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Progress/Accomplishments 

Before reporting on new work, we note that some previously reported work has 
now appeared in journals [1,2,3,4]. 

Paper [5] explores communication-avoiding iterative solvers in multigrid. Geometric 
multigrid solvers within adaptive mesh refinement (AMR) applications often reach a 
point where further coarsening of the grid becomes impractical as individual 
subdomain sizes approach unity. At this point the most common solution is to use 
a bottom solver, such as BiCGStab, to reduce the residual by a fixed factor at the 
coarsest level. Each iteration of BiCGStab requires multiple global reductions (MPI 
collectives). As the number of BiCGStab iterations required for convergence grows 
with problem size, and the time for each collective operation increases with 
machine scale, bottom solves in large-scale applications can constitute a 
significant fraction of the overall multigrid solve time. In this paper, we implement, 
evaluate, and optimize a communication-avoiding s-step formulation of BiCGStab 
(CABiCGStab for short) as a high performance, distributed-memory bottom solver 
for geometric multigrid solvers. This is the first time s-step Krylov subspace 
methods have been leveraged to improve multigrid bottom solver performance. We 
use a synthetic benchmark for detailed analysis and integrate the best 
implementation into BoxLib in order to evaluate the benefit of a s-step Krylov 
subspace method on the multigrid solves found in the applications LMC and Nyx on 
up to 32,768 cores on the Cray XE6 at NERSC. Overall, we see bottom solver 
improvements of up to 4.2x on synthetic problems and up to 2.7x in real 
applications. This results in as much as a 1.5x improvement in solver performance 
in real applications. 

Paper [6] extends the concept of communication-avoiding algorithms to write 
avoiding  algorithms. This is motivated by the fact that previous work does not 
distinguish between the costs of reads and writes, even though writes can be much 
more expensive than reads in some current and emerging technologies. The first 
example is nonvolatile memory, such as Flash and Phase Change Memory. 
Second, in cloud computing frameworks like MapReduce, Hadoop, and Spark, 
intermediate results may be written to disk for reliability purposes, whereas read-
only data may be kept in DRAM. Third, in a shared memory environment, writes 
may result in more coherency traffic over a shared bus than reads. 

This motivates us to first ask whether there are lower bounds on the number of 
writes that certain algorithms must perform, and when these bounds are 
asymptotically smaller than bounds on the sum of reads and writes together. When 
these smaller lower bounds exist, we then ask when they are attainable; we call 



such algorithms “write-avoiding (WA)", to distinguish them from “communication-
avoiding (CA)" algorithms, which only minimize the sum of reads and writes. We 
identify a number of cases in linear algebra and direct N-body methods where 
known CA algorithms are also WA (some are and some aren't). We also identify 
classes of algorithms, including Strassen's matrix multiplication, Cooley-Tukey FFT, 
and cache oblivious algorithms for classical linear algebra, where a WA algorithm 
cannot exist: the number of writes is unavoidably high, within a constant factor of 
the total number of reads and writes. We explore the interaction of WA algorithms 
with cache replacement policies and argue that 
the Least Recently Used (LRU) policy works well with the WA algorithms in this 
paper. We provide empirical hardware counter measurements from Intel's Nehalem-
EX microarchitecture to validate our theory. In the parallel case, for classical linear 
algebra, we show that it is impossible to attain lower bounds both on interprocessor 
communication and on writes to local memory, but either one is attainable by itself. 
Finally, we discuss WA algorithms for sparse iterative linear algebra. We show that, 
for sequential communication-avoiding Krylov subspace methods, which can 
perform s  iterations of the conventional algorithm for the communication cost of 1 
classical iteration, it is possible to reduce the number of writes by a factor of 
Theta(s) by interleaving  a matrix powers computation with orthogonalization 
operations in a blockwise fashion. 

Report [7], in submission for publication in ACM Trans. Math. Software, addresses 
the reproducibility of floating point summation. We define reproducibility to mean 
getting  bitwise identical results from multiple runs of the same program, perhaps 
with different hardware resources or other changes that should ideally not change 
the answer. Many users depend on reproducibility for debugging or correctness.  
However, dynamic scheduling of parallel computing resources, combined with 
nonassociativity of floating point addition, makes attaining reproducibility a 
challenge even for simple operations like summing a vector of numbers, or more 
complicated operations like the Basic Linear Algebra Subprograms (BLAS). We 
describe an algorithm that computes a reproducible sum of floating point numbers, 
independent of the order of summation. The algorithm depends only on a subset of 
the IEEE Floating Point Standard 754-2008. It is communication-optimal, in the 
sense that it does just one pass over the data in the sequential case, or one 
reduction operation in the parallel case, requiring an “accumulator" represented by 
just 6 floating point words (more can be used if higher precision is desired). The 
arithmetic cost with a 6-word accumulator is 7n floating point additions to sum n 
words, and (in IEEE double precision) the final error bound can be up to 10^8 times
smaller than the error bound for conventional summation.  We describe the basic 
summation algorithm, the software infrastructure used to build reproducible BLAS 
(ReproBLAS), and performance results. For example, when computing the dot 
product of 4096 double precision floating point numbers, we get a 4x slow-down 
compared to Intel R Math Kernel Library (MKL) running on an Intel R Core i7-2600 
CPU operating at 3.4 GHz and 256 KB L2 Cache. 



 
This work is having a significant impact on emerging standards: There is a new 
proposed floating point instruction in the latest draft of the IEEE 754-2018 floating 
point standard, which if approved, would accelerate both the reproducible 
summation algorithm and other well-known double-double precision algorithms. It 
has also been proposed for inclusion in the next BLAS standard [8], which is also 
under current discussion. 
 
Report [9] answers a hard open question in the design of communication avoiding 
algorithms: Can the lower bounds we previously established for  arbitrary 
algorithms, that can be expressed as perfectly nested loops accessing arrays, 
whose subscripts can be arbitrary affine functions of the loop indices (eg A(I), B(I+J, 
K), C(K, I+2*J+3*K-7, …) etc) always be attained? Surprisingly the answer is 
always yes, i.e. there exists an optimal tiling (and an algorithm to determine it) for 
any such algorithm. I consider this result a breakthrough, since it covers such a 
wide class of algorithms. But it leaves several important open problems, including 
how to deal with loop-carried dependencies, which may prevent the use of the 
optimal tiling, and what to do when some loop bounds are too small for the optimal 
tile to fit in the iteration space.  
 
Finally, in some related work [10,11], we have applied our ideas on communication-
avoiding algorithms to machine learning. We consider the problem of how to design 
and implement communication-efficient versions of parallel support vector 
machines, a widely used classifier in statistical machine learning, for distributed 
memory clusters and supercomputers. The main computational bottleneck is the 
training phase, in which a statistical model is built from an input data set. Prior to 
our study, the parallel isoefficiency of a state-of the-art implementation scaled as 
W= Omega(P^3), where W is the problem size and P the number of processors; 
this scaling is worse than even an one-dimensional block row dense matrix vector 
multiplication, which has W = Omega(P^2). This study considers a series of 
algorithmic refinements, leading ultimately to a Communication-Avoiding SVM (CA-
SVM)  method that improves the isoefficiency to nearly W = Omega(P). 
 
We evaluate these methods on 96 to 1536 processors, and show average 
speedups of 3x to 16x (7x on average) over Dis-SMO, and a 95% weak-scaling 
efficiency on size real-world datasets, with only modest losses in overall 
classification accuracy. 
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