is a graphical representation of the raw forecasting error data,
which provides a good overview of the performance of forecasts for longer time periods. In
addition, interval forecasts of solar power can help determining the reserve requirements needed
to compensate for forecast errors, which is an important consideration in the commitment and
dispatching of generating units. Multiple distribution types have been analyzed in the literature to
guantify the distribution of solar (or wind) power forecast errors, including the hyperbolic
distribution, kernel density estimation (KDE), the normal distribution, and Weibull and beta
distributions.>'%* In this project, the distribution of solar power forecast errors was estimated
using the KDE method.

In conjunction with the distribution of forecast errors, statistical moments (mean, variance,
skewness, and kurtosis) can provide additional information to evaluate forecasts. Assuming that
forecast errors are equal to forecast power minus actual power, a positive skewness of the
forecast errors leads to an over-forecasting tail, and a negative skewness leads to an under-
forecasting tail. A distribution with a large kurtosis value indicates a peaked (narrow) distribution;
whereas a small kurtosis indicates a flat (wide) rttot distribution.

The Kolmogorov-Smirnoff integral (KSI) and OVER ( part of the KSI which integrates above (over)
the Kolmogorov-Smirnov critical value) metrics were originally proposed by others.'? The KSI test
is a nonparametric test to determine if two data sets are significantly different. The KSI parameter
is defined as the integrated difference between the two cumulative distribution functions (CDF).
Instead of comparing forecast error directly, the KSI metric evaluates the similarities between the
forecasts and the actual values. In addition, the KSI metric contains information about the
distribution of the forecast and actual data sets, which are not captured by metrics such as root
mean square error (RMSE), mean absolute error (MAE), maximum absolute error (MaxAE), and
mean bias error (MBE). A smaller value of KSI shows that the forecasts and actual values behave
statistically similarly, which thereby indicates a better performance of the solar power forecast. A
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zero KSI index means that the CDFs of two sets are equal. The OVER metric characterizes the
integrated differences between the CDFs of the actual and forecast solar power. In contrast to the
KSI metric, the OVER metric evaluates only large forecast errors beyond a specified value,
because large forecast errors are more important for power system reliability. KSIPer and
OVERPer are used to represent the KSI and OVER in the form of percentages, respectively (i.e.,
KSIPer = 100*KSI and OVERPer = 100*OVER).

Type Metric

Description/Comment
Provides a visualization of the full range of forecast errors and
variability of solar forecasts at multiple temporal and spatial
scales

Distribution of forecast
errors

Pearson’s Correlation
coefficient

Root mean square error
(RMSE) and normalized
root mean square error
(NRMSE)

Root mean quartic error
(RMQE) and normalized
root mean quartic error
(NRMQE)

Maximum absolute error
(MaxAE)

Mean absolute error (MAE)

Linear correlation between forecasted and actual solar power

Suitable for evaluating the overall accuracy of the forecasts
while penalizing large forecast errors in a square order

Suitable for evaluating the overall accuracy of the forecasts
while penalizing large forecast errors in a quartic order

Suitable for evaluating the largest forecast error

Statistical Metrics

and mean absolute
percentage error (MAPE)

Suitable for evaluating uniform forecast errors

Mean bias error (MBE)

Suitable for assessing forecast bias

Kolmogorov—Smirnov test
integral (KSI) or KSIPer

Evaluates the statistical similarity between the forecasted and
actual solar power

OVER or OVERPer

Characterizes the statistical similarity between the forecasted
and actual solar power on large forecast errors

Skewness

Measures the asymmetry of the distribution of forecast errors;
a positive (or negative) skewness leads to an over-forecasting
(or under-forecasting) tail

Excess kurtosis

Measures the magnitude of the peak of the distribution of
forecast errors; a positive (or negative) kurtosis value
indicates a peaked (or flat) distribution, greater or less than
that of the normal distribution

Uncertainty

Rényi entropy

Quantifies the uncertainty of a forecast; it can utilize all of the

Quantification information present in the forecast error distributions
Metrics Standard deviation Quantifies the uncertainty of a forecast
Ramp . . s
Characterization | Swinging door algorithm Extracts ramps in solar power output by identifying the start
Metrics and end points of each ramp

Economic Metrics

95th percentile of forecast
errors

Represents the amount of non-spinning reserves service held
to compensate for solar power forecast errors

Table 2: Suite of metrics for solar power forecasting. A smaller value indicates a better forecast for most of the metrics,
except for Pearson’s correlation coefficient, skewness, kurtosis, distribution of forecast errors, and swinging door
algorithm.

3.1.1.2 Metrics for Uncertainty Quantification and Propagation

Two metrics were used to quantify the uncertainty in solar forecasting: (i) the standard deviation
of solar power forecast errors and (ii) the Rényi entropy of solar power forecast errors. Forecasting
metrics such as RMSE and MAE are unbiased only if the error distribution is Gaussian; therefore,
new metrics were proposed based on the use of concepts from information theory, which can
utilize all the information present in the forecast error distributions.*>** This information entropy
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approach based on Rényi entropy was adopted here to quantify the uncertainty in solar
forecasting, where generally, a larger value of Rényi entropy indicates a higher uncertainty in the
forecasting.

3.1.1.3 Metrics for Ramps Characterization: Swinging Door Algorithm

One of the biggest concerns associated with integrating a large amount of solar power into the
grid is the ability to handle large ramps in solar power output, which are often caused by cloud
events and extreme weather events.'® Naturally, different temporal and spatial scales influence
the severity of up- or down-ramps in solar power output. In this project, the swinging door
algorithm was used to identify ramps over varying time frames because of its flexibility and
simplicity.®*’

The swinging door algorithm extracts ramp periods in a series of power signals by identifying the
start and end points of each ramp. The user sets a threshold parameter that influences the
algorithm’s sensitivity to ramp variations. This threshold parameter, the only tunable parameter in
the algorithm, is the width of a “door”. The width of the door directly characterizes the threshold
sensitivity to noise and/or insignificant fluctuations to be specified. With a smaller door, many
small ramps will be identified; with a larger door, only a few large ramps will be identified.

Metrics One Plant Denver Colorado Western
Interconnection
Day- 1-Hour- Day- 1-Hour- Day- 1-Hour- Day- 1-Hour-
Ahead Ahead Ahead Ahead Ahead Ahead Ahead Ahead
Corr. coefficient 0.65 0.76 0.87 0.94 0.91 0.96 0.990 0.995
RMSE (MW) 22.07 17.12 438.25 284.36 624.19 378.65 2,711.31 1,488.28
NRMSE 0.22 0.17 0.13 0.08 0.10 0.06 0.04 0.02
RMQE (MW) 32.58 26.05 695.25 432.95 978.04 575.01 4,136.96 2,476.55
NRMQE 0.33 0.26 0.20 0.13 0.16 0.09 0.06 0.04
MaxAE (MW) 84.10 74.33 2,260.94 | 1,304.73 | 3,380.28 | 1,735.24 | 17,977.53 | 16,127.32
MAE (MW) 14.81 11.34 286.65 191.17 413.11 256.69 1,973.90 1,064.52
MAPE 0.15 0.11 0.08 0.06 0.07 0.04 0.03 0.02
MBE (MW) 4.27 2.19 131.82 31.64 172.54 43.32 1,497.29 132.13
KSIPer (%) 216.73 104.42 184.30 52.84 143.38 48.28 132.92 47.76
OVERPer (%) 136.36 28.16 94.43 0.77 54.65 0.37 41.43 0.00
Std dev. (MW) 21.65 39.57 418.00 282.62 599.94 376.20 2,260.09 1,482.44
Skewness -0.19 0.08 0.20 -0.20 0.18 -0.21 0.62 -0.23
Kurtosis 2.04 2.40 3.79 2.52 3.35 2.47 3.76 4.82
95th % (MW) 50.59 39.57 990.66 637.45 | 1,394.85 | 838.27 5,652.60 3,079.32
Capacity (MW) 100.00 100.00 | 3,463.00 | 3,463.00 | 6,088.00 | 6,088.00 | 6,4495.00 | 6,4495.00

Table 3: Metrics values by using an entire year of WWSI-2 data (see explanation in the text).

3.1.1.4 Economic Metrics

Power system operators typically rely on reserves to manage the anticipated and unanticipated
variability in generation and load. These reserves are usually referred to as “operating reserves”
and are used to manage variability in the timescale of minutes to multiple hours, which is also the
period of solar variability. High solar penetration can necessitate additional operating reserves
that need to be procured to manage the inherent variability of solar generation. Improving solar
forecasting accuracy is expected to decrease the amount of these additional operating reserves:
the greater the predictability and hence the certainty of power output from solar, the less variability
from solar that needs to be managed with additional operating reserves. Therefore, reduction in
the cost of additional operating reserves that need to be procured for managing solar variability
is a good metric to assess the economic impact of accuracy improvements in solar forecasting.
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Using the 95" percentile of forecast errors is a generally accepted method in the power industry
for load and other variability forecasts to determine the amount of operating reserves needed,;
therefore, this paper uses the 95™ percentile of solar power forecast errors as an approximation
of the amount of reserves that need to be procured to accommodate solar generation.

3.1.1.5 Evaluation and testing of metrics

The suite of metrics as summarized in Table 2 was first tested using a data set from the Western
Wind and Solar Integration Study Phase 2 (WWSIS-2), which is one of the world’s largest regional
renewable integration studies to date.'®'° This study included solar data based on a 1-minute
interval using satellite-derived, 10-km x 10-km gridded, hourly irradiance data as well as 60-
minute solar power plant output data. The solar power output data comprised distributed
generation rooftop photovoltaic, utility-scale photovoltaic, and concentrating solar power with
thermal storage. In addition, the WWSIS-2 data included day-ahead solar forecasts, which were
produced by 3TIER based on NWP simulations. The 1-hour-ahead forecasts were synthesized
using a 1-hour-ahead persistence-of-cloudiness approach.

Four scenarios were analyzed: (1) for a single solar power plant with a 100-MW capacity; (2) 46
solar power plants near Denver, Colorado, with an aggregated 3,463-MW capacity; (3) 90 solar
power plants in the state of Colorado with an aggregated 6,088-MW capacity; (4) solar power
plants in the entire Western Interconnection in the United States, including 1,007 solar power
plants with an aggregated 64,495-MW capacity. The evaluation included a sensitivity analysis,
e.g. how would the metrics change if the forecasting accuracy would increase: (i) uniform
improvements excluding ramping periods; (i) ramp forecasting magnitude improvements (iii)
ramp forecasting threshold changes. By way of example, using the WWSIS-2 data, the values for
different metrics are reported in Table 3 for the four geographical scenarios. Uncertainty metrics
for the four geographical scenarios are shown in Table 4.

One Plant Denver Colorado Western
Interconnection
Day- 1- Day- 1- Day- 1-Hour- Day- 1-Hour-
Ahead Hour- | Ahead Hour- Ahead Ahead Ahead Ahead
Ahead Ahead
4.83 4.64 4.24 4.63 4.33 4.73 4.47 4.01

Table 4: Uncertainty metrics for the four geographical scenarios.

The main impact (for the major forecasting improvement) and the total impact (for all forecasting
improvements) for each metric is listed in Table 5. The larger the value of the main effect (or total
effect) index, the more sensitive the metrics are to the type of forecasting improvement. Most
metrics are highly sensitive to the uniform improvement (compared to ramp forecasting
improvements and ramp threshold changes), indicating that these metrics can consistently and
effectively show the difference in the accuracy of solar forecasts with uniform improvements. In
addition, the skewness, kurtosis, and Rényi entropy metrics are observed to be sensitive to all
three types of forecasting improvements. These three metrics (skewness, kurtosis, and Rényi
entropy) could be adopted to evaluate the improvements in the accuracy of solar forecasts with
ramp forecasting improvements and ramp threshold changes that are important to the economics
and reliability of power system operations.

3.1.2 Baseline and Target Values

To properly gauge the quality of solar forecasts it is important to establish a baseline as well as
an appropriate target, which can be expected from such an improved forecast. Evidently, this is
not a trivial task given that the accuracy for forecasting is highly dependent on location, time of
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year, forecasting horizon, spatial extent and other factors. Generally, a baseline model is used for
comparison, which is selected from: (i) persistence models 2°2%2? ;(ii) numerical weather
prediction (NWP) models without bias correction®?* ;and (i) NWP models with bias
correction.?*2°

Metrics Uniform Improvement Ramp Improvement Ramp Threshold
Main Effect | Total Effect | Main Effect | Total Effect | Main Effect | Total Effect

Correlation Coefficient 0.836 0.905 0.070 0.119 0.004 0.069
RMSE 0.783 0.862 0.114 0.169 0.001 0.072
NRMSE 0.783 0.862 0.114 0.169 0.001 0.072
RMQE 0.771 0.883 0.099 0.187 0.001 0.061
NRMQE 0.771 0.883 0.099 0.187 0.001 0.061
MaxAE 0.753 0.900 0.065 0.196 0.008 0.093
MAE 0.788 0.849 0.112 0.164 0.004 0.085
MAPE 0.788 0.849 0.112 0.164 0.004 0.085
MBE 0.659 0.734 0.211 0.282 0.085 0.113
KSIPer 0.657 0.731 0.211 0.285 0.113 0.114
OVERPer 0.803 0.889 0.067 0.143 0.010 0.094
Standard deviation 0.815 0.899 0.083 0.143 0.001 0.060
Skewness 0.436 0.876 0.113 0.528 0.004 0.058
Kurtosis 0.313 0.887 0.061 0.546 0.031 0.218
95th percentile 0.788 0.891 0.088 0.162 0.001 0.071
Rényi entropy 0.207 0.716 0.221 0.682 0.052 0.197

Table 5: Sensitivity analysis of metrics to three types of forecasting improvements (see text for details).

In this project and as shown in Table 6, we used two different methods to establish a baseline for
short-term and long-term forecasts, respectively. For the short-term, we adopted a smart
persistence approach®’?’, while for the long-term a NWP model (here the North American
Mesoscale Forecast System (NAM)? was used to obtain the atmospheric conditions. The reason
for using the NAM model only for longer term-forecasts is due to the fact that NWP models rarely
achieve useful skill at lead times smaller than a few hours because of the (spin-up) period they
require to achieve numerical stability. The output from NAM was fed to a two-streamer Radiative
Transfer Model (RTM)?° and the PVLib tool box®*° to derive the solar power forecasts. To remove
substantial bias errors, a first order machine learning (linear regression model) model is applied
based on the data from the previous three days.

. Weather Irradiance
Forecast Horizon : Power Forecasts
Information Forecasts

15-min-ahead, 1-hour-ahead,

Persistence Streamer RTM Persistence of cloudiness
and 4-hour-ahead

(1) PVLib + linear regression; or
NAM Streamer RTM | (2) linear least square fit (if no PV
specifications available)

Table 6: Overall approach to determining baseline forecasts at different forecast horizons.

Day-ahead up to 48 hours

The forecasting is divided into two parts: non-ramping period and ramping period. The target
values for solar forecasting metrics are derived by the following procedure: (i) for the non-ramping
period, applying uniform forecasting improvements by x% based on the baseline forecasting; (ii)
for the ramping period, applying ramp forecasting improvements by y% based on the baseline
forecasting; and (iii) deriving a complete set of target metrics. The values of x% and y% are
determined based on the economic impacts of improved solar power forecasting (i.e., a reduction
of 25% in reserve levels. This level was confirmed by our ISO and utility partner.
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3.1.2.1 Flexibility Reserves for 15MA, 1HA, 4HA, and DA Forecasting

The reduction in the amount of reserves whether this is for 15 minutes ahead (15MA), 1 hour
ahead (1HA), 4 hour ahead (4HA) or day ahead (DA) that must be carried to accommodate the
uncertainty of solar power output is anticipated to be one of the significant cost savings associated
with improved solar power forecasting. Following previous work®:2, improved forecasting (on
average) reduces the amount of reserves that must be held. More specifically, the various types
of flexibility reserves are defined by:

For 15MA, 1HA, and 4HA solar power forecasting, spinning reserves are used to derive the target
solar forecasting values. Spinning reserves represent the online capacity that can be deployed
very quickly (seconds to minutes) to respond to variability. The spinning reserve for O- to 4-hours-
ahead forecasting (R14) is defined as the 95% confidence interval (@4s) of solar power forecast
errors (ef4) at the 15MA, 1HA, or 4HA horizon. RH4 = @45 (ef'4)

For DA solar power forecasting, both spinning and non-spinning reserves are used to derive the
solar forecasting target. Non-spinning reserves represent the off-line or reserved capacity, or load
resources (interruptible loads), capable of deploying within 30 minutes for at least 1 hour. The
spinning reserve for the DA forecasting (R?4) is defined as the 70% confidence interval (@-,) of
the DA solar power forecast errors (eP4).* The non-spinning reserve (R24) is defined by the
difference between a 95% confidence interval (@45) and a 70% confidence interval (@,,) of the
DA solar power forecast errors (eP4): RP4 = @,,(eP4) and RE4 = @ys(eP?) — B,4(eP4). To
estimate the economic benefits it was assumed that the cost of non-spinning reserve per MW
(CMW) is twice the cost of spinning reserve per MW (CMY) cMW =2 x cMW | which includes (i)
start-up costs of two types of generators used for spinning and non-spinning reserves (gas turbine
and oil turbine); and (ii) heat rates and fuel costs of four fuel types (biomass, nuclear, coal, and
combined cycle). The costs were selected according to the ISO-New England system.’

Figure 1: Locations of the three point and two regional test sites.

3.1.2.2 Test Sites: System Operators, Utilities, and Energy Producers

Three PV plants were chosen among hundreds of sites available for which the Watt-sun system
is forecasting (see Figure 1): Smyrna, Green Mountain Power (GMP), and Tucson Electric Power
(TEP). In addition, two regional test cases, ISO-New England (ISO-NE) and California-ISO
(CAISO) were chosen to cover two distinct atmospheric conditions: a cloudier and more humid
climate for the ISO-NE region, in contrast to relatively drier climate in the CAISO region.
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3.1.3 Baseline and Target Metrics Values for Test Sites

The above mentioned five test sites were chosen to determine baseline and target metrics.
Further below we will also compare the forecasting results from the Watt-sun syste. For brevity,
we show here only the results for baseline and target values for 2 of those 5 test sites (ISO-NE
and GMP). Additional results from the other three test sites were reported in the detall
elsewhere.?’

Test Forecast Horizon o _ _
- Role 15MA, 1HA, Day- Validation Evaluation Period
and 4HA ahead
ISO-NE System operator Persistence NAM GHI —12 MesoWest sites 03/05/13 — 30/10/13
CAISO System operator Persistence NAM Aggregated Power 04/05/13 — 30/10/13
GMP Utility Persistence NAM Direct Power measurements | 03/05/13 — 30/10/13
TEP Utility Persistence NAM Direct Power measurements | 02/06/13 — 30/10/13
Smyrna Energy producer Persistence NAM Direct Power measurements | 03/05/13 — 30/10/13

Table 7: Test sites of system operators, utilities, and energy producers.

Baseline Reserves Baseline Reserves
0-23 DA Spin 0-23 DA Non-spin ~ 24-47 DA Spin 24-47 Non-spin IHA Spin Reserves (W/m?)  4HA Spin Reserves (W/m®)  15MA Spin Reserves (W/m?)
Reserves (W/im¥)  Reserves (W/m®)  Reserves (Wim?) Reserves (Wim?) 306,15 760.56 76.17
221.58 276.62 280.30 34411
33.03% 33.03% 21.53% 41.30% 18.66%
Uniform Uniform Unifoem Uniform Uniform
Improvement Improvemeant [T} ;ruw,muf nt |mprr.m: ment Improve ment
14.34% 14.34% 25 84% 22. sm 2s 72%
Ramp Ramg Ramp Ramp Ramp
Improvement Improvement Improvement Improvemant Improvement
0-23 DA Spin 0-23 DA Non-spin 24-47 DA Spin 24-47 Non-spin ¥ %
e () Reserves (W/md) REstrves (Wi Reserves (W/md) THA Spin Reserves (W/m®)  4HA Spin Reserves (W/m®)  15MA Spin Reserves (W/im')
163.54 207.19 21033 265.50 23049 LY o
Target Reserves | Target Reserves
(a) Day-ahead forecasts at ISO-NE (b) 15MA, 1HA, and 4HA forecasts at ISO-NE

Figure 2: Target reserves values based on uniform and ramp forecasting improvement (ISO-NE)

3.1.3.1 ISO-NE Baseline and Target Metrics Values

For ISO-NE, solar generation is mostly behind the meter and interconnected to the distribution
system. Therefore, the value of an improved forecast technology will lead to improved net load
(i.e., the load minus the PV) forecasts — especially for the day-ahead unit commitment process.
Therefore, the metrics were calculated based on solar irradiance instead of power. The baseline
and target metrics for ISO-NE are summarized in Table 8. The capacity used for normalization is
1000 W/m?, DA (both 0-23 and 24-47 hours ahead) baseline forecasts performed better than the
4HA baseline forecasts, which can be partially attributed to the cloudy weather of ISO-NE region;
the cloud movement significantly affects the persistence forecast. It is important to note that for
the ISO-NE case, the irradiance is calculated by averaging a set of sites. However, since the
available sites are closely located in a small geographical region, their irradiance values are
correlated.

Figure 2 shows the baseline and target reserves values (in terms of irradiance) at different
forecast horizons. To achieve the target reserves, there is more ramp forecasting improvement
required than uniform improvement for DA and 4HA forecasts, and there is more uniform
improvement than ramp forecasting improvement for shorter timescale forecasts (1HA and 15MA)
required. Figures 3(a) and 3(b) illustrate the distributions of solar power forecast errors for ISO-
NE baseline and target forecasting, respectively.
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Figure 3: Distribution of baseline and target solar power forecast errors at DA, 4HA, 1HA, and 15MA forecast horizons

(ISO-NE)
DA DA DA DA
I I T R O 0 O
Baseline | Target Baseline | Target
Correlation coefficient 0.80 0.90 0.86 0.93 0.73 0.85 0.96 0.97 1.00 1.00
RMSE (W/m?) 152.55 115.75 122.27 89.73 192.21 143.12 73.25 55.19 18.32 13.68
NRMSE by capacity 0.15 0.12 0.12 0.09 0.19 0.14 0.07 0.06 0.02 0.01
MaxAE (W/m?) 617.54 528.96 513.11 369.03 715.12 553.44 357.36 265.00 129.05 91.99
MAE (W/m?) 119.13 88.80 92.58 67.83 147.58 107.52 52.99 40.12 13.02 9.81
MAPE by capacity 0.12 0.09 0.09 0.07 0.15 0.11 0.05 0.04 0.01 0.01
MBE (W/m?) 24.05 19.62 15.98 14.80 52.87 39.39 18.57 14.12 4.60 3.51
KSIPer (%) 170.83 148.47 147.98 121.29 144.25 131.54 60.92 47.50 20.74 17.21
OVERPer (%) 89.12 67.55 68.99 47.07 75.54 62.44 7.85 4.48 0.00 0.00
Std. dev. (W/m?) 150.69 114.11 121.25 88.52 184.85 137.63 70.87 53.36 17.73 13.23
4RMQE (W/m?) 212.81 165.39 175.62 128.06 261.63 198.49 107.36 80.52 28.17 20.91
N4RMQE by capacity 0.21 0.17 0.18 0.13 0.26 0.20 0.11 0.08 0.03 0.02
95th percentile
(W/m?) 315.68 234.01 254.17 184.18 380.34 286.38 154.16 116.37 38.41 28.55
Renyi entropy 5.29 5.11 5.18 5.16 5.22 5.10 4.74 4.80 4.42 4.48
NRMSE by clear sky
irradiance 0.28 0.22 0.22 0.16 0.30 0.23 0.12 0.09 0.03 0.02
MAPE by clear sky
irradiance 0.22 0.17 0.17 0.12 0.23 0.17 0.09 0.07 0.02 0.02

Table 8: Baseline and target metrics values for ISO-NE at different forecast horizons.

3.1.3.2 GMP Baseline and Target Metrics Values

GMP has relatively high solar penetration. At the time of the study, there was approximately 47
MW PV installed behind the meter, which represents about 5% of peak load in the GMP region.
Table 9 summarizes the baseline and target values at different forecast horizons. Figure 4 shows
the baseline and target reserves. For all forecast horizons, there are more uniform improvements
than the ramp forecasting improvements required. Figures 5(a) and 5(b) illustrate the distributions
of solar power forecast errors for baseline and target forecasting, respectively. The 4HA forecast
tends to under forecast the power generation compared to other forecast horizons, which might
be due to morning clouds in the region and the shading by mountains.
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: Baseline Reserves | Baseline Reserves
0-23 DA Spin 0-23 DA Non-spin 24-47 DA Spin 24-47 Non-spin IHA Spin Reserves (MW)  4HA Spin Reserves (MW)  15MA Spin Reserves (MW)
Reserves (MW) Reserves (MW) Reserves (MW) Reserves (MW) 2242 45.00 20,09
15.62 23.19 1744 2357
28.72% 32.03% 35.91% 35.91% 34.83%
Uniform Uniform Uniform Uniform Uniform
Impr;msnl Impro;menl Improvement lmpr\wemem Impr\wemem
18.66% 14.34% 22.97% za 97% |? 50%
Ramp Ramp Ramg Ramp
Improvement Improvement Improvement Improvement Jmprmcmenl
0-23 DA Spin 0-23 DA Non-spin 24-47 DA Spin 24-47 Non-spin 2 R n n
Reserves (MW Resorves (MW Reserves (MW) Reserves (MW) IHA Spin Reserves (MW)  4HA Spin Reserves (MW)  15MA Spin I:»v."r\w (MW)
11.61 17.56 13.14 18.35 Ln e Sl
| Target Reserves Target Reserves
(a) Day-ahead forecasts at GMP (b) 15MA, 1HA, and 4HA forecasts at GMP

Figure 4: Target reserves values based on uniform and ramp forecasting improvement (GMP).
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Figure 5: Distribution of baseline and target solar power forecast errors at DA, 4HA, 1HA, and 15MA forecast
horizons (GMP).

3.1.4 Reliability Metrics

In addition to the metrics discussed above, the team worked on metrics to quantify the practical
reliability benefits of forecasts enhancements. Towards that end, a methodology was developed
which utilized a multi-timescale power system operation model (Flexible Energy Scheduling Tool
for Integration of Variable Generation (FESTIV)**%®) to calculate the area control area (ACE), the
absolute area control error in energy (AACEE), the standard deviation of the area control error
(o4cg) and the North American Electric Reliability Corporation Control Performance Standard 2
(CPS2) score based on the unit commitment, economic dispatch, and automatic generation
control processes. In addition, a new integrated reliability metric, namely the Expected Synthetic
Reliability (ESR) was developed, which quantifies the reliability performance from the improved
solar power forecasts as

ESR = 1/4 [CPS24core — AACEE  — 0405 — Ny |72, where Ny, is the number of violation periods.

For this work a representative IEEE 118-bus system was adopted to simulate different scenarios
with different levels of improvements, locations, forecast horizons, and solar penetration levels.
The results are presented further below.
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DA DA DA DA 4HA
Metrics 4-47) | (24-47) | (0-23) | (0-23) | Base Tg'r*g’; . Bals"e'ﬁne T;'rg; . B;gg’:{: . Tlfr';'g
Baseline | Target Baseline | Target line
Correlation
coefficient 0.67 0.82 0.72 0.85 0.66 0.80 0.91 0.95 0.94 0.97
RMSE (MW) 9.44 7.19 8.63 6.47 10.87 8.02 5.21 3.83 4.29 3.23
NRMSE by
capacity 0.20 0.15 0.18 0.14 0.23 0.17 0.11 0.08 0.09 0.07
MaxAE (MW) 38.10 30.06 30.05 24.45 | 45.43 | 35.00 29.10 22.42 31.16 23.81
MAE (MW) 7.03 5.35 6.21 4.69 7.89 5.74 3.64 2.64 2.42 1.73
MAPE by
capacity 0.15 0.11 0.13 0.10 0.17 0.12 0.08 0.06 0.05 0.04
MBE (MW) 0.07 0.21 -0.36 -0.21 -3.76 -2.68 -1.25 -0.90 -0.07 -0.04
KSIPer (%) 138.02 147.06 108.81 119.86 | 213.1 | 148,51 79.73 57.25 10.06 12.87
OVERPer (%) 63.21 67.18 32.46 42.56 126.4 62.94 13.99 1.19 0.00 0.00
Standard dev.
(MW) 9.45 7.19 8.63 6.47 10.20 7.56 5.06 3.73 4.29 3.23
4ARMQE (MW) 13.42 10.25 12.28 9.17 1591 | 11.98 8.00 5.99 7.77 6.09
N4RMQE by
capacity 0.28 0.22 0.26 0.19 0.34 0.25 0.17 0.13 0.16 0.13
95th percentile
(MW) 20.38 15.31 19.51 14.51 23.70 17.32 11.38 8.55 10.04 7.53
Renyi entropy 5.33 5.24 5.34 5.31 4.95 4.86 4.56 4.45 3.40 3.17
NRMSE by clear
sky power 0.34 0.26 0.35 0.27 0.41 0.30 0.21 0.15 0.18 0.13
MAPE by clear
sky power 0.25 0.19 0.26 0.19 0.29 0.21 0.14 0.10 0.10 0.07

Table 9: Baseline and target metrics values for GMP at different forecast horizons.

3.2 The Watt-sun Forecasting System

The main research theme in this task was to explore how accurate and scalable (thus low cost)
forecasting may be enabled by blending multiple forecasting models using a novel machine
learning approach. The foundation of renewable energy forecasting is physical modeling including
NWP models?**¢ as well as models based on the advection of total sky imager®’* and satellite
images®“°. Moreover, the accuracy of these models can be boosted by statistical post-
processing. Established methods include model output statistics (MOS)**2, multi-model
averaging®“°, and the dynamic integrated forecast (DICast)*®*’ approach. DICast effectively
combines MOS and model averaging - several MOS forecasts are averaged using weights
optimized using typically a few days of history. More recently, aided by progresses in computation
and the advent of Big Data*®*® which enables convenient retrieval and processing of large
volumes of historical data, more sophisticated machine learning techniques®°! begin to be
employed®?*®, In contrast to MOS or DiCast, which largely are based on linear regression, state-
of-the-art machine learning promises the correction of forecasting errors which are nonlinear to
the input variables or which are dependent on the interactions between the variables. Typically,
machine learning is used to train a regression between historical measurements (e.g., solar
power) as the response variable and historical forecasts (e.g., solar power, solar angles,
temperature, etc.) as the predictor variables. The trained regression is then applied for future
forecasts.

More specifically, we explored an approach of machine learning based, situation-dependent,
multi-model blending for renewable energy forecasting. The salient feature is that a set of
appropriately chosen parameters are used to create different weather situation categories in
which the input models exhibit different error characteristics. Historical data are binned into
different weather situations, and machine learning models for statistically correcting the forecasts
are trained separately for each situation. This practice avoids some common pitfalls of the
machine learning as it will become clear in the discussion below.
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Figure 6: Architectural view of situation-dependent, machine learning based multi-model blending.

3.2.1 Overview of the Watt-sun Forecasting Method

In its simplest form, the situation-dependent multi-model blending method can be represented by
the following equation yielding an optimal forecast (C, .4 ) for a given parameter (wind, irradiance,
etc.) using a linear combination of models,

Catena (7, %,S(E)) = W, (7,%,S(E))C,y (7, X)

where 7 is the forecast horizon, x is the spatial extent of the forecast, and s is the weather
situation defined by a set of parameters E. C_ is a forecast associated with an input physical

model (e.g., an NWP model) and w,, is its respective machine-learnt weighting coefficient, which

is a function of forecast horizon, location, and weather situation s. The index m corresponds to
different physical models and forecast systems.

Figure 6 provides a simplified architectural overview of the system applied to renewable energy
forecasting assuming historically measurements are available for the training targets. A “big data”
bus provides forecasts of atmospheric conditions (such as temperature, wind speed, cloud
properties, etc.) from various input forecasting models. A radiative transfer model module
converts forecasted atmospheric conditions first into irradiance and then an irradiance to power
model determines the generated solar power forecasts. If the method is applied to wind power
forecasting a wind to power model would have to be deployed. The different power forecasts are
blended by the information blending module. A categorization module classifies the weather
situation and a machine learning module provides the blending for each weather situation as we
will discuss in much more detail below. Initially the system is trained on historical data, but as new
measurements become available it continually retrains. Next, a typical implementation of situation
categorization and machine learning is represented, as summarized in Figure 7, including the
rationale behind it, and a display of exemplary results.

For the analysis which we are discussing below, global horizontal irradiance (GHI), diffusive
normal irradiance (DNI), surface temperature at 2 m height (T2m), and wind speed at 10 m above
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ground (W10m) measurements were taken from seven stations of the surface radiation (SurfRad)
network®®. GHI and DNI forecasts are calculated from the vertical atmospheric and cloud profiles
(temperature, pressure, humidity, cloudy liquid water, and ice content) and surface albedo
forecasted by the NWPs using a plane-parallel multi-layer radiative transfer model #°. T2m and
W10m forecasts are taken from the NWPs directly. Daily 18h Coordinated Universal Time (UTC)
runs of the North American Mesoscale (NAM)>” model (resolution is 5 km) and the Global Forecast
System (GFS)®® (resolution is 0.5 deg), and 15h UTC run of the Short Range Ensemble Forecast
(SREF)®® (40 km resolution with the advanced research Weather Research Forecast (WRF) core,
central member)*® are used to extract the day-ahead forecasts of GHI, DNI, T2m, and W10m.
Forecasts of 12 to 36 hours ahead for NAM (18z run) and GFS and 15 to 39 hours for SREF (15z
run) ahead are extracted and validated against the measurements. The validation time is one
year from 2015-03-01 to 2016-02-28. The training of the RF model and situation-dependent
blending is performed on data from 2013-03-01 to 2015-02-28.

3.2.2 Categorization of Weather Situations

The categorization of weather situations starts with analyzing how the systematic errors of the
individual forecast models depend on the atmospheric state parameters including forecasted
ones. To illustrate the process, we show here the results for GHI forecasts from the NAM model.
The GHI forecasting errors are quantified using measurements from the SurfRad station in
Bondville (BND), Champagne, IL.*® The forecasting error dependences on atmospheric
parameters, such as Direct Normal Irradiance (DNI), cloud liquid water and cloud ice contents,
cloud base and top heights, surface temperature at 2 m (T2M), surface pressure, etc., are derived
from the daily run of the NAM model at 18 UTC hour using Functional Analysis of Variance
(FANOVA).

Analysis of Physical Model Error
Dependence using FANOVA,

3 i Select Important Parameters.
Situation

Categorization

Predict Error of the Physical Models
in the Forecasting Period.

Categorization Weather Situation for
the Training and Forecasting Periods.

Train a ML Model for each Weather
Situation in the Training Period.
Machine
Learning Apply the ML Model to the corresponding
Weather Situation in the Forecast Period.

Figure 7: Flow chart showing the steps of situation categorization and machine learning.

3.2.2.1 Functional Analysis of Variance

Feeding the input data from the forecasts into a quantile regression forest® learning model, one
fits of the relationship between the GHI forecast error and the forecasted parameters,

Ecni=F(X1, X2, ..., Xn),

where Echi = GHlforecasted - GHlmeasured, 1S the GHI forecast error, X1 is GHlsorecasted, @and Xz, ..., Xn are
the additional forecasted parameters.

Limited by the size of the available training dataset and high dimensionality of the input
parameters, such statistical fitting of forecast error is noisy. To counter the limitation, the errors of
the forecasts are then broken to its 0", 1%, 2" ... order dependence on individual input parameters
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using FANOVA®L, | FANOVA decomposes the overall error into mean bias, the dependence on
individual parameters, the interaction between two-parameter pairs, etc. The zeroth order term fy
is the mean bias error of a forecast. The first order term f; provides the error dependence on X;
only, while the effects of all other parameters are averaged out (with zeroth order term removed).
The second order term fi; provides the error dependence on x; and x; (with zeroth and first order
terms removed): F = f, +Z f,(x)+ D (%, X;) +... with

i#]

fo = [ F (XX, ), X,
fi = [P0, ) 0 XX, —

i+1

fi | :_[F(xl,...,.xn)dxl...ddexi XXX = FOG) = F(xg) = f

Parameters:
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Figure 9: Significance of Input Parameters on FANOVA 2" Order for the NAM and the High Resolution Rapid Refresh
(HRRR) model.

3.2.2.2 Parameter Selection

For any FANOVA term (0™",1%t, 2" order, or beyond) as shown in Figure 10, we computed the
variance of the error. Generally, a large variance means the FANOVA term has a large
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dependence on the parameter(s). Thus, it is important to include the parameter(s) for situation
categorization. As shown in Figure 8 and 9 for 24 parameters, the importance of the parameters
towards situation categorization is site and model dependent thus important parameters and
weather situation categorization need to be determined using the training dataset on a case-by-
case basis. The importance of a given parameter is quantified by summing up the variance of all
the 15 and 2" order FANOVA terms relating to it. All parameters derived from the NWP models
are ranked and the top parameters of importance beyond a threshold (1 W/m? for GHI forecasting)
are selected. The max number of parameters is limited by the size of the training data, as a
practical rule of thumb, about 1/100 of the number of training labels available.
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Figure 10: Salient examples of NAM GHI forecast error obtained from FANOVA. (A) and (B) show 15 order dependence
on NAM forecasts of GHI and surface pressure, respectively. (C) and (D), respectively, show salient 2" order GHI
forecast error dependences on GHI and surface pressure (C) and on 2 m temperature and zenith angle (D).

3.2.2.3 Examples for Situation Categories

Figure 10 shows illustrative examples of salient the FANOVA estimated 15t and 2" order NAM
GHI forecasting error dependences. Additional examples and discussions are included further
below. Figures 10A and 10B show the 1% order error dependence on GHI and surface pressure,
respectively. A negative 1% order error (under-prediction) occurs for small GHI or large surface
pressure, while a positive 1% order error (over-prediction) occurs for large GHI or small surface
pressure. Two examples of 2" order GHI error dependence on input parameters are shown in
Figures 10C and 10D. We observe that the forecasting error vs. GHI and surface pressure
forecasts (Figure 10C) can be roughly divided into four regions or situations. For small (large)
GHI and small (large) pressure, the 2" order forecasting error is negative, otherwise the 2" order
error is positive. Similarly, a strong interaction between forecasts of 2 m temperature and zenith
angle is observed in Figure 10D. More examples from the FANOVA analysis are shown below.
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Figure 11: Additional examples of 1St order and 2" order NAM GHI forecast error dependence at the Surfrad BND
station in Champagne, IL.

Such error dependences are high-order systematic errors of the forecasting model (mean bias
error is the 0" order systematic error). While it is of separate interest to investigate their underlying
causes for improving the different forecasting models, which was done throughout the project with
Stan Benjamin from the Earth System Research Laboratory (ESRL) of the National Oceanic and
Atmospheric Agency (NOAA), here for machine learning aimed at statically minimizing error, their
implication is two-fold. First, the error dependence provides information on selection of important
parameters carrying information to improve model accuracy. Second, the pattern of error
dependences on the important parameters suggests that one may divide the entire space into
subspaces (i.e., situation categories) based on the expected model error, as illustratively marked
by dashed lines in Figures 10C and 10D. Such situation categorization ensures the forecasting
error of an input physical model is similar in the same category. This enables the more effective
forecasting error reduction using machine learning because forecasts can be trained using data
of similar nature.

When multiple input models are involved, the dimensionality of the space (formed by the important
parameters from the multiple models) increases. For such situation categorization, since we are
ultimately concerned about combining the different weather models so that their errors can be
reduced, an intuitive way is to categorize according to the expected errors of the individual
models, which in turn is linked to the important parameters via the FANOVA derived error
dependences. For simplicity of visualization, Figure 12 gives an example of the GHI forecast error
for the BND SurfRad site using NAM and GFS models. Figure 13 shows a three-model situation
categorization. An unsupervised classification learning algorithm, Gaussian mixture models®?, is
used to classify situation categories. The color of each point visualizes the resulting categories.
We constrain the maximum number of situation categories to be up to ten, while the optimal
number of categories is determined by the Bayesian Information Criteria. It is worth noting that
such situation categorization, even though entirely data driven (using model error), it nevertheless
is correlated with empirically defined meteorological weather situations (such as clear-sky,
partially cloudy, overcast, etc.) as discussed below. For a given forecasting data point, we first
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compute the expectation of the error of the individual models using FANOVA by summing up the
error dependences on all important parameters, and then use the trained Gaussian mixture
model®® to categorize the data points.

800

GFS Emor (Wim”)

o
NAM Emror (Wim'}

Figure 12: Color of the dots shows the situation categories created by the error of NAM and GFS forecasts for the BND
SurfRad site.

) B g F 85 £ Eo) 100 0 ] EC T )

Figure 13: Color of the dots shows the situation categories created by the error of NAM, GFS, and SREF forecasts for
the BND Surfrad site.

3.2.3 Machine Learning Models

For each situation category within given periods of training data and forecast data, a supervised
machine learning model is independently trained on the training time period (establishing a
regression between the predictor variables and the response variables by minimizing a certain
cost function = metrics) and applied to the forecast time period. Generally, the response variables
are the measurements of the quantity of interest such as solar irradiance. In the simplest form,
predictor variables are the forecasts of the quantity of interest by different NWPs or other physical
models. Including predictions of selected important parameters such as temperature, pressure,
etc. often leads to better accuracy. Testing an array of supervised learning algorithms, we found
that significant forecasting error reduction with respect to the best model can be achieved.
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The situation categorization ensures that the input models have relatively similar error values in
the same situation category, so that a learning model can more effectively reduce the error of the
forecast. Take for example the Random Forest (RF) model®, which is commonly used for
forecasting when there is sufficient data. RF is a type of bagging method®. It averages an
ensemble of over-fitted tree models, each model fitted on a subset of training data and using a
subset of predictor variables, which makes the RF model robust - even if the training data contain
predictor variables which are irrelevant or highly correlated with each other, RF performance does
not degrade significantly. Such benefit of a RF model, however, at the same time can cause
difficulty for accurate prediction of infrequent cases. Since there is relatively small number of such
training data, most trees in the ensemble will not see them, the averaged prediction of the
ensemble is thus biased towards the “mean” (i.e., the fitting of the common cases). The situation
categorization helps RF by grouping the common cases and the infrequent cases into the training
data in different situation categories, thus mitigates the “bias towards mean” problem. In addition,
the categorization also prevents a few erroneous outlier training data points from significantly
impacting the forecasting performance as these data points, due to their different error
characteristic, tend to be classified as a separate situation category.
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Figure 14: (A) Exemplary GHI forecasted day-ahead by GFS (gray line), random forest learning without situation
categorization (red line), and situation dependent blending (blue line) compared to measurements (black squares). The
data is for SurfRad BND station in Champaign, lllinois 05/08/15 to 05/21/15. Forecasts were issued at 18h UTC for the
12 to 36 hours ahead. The three individual models used to create the blending are NAM, GFS, and SREF. (B) repeats
the situation dependent blending forecasts (blue line in A) with the situation categories represented by the color of each
data points.

In addition to RF, Linear Model (LM) and Support Vector Machine (SVM)®¢" are also used for the
forecasting. LM provides explicit situation-dependent blending weight coefficients, thus helps
evaluating the performance of the different models in different situations. LM is also favored when
the training data set becomes excessively large given its lower computing cost®®. SVM (with radius
basis function kernel) using selected predictor variables provides a comparable accuracy to RF,
but is often more accurate when only a short period of training data is available. Given no single
machine learning algorithm covers accuracy, robustness, and flexibility, a multi-expert learning
system combining them is one way to achieve the best overall performance. A multi-expert
learning system which dynamically selects an individual learning algorithm from a set of
competing ones according to recent performance is employed. By using a set of learning
algorithms of different complexities (thus of training data requirement), the multi-expert learning
mitigates common troubles associated with training data (for example changes in the NWP model
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or missing training data). It thus improves the robustness of the forecasting system in absence of
manual intervention, which in turn improves the scalability.

3.2.3.1 Multi-Expert Learning

Robustness of the forecasts is of importance for providing operational forecasts at low cost.
Methods need to be scalable to many sites and different forecasting targets with the least
involvement of a human expert. Some of the hurdles include the upgrade or temporary
unavailability of an individual models, missing or undetected erroneous measurement data, and
events that cannot be reliably predicted such as unplanned maintenance at a solar farm. A multi-
expert learning approach mitigates their impact. The tradeoff is the cost of more computation
which is becoming increasingly affordable. For multi-expert learning, a dozen machine learning
models are set-up. The individual machine learning algorithms are run in parallel, the algorithm
provides the best accuracy for the last two days is selected for future forecasts. To automatically
choose the best performing model setting, we varied the following configurations: (1) the selection
of the input models, (2) the selection of the training data size, (3) the maximum number of situation
categories, and (4) the machine learning algorithm. A typical mix of machine learning models for
12 to 36 hours ahead forecasting as shown in Table 10. The different selection of input models
deals issues relating to model change or unavailability of a model data. The different training data
size deals with issues relating to model changes, data availability, or potential changes in site
specification (such as degradation of efficiency). In such cases, it is advantageous to exclude
specific models or old training data. We also note that the accuracy for some sites benefits from
including only training data from the same season. While overall the situation categorization
improves forecasting accuracy, accuracy may reduce if forecasting data points are misclassified.
This problem is mitigated by varying the maximum number of situation categories (including the
limiting case of no categorization). The combination of RF, SVM, and LM enables both high
accuracy and robustness as discussed. Additionally, two “no-learning” experts taking directly GFS
model output and persistence are also included to handle rare case of no data availability or
certain unpredictable events (such as PV plant electrical failures).

Input models Training data size Situation categories | Learning
Algorithm
1 NAM/SREF/GFS All data, hourly Yes RF
2 NAM/SREF/GFS All data, hourly Yes SVM
3 NAM/SREF/GFS All data, hourly Yes LM
4 NAM/SREF/GFS All data, hourly No RF
5 NAM/SREF/GFS Same season, hourly Yes RF
6 NAM/SREF/GFS 3 months, hourly Yes SVM
7 NAM/SREF/GFS 1 months, hourly No SVM
8 GFS 1 month, hourly No RF
9 NAM 1 month, hourly No RF
10 NAM 1 week, hourly No LM
11 GFS None No None
12 Persistence None No None

Table 10: A typical mix of machine learning models for multi-expert learning.

3.2.4 Forecasting Error Reduction

Figure 14A shows an exemplary period of GHI measurements (black squares) at BND station
versus forecasts by GFS (gray line), conventional machine learning using RF model (red line),
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and situation dependent blending (blue line). Here the RF model is used to establish a baseline,
as after testing different learning models we found that it reflects the best accuracy of a
conventional machine learning approach without situation categorization have to offer. While the
RF model (red line) reduced the forecasting errors, compared to individual models (such as the
GFS forecasts, gray line), its short-coming is a tendency towards the mean irradiance value. For
the two clear sky days, 05/13/15 and 05/19/15, the RF forecasts are below the measurements,
while for the cloudy days 05/08/15 and 05/09/15, the RF forecasts are higher than the
measurements. This indeed reflects the bias towards “mean” of the RF learning algorithm as
elucidated previously. Using situation categorization, the forecasts (blue line) are improved for
both clear sky and cloudy days. The situation categorization based forecasts are shown in Figure
10B. It is observed that the two clear sky days belong mostly to one category (blue) while the
cloudy days belong to other categories. Note that the situation categories were created using
FANOVA predicted forecasting errors of the individual models without explicitly dealing with clear
sky or cloudy. The clear sky days are nevertheless put into the same category (blue), presumably
because clear sky days have distinct error characteristics. As the situation categorization enables
different learning models to be fitted for clear sky vs. cloudy days, a reduction of overall error
follows.

Figure 15 summarizes the mean absolute error of the four parameters predicted by the NAM,
GFS, SREF models as well as by RF model and situation-dependent blending. The MAE of the
GHI forecasts (Fig. 15A) by the uncorrected NAM, GFS, and SREF models are respectively 94,
115, and 103 W/m? (red bars). The MAE of machine learning (RF model) without situation
categorization is 80 W/m? (green bar). In contrast, the situation-dependent blending reduces the
MAE to 72.5 W/m? (blue bar), a ~30% improvement with respect to the best individual model
NAM, and a ~10% reduction with respect to RF learning. Similar degrees of improvement are also
seen for DNI, T2m, and W10m as shown in Figure 15(B,C,D). The detailed GHI forecasting
accuracy comparisons of individual models, RF learning, and situation-dependent blending using
different metrics, are provided in the Table 11 for all Surfrad stations.
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Figure 15 summarizes day-ahead forecast error of (A) global horizontal irradiance (GHI), (B) direct normal irradiance
(DNI), (C) temperature at 2 m above ground (T2m), and (D) wind speed at 10 m above ground (W10m) using different
methods. Red: uncorrected NAM, GFS, and SREF. Green: conventional machine learning using random forecast model
without situation categorization. Blue: Situation-dependent model blending. The data shown are the average forecast
error (day-time only) of the seven SurfRad stations from 02/28/15 to 02/28/16. The error bars show the standard
deviation of the errors at the seven stations. Forecasts were issued at 18h UTC for the 12 to 36 hours ahead. The three
individual models used to create the blending are NAM, GFS, and SREF.
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Station Bondville (BND), Champaign, IL

BND Situation-Dependent
Metrics NAM GFS SREF RF ML Blending
Capacity (W/m?) 1000 1000 1000 1000 1000
Correlation Coefficient 0.863 | 0.836 0.842 0.905 0.914
RMSE (W/m2) 144 176 166 115 110
NRMSE 0.144 0.176 0.166 0.115 0.11
MaxAE (W/m?) 947 846 812 667 631
MAE (W/m?) 90.9 118 106 77.6 72.6
MAPE 0.0909 | 0.118 0.106 0.0776 0.0726
MBE (W/m?) 23.4 37 55.6 -7.01 -4.89
KSIPer 4.784 6.57 9.435 4.685 4.292
Std Deviation (W/m?) 142 173 157 115 110
Skewness 0.38 0.298 0.696 0.459 0.175
Kurtosis 4.32 2.78 3.46 3.31 3.45
RMQE_4 (W/m?) 237 274 265 181 175
NRMQE_4 0.237 0.274 0.265 0.181 0.175
Percentile950N/m2) 276 359 368 186 180
Station Table Mountain (TBL), Longmont, CO
TBL Situation-Dependent
Metrics NAM GFS SREF RF ML Blending
Capacity (W/m?) 1000 1000 1000 1000 1000
Correlation Coefficient 0.846 0.836 0.81 0.887 0.906
RMSE (W/m2) 173 176 176 132 120
NRMSE 0.173 0.176 0.176 0.132 0.12
MaxAE (W/m?) 875 846 848 607 562
MAE (W/m?) 107 118 117 91.5 79.7
MAPE 0.107 0.118 0.117 0.0915 0.0797
MBE (W/m?) 63.3 37 22.3 -15.3 -6.51
KSIPer 10.042 6.57 5.656 6.37 5.173
Std Deviation (W/m?) 161 173 175 131 120
Skewness 0.779 0.298 0.251 0.236 -0.00909
Kurtosis 3.54 2.78 2.71 2.32 2.89
RMQE_4 (W/m?) 276 274 273 198 187
NRMQE_4 0.276 0.274 0.273 0.198 0.187
Percentile95(W/m2) 388 359 355 216 196
Station Fort Peck (FPK), Poplar, MT
FPK Situation-Dependent
Metrics NAM GFS SREF RF ML Blending
Capacity (W/m?) 1000 1000 1000 1000 1000
Correlation Coefficient 0.887 0.836 0.878 0.913 0.922
RMSE (W/m2) 136 176 134 103 97.7
NRMSE 0.136 0.176 0.134 0.103 0.0977
MaxAE (W/m?) 837 846 781 649 648
MAE (W/m?) 88.1 118 84.8 68.6 63.8
MAPE 0.0881 0.118 0.0848 0.0686 0.0638
MBE (W/m?) 54.2 37 42.7 -5.13 -2.34
KSIPer 9.466 6.57 7.881 4.171 3.299
Std Deviation (W/m?) 124 173 127 103 97.7
Skewness 0.404 0.298 0.599 0.798 0.637
Kurtosis 5.92 2.78 5.63 4.36 4.24
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RMQE_4 (W/m?) 225 274 226 169 160
NRMQE_4 0.225 0.274 0.226 0.169 0.16
Percentile95(W/m?) 276 359 272 178 159
Station Goodwin Creek (GCM), Goodwin Creek, Mississippi
GCM Situation-Dependent
Metrics NAM | GFS SREF RF ML Blending
Capacity (W/m<) 1000 | 1000 1000 1000 1000
Correlation Coefficient 0.837 0.836 0.835 0.887 0.907
RMSE (W/m?) 167 176 191 131 120
NRMSE 0.167 | 0.176 0.191 0.131 0.12
MaxAE (W/m?) 866 846 899 677 743
MAE (W/m?) 105 118 118 87.4 77.2
MAPE 0.105 | 0.118 0.118 0.0874 0.0772
MBE (W/m?) 37.1 37 85.2 1.27 5.14
KSIPer 7.23 6.57 13.656 6.077 5.625
Std Deviation (W/m?) 163 173 171 131 120
Skewness 0.554 0.298 1.44 0.9 0.628
Kurtosis 4.05 2.78 2.9 3.81 4.2
RMQE_4 (W/m?) 273 274 306 213 197
NRMQE_4 0.273 | 0.274 0.306 0.213 0.197
Percentile95(W/m?) 331 359 458 240 219
Station Sioux Falls (SXF), Garretson, SD
SXF Situation-Dependent
Metrics NAM GFS SREF RF ML Blending
Capacity (W/m?) 1000 1000 1000 1000 1000
Correlation Coefficient 0.856 0.836 0.833 0.895 0.908
RMSE (W/m?) 150 176 163 116 109
NRMSE 0.15 0.176 0.163 0.116 0.109
MaxAE (W/m?) 902 846 758 714 675
MAE (W/m?) 90.3 118 103 77.2 70.9
MAPE 0.0903 0.118 0.103 0.0772 0.0709
MBE (W/m?) 41 37 39.1 -6.75 -4.97
KSIPer 6.447 6.57 7.54 4.327 4.128
Std Deviation (W/m?) 144 173 158 116 109
Skewness 0.455 0.298 0.483 0.604 0.57
Kurtosis 5.66 2.78 3.66 3.77 3.98
RMQE_4 (W/m?) 254 274 262 186 176
NRMQE_4 0.254 0.274 0.262 0.186 0.176
Percentile95(W/m?) 301 359 341 203 189
Station Desert Rock (DRA), Desert Rock, NV
DRA Situation-Dependent
Metrics NAM | GFS SREF RF ML Blending
Capacity (W/m?) 1000 | 1000 1000 1000 1000
Correlation Coefficient 0.895 0.836 0.885 0.916 0.922
RMSE (W/m?) 145 176 141 119 114
NRMSE 0.145 | 0.176 0.141 0.119 0.114
MaxAE (W/m?) 899 846 812 732 655
MAE (W/m?) 84.5 118 87 77.6 69.6
MAPE 0.0845 | 0.118 0.087 0.0776 0.0696
MBE (W/m?) 52 37 21.6 -6.64 -5.15
KSIPer 8.371 | 6.57 5.738 5.423 3.389
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Std Deviation (W/m?) 136 173 139 119 114
Skewness 1.15 0.298 1.74 1.14 0.253
Kurtosis 6.9 2.78 4.99 5.11 5.24
RMQE_4 (W/m?) 255 274 242 199 193
NRMQE_4 0.255 0.274 0.242 0.199 0.193
Percentile95(W/m?) 305 359 315 215 178
Station Penn State University (PSU), Pennsylvania Furnace, PA.
PSU Situation-Dependent
Metrics NAM GFS SREF | RFML Blending
Capacity (W/m?) 1000 1000 1000 1000 1000
Correlation Coefficient 0.839 0.836 0.838 0.891 0.901
RMSE (W/m?) 153 176 170 121 116
NRMSE 0.153 0.176 0.17 0.121 0.116
MaxAE (W/m?) 779 846 840 652 746
MAE (W/m?) 96.7 118 109 81.1 75.7
MAPE 0.0967 0.118 0.109 0.0811 0.0757
MBE (W/m?) 26.3 37 61.3 -4.85 -0.9
KSIPer 7.694 6.57 11.145 | 5.541 4.881
Std Deviation (W/m?) 151 173 158 121 116
Skewness 0.128 0.298 0.881 0.305 0.287
Kurtosis 3.68 2.78 3.11 3.13 3.79
RMQE_4 (W/m?) 245 274 269 190 187
NRMQE_4 0.245 0.274 0.269 0.19 0.187
Percentile95(W/m2) 292 359 378 209 196

Table 11: Comparison of GHI day-ahead (12 - 36 hours) forecasting error for the seven NOAA Surfrad stations using
the suite of metrics developed in this project. Forecasts are generated using uncorrected NAM, GFS, SREF, random
forecast model, and situation-dependent model blending. The data are for time period 02/28/15 to 02/28/16.

The underlying reason for such performance improvement may be understood by revisiting the
situation-dependent error of the forecasts. Statistical post-processing corrects the systematic
error of one or more forecast models. The conventional multi-model averaging method largely
reduces important parameters in the predictor variables, machine learning approaches are
capable of correcting higher order errors dependences, thus achieving an overall improved
forecast accuracy. For instance, recalling the NAM model GHI forecasting has a significant 2"
order error dependence on 2m Temperature and zenith angle ranging from -3.5 to 3.5 W/m?
(Figure 10C). The corresponding 2" order error plots of GHI forecasts from conventional machine
learning (RF model) and situation-dependent blending are shown in Figure 16. Both RF learning
and situation-dependent blending reduce the 2" order error to a range of -2.5 to +2.5 W/m?2,
Furthermore, even compared to RF learning (Figure 16A), the situation-dependent blending
(Figure 16B) apparently has further reduced the 2" order error dependence on 2m Temperature
and zenith angle. (The variances of 2" order error plots are 0.45 and 0.92, respectively.) In
situation-dependent blending, the weather situations are categorized according to the forecasting
errors of the input models that are linked to the important parameters via the FANOVA derived
error dependences exemplified by Figure 10. Such observed reduction of high order error
indicates that machine learning becomes more effective for error reduction in each situation
individually, which is at the core of the better overall accuracy of situation-dependent blending
compared to conventional approaches.
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Figure 16: Second order GHI forecast error dependences on NAM temperature 2 m forecast and zenith angle. (A) is
the result from forecast using random forest model without situation categorization and (B) is from situation-dependent

model-blending.

3.2.5 Results from 5 Test Sites

Site 504 TEP FRV

Time horizon 24 to 47 hr 0to 23 hr 4 hr 1 hr 15 min
BaseLine 3.56 4.03 4.09 2.14 1.11
Target 2.67 2.94 3.017 1.618 0.78
Status 2.41 1.6 2.151 1.695 0.976
Improvement 129.21% 222.94% 180.65% 85.22% 40.61%
Site 101 Smyrna
Time horizon 24 to 47 hr 0to 23 hr 4 hr 1hr 15 min
BaseLine 0.13 0.12 0.14 0.122 0.03
Target 0.1 0.09 0.11 0.087 0.02
Status 0.099 0.088 0.106 0.088 0.028
Improvement 103.33% 106.67% 113.33% 97.54% 18.00%
Site 901 GMP
PostRoad
Time horizon 24 to 47 hr 0to 23 hr 4 hr 1hr 15 min
BaseLine 7.03 6.21 7.89 6.64 2.42
Target 5.35 4.69 5.74 4.816 1.73
Status 4.83 4.54 4.936 4.463 1.95
Improvement 130.95% 109.87% 137.40% 119.34% 68.12%
Site 2000 CAISO
Time horizon 24 to 47 hr 0to 23 hr 4 hr 1 hr 15 min
BaseLine 98.56 98.91 111.97 93.98 22.24
Target 71.74 72.68 85.35 70.95 15.45
Status 90.3 82.7 83.500 81.300 19.3
Improvement 30.80% 61.80% 105.950% 55.059% 43.30%
Site 12201 ISONE
SEMA
Time horizon 24 to 47 hr 0to 23 hr 4 hr 1hr 15 min
BaseLine 119.13 92.58 147.58 52.99 13.02
Target 88.8 67.83 107.52 40.12 9.81
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Status 52.6 59 48.4 46.500 10.9
Improvement 219.35% 135.68% 247.58% 50.427% 66.04%
AVERAGE
Time horizon 24 to 47 hr 0to 23 hr 4 hr 1hr 15 min
Ave. for 5 sites 122.73% 127.39% 157.18% 81.52% 47.21%

Table 12: Summary of the MAE (in MW) forecasting results for the 5 test cases. The validation time period is one year
from 2015-03-01 to 2016-02-28. The training of the RF model and situation-dependent blending is performed on data
from 2013-03-01 to 2015-02-28.

Detailed results from the Watt-sun system for the 5 test sites have been reported at UVIG 2016
DoE Solar Forecasting workshop in Denver, in previous reports and other publications. Here we
focus on the summary of the results for the MAE and RMSE metrics as shown in Table 12 and
Table 13, respectively. Improvements are defined as ((A-B)/(T-B) with A as the achieved (status),
B the baseline, and T the target value.

Site 504 TEP FRV

24 to 47
Time horizon hr 0to 23 hr 4 hr 1hr 15 min
BaseLine 5.3 5.82 5 3.12 2.04
Target 3.99 4.21 3.68 2.34 1.55
Status 3.71 3.1 3.46 2.52 1.75
Improvement 121.37% 168.94% 116.67% 76.92% 59.18%
Site 101 Smyrna
24 to 47
Time horizon hr 0to 23 hr 4 hr 1hr 15 min
BaseLine 0.17 0.17 0.19 0.1 0.05
Target 0.13 0.12 0.14 0.07 0.04
Status 0.12 0.115 0.142 0.072 0.047
Improvement 125.00% 110.00% 96.00% 93.33% 30.00%
Site 901 GMP PostRoad
24 to 47
Time horizon hr 0to 23 hr 4 hr 1hr 15 min
BaseLine 9.44 8.63 10.87 5.21 4.29
Target 7.19 6.47 8.02 3.83 3.23
Status 7.2 6.6 6.42 3.72 3.32
Improvement 99.56% 93.98% 156.14% 107.97% 91.51%
Site 2000 CAISO
24 to 47
Time horizon hr 0to 23 hr 4 hr 1hr 15 min
BaseLine 168.39 150.54 184.62 119.91 29.01
Target 120.05 110.82 149.17 90.75 21.42
Status 145.3 120.23 145.2 105.2 24.56
Improvement 47.77% 76.31% 111.20% 50.45% 58.63%
Site 12201 ISONE SEMA
24 to 47
Time horizon hr 0to 23 hr 4 hr 1hr 15 min
BaseLine 152.55 122.27 192.21 73.25 18.32
Target 115.75 89.73 143.12 55.19 13.68
Status 79 86 74.8 57.2 16.2
Improvement 199.86% 111.46% 239.17% 88.87% 45.69%

AVERAGE
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24 to 47
Time horizon hr 0to 23 hr 4 hr 1hr 15 min
Ave. for 5 sites 118.71% 112.14% 143.84% 83.51% 57.00%

Table 13: Summary of the RMSE (in MW) forecasting results for the 5 test cases. The validation time period is one year
from 2015-03-01 to 2016-02-28. The training of the RF model and situation-dependent blending is performed on data
from 2013-03-01 to 2015-02-28.

There are two key results: First, the Watt-sun system very successfully enables the forecasting
accuracy to reach target value (>100% improvement) for longer forecasting time horizon (over 4
hours). Second, the 1-hour-ahead forecasting performance improvement is close to target, while
the 15-minute-ahead is close to the mid-point between baseline and target This trend is not
surprising because for the shorter forecasting time horizon, the smart persistence forecast is used
as the baseline. The numerical weather models, due to the time required to spin up with data
assimilation and uncertainties in the initial boundary conditions, turn out to be often less accuracy
compared to persistence. Despite the accuracy improvement enabled by blending the models,
the results, though easily outperform smart persistence, still have difficulty reaching target
accuracy.

As an example, for the improvement in reliability, the absolute area control error in energy
(AACEE) is being reported in Table 14 showing in most cases significant improvements in
reliability using the Watt-sun forecasting system.

5.08% penetration || 15.24% penetration 25.40% penetration
Baseline Target Watt-sun|| Baseline Target Watt-sun || Baseline Target Watt-sun
GMP  Value [MWh] 1785 926 908 1861 1387 1339 2569 2034 1832
2DA  Improvement - 48.12 49.13 - 25.47 28.05 - 20.83 28.69
GMP  Value [MWh] 1632 925 762 1771 1381 1339 2476 1903 1526
1DA  Improvement - 43.32 53.31 - 22.02 24.39 - 23.14 38.37
GMP  Value [MWh] 1957 1356 1225 2024 1507 1473 2674 2437 2229
4HA  Improvement - 30.71 37.40 - 25.54 27.22 - 8.86 16.64
GMP  Value [MWh] 851 756 926 1339 1179 1429 1586 1477 2141
1HA  Improvement - 11.16 -8.81 - 11.95 -6.72 - 6.87 -34.99
TEP  Value [MWh] 1446 1029 689 1541 1256 992 2317 1982 1381
2DA __ Improvement - 28.84 52.35 - 18.49 35.63 - 14.46 40.41
TEP Value [MWh] 1563 1117 589 1662 1341 871 2404 2012 1345
1DA Improvement - 28.53 62.32 - 19.31 47.59 - 16.31 44.05
TEP  Value [MWh] 1306 849 879 1342 1153 1161 2164 1682 1962
4HA  Improvement - 34.99 32.71 - 14.08 13.49 - 22.27 9.33
TEP  Value [MWh] 826 607 699 1069 975 1055 1614 1369 1612
1HA  Improvement - 26.51 15.38 - 8.79 1.31 - 15.18 0.12
Smyr  Value [MWh] 1804 1543 1427 2043 1857 1832 2696 2212 1984
2DA  Improvement - 14.47 20.91 - 9.11 10.33 - 17.95 26.41
Smyr  Value [MWh] 1765 1499 1188 1949 1852 1668 2603 2025 1946
1DA  Improvement - 15.07 32.69 - 4.98 14.42 - 22.21 25.24
Smyr  Value [MWh] 1916 1677 1488 2093 1931 1832 2727 2393 1988
4HA  Improvement - 12.47 22.34 - 7.74 12.47 - 12.25 27.11
Smyr  Value [MWh] 1402 943 1254 1821 1378 1751 1982 1691 1959
1HA  Improvement - 32.74 10.56 - 24.33 3.84 - 14.68 1.16
ISO-  Value [MWh] 2199 1483 1774 2209 1683 1784 2673 1841 2353
2DA  Improvement - 32.56 19.33 - 23.81 19.24 - 31.13 11.97
ISO-  Value [MWh] 1693 1186 1286 1758 1526 1665 2193 1794 1807
1DA  Improvement - 29.95 24.04 - 13.21 5.29 - 18.19 17.61
CAIS  Value [MWh] 1985 1258 1061 2048 1901 1787 2625 2216 2079
2DA  Improvement - 36.62 46.55 - 7.18 12.74 - 15.58 20.81
CAIS  Value [MWh] 1599 991 691 1941 1767 1334 2343 1885 1569
1DA  Improvement - 38.02 56.79 - 8.96 31.27 - 19.55 33.03
Table 14: Overall results for AACEE under three solar power penetration levels.
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3.2.6 Comparison to ECMWF

Besides comparing the performance of the Watt-sun system to the baseline and targets it was
also compared to ECMWF®® (European Centre for Medium-Range Weather Forecasts), which is
a propitiatory forecasting model costing ~$250,000 annually and considered to be the “gold”
standard. The Watt-sun forecast system is all applied to provide forecasting with and without the
ECMWF model in the blending. ECMWEF is updated only twice a day at 0-hour UTC and 12 hour
UTC, which made it not useful for intra-day forecasting. The ECMWF also provides most accuracy
advantage for longer forecasting time horizon (2DA and beyond). Figure 17 summarizes 2DA
power forecast error (MAE) for the three-point test sites, Smyrna, TEP, and GMP Post road sites.
The comparison is between 1% order learning corrected ECMWF model (red bar), situation-
dependent model blending using NOAA public models without ECMWEF (green bar), and with
ECMWEF (blue bar). The test time is 2014-12-1 to 2015-06-30 for the Smyrna site and 2015-1-1
to 2015-12-31 for TEP FRV and GMP Post road sites. The situation dependent blending excluding
ECMWEF provided 21% improvement (target 15%) upon 1st order corrected ECMWEF. This shows
the value of the blending methodology — by blending three public models, the forecast accuracy
surpasses ECMWF. With ECMWEF included in the forecasting itself, the blended forecasting
shows 24% improvement (close to the target of 30%) upon 1% order corrected ECMWF-.
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Figure 17: Summary of 2 day-ahead AC power forecast error (MAE) for the three “point-test” sites, Smyrna, TEP, and
GMP Post road sites using different methods. Red: 1%t order learning corrected ECMWF mode. Green: Situation
dependent model blending using NOAA public models (NAM, GFS, and SREF) without ECMWF. Blue: Situation
dependent model blending using NOAA public models and ECMWF.

3.2.7 Nation-wide Solar Forecasting

For forecasting for the entire US we leveraged the Remote Automatic Weather Stations (RAWS)
system, which is a dense network (~1600 in the continental US) of weather stations run by the
U.S. Forest Service and Bureau of Land Management.”® RAWS provides hourly global horizontal
irradiance measurements. Figure 18 shows next to the RAWS instrumentation a map of all RAWS
stations, which we are using for developing a gridded forecast.
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Figure 18: Location of the RAWS stations across the US (left) and RAWS instrumentation (right).

A critical step for developing a gridded forecast lies in the understanding whether or how proxy
measurement sites can used for training / machine-learning (rather than actual co-located
measurement sites). We note that this is — beyond the goal of developing gridded forecasts — a
very important aspect of the Watt-sun system because if one could use proxy sites, the
requirement of actual measurements from the forecast sites is not as stringent anymore and the
applicability of Watt-sun would be clearly broadened.
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Figure 19: RAWS station in the Los Angeles area (left) and forecasting results (i.e., mean absolute error) for the target
site just using proxy sites (right).
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Figure 20: lllustration of the blending approach to develop a gridded forecast.
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Figure 19 illustrates an example of the studies, which we have undertaken to understand the
viability of the use of proxy sites for our machine-learning approach. In this Figure, we show
different RAWS sites in the Los Angeles metro area with a “target” site in the center. We note that
we have 5 proxy sites within 20 miles of the test site. We have an additional 10 RAWS stations
within 40 miles and yet another 3 stations within 60 miles. Figure 19 shows on the right-side
irradiance (GHI) forecast errors for the target site where we have used only the proxy sites within
40 miles. We compare the Watt-sun forecast error with the NAM and SREF forecast error
demonstrating more than 25 % improved accuracy (less error).

2015-06-13 00:00 UTC =

Figure 21: It shows a 48 hour ahead forecast of global horizontal irradiance (color scale) of contiguous US obtained via
machine-learning based situation-dependent blending of two weather models — the north American mesoscale (NAM)
model and the short-range ensemble forecast (SREF) model. This forecast is issued at 2015-06-11 00:00 UTC for
2015-06-13 00:00 UTC. The model blending is trained by historical forecasts and measurements at ~1600 remote
automatic weather stations (RAWS) of the MesoWest network (yellow circles).

)
1000 Wim?

The results shown in Figure 19 certainly show how we can use our machine-learning approach
to develop gridded forecasts. Clearly, as further away the proxy sites are from the actual test site
the less viable the approach is but it is certainly not only distance. For understanding the validity
of a proxy site, we studied systematically the correlations between the RAWS station across the
whole continental US to develop a sophisticated map of weights. A paper is being prepared
describing this approach. Figure 20 shows an example, where we have blended two GHI
forecasts (NAM and SREF) using more than 1600 RAWS sites across the country.

Figure 21 shows a screenshot of the web interface, which was developed to share these
continental US-wide irradiance forecasts. Each point (yellow circle) shows a RAWS station, where
the performance of the Watt-sun system is being reported and compared with other weather
models — using the metrics which were developed earlier in this project. In average, we show
more than 30 % improvements across the 1600 sites. The data is available at
https://pairs.res.ibm.com/.
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Figure 22: Schematic showing the necessity of a 3D radiative transfer model given the apparent deficiency of a 1D
model in a partially cloudy scenario.

3.2.8 3D Radiative Transfer

A three-dimensional (3D) radiative transfer model was also developed for the Watt-sun forecast
system. Towards that end, first we investigated the “potential” improvements of a 3D RTM versus
a 1D or 2D model, which is what most forecasting systems are using today. Namely, the
atmospheric states (pressure, temperature, cloud, and aerosol) are assumed to be uniform
horizontally. As illustrated in Figure 22, such simplification has clear limitations in partial cloudy
condition in which the solar irradiation may penetrate through “clear sky” between clouds and
reach the solar panels. The 1D model cannot take full advantage of the high horizontal resolution
of the latest cloud-resolving numerical weather prediction (NWP) models. To enhance forecasting
accuracy, needed is a 3D model capable of handling horizontal distribution of the clouds as
predicted by NWP models.

Our work is based upon (a) the existing 1D RT module and (b) the open source MCARATS (Monte
Carlo Atmospheric Radiative Transfer Simulator). MCARATS is a general purpose 3D radiative
transfer simulator.”* MCARATS is essentially a Monte Carlo solver of the RT equations. It cannot
read inputs from NWPs and it does not contain the necessary parameterization of wavelength
dependent scattering or absorption by gas species, aerosols, and clouds etc. Thus, the existing
1D RT module has been modified to parse NWP inputs into 3D grid and supply the necessary
scattering/absorption parameterization; then it calls the MCARATS to solve the RT equations,
and finally read out the results from MCARATS. The accuracy of the 3D RT module with respect
to the 1D module has been tested using 6 months of measurement data (2015-1-1 to 2015-6-30)
on the NOAA SurfRad sites as summarized below. The NOAA 5 km NAM model (6z run O to 24
hour ahead) is used as the input NWP. For fair comparison, the output of both RT models are
used as-is. There is no statistical correction applied.
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Figure 23: Comparison of 1D (red) and 3D (blue) radiative transfer models as a function of cloud cover percentage.
The four panels show mean absolute error results for four SurfRad stations. Time period is 2015-1-1 to 2015-6-30.
Inputs for the radiative transfer calculation are provided by the 5 km NAM model 06z run 0 to 24 hour ahead (except
aerosol and surface albedo are provided MODIS).

Site BND TBL FPK GCM PSU SXF
RT model 1D 3D 1D 3D 1D 3D 1D 3D 1D 3D 1D 3D
Capacity (W/m?) | 1000 | 1000 [ 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000
pcoe 0.86 | 0.802 | 0.808 | 0.767 | 0.896 | 0.872 ] 0.807 [ 0.774 | 0.83 | 0.814 [ 0.837 | 0.803
RMSE (W/m?) 153 154 204 182 147 122 206 184 174 161 170 155
NRMSE 0.153 [ 0.154 | 0.204 | 0.182 | 0.147 | 0.122 | 0.206 | 0.184 [ 0.174 | 0.161 | 0.17 | 0.155
MaxAE (W/m?) 618 586 875 698 650 599 732 741 815 834 708 730
MAE (W/m?) 93.9 [ 114 133 134 100 83 141 123 110 110 109 108
MAPE 0.0939( 0.114 [ 0.133 | 0.134| 0.1 [0.083|0.141)0.123 | 0.11 | 0.11 [ 0.109 | 0.108
MBE (W/m?) 76.2 | 202 | 110 | 2.88 | 91.1 | -4.63 | 116 42 835 | 293 | 875 | 7.39
KSIPer 15.758| 4.242 [17.391| 4.831 [15.453| 3.311 |19.595| 8.784 |14.861| 8.564 |15.122( 4.878
StdDev (W/m?) 133 154 172 182 115 122 171 180 153 159 146 155
Skewness 1.76 [ 0.697 | 1.36 | 0.64 16 [085 | 112 [0.683] 1.72 | 1.31 | 1.16 | 0.74
Kurtosis 345 [ 162 | 239 | 147 | 3.48 | 3.62 | 1.43 2.2 416 | 359 | 3.21 | 3.23
RMQE 4 (W/m?) | 251 227 317 265 230 194 307 283 289 265 267 246
NRMQE_4 0.251 [ 0.227 | 0.317 | 0.265 | 0.23 | 0.194 | 0.307 | 0.283 | 0.289 | 0.265 | 0.267 | 0.246
Percentile95(W/m?)| 382 319 486 360 329 199 451 353 383 343 374 284

Table 15: Comparison of 1D and 3D radiative transfer accuracy for six SurfRad stations under partially cloudy condition
(cloud cover between 10% to 90%). Time period 2015-1-1 to 2015-6-30. Inputs for radiative transfer are provided by
the 5 km NAM model 06z run 0 to 24 hour ahead (except aerosol and surface albedo are provided MODIS). TBL=
Table Mountain, Boulder, Colorado, PSU=Penn State University, Pennsylvania
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Figure 23 below shows the comparison of the two models as a function of NAM reported cloud
cover percentage for four SurfRad sites. For near zero cloud cover, the 1D (red) and 3D (blue)
models have comparable mean absolute error (MAE), which is not surprising since the 3D model
essentially reduces to a 1D where there is no horizontal variation of cloud cover. For higher cloud
cover, the 3D model has overall better performance. For example, as shown in Figure 23, the
FPK, GCM sites shows a substantial error reduction for cloud cover greater than 10%. For SXF
site the two models have comparable MAE. BND is an outlier for which the 1D model has smaller
MAE.

The full suite of metrics *® for the 1D/2D and 3D RT models is calculated for time period 2015-01-
01 to 2015-06-30 and shown in Table 15. The comparison is done for six SurfRad sites in patrtial
cloudy hours (cloud cover 10% to 90%), which usually have the larger irradiance forecast error
compared to overcast (100% cloud cover) or clear sky conditions. Note that among the seven
SurfRad stations, the DRA site located in Nevada desert is left out in this comparison since it does
not have statistically significant number of cloudy hours in the 6-month time period.
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Figure 24: Comparison of the accuracy of 1D (red) vs. 3D (blue) radiative transfer models under partially cloudy
condition (cloud cover between 10% to 90%). Comparison of four key metrics, (a) mean absolute error, (b) mean bias
error, (c) root mean quartic error, and (d) the 95th percentile of forecast error is shown.

From Table 15, the comparison of four selected metrics is presented in Figure 24 below. Figure
24A shows the mean absolute error comparison. Among the six sites, two sites (FPK and GCM)
have markedly reduced MAE using the 3D model, three sites (TBL, PSU, SXF) have comparable
MAE using the 1D or the 3D model, while BND site has worse MAE using the 3D model. The
average MAE is 114.5+18 W/m? and 112.0+17 W/m? for the 1D and 3D model, respectively. No
statistically significantly reduction of MAE is achieved using the 3D model. In contrast to the MAE,
however, the bias of the 3D model is significantly less than the 1D model (Figure 24B). The mean
bias error (MBE) of the six sites on average is 94.0+16 W/m? for the 1D model and 13.2+18 W/m?
for the 3D model.
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Moreover, importantly for the use-cases of the forecasts, the metrics results (Table 15) shows
that the 3D model significantly reduces the occurrence of the relatively large forecast error as
characterized by the root mean quadratic error (RMQE) metrics as shown in Figure 24C. All six
sites show substantial reduction of RMQE using the 3D RT model. The average RMQE is
276.8+33W/m? for the 1D model and 246.6+32W/m? for the 3D model, a reduction of over 10%.
As well known, such large forecast errors are the most significant for economic value of the
forecast. Towards this end we look at the 95th percentile of forecast errors (Percentile95), which
represents the amount of non-spinning reserves required to compensate the forecast error. As
shown in Figure 24D, all six sites show substantial reduction of Percentile95. The average
Percentile95 is 400.8+57W/m? for the 1D model and 309.6+61W/m? for the 3D model, i.e. a
reduction of non-spinning reserve by over 25%.

3.2.9 Short-term forecasting

A new algorithm for short-term solar energy forecasting from a sequence of GOES satellite
images was developed and implemented. Conventionally short-term forecasting algorithms®¢:2
perform cloud advection using either (a) wind velocity field derived from numerical weather
prediction (NWP) models or (b) optical flow analysis of a sequence of satellite images. In the
former case, even the NWP model is perfectly accurate, the error in determining cloud height may
lead to large error of the velocity field. In the latter case, the wind velocity field is assumed to be
static and does not reflect the dynamics of the wind in the future.

Products Sets of Sites Forecasted Parameters Measurement Available
ISONE GHI forecast RAWS Point Sites Hourly averaged GHI Hourly averaged GHI
0to 3DA (15)
ISONE POA Irradiance Solren Point Sites Hourly averaged GHI Hourly averaged POA
Forecast with Irradiance Hourly averaged POA Irradiance
0to 3DA Measurements (19) Irradiance
ISONE Load Zone LoadZone Hourly averaged PV Hourly averaged PV
Forecast Forecasts (8) normalized by nameplate | normalized by nameplate
0to 3 DA AC AC from ~900 solren sites.
GMP PV Forecast PV Point Sites (14) Hourly averaged PV Hourly averaged PV
O0to 1 DA normalized by nameplate | normalized by nameplate
AC AC

Table 16: Forecasting products for stakeholders (POA=plane of array).

In contrast, the new algorithm combines optical flow and 2D Navier-Stokes Equation (NSE) which
not only accurately captures the current wind velocity field but also, to a certain degree, the wind
dynamics in the future. The algorithm is inspired by the following observation of satellite cloud
images: the dynamics of clouds (represented by cloud optical depth (COD)) resembles the motion
(transport) of a density in the fluid flow. This suggests that, to forecast the motion of COD images,
a parametric model of the fluid flow can be “learned” from the COD images, observed in the past,
to forecast the fluid flow. Hence, the learning phase of the algorithm is composed of the following
two steps: (1) optical flow estimation: given a sequence of COD images, the snapshots of the
optical flow based velocity fields are estimated from two consecutive COD images using standard
optical flow techniques. (2) Navier-Stokes Equation (NSE) fitting: these snapshots are then
assimilated into a NSE, i.e. an initial velocity field for NSE is selected so that the corresponding
NSE’ solution is as close as possible to a sequence of optical flow snapshots of velocity fields.
The prediction phase consists of utilizing a linear transport equation, which describes the transport
of COD images in the fluid flow predicted by NSE, to estimate the future motion of the COD
images. Using the algorithm, we demonstrated around 30% error reduction of irradiance
forecasting on one-hour ahead time scale with respect to smart persistence and NWP models on
typically partially cloudy days. Efforts are underway to implement the algorithm in C++ (current
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implementation in Matlab) on a parallel computing platform and then to port it into the Watt-sun
forecasting system.

3.3 Integration of the Watt-sun Forecasting System

An important task was to deliver operational forecasts to the ISO-NE and GMP. More specifically,
the forecast products listed in Table 16.

RAWS GHl Imadiance forecasts 1 DA: 7.0% NMAE
2 DA 7.5% NMAE
3 DA: 8.4% NMAE
Normalized by 1000W/m?

horizon
1 days ahead
= B2 cays ahead
5 3 days ahead
c
§

Month

{wrt 1000Wim2)

MAE

Figure 25: ISO-NE forecasting accuracy of GHI at RAWS point sites.

Figure 25 shows the ISO-NE GHI forecasting accuracy of the 1DA, 2DA, and 3DA GHI at RAWS
point sites between July 2015 and April 2016. The average normalized forecasting MAE errors at
the 1DA, 2DA, 3DA horizons are 7.0%, 7.5%, and 8.4%, respectively. For 1DA forecasts, the
normalized MAE errors are varying between approximately 5% and 8%. Figure 26 shows the
plane of array (POA) irradiance forecasting accuracy of the 1DA, 2DA, and 3DA GHI at Solren
point sites between July 2015 and April 2016. The average normalized forecasting MAE errors at
the 1DA, 2DA, 3DA horizons are 7.5%, 8.3%, and 9.4%, respectively. Figure 27 shows the
forecasting accuracy of the 1DA, 2DA, and 3DA PV power at different load zones of ISO-NE. The
MAE values are normalized by the nameplate power from ~900 Solren sites. The 1DA PV power
forecasting MAE errors are varying between approximately 2% and 7% among different load
zones. Most of the 2DA and 3DA forecasting MAE errors are below 10%. Figure 28 shows the
forecasting accuracy of the 1DA PV AC power at different point sites at GMP. The corresponding
nameplate PV capacities normalize the MAE values. The 1DA PV power forecasting MAE errors
are varying between approximately 4% and 10.5% at different PV sites.

The accurate forecasting is an essential tool for facilitating the integration of solar photovoltaic
(PV) power into the bulk power system. The quantification of the practical benefits of the forecasts
from the perspectives of both reliability and economic value were performed using a multi-
timescale power system operation model was discussed earlier. The representative IEEE 118-
bus system has been adopted to simulate 400 scenarios with different levels of improvements,
locations, forecast horizons, and penetration levels. The simulations show that: (i) Watt-sun
forecasts perform better (compared to baseline forecasting) for most cases in terms of power
system reliability performance; (ii) reliability benefits are gradually enhanced by the solar power
forecasting improvement in multi-timescale power system operations; and (iii) benefits of
improved forecasting increases drastically with higher penetration levels of solar energy.
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Figure 26: ISO-NE forecasting accuracy of POA irradiance at Solren point sites
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Figure 27: ISO-NE PV power forecasting accuracy at different load zones

Moreover, through interaction with ISO-NE, the team discovered that snow detection plays an
important role in winter time. Snow cover induces low PV output (despite high irradiance) and can
drastically reduce forecasting accuracy. The negative effect can be long lasting due to the
contamination of training dataset. At the request of ISO-NE, a methodology for snow detection
are developed and tested. A detailed manuscript is being prepared describing the details of this
method.
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Figure 28: GMP- PVac power point forecast accuracy

4. Significant Accomplishments and Conclusions
The projected has resulted into several key accomplishments.

1.

The work has led to a commonly accepted method and set of metrics how to measure the
accuracy of solar forecasting, which is a very important step towards further developing
improved forecasting methods. The metrics include statistical, uncertainty quantification,
ramp characterization, economic and reliability metrics. Even more important a
methodology was developed how to determine baseline and target values for these
metrics, which can now be used to compare forecasts and set “expectations” of a standard
and a state-of-art forecast, respectively.

Most importantly, the team advanced the state of forecasting significantly. The noticeable
feature of the Watt-sun forecast system is that a set of appropriately chosen parameters
is used to create different weather situation categories in which the input models exhibit
different error characteristics. This approach (i.e., situation dependent, machine-learnt,
multi-model blending has been demonstrated to advance the accuracy of the next best
standard bias corrected model by more 30% and by more than 15% compared to a DiCast
approach. These improvements are significant given the fact that traditional the accuracy
of forecasting has only improved by ~6% each decade.® The Watt-sun forecasts were
provided operational to the ISO-New England and Green Mountain Power throughout the
project.

The Watt-sun forecasts met in average the target values for all 5 test sites and for all time
horizons using the set of metrics, which were developed in this project. However, at short
forecast horizons (1 hour ahead and 4 hour ahead) the Watt-sun forecast improvements
have been less than for longer forecast horizons. This is at least partially due to the fact
that “smart persistence” as a baseline is already quite accurate.

The Watt-sun system is being ported to the Physical Analytics Integrated Data Repository
and Services (PAIRS)**"3, which is completely scalable data and analytics platform and
which may provide a smooth way for further commercializing the developed technology
and to integrate it into other IBM offerings.

The team published 7 full papers, participated in 25 conferences, conducted 2 public
webinars (one on the metrics and another one of the Watt-sun system), organized jointly
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with the NCAR team and DoE 2 special sessions at annual UVIG conference, won 3
awards and had countless press mentioning. A replicate of Watt-sun forecasting system
was also created at the National Renewable Energy Laboratory to ensure that the

technology can be used for the public good.

5. Inventions, Patents, Publications

5.1 Full papers

1.

A Methodology for Quantifying Reliability Benefits from Improved Solar Power Forecasting in Multi-
Timescale Power System Operations

M. Cui, J. Zhang, B.-M. Hodge, S. Lu, and H. F. Hamann

submitted to IEEE Transactions on Smart Grid

Machine Learning based Situation-Dependent Multi-Model Blending for Enhancing Renewable
Energy Forecasting

S. Lu, Y. Hwang, I. Khabibrakhmanov, X. Shao, A. Florita, C. B. Martinez-Anido, B.-M. Hodge, J.
Zhang, E. F. Campos, and H. F. Hamann

submitted to Solar Energy.

The value of day-ahead solar power forecasting improvement

C.B. Martinez-Anido, B. Botor, A. Florita; S. Lu; H.F. Hamann; B.-M. Hodge
Solar Energy 129, 192 (2016)

doi:10.1016/j.solener.2016.01.049

On the usefulness of solar energy forecasting in the presence of asymmetric costs of error
I. Khabibrakhmanov, S. Lu, H. F. Hamann, K. Warren

IBM J. Res. & Dev. 60, 7:1 (2016)

doi:10.1147/JRD.2015.2495001

Baseline and Target: Road to a Better Solar Power Forecasting

J. Zhang, S. Lu, B.-M. Hodge, H.F. Hamann, B. Lehman, J. Simmons, E. Campos
Solar Energy 122, 804 (2015)

doi:10.1016/j.solener.2015.09.047

A Suite of Metrics for Assessing the Performance of Solar Power Forecasting

J. Zhang, B.-M. Hodge, A. Florita, S. Lu, H.F. Hamann, V. Banunarayanan, A. Brockway
Solar Energy 111, 157 (2015).

doi:10.1016/j.solener.2014.10.016

Recent Trends in Variable Generation Forecasting and Its Value to the Power System

K. D. Orwig, M. Ahlstrom, V. Banunarayanan, M. Marquis, J. Sharp, J. Wilczak, J. Freedman, S.
Haupt, J. Cline, O. Bartholomy, D. Bartlett, H.F. Hamann, Bri-M. Hodge, C. Finley, D. Nakafuji, J.
Peterson, D. Maggio

IEEE Transaction on Sustainable Energy 99, 1 (2014).

doi:10.1109/TSTE.2014.2366118

5.2 Conferences

1.

Short-term Global Horizontal Irradiance Forecasting Based on Sky Imaging and Pattern Recognition
(best paper award)

C. Feng, M. Cui, M. Lee, J. Zhang, B.-M. Hodge, S. Lu, and H. F. Hamann

IEEE Power & Energy Society General Meeting (2017) (accepted)

Page 41 of 50


http://dx.doi.org/10.1016/j.solener.2016.01.049
http://www.nrel.gov/docs/fy15osti/63876.pdf
http://dx.doi.org/10.1016/j.solener.2015.09.047
http://www.sciencedirect.com/science/article/pii/S0038092X14005027
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6996049&sortType%3Dasc_p_Sequence%26filter%3DAND%28p_IS_Number%3A5433168%29
http://dx.doi.org/10.1109/TSTE.2014.2366118

10.

11.

12.

13.

14.

DE-EE0006017

A Multi-scale, Multi-Model,

Machine-Learning Solar Forecasting Technology
IBM TJ Watson Research Center

A machine-learning approach for regional photovoltaic power forecasting

Li, Yuan, Qian Sun, Brad Lehman, Siyuan Lu, Hendrik F. Hamann, Joseph Simmons
IEEE Power & Energy Society General Meeting (2016)

doi: 0.1109/PESGM.2016.7741991

Solar Irradiance Forecasting by Machine Learning for Solar Car Races

X. Shao, S. Lu, T.G. van Kessel, H.F. Hamann, L. Daehler, J. Cwagenberg, A. Li
IEEE Big Data (2016)

doi: 10.1109/BigData.2016.7840851

Solar radiation forecast with machine learning

X. Shao, S. Lu, H.F. Hamann

The 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices, 19-206 (2016).
doi:10.1109/AM-FPD.2016.7543604

Smart Solar Field Instrumentation for Development of Site-Specific Irradiance to Power Models
J.C. Simmons, C. Bokrand, B.J. Potter, S.Lu, H.F. Hamann
5th PV Performance Modeling Workshop (2016).

Physical Analytics: Bringing big data together with physics (invited)
H.F. Hamann
Physics Informed Machine Learning (2016).

DoE Solar Forecasting Project: Progress in Short-Term Forecasting (invited)
H.F. Hamann
UVIG Forecasting Workshop (2016).

DoE Solar Forecasting Project: Overview of the IBM Project (invited)
H.F. Hamann
UVIG Forecasting Workshop (2016).

A Two-Dimensional Gridded Solar Forecasting System using Situation-Dependent Blending of
Multiple Weather Models

S. Lu, Y. Hwang, |. Khabibrakhmanov, X. Shao, H.F. Hamann

American Geophysical Union Fall Meeting, A11H-0164 (2015).

Towards Gridded Foundational Solar Forecast of Enhanced Accuracy: Weather “Situation” Dependent
Forecast Error and Machine-Learnt Multi-Model Blending

S. Lu, Y. Hwang, X. Xiao, H. F. Hamann

3 International Conference Energy and Meteorology (2015).

Improvement of Solar Irradiance Forecast Using Machine Learning
S. Lu, X. Shao, Y. Hwang, I. Khabibrakhmanov, H. F. Hamann
9th Annual Machine Learning Symposium of the New York Academy of Sciences (2015).

Physical Analytics: An emerging field with real-world applications and impact (invited)
H.F. Hamann
American Physical Society March Meeting (2015).

Situation-dependent blending of multiple forecasting models based on machine learning (invited)
H.F. Hamann, S. Lu

SPIE Newsroom (2015).

doi:10.1117/2.1201510.00614

Baseline and target values for PV forecasts: Toward improved solar power forecasting
J.Zhang, B.M. Hodge, S.J. Simmons, S. Lu, E. Campos, B. Lehman, V. Banurarayan
Proceedings of IEEE Power & Energy Society General Meeting, 1 (2015).
doi:10.1109/PESGM.2015.7286239
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Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis

W. Cheung, J. Zhang, A. Florita, B.-M. Hodge, S. Lu, H. F. Hamann, Q. Sun, B. Lehman

5t Solar Integration Workshop: International Workshop on Integration of Solar Power into Power
Systems, Brussels, Belgium (2015).

A Multi-faceted approach towards solar forecasting
E. Campos, E. Constantinescu, Y. Feng, J. Wang, Z. Zhou, A. Botterud, D. Cook, H.F. Hamann, S. Lu
95" Annual Conference of the American Meteorological Society, Phoenix (2015).

Machine Learning Based Multi-Physical-Model Blending for Enhancing Renewable Energy Forecast —
Improvement via Situation Dependent Error Correction

S. Lu, Y. Hwang, I. Khabibrakhmanov, F. J. Marianno, X. Shao, J. Zhang, B. Hodge, H F. Hamann
95" Annual Conference of the American Meteorological Society, Phoenix (2015).

Situation Dependent Machine Learning based Multi-Model Blending for Enhancing Renewable
Energy Forecasting (invited)

H.F. Hamann

2015 Forecasting Workshop, Denver, Colorado (2015).

Machine Learning Based Multi-Physical-Model Blending for Enhancing Renewable Energy Forecast —
Improvement via Situation Dependent Error Correction (invited)

S. Ly, Y. Hwang, |. Khabibrakhmanov, F. J. Marianno, X. Shao, H.F. Hamann

European Journal of Control Conference, Linz, Austria (2015).

doi:10.1109/ECC.2015.7330558

A multi-scale solar energy forecast platform based on machine-learned adaptive combination of
expert systems (invited)

H.F. Hamann

2014 Forecasting Workshop, Tucson, Arizona (2014)

Solar Forecast Improvement Project: A Public-Private Collaboration

M. Marquis, S. Benjamin, E. James, A. Heidinger, C. Molling, J. Michalsky, K. Lantz, V.
Banunarayanan , S. Haupt, H. F. Hamann

4t International Workshop on Integration of Solar Power into Power Systems, Berlin, Germany
(2014).

A multi-scale solar energy forecast platform based on machine-learned adaptive combination of
expert systems

S. Lu, J. Lenchner, G. J. Tesauro, C. M. Corcoran, F. J. Marianno, J. Zhang, B.-M. Hodge, E.
Campos, H. F. Hamann

American Meteorological Society 2014 Annual Meeting, Atlanta (2014).

Metrics for Evaluating the accuracy of solar power forecasting
J. Zhang, Bri-M. Hodge, A. Florita, S. Lu, H.F. Hamann, V. Banunarayanan
3 International Workshop on Integration of Solar Power into Power Systems, London, UK (2013).

Creating a Standard Set of Metrics to Assess Accuracy of Solar Forecasts: Preliminary Results
V. Banunarayanan, A. Brockway, M. Marquis, S. Haupt, B. Brown, T. Fowler, T. Jensen, H.F.
Hamann, S. Lu,B. Hodge,J. Zhang, A. Florita

American Geophysical Union Fall Meeting A13G-0306 (2013).

DoE Solar Forecasting Project: A Multi-scale, Multi-Model, Machine-Learning Solar Forecasting
Technology(invited)

H.F. Hamann

American Meteorological Society 2013 Annual Meeting, Austin (2013).
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5.3 Patents

1.

US Patent: 9,471,884; H.F. Hamann, Y. Hwang, T.G. van Kessel, |.K. Khabibrakhmanov, S. Lu, R.
Muralidhar
Multi-model blending

US Patent Application: 20150186904; S. Guha, H.F. Hendrik, K.I. Klein, S.A. Bermudez Rodriguez
System and Method for Managing and Forecasting Power From Renewable Energy Sources -
pending

US Patent Application: 20140327769; H.F. Hamann, S. Lu
Multifunctional Sky Camera System for Total Sky Imaging and Spectral Radiance
Measurement - pending

US Patent Application: 20140324352; H.F. Hamann, S. Lu

Machine Learning Approach for Analysis and Prediction of Cloud Particle Size and Shape
Distribution - pending

US Patent Application: 20140324350; H.F. Hamann, S. Lu

Machine Learning Approach for Analysis and Prediction of Cloud Particle Size and Shape
Distribution - pending

US Patent Application: 20140320607; H.F. Hamann, S. Lu

Multifunctional Sky Camera System for Total Sky Imaging and Spectral Radiance
Measurement

5.4 Press (Selected)

1.

10.
11.
12.

Vu C (2015) Machine learning helps IBM boost accuracy of US Department of Energy solar forecasts
by up to 30 percent.

Staff (2015) Better Solar and Wind Forecasting. (Energy Matters).
Staff (2015) IBM Boosts Accuracy of DOE Forecasts by 30%. (Solar Industry Magazine).

Staff (2015) Interview with Hendrik Hamann, Physical Analytics Manager at IBM Research.
(AltEnergyMag).

Staff (2015) IBM Improves Solar Forecasts with Machine Learning. (Inside HPC).

Solomon DB (2015) Machine 'learners' compute cloud cover to balance power supplies. (Los Angeles
Times).

Mearian L (2015) IBM's machine-learning crystal ball can foresee renewable energy availability.
(Computer World).

Martin R (2015) Solar and wind forecasts are new wave of weather reporting. (Mashable).
Martin R (2015) Weather Forecasting Enters a New Era. (MIT Technology Review).

Hock L (2015) Machine Learning’s Impact on Solar Energy. (R&D Magazine).

Hall-Geisler K (2015) Solar Race Team Gets Help from a Superforecast. (Popular Science).

Glasner J (2015) IBM's Machine Learning Tech Takes on Solar Power's Flakiness. (Data Center
Knowledge).
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5.5 Awards

2017 Best Conference Paper (“Short-term Global Horizontal Irradiance Forecasting Based on Sky Imaging
and Pattern Recognition”) submitted to the 2017 Power & Energy Society General Meeting

2017 UVIG Achievement Award

2016 Industrial Physics Award from the American Institute of Physics

6. Path Forward

There are a couple of important directions how to move forward with this project

Certain capabilities must be added for advancing the Watt-sun system: (1) The technology
must be expanded to support automatic generation of probabilistic forecasts. For this,
various techniques should be explored, for example whether to train for each quantile
separately or using appropriate machine-learning algorithms to quantify directly the
uncertainty for a given result. (2) The work with ISOs and utilities demonstrated that there
must be a tighter integration between the forecasts and the actual use case for the end
user. Examples for this would be to provide ramp forecasting products directly (rather than
for example DNI etc) or perhaps regional solar load modification forecasts. (3) Another
key area for additional research is to improve the accuracy of the Watt-sun system for
short-term forecasting, which would require exploring even more and bigger data sources
(see discussion below) and models such as improved cloud tracking mechanisms.

One of the big lessons learnt from this project was that the data which is required for better
and more advanced machine-learning, requires a more sophisticated compute
infrastructure than originally envisioned. While the originally developed “big data bus”
fulfilled all the requirements of this project, it will not be sufficient for the future (the data
volume for the WRF models just used in this research has increased by more than 20x in
the last 4 years). Towards that end, IBM has started to develop separately a very powerful
big data platform for geo-spatial data processing and analytics (PAIRS=_Physical Analytics
Integrated Data Repository and Services). This platform has two very important features,
by which it differentiates itself. First, the computation or processing is “independent” of
data size because the computation is done without moving the data. Second, due to
unique indexing scheme the platform also provides contextual data to support the various
use cases for the power industry. One of the next technical tasks will be to “port” the Watt-
sun system completely onto the PAIRS platform, which is also the conduit for
commercializing the technology.

Another very interesting area of research which has emerged from this work is the notion
of “physics-informed machine-learning”. Evidently, the work presented herein constitutes
an interesting example how to combine physical models — attempting to model a very
complex phenomenon — with big data analytics and statistics. The interesting research is
whether this concept of situation-dependent, machine-learnt, multi-model blending can be
further developed to a general framework to fuse domain knowledge and first-principle
models with purely data-driven methods and whether this might be applicable for other
applications where a complex physical phenomenon needs to be modeled.
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8. Glossary
15MA 15 minute ahead
1HA 1 hour ahead
4HA 4 hours ahead
AACEE Absolute Area Control Error in Energy
ACE Area Control Error
ARM Atmospheric Radiation Measurement
BND Bondville Surfrad Station
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BP
CAISO
CDF
CPS2
DA
DiCast
DNI
DRA
ECMWEF
ESR
ESRL
FANOVA
FESTIV
FPK
GCM
GFS
GHI
GMP
Grib2
HDF
HRRR
ISIS
ISO
ISO-NE
KDE
KSI

LM
MAE
MAPE
MaxAE
MBE
MOS

DE-EE0006017

A Multi-scale, Multi-Model,

Machine-Learning Solar Forecasting Technology
IBM TJ Watson Research Center

Budget Period

California Independent System Operator

Cumulative Distribution Function

North American Electric Reliability Corporation Control Performance Standard 2
day ahead

Dynamic Integrated foreCast

Direct Normal Irradiance

Desert Rock Surfrad Station

European Centre for Medium-Range Weather Forecasts
Expected Synthetic Reliability

Earth System Research Laboratory

Functional Analysis of Variance

Flexible Energy Scheduling Tool for Integration of Variable Generation
Fort Peck Surfrad Station

Goodwin Creek Surfrad Station

Global Forecasting System

Global Horizontal Irradiance

Green Mountain Power

Gridded binary or general regularly-distributed information in binary form
Hierarchical Data Format

High Resolution Rapid Refresh

Integrated Surface Irradiance Study

Independent System Operator

Independent System Operator of New England

Kernel Density Estimation

Kolmogorov-Smirnoff Integral

Linear Model

Mean Absolute Error

Mean Absolute Percentage Error

Maximum Absolute Error

Mean Bias Error

Model Output Statistics

Page 49 of 50



NAM
netCDF
NOAA
NREL
NWP
OVER
PAIRS
POA
PSU

PV

PV
PVLib
RF
RMSE
RTM
SOPO
SREF
SurfRad
SVM
SXF
T2M
TBL
TEP
UVvIG
W10M
Watt-sun
WRF
WWSIS-2
XML
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North American Mesoscale

Network Common Data Form

National Oceanic and Atmospheric Administration

National Renewable Energy Laboratory

Numerical Weather Prediction

part of the KSI which integrates above (over) the Kolmogorov-Smirnov critical value)
Physical Analytics Integrated Data Repository and Services
Plane of Array

Penn State University Surfrad Station

Photovoltaic

Photovoltaic

PVLIB is a set of open source modeling functions that simulate PV system performance
Random Forest

Root Mean Square Error

Radiative Transfer Model

Statement Of Project Objectives

Short Range Ensemble Forecast

Surface Radiation network

Support Vector Machine

Sioux Falls Surfrad Station

surface temperature at 2m above ground

Table Mountain Surfrad Station

Tuscon Electric Power

Utility Variable-Generation Integration Group

wind speed at 10m above ground

IBM's renewable and weather forecasting technology
Weather Research Forecast

Western Wind and Solar Integration Study Phase 2

eXtensible Markup Language
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