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Highlights

• Describes the two-relaxation-time (TRT) lattice Boltzmann method

(LBM) clearly and provides a pseudocode for easy implementation

• Applies the TRT LBM to various reactive transport

• Compares the numerical stability and accuracy between the TRT LBM

and the single-relaxation-time (SRT) LBM
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Abstract

The lattice Boltzmann method (LBM) based on single-relaxation-time

(SRT) or multiple-relaxation-time (MRT) collision operators is widely used

in simulating flow and transport phenomena. The LBM based on two-

relaxation-time (TRT) collision operators possesses strengths from the SRT

and MRT LBMs, such as its simple implementation and good numerical sta-

bility, although tedious mathematical derivations and presentations of the
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TRT LBM hinder its application to a broad range of flow and transport

phenomena. This paper describes the TRT LBM clearly and provides a

pseudocode for easy implementation. Various transport phenomena were

simulated using the TRT LBM to illustrate its applications in subsurface en-

vironments. These phenomena include advection-diffusion in uniform flow,

Taylor dispersion in a pipe, solute transport in a packed column, reactive

transport in uniform flow, and bacterial chemotaxis in porous media. The

TRT LBM demonstrated good numerical performance in terms of accuracy

and stability in predicting these transport phenomena. Therefore, the TRT

LBM is a powerful tool to simulate various geophysical and biogeochemical

processes in subsurface environments.

Keywords: Lattice Boltzmann Method, Two-Relaxation-Time,

pore-scale model, advection-diffusion, reactive transport,

porous media

1. Introduction

Important biogeochemical processes such as microbial metabolism and

contaminant remediation take place at the pore scale in subsurface envi-

ronments [1, 2, 3, 4]. Pore-scale modeling allows to directly examine the

biogeochemical processes and is able to provide mechanistic insights into5

macroscopic field observations [5, 6]. The Lattice Boltzmann method (LBM)

is one of the most widely used pore-scale methods [7, 8, 9, 10], and has been

used to study various geophysical and biogeochemical processes in porous

and fractured media, including solute transport [11], contaminant remedia-

tion [12, 13], geologic carbon storage [14, 15], and mineral cementation and10
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dissolution [16, 17, 18]. Recently, the LBM has been used to tackle more

challenging problems such as heat transfer in thermofluids [19] and complex

flow and reactions in nanoporous catalysts [20, 21, 22, 23].

The LBM captures the physics of macroscopic behaviors through con-

trolling the local mesoscopic operations of pseudo-particles that move on a15

regular lattice, with a set of discrete velocities, and relax to an equilibrium

state via a collision operator [24, 25, 7, 9, 26]. The distribution and evo-

lution of the particles determine how the solute concentration changes with

respect to space and time. The typically explicit, numerical time-stepping

scheme makes it easy to develop a LBM code [27], and the local nature of20

the LBM makes it suitable for parallel computing [28]. Moreover, the LBM

is well suited to deal with potentially reactive surface boundaries in com-

plex pore geometries through using simple or modified bounce-back schemes

[29, 30, 31, 32]. These characteristics enable the LBM to explore a variety of

flow and transport phenomena in complicated geometries [9, 6].25

Different selections of the collision operator result in three typical LBMs:

single-relaxation-time (SRT) LBM, two-relaxation-time (TRT) LBM, and

multiple-relaxation-time (MRT) LBM. These LBMs are different in terms of

numerical accuracy and stability [33]. The SRT LBM employs a single relax-

ation parameter and is easy to implement [7]. It is the most popular LBM but30

may suffer from unphysical artifacts in complicated geometries and numer-

ical instability at small relaxation rates [29, 33]. The MRT LBM employs

multiple relaxation parameters, and can attain more stable and accurate

simulations by tuning the relaxation parameters [34]. However, selecting the

multiple relaxation parameters is challenging since it requires comprehensive35
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asymptotic analysis [35, 34]. The TRT LBM employs two relaxation pa-

rameters to relax the particle distributions, having one fixed but the other

tunable [36, 37]. It maintains the simplicity of the SRT method in terms of

implementation while retaining the advantages of the MRT method in terms

of numerical accuracy and stability [33].40

Since its systematic development the TRT LBM has been applied to both

flow and transport phenomena [36], such as permeability estimation in dif-

ferent geometries [38], multi-phase flow in porous media [39, 40], advection-

diffusion in bulk flow [41], and effective diffusion in unsaturated porous media

[42]. However, the TRT LBM is rarely used in reactive transport, which is45

of great significance for many biogeochemical processes in subsurface envi-

ronments [43]. The TRT method is also much less used than the SRT and

MRT LBMs, although it integrates the simplicity of the SRT method and the

stability of the MRT method. One reason is that the tedious mathematical

derivations and presentations of the TRT method hinder its understanding50

and implementation [36, 44, 45, 46]. Therefore, a clear presentation of the

TRT LBM is necessary for extending its applications to a broader variety of

flow and transport phenomena.

This paper aims to articulate the framework and implementation of the

TRT LBM as simply as possible and to apply this method to various trans-55

port phenomena. We provide a clear description of the TRT LBM including a

pseudocode for straightforward implementation. The method was applied to

a variety of transport phenomena to demonstrate its ability to reproduce sub-

surface phenomena. Advective-diffusive-reactive transport in uniform flow,

for which analytical solutions are available, was examined to evaluate the60
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stability and accuracy of the TRT method used in simple geometries. Taylor

dispersion in a pipe was examined to assess the effect of solid boundaries on

the stability and accuracy. Solute transport in a packed column was exam-

ined to assess the numerical performance of the TRT method in complicated

geometries. Lastly, bacterial chemotaxis in porous media was examined to65

illustrate the application of the TRT method to biogeochemical reactions in

subsurface environments.

2. Methods

The thermodynamic state of a solute in the TRT LBM is defined by a Q-

dimensional particle distribution function, fq(r, t), where q = 0, . . . , Q− 1.70

This function is defined at each lattice node (r) and for each discrete time (t).

The nodes in the lattice space are connected by a set of discrete velocities cq

which are aligned with lattice axes and diagonals. Summing up the particle

distributions over all the discrete velocities yields the solute concentration

C:75

C =

Q−1∑

q=0

fq (1)

At each node, the particle distribution function can be decomposed into

symmetric and antisymmetric components,

fq = f+
q + f−q (2)

where f+
q = (fq + fq)/2 and f−q = (fq − fq)/2. The integer q is the index of80

velocity cq that points to the opposite direction of cq (cq = −cq). For the rest

of the particles that have a zero velocity (c0 = 0), f+
0 = f0 = C −

Q−1∑
q=1

fq and
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f−0 = 0. In order to simplify the sums over all velocities cq, we assume that

the velocities are ordered such that q = q+ (Q− 1)/2 for 1 ≤ q ≤ (Q− 1)/2.

Therefore f+
0 = C − 2

(Q−1)/2∑
q=1

f+
q .85

The particles at one node move to neighboring nodes in terms of the non-

zero discrete velocities cq (cq 6= 0, q = 1, . . . , Q−1), or stay at the node for c0.

Once the particles reach the neighboring nodes, the resultant distributions

are relaxed to an equilibrium state through a TRT collision operator [36]:

fq(r + cq, t+ 1) = fq(r, t)−
1

τ+
(f+
q − e+q )− 1

τ−
(f−q − e−q )

︸ ︷︷ ︸
f̃q(r,t)

(3)90

where e+q and e−q are the symmetric and antisymmetric components of the

equilibrium particle distribution eq (eq = e+q + e−q ); τ+ and τ− are the sym-

metric and antisymmetric relaxation parameters, respectively. The entire

right hand side of eq. (3) is called post-collision particle distribution f̃q(r, t).

The equilibrium particle distributions for a non-zero discrete velocity can95

be expressed by [47]

e+q = C(t(m)
q c2s + t(u)q V 2 + w(u)

q ‖cq‖2
d∑

α=1

(V 2
α − V 2)c2qα +

∑

β 6=α

VαVβcqαcqβ

2
∑(Q−1)/2

j=1 c2jαc
2
jβ

)

(4)

and

e−q = t(a)q C
d∑

α=1

Vαcqα (5)

where q = 1, . . . , (Q− 1)/2, Vα (or Vβ) are the αth (or βth) Cartesian com-100

ponent of the advective velocity in the lattice space, V 2 =
d∑

α=1

V 2
α /d where

d is the dimensionality (i.e., d = 3 for a three-dimensional LBM), cqα is the

αth Cartesian component of the discrete velocity cq, cs is the speed of sound,

7
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t
(m)
q , t

(u)
q , w

(u)
q and t

(a)
q are weights. All these weights are non-negative and

isotropic, and satisfy the isotropy conditions:105

∑

q

w(·)
q cqαcqβ = δαβ,

∑

q

t(·)q cqαcqβ = δαβ (6)

where α, β = 1, . . . , d. Different selections of the weights result in different

numerical stabilities [45].

The other half of the equilibrium particle distributions (for q = (Q−1)/2+

1, . . . , Q − 1) can be calculated through the symmetric and antisymmetric110

relations

e+q = e+q and e−q = −e−q (7)

For the rest of the particles, e+0 = C − 2
(Q−1)/2∑
q=1

e+q and e−0 = 0.

To make the TRT method as simple as possible, we apply the widely used

standard bounce-back (SBB) boundary condition:115

fq(r, t+ 1) = f̃q(r, t), (8)

which mimics the phenomenon that a particle is reflected back into the pore

domain when colliding with a solid boundary.

If there exists mass source or sink (M), the post-collision particle distri-

butions are modified to:120

f̃q(r, t) = f̃q(r, t) + t
(m)
q c2sM, q = 1, . . . , Q− 1

f̃0(r, t) = f̃0(r, t) +M(1− 2c2s

(Q−1)/2∑
q=1

t
(m)
q )

(9)

where f̃q on the right-hand-sides is defined in eq. (3). This modification

enables the TRT LBM to simulate reactive transport.
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A 3D lattice structure with 15 discrete velocities (D3Q15) was used in the

simulations. The discrete velocities in the D3Q15 model can be described by125

(c0, c1, . . . , c14) =




0 1 0 0 1 1 1 1 −1 0 0 −1 −1 −1 −1

0 0 1 0 1 1 −1 −1 0 −1 0 −1 −1 1 1

0 0 0 1 1 −1 1 −1 0 0 −1 −1 1 −1 1




where the cq with ||cq||2 = 1 are classified as type I velocities, and the cq

with ||cq||2 = 3 are classified as type II velocities. The corresponding lattice

structure is shown in Fig. 1. In this study, we selected the commonly used

“hydrodynamic” isotropic weights [45]: t
(a)
q = t

(m)
q = 1/3, t

(u)
q = 0, and130

w
(u)
q = 1/2 for the type I velocities, while t

(a)
q = t

(m)
q = 1/24, t

(u)
q = 1/8, and

w
(u)
q = 0 for the type II velocities. c2s = 3/8 was chosen for both type I and

II velocities. Consequently, the equilibrium distributions become:

eq = 1
8
C + 1

3
Ccq ·V + 1

2
C(cq ·V)2 − 1

6
CV ·V, cq ∈ I

eq = 1
64
C + 1

24
Ccq ·V + 1

16
C(cq ·V)2 − 1

48
CV ·V, cq ∈ II

e0 = 1
8
C − 1

3
CV ·V

(10)

The D3Q15 model reduces to a one-dimensional model with three discrete135

velocities (D1Q3) in 1D simulations and to a two-dimensional model with

five discrete velocities (D2Q5) in 2D simulations [47].

With the Chapman-Enskog expansion, the solutions of eq. (3) approach

solutions to the following dimensionless reactive advection diffusion equation

(ADE) [36]:140

∂C

∂T
+∇ · (VC) = D̂∇2C +M (11)

where D̂ is the dimensionless diffusion coefficient, D̂ = (τ−−1/2)c2s. This di-

mensionless reactive ADE can be derived from the corresponding dimensional
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Figure 1: Lattice structure for the D3Q15 lattice Boltzmann model.

reactive ADE:
∂c

∂t
+∇ · (uc) = D∇2c+ I (12)145

where c is the solute concentration (c = c0C), t is time (t = T∆x/u0), u is

the advective velocity of flow (u = u0V), D is the diffusion coefficient of the

solute (D = ∆xu0D̂), and I is the reaction term (I = c0u0M/∆x). c0, ∆x,

and u0 are characteristic values used to normalize the dimensional ADE.

In applications of the TRT LBM to reactive transport of a solute, the anti-150

symmetric relaxation parameter τ− is determined by the diffusion coefficient

of the solute, τ− = 1/2+D/(c2s∆xu0), while the symmetric relaxation param-

eter τ+ is free to choose as long as τ+ > 0.5. The free selection of τ+ enables

the TRT LBM to produce robust numerical performance in terms of accuracy

and stability. If τ+ is given the same value as τ−, the TRT method reduces to155

the SRT method [36, 48]. Another particular value of τ+ is 1/2+1/(4τ−−2)

arose from the so-called “magic” product (τ+− 1/2)(τ−− 1/2) = 1/4, which

enables the TRT method to maintain good stability even for small τ− [45].

10
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The corresponding TRT method is called optimal TRT (OTRT) method.

The implementation of the TRT LBM to simulate advective-diffusive-160

reactive transport phenomena is illustrated by a pseudocode (Fig. 2). The

particle distributions were updated following sequential travel and collision

steps during the simulations. The dimensional concentration as a function

of time is given by c = c0C.

3. Results and discussion165

In this section, the TRT LBM is applied to various advective-diffusive-

reactive transport phenomena, ranging from advection-diffusion in uniform

flow to reactive transport in porous media. The simulation results provide

insights into the applications of the TRT LBM to a variety of transport

phenomena in subsurface environments.170

3.1. Advection diffusion in uniform flow

One-dimensional advection-diffusion of a solute with an initially Gaussian

concentration distribution was first used to evaluate the numerical stability

and accuracy of the TRT method used in simple geometries. For the initial

distribution175

c(x, t = 0) =
m√
2πσ2

0

exp

(
−(x− x0)2

2σ2
0

)
(13)

the following analytical solutions can be derived [49]

c(x, t) =
m√

4πDt+ 2πσ2
0

exp

(
−(x− x0 − ut)2

4Dt+ 2σ2
0

)
(14)

where m is the initial mass of the solute per unit length, x0 is the initial center

of the mass, u is the advective velocity, and σ2
0 is the variance of the initial180
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Figure 2: Pseudocode for applying the TRT LBM to reactive transport.
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solute distribution. m = 0.56 kg/m, x0 = 1 m, and σ0 = 0.22 m were chosen

in the simulations. A periodic boundary condition was applied at both ends

of the domain. ∆x = 1 ×10−3 m, u0 = 1 ×10−4 m/s, and c0 = 1 kg/m

were used to normalize the dimensional ADE (eq. (12)). Different diffusion

coefficients, D = 7.5 ×10−9, 7.5×10−10, and 7.5 ×10−11 m2/s (corresponding185

to τ− = 0.7, 0.52, and 0.502), were used in the simulations.

We varied the tunable parameter τ+ to examine its effects on the numeri-

cal stability and accuracy of the TRT LBM. The maximum allowable velocity

in the lattice space Vmax, above which the simulations become unstable, was

used to describe the numerical stability of the TRT method. A simulation190

was defined as stable when it continued converging after 5000 steps of com-

putation. Figure 3 shows the dependence of Vmax on τ+ for three different

diffusion coefficients (corresponding to three different τ−). When τ− is large

(τ− = 0.7), the stability of the TRT method first increases monotonically

with τ+ to then reach optimal stability shortly before the choice of τ+ that195

used in the SRT method. When τ− is small (τ− = 0.502, 0.52), the stability

of the TRT method first increases, then decreases, and then increases again

as τ+ increases; therefore there is a range of τ+ values for which the stability

deteriorates. This range is delimited by the τ+ values of the SRT and OTRT

methods. For all three τ− the SRT and OTRT methods produced the same200

maximum values of Vmax (∼0.79). Once V exceeded 0.792, the TRT method

became unstable. This is consistent with a theoretical analysis of the stabil-

ity of the TRT method [45], according to which V 2 ≤ 1− c2s (i.e. V ≤ 0.791)

is a necessary condition for the D1Q3 TRT LBM to be stable. Therefore, the

SRT and OTRT methods have the same stabilities for 1D advective diffusion205
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in the simple geometry considered here.

Figure 3: Dependence of stability on the tunable parameter τ+ in simulations of 1D

advection-diffusion. Three different diffusion coefficients (corresponding to different τ−)

were examined. Vmax represents the maximum allowable velocity yielding a stable simula-

tion (which continued converging after 5000 steps of computation). A series of τ+ values

were examined (each symbol represents the simulated Vmax for a τ+ value), and the two

particular selections, τ+ = τ− (SRT) and τ+ = 1/2 + 1/(4τ− − 2) (OTRT), are indicated

on the curve.

The numerical accuracy of the TRT method with different τ+ was eval-

uated by comparing the simulation results with the analytical solutions (eq.

14). Table 1 shows errors of the simulated concentration produced by the

TRT method for different advective velocities in lattice space V . The re-210

sults show that the error generally increases with τ+, which is expected since

larger τ+ results in larger high-order errors in the TRT simulations [46]. As

14
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V increases, the error produced by the SRT method increases consistently for

three τ−, while that produced by the OTRT method first increases and then

decreases for two smaller τ− (τ− = 0.52, 0.502). The OTRT exhibits simi-215

lar accuracy with the SRT method when V = 0.79. Furthermore, the error

difference between the OTRT and SRT methods decreases as τ− increases,

exhibiting almost the same accuracies for all V when τ− = 0.7. Therefore,

the SRT method generally produces more precise simulations than the OTRT

method. However, the error difference can be ignored for large V or τ−.220

Table 1: Dependence of accuracy on the tunable parameter τ− for different advec-

tive velocities V in simulations of 1D advection-diffusion at t = 23 days. Three dif-

ferent diffusion coefficients (corresponding to different τ−) were examined. The accu-

racy is represented by relative errors (%) of the simulated solute concentration, Error =
∑N

i=1 |Ci(simulated)−Ci(analytical)|
NCmax(analytical)

× 100, where N is the number of numerical nodes along

the direction of flow, N = 2000, Ci is the solute concentration at the location i∆x, and

Cmax(analytical) is the maximum concentration of the analytical solutions at that time.

NaN denotes a numerically unstable solution.

τ− = 0.7 τ− = 0.52 τ− = 0.502

V
τ+ τ+ τ+

1.75 (OTRT) 0.7 (SRT) 125.5 13 (OTRT) 2.5 0.52 (SRT) 0.502 125.5 (OTRT) 0.502 (SRT)

0.1 0.041 0.040 0.190 0.019 0.014 0.014 0.014 0.020 0.015

0.3 0.050 0.044 0.477 0.044 NaN 0.025 0.025 0.048 0.026

0.5 0.051 0.050 0.526 0.059 NaN 0.036 NaN 0.067 0.039

0.79 0.057 0.057 0.050 0.049 NaN 0.049 NaN 0.060 0.059

0.8 NaN NaN NaN NaN NaN NaN NaN NaN NaN

3.2. Taylor dispersion

Taylor dispersion in a pipe was used to further evaluate the stability

and accuracy of the TRT method when solid boundaries exist. The velocity

15
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distribution in the pipe is described by [50]:

u(r) = 2u(1− r2/R2) (15)225

where u is the average flow velocity, R is the radius of the pipe, and r is the

radial coordinate, r =
√
y2 + z2. A slug of solute was initially injected into

the pipe with diameter of 0.01 m and length of 2 m. The effective diffusion

coefficient of the solute can be estimated by [51]:

Danalytical
e = D

(
1 +

Pe2

192

)
(16)230

where Pe is Peclet number, Pe = 2uR/D.

The simulations used the same numerical settings and parameter values

as in the previous 1D transport simulations. The stability of the TRT method

was described by Vmax. Its accuracy was evaluated by comparing Danalytical
e

with simulated values, which were calculated based on the simulated solute235

concentration

Dsimulated
e =

1

2

d〈σ2〉
dt

=
1

2

〈σ2
t2
〉 − 〈σ2

t1
〉

t2 − t1
(17)

where 〈σ2〉 is the variance of concentration distribution. It can be estimated

by

〈σ2(t)〉 =

∫∫∫
(x− 〈x(t)〉)2c(x, y, z, t)dxdydz∫∫∫

c(x, y, z, t)dxdydz
(18)240

where 〈x〉 is the center of solute mass along the direction of flow. It can be

estimated by

〈x(t)〉 =

∫∫∫
xc(x, y, z, t)dxdydz∫∫∫
c(x, y, z, t)dxdydz

(19)

Fig. 4 shows the stability of the TRT method changed with τ+ for differ-

ent τ−. Compared with the previous 1D transport, the stability of the SRT245

method considerably deteriorates due to the effects of boundaries, while the

16
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stability of the OTRT method degrades for small τ+ but improves for large

τ+. The OTRT method demonstrated better stability than the SRT method

for all three τ− values, with increasing stability as τ− decreases. Fig. 4 shows

that the OTRT method obtains larger Vmax values than the SRT method es-250

pecially when τ− = 0.502 (Vmax = 0.96 for OTRT and 0.12 for SRT). This

instability of the SRT method as τ− approaches 0.5 is a well-known short-

coming of this method [29, 33]. Therefore, the OTRT method can improve

numerical stability compared with the SRT method when simulating reactive

transport in geometries with boundaries which are present in porous media.255

The degree of improvement increases as τ− decreases.

Table 2 shows the accuracy of the TRT method changed with τ+ for differ-

ent τ− (diffusion coefficient) and V (V = u/u0). Compared with the previous

1D transport without solid boundaries, the accuracy similarly decreases with

τ+, but the value of error apparently increases for the same τ+, τ− and V .260

These results illustrate that the boundaries together with the SBB boundary

condition introduce significant errors to the TRT simulations. The error of

the OTRT method generally increases with V , but remains almost constant

once it reaches about 10.5% for all the three τ− values. In contrast, the

error of the SRT method varies with V and τ− in a more complex manner,265

illustrating the complicated effects of boundaries on the accuracy. Overall,

the error produced by the SRT method is much smaller than that produced

by the OTRT method: this is probably due to the larger dissipation in the

OTRT method [46].

We further investigated the effects of boundaries on the stability and270

accuracy of the TRT method by changing mesh resolution N , where N =

17
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Figure 4: Dependence of stability on the tunable parameter τ+ in simulations of Tay-

lor dispersion. Three different diffusion coefficients (corresponding to different τ−) were

examined. Vmax represents the maximum allowable velocity yielding a stable simulation

(which continued converging after 5000 steps of computation). A series of τ+ values were

examined (each symbol represents the simulated Vmax for a τ+ value), and the two par-

ticular selections, τ+ = τ− (SRT) and τ+ = 1/2 + 1/(4τ− − 2) (OTRT), are indicated on

the curve.

2R/∆x. Note that N = 10 in Fig. 4 and Table 2, and τ− is a function

of N , τ− = 1/2 + ND/(2Rc2su0). Only the SRT and OTRT methods were

examined in the Taylor dispersion simulations with Pe = 100. Fig. 5 shows

the change of Vmax and error ε, ε = Dsimulated
e −Danalytical

e , with respect to N275

for two different D.
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Table 2: Dependence of accuracy on the tunable parameter τ− for different advective

velocities V in simulations of Taylor dispersion. Three different diffusion coefficients (cor-

responding to different τ−) were examined. The accuracy is represented by relative error

(%) of the effective diffusion coefficient (i.e. Error =
Dsimulated

e −Danalytical
e

Dsimulated
e

× 100). NaN

denotes a numerically unstable solution

τ− = 0.7 τ− = 0.52 τ− = 0.502

V Pe
τ+

Pe
τ+

Pe
τ+

1.75 (OTRT) 0.7 (SRT) 125.5 13 (OTRT) 2.5 0.52 (SRT) 0.502 125.5 (OTRT) 0.502 (SRT)

0.0075 1 -6.15 -2.94 10 15.73 -0.58 -0.69 -0.31 -0.30 100 10.05 5.03

0.075 10 -0.18 -0.35 100 77.14 10.05 3.51 1.41 1.39 1000 10.06 NaN

0.225 30 8.36 2.78 300 NaN 10.42 NaN 0.71 NaN 3000 10.50 NaN

0.3 40 9.63 2.78 400 NaN 10.42 NaN 0.03 NaN 4000 10.40 NaN

0.375 50 9.70 NaN 500 NaN 10.51 NaN NaN NaN 5000 10.66 NaN

0.45 60 NaN NaN 600 NaN NaN NaN NaN NaN 6000 NaN NaN

Figure 5: a) Stability of the SRT and OTRT methods with respect to mesh resolu-

tion N in simulations of Taylor dispersion. Two different diffusion coefficients D were

examined.Vmax represents the maximum allowable velocity yielding a stable simulation

(which continued converging after 5000 steps of computation). b) Error of the SRT and

OTRT methods with respect to mesh resolution, ε = Dsimulated
e −Danalytical

e . Pe = 100

in the simulations
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The results show that the stability of the OTRT method degrades as N

increases, although the rate of degradation decreases. By contrast, the sta-

bility of the SRT method depends on the value of D. When D = 7.5×10−11

m2/s, the stability of the SRT method increases monotonically with N , al-280

though it is still inferior to that of the OTRT method for N = 40. When

D = 7.5×10−10 m2/s, the stability of the SRT method first increases with

N and quickly reaches a plateau as N ≥ 10, similar to the stability of the

OTRT method when N = 40. This fixed stability of the SRT method prob-

ably results from its insufficient dissipation [33]. Therefore, the stability of285

the SRT method can be improved by refining mesh resolution, but it may

fail for high resolution. The OTRT method provides better stability than

the SRT method for small D, even for mesh with high resolution.

The results for accuracy in Fig. 5b show that the SRT method generally

results in more precise simulations than the OTRT method. Both methods290

converge when N ≤ 20, presenting a convergence speed of about 2. The SRT

method stops converging as N > 20 while the OTRT continue to converge at

these values, though its convergence speed slows down. The different conver-

gences result in similar accuracies between the two methods when N = 40.

The higher errors produced by the SRT method primarily results from the295

SBB boundary condition, which leads to uncorrected boundary location and

increasing numerical errors as N becomes large [33]. In summary, the simula-

tions of Taylor dispersion illustrate that the stability of the SRT method for

τ− approaching 0.5 can be improved by refining the spatial resolution. How-

ever, this also reduces the accuracy of this method. In contrast, the OTRT300

method is able to produce more accurate simulations while maintaining good
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stability when the mesh resolution is refined.

3.3. Advection diffusion in a packed column

Advection-diffusion in a column packed with random monodispersed beads

was used to evaluate the accuracy and stability of the TRT method in com-305

plicated geometries [52]. The length and diameter of the column are 16.8

mm and 8.8 mm, and the diameter of the beads is L = 0.5 mm. The flow

field given in [52] was used in the transport simulations, with Darcy velocity

qv = 4.556 ×10−4 m/s. The solute with c = 1 kg/m3 was injected into the

column at the inlet along with the incoming fluid. The injection of the solute310

continued for 2.78 s, and all solute eventually exited the column driven by

advection and dispersion. A pulse-type incoming concentration was imposed

at the inlet and free exit was employed at the outlet [52]. u0 = 0.1 m/s, c0

= 1 kg/m3, and ∆x = 4 ×10−5 m were selected in the simulations. This

spatial resolution leads to 221x221x421 total numerical voxels, and requires315

extensive computational resources. Therefore, we examined the stability and

accuracy of the TRT method using only two particular TRT models (SRT

and OTRT).

We found that the OTRT method is more stable than the SRT method,

although both of them are more prone to numerical instability in the com-320

plicated geometry than in the previous simple geometries. The SRT method

became unstable once D < 4.2×10−8 m2/s (τ− < 0.528), while the OTRT

method became unstable when D < 3×10−9 m2/s (τ− < 0.502). Figure 6

shows the concentration distribution obtained by the OTRT method in a

slice 10.78 s after the solute injection. D = 2.08×10−8 m2/s (τ− = 0.5139)325

was used in this case. The solute plume was apparently dispersed by the
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nonuniform flow pattern, with the solute near the column walls exiting the

column first along the preferential flow paths. The breakthrough curve, for

which the effluent solute concentration was calculated by flux-weight average

values [53], was compared with the one attained by the finite volume method330

(FVM) reported in [52]. Figure 7 shows a good match between the simula-

tions obtained by the OTRT and FVM. The results illustrate that the OTRT

can reliably predict the dispersive transport in complicated geometries. The

simulation using the SRT method for this D was unstable, and is thereby

not shown. However, the accuracies of the two methods were similar to each335

other in simulations with larger D (D > 4.2×10−8 m2/s), where both the

SRT and OTRT methods were stable.

Figure 6: Concentration distribution in a slice of the 3D packed column, 10.78 s after the

solute injection. D = 2.08×10−8 m2/s (τ− = 0.5139) was used in the simulation. The

concentration was normalized by the concentration of the injected solute

For the packed column, the Knudsen number (Kn), the ratio of the mean

free path of molecules to a characteristic flow length, was calculated to eval-

uate the effects of small pore size on flow and transport in the column [20].340
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Figure 7: Comparisons of breakthrough curves at the outlet of the column obtained by

the OTRT method against the one obtained by finite volume method (FVM) reported in

[52].

We found the Kn value is much smaller than 1, Kn =
√

π
2
ν
L

=0.0025 [54],

so the continuum flow and transport equations such as equation (12) can

be used to describe the physical and chemical processes in the column [55].

Given the small values of Kn in this and other cases, we neglected the effects

of Knudsen layer on the stability and accuracy of the TRT method [56].345

3.4. Reactive transport in uniform flow

One-dimensional reactive transport in uniform flow was used to evaluate

the stability and accuracy of the TRT method in simulating reactive trans-

port. With a first-order reaction term (I = −kc), zero initial concentration

(c(x ≥ 0, 0) = 0), and fixed concentration at the inlet of a semi-infinite do-350

main (c(x = 0, t) = c0), eq. (12) yields the following analytical solutions [57]:

c(x, t) =
c0
2

exp
vx

2D

[
exp(−βx)erfc(

x− (v2 + 4kD)1/2t

2(Dt)1/2
) + exp(βx)erfc(

x+ (v2 + 4kD)1/2t

2(Dt)1/2
)

]

(20)
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where k is the reaction rate constant, β = (v2/4D2 + k/D)1/2, and erfc(x) =

1 − erf(x) = 2√
π

∫∞
x

exp(−τ 2)dτ . Consequently, M = −kC∆x/u0 in eq.355

(11); M was computed explicitly using the known C values at the previous

step during the simulations. The simulations employed the same numerical

settings as in the previous 1D non-reactive transport.

Figure 8 shows the comparison between the simulated concentration ob-

tained by the TRT method with different τ+ and the analytical solutions360

for different k when τ− = 0.52. The results show that the TRT method

reliably predicts the reactive transport for a wide range of reaction rates,

although the error slightly increases with τ+. The effects of τ− on the accu-

racy and stability are similar to those in the previous 1D advection-diffusion

and are thereby not present. Therefore, the TRT method provides reliable365

predictions for the reactive transport in simple geometries.

3.5. Bacterial chemotaxis in two-dimensional porous media

Contaminant degradation by chemotactic bacteria in two-dimensional

porous media was used to illustrate the applications of the TRT method

to biogeochemical reactions in subsurface environments. Chemotaxis en-370

ables motile bacteria to move toward contaminants with high concentration,

thereby accelerating the removal of contaminants [58, 59]. We assume that

the transport and fate of bacteria can be described by an reactive ADE and

that the contaminant is the only rate-limiting substrate. Thus the transport

and fate of the bacteria and contaminant can be described by [60]:375

∂cb
∂t

+∇ · [cb(u + uc)−Db∇cb] = Y qb
cc

cc+Kc
cb − kbcb

∂cc
∂t

+∇ · (ccu−Dc∇cc) = −qb cc
cc+Kc

cb
(21)
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Figure 8: Comparison between the simulated concentration obtained by the TRT method

with different τ+ and the analytical solutions for 1D reactive transport at t = 27.8 hours.

Different reaction rate constants k were examined, and D = 7.5×10−10 m2/s (τ− = 0.52).

where cb is the bacterial concentration, cc is the contaminant concentration,

Db is the random motility coefficient of the bacteria, Dc is the diffusion

coefficient of the contaminant, qb is the maximum reaction rate of the con-

taminant, Kc is the half-saturation coefficient, Y is the yield coefficient, kb380

is the decay rate, and uc is chemotactic velocity. uc depends on the con-

taminant concentration as well as its gradient, and can be described by [61]:

uc =
2vswim

3
tanh

(
χ0

2vswim

Kd

(Kd + cc)2
|∇cc|

) ∇cc
|∇cc|

(22)
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where vswim is the swimming speed of the bacteria, Kd is a dissociation385

constant, and χ0 is the chemotactic sensitivity coefficient. The values of

parameters vswim, Kd, and χ0 depend on a number of factors including bac-

teria species, buffer solution chemistry, and temperature [62], and affect the

transport rate of bacteria in porous media through altering the value of the

chemotactic velocity uc. This chemotactic velocity modifies the advective390

velocity in lattice space, V = (u+uc)/u0, in the application of TRT simula-

tions, such that the effects of chemotaxis could be considered in the reactive

ADE (eq. 12).

The bacteria were initially injected into a cavity in the porous media,

while the contaminant was uniformly distributed in the beginning. The bac-395

teria degraded the contaminant during its movement, driven by advection,

diffusion, and chemotaxis [34]. The parameter values used in the chemotactic

system are presented in Table 3, in which the values were estimated based on

an experiment of bacterial chemotaxis in a capillary tube [58]. A hospitable

environment and necessary nutrients, such as sodium (Na), potassium (K),400

and phosphate buffer (pH = 7), were provided in the experiment, so that

the bacteria could grow and exhibit chemotaxis [58, 62, 63]. The fluid field

simulated by the MRT method in [34] was used in the transport simulations,

in which Darcy velocity qv = 3.2 ×10−6 m/s. ∆x = 1.5 ×10−5 m and u0 =

4.8 ×10−5 m/s were chosen in the simulations.405

Only the SRT and OTRT methods were used in the application, and

their stability and accuracy were examined by varying the bacterial random

motility coefficient Db, which changes τ− (i.e. τ− = 1/2+Db/(c
2
s∆xu0)). The

simulations showed that the OTRT has a better numerical stability than the
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Table 3: Parameter values used in the chemotactic system [58, 34]

Symbol Description Value

cb Initial bacterial concentration 4× 108 cfu/ml

cc Initial contaminant concentration 2.8× 10−2 g/ml

Dc Diffusion coefficient of contaminant 7.5× 10−6 cm2/s

qb Maximum reaction rate of contaminant 7.9× 10−13 g/cfu/s

Y Yield coefficient 0

kd Decay rate 0

Kc Half-saturation coefficient of contaminant 1.3× 10−4 g/ml

Kd Dissociation constant 2.1× 10−3 g/ml

χ0 Chemotactic sensitivity coefficient 1.8× 10−5 cm2/s

vswim Bacterial swimming speed 4.8× 10−3 cm/s

SRT method; i.e. the SRT method became unstable at Db < 8 ×10−12 m2/s410

(τ− < 0.530) while the OTRT method became unstable at Db < 3.2 ×10−12

m2/s (τ− < 0.512). Compared with the previous simulations of reactive

transport in simple geometries, the SRT and OTRT methods are easier to

become unstable in the complicated geometry.

The accuracies of the SRT and TRT methods were evaluated by com-415

paring their simulation results with those obtained by the MRT method

reported in [34]. Fig. 9 shows the simulated bacterial distributions obtained

by the three methods for Db = 3.2 ×10−11 m2/s. We find that both the SRT

and OTRT methods reliably predicted bacterial distributions, although they

overestimated the concentration in the cavity (see Fig. 9e). A portion of420
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the bacteria separated from the original injection slug and formed a moving

ring with a high concentration. This ring was caused by chemotaxis and en-

ables the bacteria to access and degrade more contaminants than the bacteria

without chemotaxis. Overall, both the SRT and OTRT methods are able to

produce results that are comparative to those obtained by the MRT method.425

Compared with the MRT method, in which the mathematical presentation is

complex and the selection of relaxation parameters is challenging, the TRT

method described here is easier to implement.

4. Conclusions

This study clearly describes the framework and implementation of the430

TRT LBM. This method was then applied to various advective-diffusive-

reactive transport in simple and complicated geometries, and demonstrated

its ability to reliably predict a broad range of transport phenomena. The fact

that one of the two relaxation parameters in the TRT LBM is tunable en-

ables the TRT method to produce robust numerical performances in terms435

of accuracy and stability. The selection of the tunable parameter, τ+, is

important for the accuracy and stability of the TRT LBM. Generally, the

accuracy of the TRT method increases as τ+ decreases while the stability

depends on the values of τ+ and the other relaxation parameter τ−. When

τ− approaches 0.5, the TRT method is prone to numerical instability when a440

small τ+ is selected, which is the case for the SRT method. The TRT method

can attain much better stability when large τ+ is selected, which is the case

for the OTRT method. Therefore, although the numerical accuracy might

be exacerbated, the TRT LBM can be applied to simulate a broader range
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Figure 9: a) Initial distribution of bacterial concentration. b-d) Distributions of the simu-

lated bacterial concentration obtained by SRT, OTRT, and MRT [34] around the injection

cavity at t = 0.26 hours. e) Distributions of the simulated bacterial concentration along

the centerline parallel to the direction of flow (y = 3 mm). The bacterial concentration,

Cb, was normalized by the injecting bacterial concentration.
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of transport phenomena than the SRT LBM, such as transport with large445

advective velocity and/or small diffusion coefficient in complicated geome-

tries, through tuning τ+ and thereby improving the numerical stability. To

summarize, the TRT LBM can reliably predict various advective-diffusive-

reactive transport in both simple and complicated geometries by choosing

an appropriate value of τ+. This study demonstrates the significant poten-450

tial of the TRT LBM in predicting various geophysical and biogeochemical

processes in subsurface environments.

5. Acknowledgments

This work was supported by US National Science Foundation (NSF)

through Grant No 0911425, US National Institute of Health (NIH) through455

Grant No. P30 ES009089, and the Ministry of Science and Technology of

China through Grant No. 2016YFA0601000. This research was also sup-

ported by the US Department of Energy (DOE) Biological and Environmen-

tal Research (BER) Division, Subsurface Biogeochemical Research (SBR)

program, through the PNNL SBR Scientific Focus Area project. PNNL is460

operated by Battelle Memorial Institute under subcontract DE-AC06-76RLO

1830. We would like to express our sincere gratitude to Dr. Irina Ginzburg

for providing countless insightful suggestions and for her help with perform-

ing the simulations. We also would like to thank Dr. Sandra Taylor for

her helpful edit. The source code for the method used in this study is465

written by the authors. This code together with input files necessary to

reproduce the simulation results are available from the authors upon request

(yanzf14@outlook.com).

30



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

References

[1] I. Nambi, W. C.J., S. R.A., V. A.J., Pore-scale analysis of anaerobic470

halorespiring bacterial growth along the transverse mixing zone of an

etched silicon pore network, Environmental Science and Technology 37

(2003) 5617–5624.

[2] P. Meakin, A. Tartakovsky, Modeling and simulation of porescale mul-

tiphase fluid flow and reactive transport in fractured and porous media,475

Reviews of Geophysics 47.

[3] X. Wang, T. Long, Bacterial chemotaxis toward a NAPL source within

a pore-scale microfluidic chamber, Biotechnology and Bioengineering

109 (7) (2012) 1622–1628.

[4] Z. Yan, C. Liu, K. E. Todd-Brown, Y. Liu, B. Bond-Lamberty, V. L.480

Bailey, Pore-scale investigation on the response of heterotrophic respi-

ration to moisture conditions in heterogeneous soils, Biogeochemistry.

[5] M. Blunt, B. Bijeljic, H. Dong, O. Gharbi, S. Iglauer, P. Mostaghimi,

A. Paluszny, C. Pentland, Pore-scale imaging and modelling, Advances

in Water Resources 51 (2013) 197–216.485

[6] H. Yoon, Q. Kang, A. J. Valocchi, Lattice boltzmann-based approaches

for pore-scale reactive transport, Reviews in Mineralogy and Geochem-

istry 80 (1) (2015) 393–431.

[7] S. Chen, G. Doolen, Lattice Boltzmann method for fluid flows, Annual

Review of Fluid Mechanics 30 (1998) 329–364.490

31



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[8] W. Long, M. Hilpert, Lattice-Boltzmann modeling of contaminant

degradation by chemotactic bacteria: Exploring the formation and

movement of bacterial bands, Water Resources Research 44 (2008)

W09415.

[9] C. Aidun, J. Clausen, Lattice-Boltzmann method for complex flows,495

Annual Review of Fluid Mechanics 42 (2010) 439–472.

[10] H. Liu, Q. Kang, C. R. Leonardi, S. Schmieschek, A. Narvaez, B. D.

Jones, J. R. Williams, A. J. Valocchi, J. Harting, Multiphase Lattice

Boltzmann Simulations for Porous Media Applications, Computational

Geosciences 20 (4) (2016) 777–805.500

[11] A. Cal̀ı, S. Succi, A. Cancelliere, R. Benzi, M. Gramignani, Diffusion and

hydrodynamic dispersion with the lattice boltzmann method, Physical

Review A 45 (1992) 5771–5774.

[12] R. Parales, J. Ditty, C. Harwood, Toluene-degrading bacteria are

chemotactic towards the environmental pollutants benzene, toluene,505

and trichloroethylene., Applied and Environmental Microbiology 66 (9)

(2000) 4098–4104.

[13] Z. Yan, E. Bouwer, M. Hilpert, Coupled effects of chemotaxis and growth

on traveling bacterial waves, Journal of Contaminant Hydrology 164

(2014) 138–152.510

[14] Q. Kang, P. Lichtner, H. Viswanathan, Pore Scale Modeling of Reactive

Transport Involved in Geologic CO2 Sequestration, Transport in Porous

Media.

32



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[15] Z. Tian, H. Xing, Y. Tan, J. Gao, A coupled lattice boltzmann model

for simulating reactive transport in co2 injection, Physica A: Statistical515

Mechanics and its Applications 403 (2014) 155 – 164.

[16] Q. Kang, D. Zhang, S. Chen, X. He, Lattice boltzmann simulation of

chemical dissolution in porous media, Physical Review E 65 (3) (2002)

036318.

[17] Q. Kang, D. Zhang, S. Chen, Simulation of dissolution and precipita-520

tion in porous media, Journal of Geophysical Research: Solid Earth

108 (B10).

[18] L. Chen, Q. Kang, H. S. Viswanathan, W.-Q. Tao, Pore-scale study of

dissolution-induced changes in hydrologic properties of rocks with binary

minerals, Water Resources Research 50 (12) (2014) WR015646.525

[19] Q. Li, K. Luo, Q. Kang, Y. He, Q. Chen, Q. Liu, Lattice boltzmann

methods for multiphase flow and phase-change heat transfer, Progress

in Energy and Combustion Science 52 (2016) 62 – 105.

[20] A. Montessori, P. Prestininzi, M. La Rocca, S. Succi, Lattice boltzmann

approach for complex nonequilibrium flows, Phys. Rev. E 92 (2015)530

043308.

[21] G. Falcucci, S. Succi, A. Montessori, S. Melchionna, P. Prestininzi,

C. Barroo, D. C. Bell, M. M. Biener, J. Biener, B. Zugic, Mapping

reactive flow patterns in monolithic nanoporous catalysts, Microfluidics

and Nanofluidics 20 (7) (2016) 1–13.535

33



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[22] A. Montessori, P. Prestininzi, M. L. Rocca, G. Falcucci, S. Succi,

E. Kaxiras, Effects of knudsen diffusivity on the effective reactivity of

nanoporous catalyst media, Journal of Computational Science 17, Part

2 (2016) 377 – 383, discrete Simulation of Fluid Dynamics 2015.

[23] G. Falcucci, G. Amati, V. K. Krastev, A. Montessori, G. S. Yablon-540

sky, S. Succi, Heterogeneous catalysis in pulsed-flow reactors with

nanoporous gold hollow spheres, Chemical Engineering Science 166

(2017) 274 – 282.

[24] R. Benzi, S. Succi, M. Vergassola, The lattice boltzmann equation: the-

ory and applications, Physics Reports 222 (3) (1992) 145 – 197.545

[25] F. Higuera, S. Succi, R. Benzi, Lattice gas dynamics with enhanced

collisions, EPL (Europhysics Letters) 9 (4) (1989) 345.

[26] Z. Guo, C. Shu, Lattice Boltzmann method and its applications in en-

gineering (advances in computational fluid dynamics), World Scientific

Publishing Company, 2013.550

[27] S. Succi, The lattice Boltzmann equation: for fluid dynamics and be-

yond, Oxford university press, 2001.

[28] D. Groen, J. Hetherington, H. B. Carver, R. W. Nash, M. O. Bern-

abeu, P. V. Coveney, Analysing and modelling the performance of the

hemelb lattice-boltzmann simulation environment, Journal of Compu-555

tational Science 4 (5) (2013) 412–422.

[29] X. He, Q. Zou, L. Luo, M. Dembo, Analytic solutions of simple flows

34



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

and analysis of nonslip boundary conditions for the lattice Boltzmann

BGK model, Journal of Statistical Physics 87 (1-2) (1997) 115–136.

[30] C. Pan, L. Luo, C. Miller, An evaluation of lattice Boltzmann schemes560

for porous medium flow simulation, Computers and Fluids 35 (8-9)

(2006) 898–909.

[31] Q. Kang, P. C. Lichtner, D. Zhang, Lattice boltzmann pore-scale model

for multicomponent reactive transport in porous media, Journal of Geo-

physical Research: Solid Earth 111 (B5), b05203.565

[32] L. Chen, Q. Kang, Q. Tang, B. A. Robinson, Y.-L. He, W.-Q. Tao, Pore-

scale simulation of multicomponent multiphase reactive transport with

dissolution and precipitation, International Journal of Heat and Mass

Transfer 85 (2015) 935–949.

[33] L.-S. Luo, W. Liao, X. Chen, Y. Peng, W. Zhang, Numerics of the lattice570

boltzmann method: Effects of collision models on the lattice boltzmann

simulations, Physical Review E 83 (5) (2011) 056710.

[34] Z. Yan, M. Hilpert, A multiple-relaxation-time lattice-boltzmann model

for bacterial chemotaxis: effects of initial concentration, diffusion, and

hydrodynamic dispersion on traveling bacterial bands, Bulletin of Math-575

ematical Biology 76 (10) (2014) 2449–75.

[35] D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, L. Luo,

Multiple-relaxation-time lattice Boltzmann models in three dimensions,

Philosophical Transactions of The Royal Society of London Series A

360 (1792) (2002) 437–451.580

35



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[36] I. Ginzburg, Equilibrium-type and link-type lattice Boltzmann models

for generic advection and anisotropic-dispersion equation, Advances in

Water Resources 28 (11) (2005) 1171–1195.

[37] I. Ginzburg, Generic boundary conditions for lattice Boltzmann models

and their application to advection and anisotropic dispersion equations,585

Advances in Water Resources 28 (11) (2005) 1196–1216.

[38] L. Talon, D. Bauer, N. Gland, S. Youssef, H. Auradou, I. Ginzburg,

Assessment of the two relaxation time lattice-boltzmann scheme to sim-

ulate stokes flow in porous media, Water Resources Research 48 (4)

(2012) W04526.590

[39] A. Genty, V. Pot, Numerical simulation of 3d liquid–gas distribution in

porous media by a two-phase trt lattice boltzmann method, Transport

in Porous Media 96 (2) (2013) 271–294.

[40] H. Liu, A. J. Valocchi, C. Werth, Q. Kang, M. Oostrom, Pore-scale

Simulation of Liquid CO2 Displacement of Water Using a Two-phase595

Lattice Boltzmann Model, Advances in Water Resources 73 (2014) 144–

158.

[41] B. Servan-Camas, F. T.-C. Tsai, Lattice boltzmann method with two

relaxation times for advection–diffusion equation: third order analysis

and stability analysis, Advances in Water Resources 31 (8) (2008) 1113–600

1126.

[42] A. Genty, V. Pot, Numerical calculation of effective diffusion in unsatu-

36



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

rated porous media by the trt lattice boltzmann method, Transport in

Porous Media 105 (2) (2014) 391–410.

[43] L. Li, K. Maher, A. Navarre-Sitchler, J. Druhan, C. Meile, C. Lawrence,605

J. Moore, J. Perdrial, P. Sullivan, A. Thompson, et al., Expanding the

role of reactive transport models in critical zone processes, Earth-Science

Reviews.

[44] I. Ginzburg, F. Verhaeghe, D. d’Humières, Two-relaxation-time lat-

tice Boltzmann scheme: About parametrization, velocity, pressure and610

mixed boundary conditions, Communications in Computational Physics

3 (2) (2008) 427–478.

[45] I. Ginzburg, D. d’Humieres, A. Kuzmin, Optimal stability of advection-

diffusion lattice Boltzmann models with two relaxation times for posi-

tive/negative equilibrium, Journal of Statistical Physics 139 (6) (2010)615

1090–1143.

[46] I. Ginzburg, Truncation errors, exact and heuristic stability analysis

of Two-Relaxation-Times lattice Boltzmann schemes for anisotropic

advection-diffusion equation, Communications in Computational

Physics 11 (2012) 1439–1502.620

[47] I. Ginzburg, Multiple anisotropic collisions for advection-diffusion Lat-

tice Boltzmann schemes, Advances in Water Resources 51 (2013) 381–

404.

[48] Q. Zou, X. He, On pressure and velocity boundary conditions for the

lattice boltzmann bgk model, Physics of Fluids 9 (6) (1997) 1591–1598.625

37



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[49] B. H. Devkota, J. Imberger, Lagrangian modeling of advection-diffusion

transport in open channel flow, Water Resources Research 45 (12) (2009)

W12406.

[50] S. P. Sutera, R. Skalak, The history of poiseuille’s law, Annual Review

of Fluid Mechanics 25 (1) (1993) 1–20.630

[51] G. Taylor, Dispersion of soluble matter in solvent flowing slowly through

a tube, Proceedings of the Royal Society of London Series A 219 (1953)

186–203.

[52] X. Yang, Y. Mehmani, W. A. Perkins, A. Pasquali, M. Schnherr, K. Kim,

M. Perego, M. L. Parks, N. Trask, M. T. Balhoff, M. C. Richmond,635

M. Geier, M. Krafczyk, L.-S. Luo, A. M. Tartakovsky, T. D. Scheibe,

Intercomparison of 3d pore-scale flow and solute transport simulation

methods, Advances in Water Resources 95 (2016) 176 – 189.

[53] S. Molins, D. Trebotich, C. I. Steefel, C. Shen, An investigation of the

effect of pore scale flow on average geochemical reaction rates using640

direct numerical simulation, Water Resources Research 48 (3), w03527.

[54] S. Jennings, The mean free path in air, Journal of Aerosol Science 19 (2)

(1988) 159 – 166.

[55] K. H. LUO, J. XIA, E. MONACO, Multiscale modeling of multiphase

flow with complex interactions, Journal of Multiscale Modelling 1 (01)645

(2009) 125–156.

[56] Accuracy of higher-order lattice boltzmann methods for microscale flows

38



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

with finite knudsen numbers, Journal of Computational Physics 227 (19)

(2008) 8655 – 8671.

[57] J. Bear, Hydraulics of groundwater, McGraw-Hill International Book650

Co., 1979.

[58] R. Marx, M. Aitken, Quantification of chemotaxis to naphthalene by

pseudomonas putida G7, Applied and Environmental Microbiology 65

(1999) 2847–2852.

[59] G. Alexandre, S. Greer-Phillips, I. Zhulin, Ecological role of energy taxis655

in microorganisms, FEMS Microbiology Reviews 28 (1) (2004) 113–126.

[60] M. Hilpert, Lattice-Boltzmann model for bacterial chemotaxis, Journal

of Mathematical Biology 51 (2005) 302–332.

[61] M. Rivero, R. Tranquillo, H. Buettner, D. Lauffenburger, Transport

models for chemotactic cell populations based on individual cell be-660

haviour, Chemical Engineering Science 44 (12) (1989) 2881–2897.

[62] R. Singh, M. S. Olson, Application of Bacterial Swimming and Chemo-

taxis for Enhanced Bioremediation, Springer Netherlands, 2008.

[63] N. Jannelli, R. A. Nastro, V. Cigolotti, M. Minutillo, G. Falcucci, Low

ph, high salinity: Too much for microbial fuel cells?, Applied Energy665

192 (2017) 543 – 550.

39


