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Abstract

The lattice Boltzmann method (LBM) based on single-relaxation-time
(SRT) or/multiplecrelaxation-time (MRT) collision operators is widely used
in simulating“flow and transport phenomena. The LBM based on two-
relaxation<time (TRT) collision operators possesses strengths from the SRT
and MRT LBMs, such as its simple implementation and good numerical sta-

bility, although tedious mathematical derivations and presentations of the
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TRT LBM hinder its application to a broad range of flow and transport
phenomena. This paper describes the TRT LBM clearly and provides a
pseudocode for easy implementation. Various transport phenomena were
simulated using the TRT LBM to illustrate its applications in subsurfaee en-
vironments. These phenomena include advection-diffusion in uniferm flow,
Taylor dispersion in a pipe, solute transport in a packed column, reactive
transport in uniform flow, and bacterial chemotaxis in porous media. The
TRT LBM demonstrated good numerical performange in terms of accuracy
and stability in predicting these transport phenomena. Therefore, the TRT
LBM is a powerful tool to simulate various geophysical and biogeochemical
processes in subsurface environments.

Keywords: Lattice Boltzmann MethodjnTwo-Relaxation-Time,
pore-scale model, advection-diffusion, reactive transport,

porous media

1. Introduction

Important biegeochemical processes such as microbial metabolism and
contaminant femediation take place at the pore scale in subsurface envi-
ronments/[1,.2, 8¢ 4]. Pore-scale modeling allows to directly examine the

s biogeochemigal processes and is able to provide mechanistic insights into
macroscopic field observations [5, 6]. The Lattice Boltzmann method (LBM)
is,one/of the most widely used pore-scale methods [7, 8, 9, 10], and has been
used to study various geophysical and biogeochemical processes in porous
and fractured media, including solute transport [11], contaminant remedia-

0 tion [12, 13], geologic carbon storage [14, 15], and mineral cementation and
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dissolution [16, 17, 18]. Recently, the LBM has been used to tackle more
challenging problems such as heat transfer in thermofluids [19] and complex
flow and reactions in nanoporous catalysts [20, 21, 22, 23].

The LBM captures the physics of macroscopic behaviors throughucon-
trolling the local mesoscopic operations of pseudo-particles that smoveion a
regular lattice, with a set of discrete velocities, and relax to.an equilibrium
state via a collision operator [24, 25, 7, 9, 26]. The distribution” and evo-
lution of the particles determine how the solute concentration’changes with
respect to space and time. The typically explicit; mumerical time-stepping
scheme makes it easy to develop a LBM codé, [27], and the local nature of
the LBM makes it suitable for parallel computing*[28]. Moreover, the LBM
is well suited to deal with potentially reaetive surface boundaries in com-
plex pore geometries through using simple-or modified bounce-back schemes
[29, 30, 31, 32]. These characteristics‘enable the LBM to explore a variety of
flow and transport phenomenaiin complicated geometries [9, 6].

Different selections’of, theicollision operator result in three typical LBMs:
single-relaxation-time (SRT) LBM, two-relaxation-time (TRT) LBM, and
multiple-relaxation-time (MRT) LBM. These LBMs are different in terms of
numerical/accuracy and stability [33]. The SRT LBM employs a single relax-
ation parametet and is easy to implement [7]. It is the most popular LBM but
may suffer/from unphysical artifacts in complicated geometries and numer-
ical instability at small relaxation rates [29, 33]. The MRT LBM employs
multiple relaxation parameters, and can attain more stable and accurate
simulations by tuning the relaxation parameters [34]. However, selecting the

multiple relaxation parameters is challenging since it requires comprehensive
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asymptotic analysis [35, 34]. The TRT LBM employs two relaxation pa-
rameters to relax the particle distributions, having one fixed but the other
tunable [36, 37]. It maintains the simplicity of the SRT method in terms/of
implementation while retaining the advantages of the MRT method interms
of numerical accuracy and stability [33].

Since its systematic development the TRT LBM has been applied to both
flow and transport phenomena [36], such as permeability estimation in dif-
ferent geometries [38], multi-phase flow in porous media [395.40], advection-
diffusion in bulk flow [41], and effective diffusion in unsaturated porous media
[42]. However, the TRT LBM is rarely used in reactive transport, which is
of great significance for many biogeochemical processes in subsurface envi-
ronments [43]. The TRT method is alse much less used than the SRT and
MRT LBMs, although it integrates theysimplicity of the SRT method and the
stability of the MRT method. One reason is that the tedious mathematical
derivations and presentations of the TRT method hinder its understanding
and implementation [36,,44,345, 46]. Therefore, a clear presentation of the
TRT LBM is necessary for‘extending its applications to a broader variety of
flow and transpert phenomena.

This paper aims to articulate the framework and implementation of the
TRT EBM as simply as possible and to apply this method to various trans-
port phenomena. We provide a clear description of the TRT LBM including a
pseudocode for straightforward implementation. The method was applied to
awvariety of transport phenomena to demonstrate its ability to reproduce sub-
surface phenomena. Advective-diffusive-reactive transport in uniform flow,

for which analytical solutions are available, was examined to evaluate the
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stability and accuracy of the TRT method used in simple geometries. Taylor
dispersion in a pipe was examined to assess the effect of solid boundaries on
the stability and accuracy. Solute transport in a packed column was exam-
ined to assess the numerical performance of the TRT method in complicated
geometries. Lastly, bacterial chemotaxis in porous media was examined to
illustrate the application of the TRT method to biogeochemigal reactions in

subsurface environments.

2. Methods

The thermodynamic state of a solute in the"TRT-ZBM is defined by a Q-
dimensional particle distribution function, fy(r,t), where ¢ =0, ..., @ —1.
This function is defined at each lattice node (¥) and for each discrete time (¢).
The nodes in the lattice space are connected by a set of discrete velocities ¢,
which are aligned with lattice axessand diagonals. Summing up the particle

distributions over all thef{discrete velocities yields the solute concentration

C:

)
L

C=) J4 (1)

q

I
o

At each nede,the particle distribution function can be decomposed into

symmetriciand, antisymmetric components,
fo= 13 + 1y (2)

where fF = (f, + fz)/2 and f; = (fy — f7)/2. The integer 7 is the index of

velocity cz that points to the opposite direction of ¢, (c; = —c,). For the rest
Q-1

of the particles that have a zero velocity (co =0), f = fo=C— > f, and
q=1
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fo = 0. In order to simplify the sums over all velocities c,, we assume that
the velocities are ordered such that g = ¢+ (Q —1)/2for 1 < ¢ < (Q—1)/2.
(Q-1)/2
Therefore fF = C —2 ; I
The particles at one node move to neighboring nodes in terms of the'mon-
zero discrete velocities ¢, (¢, # 0, ¢ = 1,...,Q—1), or stay at the node for c,.

Once the particles reach the neighboring nodes, the resultant distributions

are relaxed to an equilibrium state through a TRT collision operator [36]:

fetept+ ) = fn0) - U - ) @)

f~q (I‘,t)

where e and e, are the symmetric and antisymmetric components of the
equilibrium particle distribution e, (e, = 'efit'e;); 7" and 77 are the sym-
metric and antisymmetric relaxationiparameters, respectively. The entire
right hand side of eq. (3) is called\post-collision particle distribution fq(r, t).

The equilibrium particle distributions for a non-zero discrete velocity can

be expressed by [47]

d
m u)J72 u V VBC aCqp
el = Ctme 242 + (W cg|? > (VP - V), + Z > @ N2 5
a=1 B;ﬁa = Cjacjﬂ

(4)

ES)

and .
.= té“)C’ Z VaCaa (5)
a=1

where g = 1,...,(Q —1)/2, V,, (or Vj) are the ath (or Sth) Cartesian com-
ponent of the advective velocity in the lattice space, V2 = Z V2/d where
d is the dimensionality (i.e., d = 3 for a three-dimensional LBM) Cqa 1s the

ath Cartesian component of the discrete velocity c,, ¢, is the speed of sound,
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) 4l and #4% are weights. All these weights are non-negative and

isotropic, and satisfy the isotropy conditions:
> W gaces = Saps Yt CqaCqs = dap (6)
q q

where o, 5 = 1,...,d. Different selections of the weights result in'different
numerical stabilities [45].

The other half of the equilibrium particle distributions (for ¢ =(Q—1)/2+

1,...,Q — 1) can be calculated through the symmetric.and antisymmetric
relations

+_ ot - A=

eg =€, and e, ='xe, (7)

(Q-1)/2
For the rest of the particles, ef = C'— 2w.>_ e} and ej = 0.
=,

qi
To make the TRT method as simple as,possible, we apply the widely used
standard bounce-back (SBB) boundary condition:

fa(ryt +1) = fo(r. 1), (8)
which mimics the phenomenon that a particle is reflected back into the pore
domain when gelliding with a solid boundary.

If there‘exists mass source or sink (M), the post-collision particle distri-

butionsrare‘modified to:

fq<r7t) = fq(r7t>+t‘(lm)C§M7 q:177Q_1

) N (Q-1)/2 (9)
folwt) = fole,t) + M(1 -2 3 t")

where fq on the right-hand-sides is defined in eq. (3). This modification
enables the TRT LBM to simulate reactive transport.
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A 3D lattice structure with 15 discrete velocities (D3Q15) was used in the

simulations. The discrete velocities in the D3(Q15 model can be described by

01001 1 1 1 -1 0 0 -1 —1 .41
(cgyc1y...c)) =1 00101 1 -1 -1 0 -1 0 -1 01
00011 -1 1 =1 0 0 -1 —1% 1%=1

where the ¢, with ||c,||*> = 1 are classified as type I velocities/and the c,
with [|c,||?> = 3 are classified as type IT velocities. The corresponding lattice
structure is shown in Fig. 1. In this study, we selectedsthe commonly used
“hydrodynamic” isotropic weights [45]: tga) = tém) ="1/3, té“’ = 0, and
wi™ =1/2 for the type I velocities, while £/ =™= 1/24, 1" = 1/8, and

wi™ = 0 for the type I1 velocities. ¢ = 3/8 Wwas chosen for both type I and

s =

1T velocities. Consequently, the equilibrium distributions become:

eq = 2C+1Cc, - V42 V)’ —1CV -V, ¢ €1
¢ = HO+ 5Ce Vo £C(e, VP~ OV -V e 1l (10)

The D3Q15 model reduces to a one-dimensional model with three discrete
velocities (D1Q3) in 1D simulations and to a two-dimensional model with
five discrete yelogities (D2Q5) in 2D simulations [47].

With the,Chapman-Enskog expansion, the solutions of eq. (3) approach
solutions to the following dimensionless reactive advection diffusion equation

(ADE) [36]:
Z_(Tj+v-(VC) = DV*C+ M (11)

where D is the dimensionless diffusion coefficient, D = (7~ —1/2)c2. This di-

mensionless reactive ADE can be derived from the corresponding dimensional
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Figure 1: Lattice structure for the D3Q15 lattice Boltzmann model.

reactive ADE:

g—; + V- (uc) =2DVPc+ I (12)

where ¢ is the solute concentrationy(c = ¢oC), t is time (t = TAx/uy), u is
the advective velocity of flows(u = 4yV), D is the diffusion coefficient of the
solute (D = A:cuof?), and L is the reaction term (I = couoM/Azx). ¢y, Az,
and wug are characteristic values used to normalize the dimensional ADE.

In applications ofithe TRT LBM to reactive transport of a solute, the anti-
symmetric relaxation parameter 7- is determined by the diffusion coefficient
of the solute; 7= 1/2+D/(c? Azug), while the symmetric relaxation param-
eter 7 is free to choose as long as 77 > 0.5. The free selection of 77 enables
the TRT LBM to produce robust numerical performance in terms of accuracy
and stability. If 77 is given the same value as 7—, the TRT method reduces to
the SRT method [36, 48]. Another particular value of 77 is 1/241/(47~ —2)
arose from the so-called “magic” product (77 —1/2)(7~ —1/2) = 1/4, which

enables the TRT method to maintain good stability even for small 7= [45].

10
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The corresponding TRT method is called optimal TRT (OTRT) method.
The implementation of the TRT LBM to simulate advective-diffusive-
reactive transport phenomena is illustrated by a pseudocode (Fig. 2). The
particle distributions were updated following sequential travel and cellision
steps during the simulations. The dimensional concentration as-a, fungtion

of time is given by ¢ = ¢oC.

3. Results and discussion

In this section, the TRT LBM is applied to,varieusadvective-diffusive-
reactive transport phenomena, ranging from advection-diffusion in uniform
flow to reactive transport in porous media. “The simulation results provide
insights into the applications of the TRF TBM to a variety of transport

phenomena in subsurface environments:

3.1. Advection diffusion in-umiform’ flow

One-dimensional advection-diffusion of a solute with an initially Gaussian
concentration distribution was first used to evaluate the numerical stability
and accuracy ofithe TRT method used in simple geometries. For the initial

distribution

m (x—xo)Q)
exp | ———— 13
= p( - (13)

the follewing analytical solutions can be derived [49]

m (v —xo — ut)Q)
c(z,t) = exp | ——————5— 14
(z.1) \VA4r Dt + 270 P ( 4Dt + 202 (14)

where m is the initial mass of the solute per unit length, xg is the initial center

of the mass, u is the advective velocity, and o2 is the variance of the initial

11
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Input parameters

Nondimensionalization

Initialization

Compute equilibrium
components

Compute symmetric/
anti-symmetric components

Collision step

Boundary identification

Standard bounce back

Travel step

Update concentration

Figure 2: Pseudocode for applying the TRT LBM to reactive transport.
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solute distribution. m = 0.56 kg/m, o = 1 m, and 0y = 0.22 m were chosen
in the simulations. A periodic boundary condition was applied at both ends
of the domain. Az =1 x107% m, up = 1 x107* m/s, and ¢y = 1 kg/m
were used to normalize the dimensional ADE (eq. (12)). Different diffusion
coefficients, D = 7.5 x107%, 7.5x1071° and 7.5 x10~" m?/s (corrésponding
to 77 = 0.7, 0.52, and 0.502), were used in the simulations.

We varied the tunable parameter 77 to examine its effects on the numeri-
cal stability and accuracy of the TRT LBM. The maximum allewable velocity
in the lattice space Vi, above which the simulations become unstable, was
used to describe the numerical stability of the TRI method. A simulation
was defined as stable when it continued converging after 5000 steps of com-
putation. Figure 3 shows the dependencevof.V;, ., on 71 for three different
diffusion coefficients (corresponding te,three different 77). When 77 is large
(77 = 0.7), the stability of the TRT"method first increases monotonically
with 7% to then reach optimal‘stability shortly before the choice of 7F that
used in the SRT method, When 77 is small (77 = 0.502, 0.52), the stability
of the TRT methed firstyincreases, then decreases, and then increases again
as 7T increases:therefore there is a range of 77 values for which the stability
deteriorates., This range is delimited by the 77 values of the SRT and OTRT
methods. For all three 7= the SRT and OTRT methods produced the same
maximum values of V4. (~0.79). Once V exceeded 0.792, the TRT method
became unstable. This is consistent with a theoretical analysis of the stabil-
ity-of the TRT method [45], according to which V? < 1—¢2 (i.e. V < 0.791)
is a necessary condition for the D1Q3 TRT LBM to be stable. Therefore, the
SRT and OTRT methods have the same stabilities for 1D advective diffusion

13



in the simple geometry considered here.
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Figure 3: Dependence of stability on the tunable parameter 7+ in simulations of 1D
advection-diffusion. Three different diffusion coeflicients (corresponding to different 77)
were examined. V4, représents the/maximum allowable velocity yielding a stable simula-
tion (which continued/Converging after 5000 steps of computation). A series of 77 values
were examined (each symbol represents the simulated V., for a 7% value), and the two

particular selec¢tions, 7+ = 7~ (SRT) and 77 =1/2+1/(47~ — 2) (OTRT), are indicated

on the curve.

The numerical accuracy of the TRT method with different 7+ was eval-
uated by comparing the simulation results with the analytical solutions (eq.
14)7"Table 1 shows errors of the simulated concentration produced by the

210, TRT method for different advective velocities in lattice space V. The re-
sults show that the error generally increases with 71, which is expected since

larger 7 results in larger high-order errors in the TRT simulations [46]. As

14



V increases, the error produced by the SRT method increases consistently for
three 77, while that produced by the OTRT method first increases and then
decreases for two smaller 7= (7~ = 0.52, 0.502). The OTRT exhibits simi-
lar accuracy with the SRT method when V' = 0.79. Furthermore, the“error
difference between the OTRT and SRT methods decreases as 74increases,
exhibiting almost the same accuracies for all V' when 7= = 0.7.) Therefore,
the SRT method generally produces more precise simulatiohs thanithe OTRT

method. However, the error difference can be ignored-for lazge’V or 7.

Table 1: Dependence of accuracy on the tunable patameter, 7= for different advec-
tive velocities V' in simulations of 1D advection-diffusion ‘at”"t = 23 days. Three dif-
ferent diffusion coefficients (corresponding to different 7~ ) were examined. The accu-

racy is represented by relative errors (%) of the'simulated solute concentration, Error =

SN | |Ci(simulated)—C; (analytical)|
N Cyn o (analytical)

x 100, where N is the number of numerical nodes along
the direction of flow, N = 2000, C; i8'the solute concentration at the location iAz, and
Cinaz(analytical) is the maximum concentration of the analytical solutions at that time.

NaN denotes a numerically unstable solution.

T =0.7 T = 0.52 T~ = 0.502
+t ++ t
v 1.75 (OTRT) 0.7 (SRT) 125.5 13 (OTRT) 2.5 0.52 (SRT) 0.502 125.5 (OTRT) 0.502 (SRT)
0.1 0.041 0.040 0.190 0.019 0.014 0.014 0.014 0.020 0.015
0.3 0.050 0.044 0.477 0.044 NaN 0.025 0.025 0.048 0.026
0.5 0.051 0.050 0.526 0.059 NaN 0.036 NaN 0.067 0.039
0.79 0.057 0.057 0.050 0.049 NaN 0.049 NaN 0.060 0.059
0.8 NalN NaN NaN NaN NaN NaN NaN NaN NaN

3.2. Taylor dispersion
Taylor dispersion in a pipe was used to further evaluate the stability

and accuracy of the TRT method when solid boundaries exist. The velocity

15
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distribution in the pipe is described by [50]:
u(r) = 2u(1 — r*/R?) (15)

where w is the average flow velocity, R is the radius of the pipe, and z«is the
radial coordinate, r = \/y? + 22. A slug of solute was initially injected. into
the pipe with diameter of 0.01 m and length of 2 m. The effective diffusion

coefficient of the solute can be estimated by [51]:

, Pe?
ot —p (14,22 o
where Pe is Peclet number, Pe = 2uR/D.

The simulations used the same numeric¢al"settings and parameter values
as in the previous 1D transport simulationss, The stability of the TRT method
was described by V.. Its accuracy was ‘evaluated by comparing Daenalytical
with simulated values, which were €alculated based on the simulated solute
concentration
de?) 1003 = (6})

= = 17
2 dt 2 tha—t (17)

where (0?) is the Aariance/of concentration distribution. It can be estimated

by

simalated
D 2

(2(t)) = SIS (@ = (x(t)))’c(x,y, 2, t)dwdydz
[[[ c(x,y, 2z, t)dzdydz

where (x) is the center of solute mass along the direction of flow. It can be

(18)

estimated by
(z(t)) = JfJ wc(z,y, 2, t)dvdydz
’ N fffc(xvyvzyt)dxdydz

Fig. 4 shows the stability of the TRT method changed with 7+ for differ-

(19)

ent 7. Compared with the previous 1D transport, the stability of the SRT

method considerably deteriorates due to the effects of boundaries, while the

16
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stability of the OTRT method degrades for small 7 but improves for large
7+. The OTRT method demonstrated better stability than the SRT method
for all three 7~ values, with increasing stability as 7~ decreases. Fig. 4 shows
that the OTRT method obtains larger V,,,, values than the SRT method es-
pecially when 7= = 0.502 (V0. = 0.96 for OTRT and 0.12 for SRT').“This
instability of the SRT method as 7~ approaches 0.5 is a well-known short-
coming of this method [29, 33]. Therefore, the OTRT meéthod can improve
numerical stability compared with the SRT method when simulating reactive
transport in geometries with boundaries which are present' in porous media.
The degree of improvement increases as 7~ decreases.

Table 2 shows the accuracy of the TRT method changed with 7 for differ-
ent 7~ (diffusion coefficient) and V (V' =fug). Compared with the previous
1D transport without solid boundariesy the-accuracy similarly decreases with
7T, but the value of error apparentlyincreases for the same 7+, 7= and V.
These results illustrate that thesboundaries together with the SBB boundary
condition introduce significant/errors to the TRT simulations. The error of
the OTRT method genetally increases with V, but remains almost constant
once it reaches“abouty10.5% for all the three 7= values. In contrast, the
error of the SRT,method varies with V and 7~ in a more complex manner,
illustrating the’ complicated effects of boundaries on the accuracy. Overall,
the.error produced by the SRT method is much smaller than that produced
by the OTRT method: this is probably due to the larger dissipation in the
OTRT method [46].

We further investigated the effects of boundaries on the stability and
accuracy of the TRT method by changing mesh resolution N, where N =

17
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SRT

101 102

[

Figure 4: Dependence of stability on the'\tuhable parameter 7+ in simulations of Tay-
lor dispersion. Three different diffusionscoefficients (corresponding to different 77) were
examined. V,,q. represents themaximum allowable velocity yielding a stable simulation
(which continued converging. after 5000 steps of computation). A series of 71 values were
examined (each symbol représents the simulated V.4, for a 77 value), and the two par-
ticular selections, 77 =7~ (SRT) and 7+ =1/2+1/(47~ —2) (OTRT), are indicated on

the curve.

2R/Axz.” Note that N = 10 in Fig. 4 and Table 2, and 7~ is a function
of Ny 7= = 1/2+4 ND/(2Rc?ug). Only the SRT and OTRT methods were
éxamined in the Taylor dispersion simulations with Pe = 100. Fig. 5 shows

simulated __ yanalytical
De De

the*change of V., and error €, € = , with respect to V

for two different D.

18



Table 2: Dependence of accuracy on the tunable parameter 7~ for different advective
velocities V' in simulations of Taylor dispersion. Three different diffusion coefficients (cor=

responding to different 77) were examined. The accuracy is represented by relative error

simulated analytical
7De

(%) of the effective diffusion coefficient (i.e. Error = ———Fxmunta x 100). /NaN
s
denotes a numerically unstable solution
= =07 T = 0.52 = = 0.502
— T+ 7'+ T+
Vv Pe Pe Pe
1.75 (OTRT) 0.7 (SRT) 125.5 13 (OTRT) 2.5 0.52 (SRT)  0.502 125.5 (OTRT)  0.502 (SRT)
0.0075 | 1 -6.15 -2.94 10 | 15.73 -0.58 -0.69 -0.31 -0.30 | 100 10.05 5.03
0.075 10 -0.18 -0.35 100 77.14 10.05 3.51 1.41 1.39 1000 10.06 NalN
0.225 30 8.36 2.78 300 NaN 10.42 NaN 0.71 NaN 3000 10.50 NaN
0.3 40 9.63 2.78 400 | NaN 10.42 NaN 0003 NaN | 4000 10.40 NaN
0.375 50 9.70 NaN 500 NaN 10.51 NaN NaN NaN 5000 10.66 NalN
0.45 60 NaN NaN 600 | NaN NaN NaN NaN NaN | 6000 NaN NaN
-10 2 10_6 -10 2
a) ——SRT,D = 7.5 x 10719 m?/s b) ——SRT,D = 7.5 x 107% m?/s
15 ——OTRT, D= 7.5 x 10710 m?/s —=—OTRT, D=7.5 x 1071 m?/s
-4-SRT,D = 7.5 x 107t m?/s -¥-SRT,D = 7.5 x 107X m?/s
-%-OTRT, D = 7.5 x 107! m?/s ~ -4-OTRT, D =7.5 x 107! m?/s
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Figure 5: a) Stability of the SRT and OTRT methods with respect to mesh resolu-
tion N in simulations of Taylor dispersion. Two different diffusion coefficients D were
examined.V,,,,, represents the maximum allowable velocity yielding a stable simulation
(which continued converging after 5000 steps of computation). b) Error of the SRT and
OTRT methods with respect to mesh resolution, e = Dsimulated _ panalytical = pe — 1()

in the simulations
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The results show that the stability of the OTRT method degrades as NV
increases, although the rate of degradation decreases. By contrast, the sta-
bility of the SRT method depends on the value of D. When D = 7.5x107*
m? /s, the stability of the SRT method increases monotonically with-N, al-
though it is still inferior to that of the OTRT method for N =40. When
D = 7.5x1071% m?/s, the stability of the SRT method firstdncreases with
N and quickly reaches a plateau as N > 10, similar to the stability of the
OTRT method when N = 40. This fixed stability of the SRI-method prob-
ably results from its insufficient dissipation [33]. Therefore, the stability of
the SRT method can be improved by refining mesh resolution, but it may
fail for high resolution. The OTRT method provides better stability than
the SRT method for small D, even for mesh,with high resolution.

The results for accuracy in Fig. Hbshow that the SRT method generally
results in more precise simulations than the OTRT method. Both methods
converge when N < 20, présenting a convergence speed of about 2. The SRT
method stops converging,as /> 20 while the OTRT continue to converge at
these values, though its eonvergence speed slows down. The different conver-
gences result in“similar accuracies between the two methods when N = 40.
The higher errors produced by the SRT method primarily results from the
SBB boundary/condition, which leads to uncorrected boundary location and
inereasing numerical errors as N becomes large [33]. In summary, the simula-
tions of Taylor dispersion illustrate that the stability of the SRT method for
m-approaching 0.5 can be improved by refining the spatial resolution. How-
ever, this also reduces the accuracy of this method. In contrast, the OTRT

method is able to produce more accurate simulations while maintaining good

20



305

310

315

320

325

stability when the mesh resolution is refined.

3.8. Advection diffusion in a packed column

Advection-diffusion in a column packed with random monodispersed beads
was used to evaluate the accuracy and stability of the TRT method in.com-
plicated geometries [52]. The length and diameter of the column are 16.8
mm and 8.8 mm, and the diameter of the beads is L = 056-mm. The flow
field given in [52] was used in the transport simulations, with Darcy velocity
¢, = 4.556 x10™* m/s. The solute with ¢ = 1 kg/m*was)injected into the
column at the inlet along with the incoming fluids, The injection of the solute
continued for 2.78 s, and all solute eventually.exited the column driven by
advection and dispersion. A pulse-typeincoming concentration was imposed
at the inlet and free exit was emplayed at the outlet [52]. uy = 0.1 m/s, ¢
=1 kg/m?, and Ar = 4 x107%m, were selected in the simulations. This
spatial resolution leads to 221x221x421 total numerical voxels, and requires
extensive computational reseurges. Therefore, we examined the stability and
accuracy of the TRI method using only two particular TRT models (SRT
and OTRT).

We found that the OTRT method is more stable than the SRT method,
although bheth of them are more prone to numerical instability in the com-
plicated geometry than in the previous simple geometries. The SRT method
became unstable once D < 4.2x107% m?/s (77 < 0.528), while the OTRT
method became unstable when D < 3x107° m?/s (7= < 0.502). Figure 6
shows the concentration distribution obtained by the OTRT method in a
slice 10.78 s after the solute injection. D = 2.08x107% m?/s (7~ = 0.5139)

was used in this case. The solute plume was apparently dispersed by the
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nonuniform flow pattern, with the solute near the column walls exiting the
column first along the preferential flow paths. The breakthrough curve, for
which the effluent solute concentration was calculated by flux-weight average
values [53], was compared with the one attained by the finite volume nrethod
(FVM) reported in [52]. Figure 7 shows a good match between the simula-
tions obtained by the OTRT and FVM. The results illustrate that the OTRT
can reliably predict the dispersive transport in complicated geometries. The
simulation using the SRT method for this D was unstables.and is thereby
not shown. However, the accuracies of the two metheods were similar to each
other in simulations with larger D (D > 4.2%10%°% m?/s), where both the
SRT and OTRT methods were stable.

0 42 8.4 126 16.8

Figure/6: Coneentration distribution in a slice of the 3D packed column, 10.78 s after the
solute injection. D = 2.08x1078 m?/s (7~ = 0.5139) was used in the simulation. The

concentration was normalized by the concentration of the injected solute

For the packed column, the Knudsen number (K,), the ratio of the mean
free path of molecules to a characteristic flow length, was calculated to eval-

uate the effects of small pore size on flow and transport in the column [20].
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Figure 7: Comparisons of breakthrough curves at the outlet of,the.column obtained by
the OTRT method against the one obtained by finite volume method (FVM) reported in
[52].

We found the K, value is much smaller than™¥nK, = /5%=0.0025 [54],
so the continuum flow and transport equations such as equation (12) can
be used to describe the physical and“hemical processes in the column [55].
Given the small values of K, in this"and other cases, we neglected the effects

of Knudsen layer on the stability and accuracy of the TRT method [56].

3.4. Reactive transport_in uniform flow

One-dimensiénalreactive transport in uniform flow was used to evaluate
the stability and accuracy of the TRT method in simulating reactive trans-
port. Witha fitst-order reaction term (I = —kc), zero initial concentration
(e¢(x > 0,0) = 0), and fixed concentration at the inlet of a semi-infinite do-

main (¢(x = 0,t) = ¢), eq. (12) yields the following analytical solutions [57]:

(2 1/2
o vx x — (v° +4kD) t)+exp(ﬁa:)erfc(

x+ (v? +4kD)Y?t

c(z,t) = exps— |exp(—pBz)erfe( 2(Dt)1/2
(20)
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where k is the reaction rate constant, 8 = (v2/4D? 4+ k/D)'/? and erfc(x) =
1 —erf(z) = \%f;o exp(—72)dr. Consequently, M = —kCAx/ug in eq.
(11); M was computed explicitly using the known C' values at the previeus
step during the simulations. The simulations employed the same numerical
settings as in the previous 1D non-reactive transport.

Figure 8 shows the comparison between the simulated concentration ob-
tained by the TRT method with different 7+ and the analytical solutions
for different £ when 7= = 0.52. The results show that the/TRT method
reliably predicts the reactive transport for a wide tange of reaction rates,
although the error slightly increases with 7. Theweffects of 7~ on the accu-
racy and stability are similar to those in the.previous 1D advection-diffusion
and are thereby not present. Therefore; the, TRT method provides reliable

predictions for the reactive transport in simple geometries.

3.5. Bacterial chemotaxis in-two-dimensional porous media

Contaminant degradation by chemotactic bacteria in two-dimensional
porous media wasmused to/illustrate the applications of the TRT method
to biogeochemical reactions in subsurface environments. Chemotaxis en-
ables motile bagteria to move toward contaminants with high concentration,
thereby aceélerating the removal of contaminants [58, 59]. We assume that
the transport and fate of bacteria can be described by an reactive ADE and
that the contaminant is the only rate-limiting substrate. Thus the transport

and fate of the bacteria and contaminant can be described by [60]:

% + V- lau+u) — DyVa] = Ya oo — ke 1)
% + V- (ccou— D.Ve,) = Q%O
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Figure 8: Comparison between the simulated concentration obtained by the TRT method
with different 7% and the analytical solutiens for 1D reactive transport at ¢ = 27.8 hours.

Different reaction rate constafits k were examined, and D = 7.5x107° m?/s (7~ = 0.52).

where ¢, is the bagterial,concentration, c. is the contaminant concentration,
Dy, is the randemn metility coefficient of the bacteria, D, is the diffusion
coefficient 6f the contaminant, g, is the maximum reaction rate of the con-
taminant, K. is the half-saturation coefficient, Y is the yield coefficient, k;
is the decay rate, and u, is chemotactic velocity. u. depends on the con-

taminant concentration as well as its gradient, and can be described by [61]:

2U5wim Xo0 Kd VCC
= tanh o) =< 22
" 3 ot (QUswim (Kq+ c.)? Ve |) Ve (22)

25



385

390

395

400

405

where vy, is the swimming speed of the bacteria, K, is a dissociation
constant, and xo is the chemotactic sensitivity coefficient. The values of
parameters Ug,im, Kq, and xo depend on a number of factors including hac-
teria species, buffer solution chemistry, and temperature [62], and affeet, the
transport rate of bacteria in porous media through altering the value of the
chemotactic velocity u.. This chemotactic velocity modifies(the advective
velocity in lattice space, V = (u+u.)/uo, in the application of TRT simula-
tions, such that the effects of chemotaxis could be consideredsin the reactive
ADE (eq. 12).

The bacteria were initially injected into .a _cawvity/in the porous media,
while the contaminant was uniformly distributed in the beginning. The bac-
teria degraded the contaminant during itsrmovement, driven by advection,
diffusion, and chemotaxis [34]. The parameter values used in the chemotactic
system are presented in Table 3, in, which the values were estimated based on
an experiment of bacterial’chemotaxis in a capillary tube [58]. A hospitable
environment and nece$sary nutrients, such as sodium (Na), potassium (K),
and phosphate buffer (pH/= 7), were provided in the experiment, so that
the bacteria cotild grow and exhibit chemotaxis [58, 62, 63]. The fluid field
simulated by, the, MRT method in [34] was used in the transport simulations,
in which Darcy velocity ¢, = 3.2 x107® m/s. Az = 1.5 x107° m and ug =
4,8.x107° m/s were chosen in the simulations.

Only the SRT and OTRT methods were used in the application, and
their stability and accuracy were examined by varying the bacterial random
motility coefficient Dj, which changes 7~ (i.e. 77 = 1/2+D}/(c?Azuyg)). The
simulations showed that the OTRT has a better numerical stability than the
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Table 3: Parameter values used in the chemotactic system [58, 34]

Symbol Description Value

Ch Initial bacterial concentration 4 x10® cfu/mi
Ce Initial contaminant concentration 2.8 x 10724 g/mil
D, Diffusion coefficient of contaminant 7.5 x 1078 cm?/s
@ Maximum reaction rate of contaminant 7.9x 10743 g /cfu/s
Y Yield coefficient 0

kq Decay rate 0

K. Half-saturation coefficient of contaminant /1.3 x 10™* g/ml
K, Dissociation constant 2.1x107% g/ml
X0 Chemotactic sensitivity coeffic¢ient 1.8 x 107° cm?/s
Vswim Bacterial swimming speed 4.8 x 1073 cm/s

a0 SRT method; i.e. the SRT-Method became unstable at D, < 8 X107 m?/s
(77 < 0.530) while the®OTRI imethod became unstable at D, < 3.2 x10~?
m?/s (77 < 0.512). Gempared with the previous simulations of reactive
transport in simple geometries, the SRT and OTRT methods are easier to
become unstable in the complicated geometry.

415 Theraccuracies of the SRT and TRT methods were evaluated by com-
paring their simulation results with those obtained by the MRT method
reportéd in [34]. Fig. 9 shows the simulated bacterial distributions obtained
by the three methods for D, = 3.2 x107'* m?/s. We find that both the SRT
and OTRT methods reliably predicted bacterial distributions, although they

20 overestimated the concentration in the cavity (see Fig. 9e). A portion of
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the bacteria separated from the original injection slug and formed a moving
ring with a high concentration. This ring was caused by chemotaxis and en-
ables the bacteria to access and degrade more contaminants than the bacteria
without chemotaxis. Overall, both the SRT and OTRT methods are able to
produce results that are comparative to those obtained by the MRT. method.
Compared with the MRT method, in which the mathematical presentation is
complex and the selection of relaxation parameters is challengingy the TRT

method described here is easier to implement.

4. Conclusions

This study clearly describes the framework and implementation of the
TRT LBM. This method was then appliedto various advective-diffusive-
reactive transport in simple and complicated geometries, and demonstrated
its ability to reliably predict a broad range of transport phenomena. The fact
that one of the two relaxation parameters in the TRT LBM is tunable en-
ables the TRT methed te produce robust numerical performances in terms
of accuracy andStabilityy” The selection of the tunable parameter, 7, is
important for the accuracy and stability of the TRT LBM. Generally, the
accuracy/of the TRT method increases as 7 decreases while the stability
depenrds on the values of 71 and the other relaxation parameter 7. When
7 approaches 0.5, the TRT method is prone to numerical instability when a
small7T is selected, which is the case for the SRT method. The TRT method
can attain much better stability when large 77 is selected, which is the case
for the OTRT method. Therefore, although the numerical accuracy might
be exacerbated, the TRT LBM can be applied to simulate a broader range
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of transport phenomena than the SRT LBM, such as transport with large
advective velocity and/or small diffusion coefficient in complicated geome-
tries, through tuning 7+ and thereby improving the numerical stability. A6
summarize, the TRT LBM can reliably predict various advective-diffusive-
reactive transport in both simple and complicated geometries by, choesing
an appropriate value of 7+, This study demonstrates the significant poten-
tial of the TRT LBM in predicting various geophysical and biogeochemical

processes in subsurface environments.
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