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Abstract

Acoustic full waveform algorithms, such as Paracousti, provide deterministic
solutions in complex, 3-D variable environments. In reality, environmental and
source characteristics are often only known in a statistical sense. Thus, to fully
characterize the expected sound levels within an environment, this uncertainty in
environmental and source factors should be incorporated into the acoustic
simulations. Performing Monte Carlo (MC) simulations is one method of assessing
this uncertainty, but it can quickly become computationally intractable for realistic
problems. An alternative method, using the technique of stochastic partial differential
equations (SPDE), allows computation of the statistical properties of output signals at
a fraction of the computational cost of MC. Paracousti-UQ solves the SPDE system
of 3-D acoustic wave propagation equations and provides estimates of the uncertainty
of the output simulated wave field (e.g., amplitudes, waveforms) based on estimated
probability distributions of the input medium and source parameters. This report
describes the derivation of the stochastic partial differential equations, their
implementation, and comparison of Paracousti-UQ results with MC simulations using
simple models.
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NOMENCLATURE

Abbreviation

Definition

UuQ Uncertainty quantification

MC Monte Carlo

PDE Partial differential equation

SPDE Stochastic partial differential equation
FD Finite difference

3-D Three dimensional

PDF Probability density function







INTRODUCTION

The standard partial differential equations (PDEs) governing wave propagation in an
acoustic medium are deterministic. Once the sources, boundary conditions, and
material properties are defined, the solution is well defined and will give a single
answer. If you alter any of the above conditions, you will obtain a different solution.
Uncertainties in any of the sources, boundary conditions, or material properties cannot
be directly addressed by the solution of these equations. One means of assessing the
variability in solutions based on changes in any of the starting conditions is via a
Monte Carlo (MC) scheme. In this approach hundreds, thousands, or even more
models are produced by drawing random samples from these starting conditions and
producing a set of solutions. Classical statistical methods can then be used on the
solutions set to derive solution mean, variance, or higher order statistical moments.
The primary issue with this approach is that for complex numerical models, running
hundreds or more models is sometimes computationally intractable.

Another means of attacking this problem is via solution of stochastic partial
differential equations (Ghanem, 1999; Xiu and Karniadakis, 2003). In this approach
the physical PDEs are altered to incorporate uncertainty into the solutions directly.
The uncertainty is introduced by expanding the physical dependent and independent
variables in terms of orthonormal chaos polynomials, which are purely functions of
random variables. A probability density function or correlation length are defined for
the independent variables, which characterize the uncertainty in these variables
(medium properties, boundary conditions, etc.). The solutions of the stochastic PDEs
are coefficients of these chaos polynomials that can be used to derive a statistical
description of the physical solutions, just as in Monte Carlo methods. However, the
primary advantage of the stochastic polynomials is that they require only a fraction of
the cost of Monte Carlo methods to achieve equivalent statistical convergence (Xiu
and Karniadakis, 2003).

In this report, we will first derive the stochastic partial differential equations for a 3-D
linear acoustic medium. The following section will describe the numerical
implementation of these equations as embodied in the Paracousti-UQ algorithm.
Finally, we will provide validation of the method and implementation by comparing
output from Paracousti-UQ to MC simulation result.
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2.

2.1,

STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS IN AN
ACOUSTIC MEDIUM

Deterministic Acoustic Partial Differential Equations

The derivation of the system of stochastic PDEs governing linear acoustic wave
propagation begins with the deterministic system. The deterministic system of
equations we choose to use is the coupled first-order system of partial differential
equations called the velocity-pressure system

oD _ 1 ot 1oy 2.1)
o pm ox  pm |

ov, (X,

mxn L s Ly 22)
ot p(x) dy p(x)

0

vxn 1 opxn 1 (x.1) 2.3)
ot p(X) 0z p(x) °

W(X,1)  Iv(X.

op(x,1) — ® v, (X,1) N vy(X, 1) N v,(X, 1) N om(x, 1) 2.4)

ot 0x oy 0z ot

where v, v,, and v, are the particle velocity components; p is pressure; p and « are the
medium density and bulk modulus, respectively. All of the dependent variables (v,, vy,
v,, and p) are functions of 3-D space (X) and time (), whereas we are assuming here
that the medium parameters (p and k) are functions of 3-D space only. Sources (s, sy,
s,, and m) are also functions of space and time and are defined by

omé(x,t) Omi(X,1)  oml(x,r1)
s.(X, 1) = fu(X, 1) + S +—= 2.5)
ox oy 0z
ome(x, 1)  oml(x,1)  Im(x,1)
X, t)=f(X,1)+ + + 2.6
0 =D+ — o e (26)
ome(x,1)  Om&L(X,1)  Ome(X,1)
X, 1) = f.(x, 1) + + + 27
S.(X, 1) = f,(X, 1) = 5 e 2.7)
1
m(x,t) = — 3 my (X, 1) + my (X, 1) + m; (X, 1) (2.3)

where ml‘; are components of the antisymmetric portion of the 3 by 3 moment tensor;
s . . . )

m;, are the diagonal components of the symmetric portion of the moment tensor; f,, 1.,

and f, are components of a body force. m then is simply an isotropic pressure source

like an explosion or implosion. Typically, all mg are zero, so that only the body force

components will act as sources for the velocity equations. Please see Preston (2016)

for a more detailed description of these equations.
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2.2.

Stochastic Acoustic Partial Differential Equations

The first stage in deriving the stochastic acoustic PDEs is to expand all dependent and
independent variables as sums over orthogonal basis functions of random variables,
which are assumed to be independent of both space and time. For reasons that will be
explained below, the orthogonal basis functions used are taken from a class of
orthogonal polynomials called chaos polynomials. The dependent and independent
variables become

N
v(x,1) = YV, (X, )D;(0) 29
j=0
N
p(x. 1) = ) P(x,)®;(0) (2.10)
Jj=0
Nr
= ) R(x,1)®.(9) @.11)
p(x,1) ,:20 ! !
Ni
K(X,1) = Z K(x,)®;(6) 2.12)
j=0
Ny,
s(%,0) = )8, (%, )D(0) (2.13)
j=0
Nm
m(x,t) = Z Mi(x,)®;(0) (2.14)
j=0

In these equations, i is an index variable and stands in place of (x, y, or z); Vl o Sl-, 1 Pj,

Rj, Kj, and MJ are the expansion coefficients for the chaos polynomial basis function of
order j, @,(6), of random variable(s) 6. Note that the buoyancy (reciprocal of density)

is expanded in Equation 2.11 instead of density itself. This simplifies the derivation of
the equations below.

Note that there are five different maximum orders in the sums for Equations 2.9-2.14:
N, N,, N, Ny, and N,,. The latter four are needed for the independent variable
expansions. They are independent of each other and are dependent solely on the
maximum chaos polynomial order required to adequately represent the underlying
probability distribution for that medium parameter or source. As will be discussed in
more detail, one chooses which particular class of chaos polynomials to use based on
the one that will represent the medium parameter and/or source probability distribution
with the fewest number of expansion coefficients. If any of these maximum orders are
zero, then it is equivalent to assuming that parameter is known exactly.

The maximum order for the dependent variables, N, is user adjustable. To be formally
correct, except in certain very simple situations, NV would need to be infinite; however,
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for practical reasons, we must choose to truncate the expansion at some N. How large
N needs to be depends on the probability density functions, the class of chaos
polynomials chosen, the number of independent random variables, and the set of PDEs
being solved. This will be subject of future research. For now, however, we will
assume some /N has been suitably chosen.

To proceed with the derivation, we place Equations 2.9-2.14 into Equations 2.1-2 4,
recalling that the chaos polynomial basis functions are independent of time and space

N oV,
> Dlo--3 5

j=0 i=0 j=0 i=0 j=0

5, D(0)D,0)  (2.15)

N SyN

N ooV, .
> a0 --3

(2.16)

j=0 i=0 j=0 i= 0, 0
N oV, ;
Z L 0,(0) = - ZZR—CI)(Q)CI) (6)+22RS,i(I>i(9)(I)j(8) 2.17)
J=0 i=0 j=0 i=0 j=0
aP xt av,i 0VZ,
T o0 =-X ZN" + 52+ S @,0)0,(6)
(2.18)
+Zz 0 ot q)(e)

Now we determine the inner product of each equation with ®@,(6) using the definition
of inner product

b
(fgx)) = J f)gwx)dx (2.19)

where w(x) is the weight function specific to the chosen chaos polynomial and a and b
confine the integration to the support space of the polynomial.

Applying Equation 2.19 with ®@,(6) and assuming that we have normalized the basis
functions relative to this inner product definition so that we have orthonormal chaos
polynomials, we can use the orthonormality of the basis functions to obtain

oV, Ny, N,
0); B z Z ’JkR + Z Z leR x.i (2.20)
i=0 j=0 i=0 j=0
oV N N, P Nsy N,
a?k -2 2 iR Ty 2 Z ¢k R;S, 2.21)
i=0 j=0 i= 0] 0
oV« N N N,
PP eleR e -+ 2 2 RS, (2.22)
i=0 j=0 i=0 j=0
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2.2.1.

oP N N vV, dV,, av,| om
_k__zzeijklg[ AR L Z’]+ k (2.23)

ot - 0x ay 0z ot
where
€k = <q)iq)jq)k> (2.24)

Equation 2.24 is known and can be tabulated for each i, j, k triple beforehand.

The system of equations defined by Equations 2.20-2.23 form the stochastic PDEs for
an acoustic medium. These are similar in form to Equations 2.1-2.4; indeed, if one
assumes that all independent variables are exactly known (equating

N, = N, = N; = N,, = 0) then one recovers Equations 2.1-2.4 as one should.
Despite their similarity, it is obvious that there are many additional terms in each
equation and that there are N sets of the four equations that must be solved, one set for
each index k. However, the number of additional terms is not as great as one might
first think. e;; tends to be relatively sparse so many of the additional terms in the

sums are trivially zero.

Choice of Chaos Polynomial

The choice of the class of chaos polynomials to use as basis functions should depend
upon the class of probability distributions that describe the medium parameters and/or
source. An improper choice will lead to larger numbers of expansion coefficients
being needed to adequately represent the probability distributions of the independent
variables and slow convergence to the true dependent variable distributions (i.e.,
higher order will be needed for dependent variable expansion)(Xiu and Karniadakis,
2003).

Xiu and Karniadakis (2003) provide a table that relates the optimal chaos polynomial
for specific probability distribution functions. We repeat the most relevant ones in
Table 1.
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2.2.2.

Table 1. Optimal Chaos Polynomials

PDF chaos Support weight
polynomial function
Gaussian Hermite (—o0, 4+ 00) 1 e_é
NGr
Gamma Laguerre [0, + o0) x%le=*
I'a)
Uniform Legendre [a,b] 1
b—a

The reason these polynomials are optimally suited for their particular probability
distribution function (PDF) can be seen in their respective weight functions. Each
weight function is similar, if not identical, to the generic PDF. For example, the
weight function for Hermite polynomials is the PDF for a gaussian with zero mean
and unit standard deviation. Likewise, the weight function for Laguerre polynomials
is a scaled version of the gamma distribution.

Generally for acoustic models, the gaussian or gamma distributions would seem to be
the PDFs that would represent the independent variables best. The medium
parameters density and bulk modulus must be positive numbers; thus, the gamma
distribution is likely the best representation for these parameters given the support
space of Laguerre chaos polynomials. Sources, on the other hand, could have positive
or negative values; thus, a gaussian distribution would be a proper choice.

When both sources and medium parameters must be represented with uncertainty, one
must choose a single chaos polynomial class for the entire problem. In this case, the
choice will be based on which PDF best represents the problem as a whole. For
example, when the standard deviation for a gamma distribution is small relative to its
mean, a gaussian distribution can adequately approximate that gamma distribution.

Expansion Coefficients for Independent Variables

According to Equations 2.20-2.23, the expansion coefficients for the medium
parameters and sources are needed to solve the system of equations. Provided that one
has a functional form of the PDFs for the medium parameters and source, one can find
the coefficients in the manner typical for polynomial expansion with weight functions
over a support space:

b
f={f@e@) = J F@®,()w(2)dz (2.25)

where f(z) is the probability distribution function for the independent variable, w(z) is
the weight function associated with the particular chaos polynomial, and integration
limits a and b are the limits of the support space.
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If one chooses the correct chaos polynomial basis functions for the given PDF, one
will minimize the required number of coefficients necessary to accurately represent
that PDF. For example, if a medium parameter conforms to a Gaussian distribution
with a given mean and variance, Hermite chaos polynomials can exactly represent it
with two coefficients. The coefficients for this particular case are

fo=n (2.26)
fi=o (2.27)

where y is the mean of the gaussian distribution and o is its standard deviation. All
other coefficients are zero.

Similarly, for a medium parameter that has a gamma PDF, Laguerre chaos
polynomials can exactly represent that distribution with only two coefficients

f=p (2.28)
fi=—o (2.29)

where again y is the mean of the gamma distribution and o is its standard deviation
(note the minus sign). However, gamma distributions are not typically functionally
defined based on their mean and standard deviation. One typical definition uses
parameters @ and f# and defines the gamma distribution as
ﬂa e —pz Z(Je—l

2)=——7— (2.30)
/ ['(a)
where I'() is the gamma function and @ > 0 and # > 0 (e.g., Kurtz, 1991). With
this definition, the mean and variance are related to a and f via

a (2.31)
2/ .
2_ @
o (2.32)
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3.

3.2.

STOCHASTIC FINITE DIFFERENCE IMPLEMENTATION

Finite Difference Scheme

The first stage in implementing the system of partial differential equations listed in
Equations 2.20-2.23 is discretization. Like Paracousti (Preston, 2016a), we utilize a
standard staggered grid as a basis for discretizing these equations. In this scheme
medium parameters (density and bulk modulus) and the pressure variables reside at
the corners of grid cells. Velocity variables reside on the centers of the edges of the

cell: v, is midway in the x-direction of the cell edges; v, is midway in the y-direction;

and v, is midway along the z-direction edges (Figure 1). Time discretization is also
staggered with pressures being updated at the integer time steps and velocities at the
half-integer time steps. Staggering of the space and time variables allows compact,
centered finite-difference (FD) operators to be used. The equations are discretized
with fourth order accurate spatial operators and second order temporal accuracy using
standard Taylor series coefficients.

Finite Difference Equations

The following equations are the finite difference equivalents to Equations 2.20-2.23
without sources. Sources will be addressed separately. In these equations i, j, and k
refer to spatial indices; [ is the temporal index; m, n, and p refer to the polynomial
coefficient orders of the terms. The fourth order finite difference coefficients are

91

i 3.1
Co 2T (3.1)

@ Medium Parameters

@® Pressure

o
A A Vertical Velocity
o

> Horizontal Velocity

o—» O

o—h—o —h—

to t12 t1 t32

Figure 1: Unit cell (top) and time axis (bottom) for the
staggered finite-difference scheme.
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11
- _ 3.2)

c| =
24 h
where £ is the grid spacing.

Note that since density is provided on the pressure nodes, it must be interpolated onto
the velocity node points using second order interpolation. The pressure updating
equations do not require any interpolation of medium parameters.

3.2.1. X-Component of Velocity
viP) <Xi+1/2’ Vs 2> fl+1/z> = v <xi+1/2’ Vs Zpes fz—1/z>

N N,

33
[C() [p(’") (x,-ﬂ,yp 2 tz) —p™ (xi, Yj» T tz)] G-

p(m) <xi+2’yj’ Zes tl) — p(m) ('xi—l’ yj’ L tl):l]

3.2.2. Y-Component of Velocity

+c

(p) — (D)
vyl (xi’ Yi+1/25 Zks tl+1/2> =n’ <xi’ Yix1/2> %k tl—l/2>

N N,
_dt Zm=0 znzo emnpR(n) (xi’ yj+1/2’ Zk) X

34

+c p™ (xi, Yj+2s ks fz) —p™ (xi, Yi—15 %> f[)] ]

3.2.3. Z-Component of Velocity
viP) (xi, Yis Zk1/2 fl+1/2> = v(P) (xiv Yjs Lk 172 f1—1/2>

N N,
—d, Zm=0 ano emnpR(”) <xia V> Zk+1/2) X

35
[CO [p(m) (xi’ij Zk+1’tl> - p™ <xi’yj’ Zpe> fz)l G-
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3.24.

3.3.

3.3.1.

3.3.2.

Pressure

p? <xi’ Vi» 2o f1+1) =pW? <xi’ Vi» 2o tz)

—d Zm Ozn 0 mnpK(n) <xl’ Y Zk)
o [V)Em) <Xi+1/2’ Yis 2> f1+1/2> — v (xi—l/Z’yj’ Z> f1+1/2>]

X;_3/25 Yj» s Li112

ey [V \ X320 Yo Zieo U122

- (3.6)

Xis Yi—1/25 s L2

(m)
+Co [V \ X Yie1/25 Zis lir1/2

(m) (m)
+Co [V \ Xis Vi Zhg1725 li12 Xis Vis Zp—1/2> Liv 172

+ep [V

(s ) )
< )+ < )
< > < )
( ) - )

Yis Vj» T4 3120 112 Xis Vj» Zk=3/20 liv 172

Sources

Sources may be placed at any location within the domain; however, it is ill advised to
place sources within the absorbing boundary zones. When a source does not lie
directly on a node, it is trilinearly extrapolated to the eight surrounding grid nodes.
The finite difference updating formulae given in Equations 3.3-3.6 can be augmented
with the source terms from Equations 2.20-2.23. These assume that Equations 3.3-3.6
have already been applied so the sources are added to the current time step index.

X-Component of Force

) — )
v{P (xi+1/2,yj, 2k fl+1/2> = <Xi+1/2’yj’ % tl+1/2>

3.7)
N, <N,
+d, Zm‘io ano emnpR(n) <xi+1/2» Yp> Zk) S;Em) <xi+1/2a V> Lk fz)
Y-Component of Force
Vy(p ) (xi’ Yi+1/2> Zpeo tl+1/2> = Vy(p ) (xi’ Yi1/2> Zkeo tl+l/2>
(3.8)

+dt2 Z Lo €mnpR <x1’y]+1/2’ Zk) s )<xi’yj'+1/2’ 2> fz)
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3.3.3.

3.3.4.

3.3.5.

3.4.

Z-Component of Force

(p) — v(P)
v.? (xi’ Vs Zk 172 tl+1/2> =’ (xi’ Vs Zi 172 tz+1/2>

(3.9)
N, N,
+d, Zmio zn=0 emnpR(n) (xi, Vjs Zk+1/2) s (xi’ Yjs Zk+1/25 fz)
Isotropic Source
p(P) <xi’ y]’ Zk, tl+1> = p(p) <'xl" y]’ Zk, tl+1>
(3.10)

Source Time Functions

For deterministic sources, one can provide any arbitrary source time function for the
source or specify a delta function source. In the latter case, the output traces are
Greens Functions and can be convolved with any source time function to obtain results
just as if that source time function had been used originally. This provides a
computationally efficient mechanism to try a variety of source time functions with a
single run of the algorithm. Besides being able to provide any arbitrary source time
function via an input text file, there are some ready-made source time functions that
Paracousti-UQ can generate for the user.

Source uncertainty is actually uncertainty in the source time function. The source
location is always assumed known. With uncertainty of the source time function, a
separate “source coefficient time function” must be supplied for each expansion
coefficient. For example, if the source time function conforms to a gaussian
distribution, the first coefficient time function would be the mean of the source
amplitude as a function of time. The second coefficient time function specifies the
standard deviation of the source amplitude as a function of time.

Receivers

Receivers are implemented similarly to those in Paracousti. The primary difference is
that instead of recording one single component (v,, Vy, V,, OF p), each receiver records

all N orders for each component. Receivers are the primary means of ascertaining the
uncertainty in or distribution of the output velocity or pressure at a particular point in
space. Interpreting the results will be discussed in the next chapter.

Receivers can be placed anywhere in the domain, but they are ill advised in the
absorbing boundary zone or at the source point. These restrictions are due to
numerical issues that will cause the traces to be erroneous or hard to interpret. For
receivers not directly located on a node, the values are trilinearly interpolated from the
surrounding eight nodes.
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3.5.

3.6.

Absorbing Boundary Conditions

Due to the finite size of a computational domain, absorbing boundary conditions are
required to mitigate unrealistic, numerical reflections from the domain boundaries.
Just as in Paracousti, we utilize convolutional perfectly matched layers (CPML;
Komatitsch and Martin, 2007) as absorbing boundary zones. These can be used
exactly as they are in Paracousti, except that there are now /N times the number of
memory variables: a separate one for each dependent variable coefficient.
Additionally, care must be exercised to ensure that each memory variable is updated
only once per time step. The sums in Equations 3.3-3.6 have to be handled carefully
in the absorbing boundary zones to ensure this.

Grid Spacing and Time Steps

The optimal grid spacing and time step is an area that needs further research for the
stochastic PDE solver. However, in the tests we have done thus far, guidelines
borrowed from deterministic solvers such as Paracousti work well. The appropriate
node spacing to use in deterministic models is based upon the minimum wave speed in

the domain (V,,;,)and the maximum frequency (f;,,,)that one desires to be simulated,

in max

h=G Vimin (3.11)
fmax
where G is a constant that is based upon the desired accuracy. Based on numerical
phase and group speed curves for elastic media, which in the limit of shear modulus
going to zero approaches an acoustic medium, the optimal G is between 0.1 and 0.16
(Preston, 2016b; Aldridge and Haney, 2008). The best value depends on the time step
and the model to a certain extent. For models with topography, bathymetry, and other
complications, experience shows that a value for closer to 0.1 is optimal, whereas
larger values can be used in simpler models.

Since this is an explicit leap-frog time-stepping algorithm, there exists a maximum
time step for stability (max d,), called the Courant-Friedrichs-Lewy (CFL) condition.
It is determined by the grid spacing and maximum seismic velocity (V,,, Jvia

h
maxd, = (3.12)

\/Evmax 2 Ci

1
where the ¢; are the finite-difference coefficients given in Equations 3.1-3.2.

ax

Although this is the maximum time step allowed for stability, it is not the optimal
choice in deterministic solvers since smaller d, will provide superior accuracy. Based
on von Neumann analysis of the numerical wave speeds (Preston, 2016b) versus
computational runtime as a function of d,, the optimal d, is approximately 0.6 max d,,
again for deterministic solvers.

Some obvious questions arise when looking at Equations 3.11 and 3.12: what does
Vnins Vinasx OF for that matter, f,, , ., mean in a stochastic solver since wave speed and
source terms can be from probability distributions? Are the mean values sufficient to
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3.7.

pressure

5

define the extrema or do the width of the probability distributions affect stability and
accuracy. Again, these are areas where further research is needed.

High Contrast Media

Strong contrasts, especially in density, from one grid point to the next is known to
cause instabilities and/or inaccuracies in deterministic simulation results. Since the
stochastic PDEs reduce to the deterministic ones as our certainty increases, it is
reasonable to suppose that the stochastic solvers would suffer from the same
instability issues. One solution that produces accurate and stable results uses the
order-switching methodology outlined in Preston et al. (2008). In this method, the
earth model is scanned prior to time stepping and high contrast points are diagnosed.
Finite-difference updating formulae only in the vicinity of these points are altered
from fourth to second order accuracy; all other points remain at fourth order accuracy.
By limiting the reach of the operators to second order, stability and accuracy can be
maintained, while keeping the majority of the dependent variable updates at fourth
order accuracy. Currently, only the zeroth order coefficients are scanned for high

ParAc [
—— UQ N=0

T

1

0.02 0.0 0.06 0.08 0.1 0.12 0.14
time (s)

1

o

Figure 2: Comparison of pressure traces from deterministic Paracousti (black)
and Paracousti-UQ (red dashed) with all maximum chaos polynomial orders set

to zero.

22



3.8.

3.9.

contrasts between adjacent grid points. Further research is needed to ascertain
whether this is sufficient for stability and accuracy, or whether higher order
coefficients must be incorporated into the scanning procedure.

Massively Parallel Design

Paracousti-UQ is designed to use the Message Passing Framework (MPI). This allows
one to utilize multiple cores and physical machines to distribute the workload and
reduce runtime. Paracousti-UQ can run on anything from a laptop to 1,000’s or more
cores on an institutional cluster. This allows one to run small simple models as well as
very large complex models with the same code.

This is especially important for Paracousti-UQ due to the nature of the stochastic
PDE:s that it solves. As noted in Chapter 2, there are many more equations and several
more terms in each of those equations compared to a deterministic solver such as
Paracousti. Distributing the load across many machines provides the necessary
computational power as well as the RAM necessary to hold the extra data required for
Paracousti-UQ.

Verification With Paracousti

When all maximum chaos polynomial orders are set to zero (i.e., N = 0 and all
medium parameters and source terms are known exactly (N, = Ny = N, =N, = 0)),

Equations 3.3-3.6 reduce to those used in Paracousti. To verify that Paracousti and
Paracousti-UQ give the same results in this case, we compare pressure traces between
the two algorithms from an explosion source in a homogenous medium (Figure 2).
The agreement between the two algorithms is excellent, demonstrating that Paracousti-
UQ does indeed reduce to Paracousti in this special limiting case.

23



24



4.2,

COMPARISON WITH MONTE CARLO SIMULATIONS

Modeling Scenario

In all of the test cases presented below homogeneous acoustic models were utilized.
The baseline problem consisted of a homogeneous medium with sound speed of 2500
m/s and density of 2000 kg/m3. This translates to a bulk modulus of 12.5¢9 Pa and
buoyancy of 0.0005 m3/kg. The model domain extended from -15 m to 100 m on the
x-axis, -50 m to 50 m on the y-axis, and -200 m to 200 m on the z-axis, with uniform 1
m grid node spacing. CPML absorbing boundary conditions 10 nodes thick were
utilized on all eight sides. The source was placed at position (0,0,0) m with pressure
receivers arrayed in a line from 5 m to 40 m, every 5 m, on the x-axis offset 10 m in z
from the source. In each case, one of the independent variables (bulk modulus,
buoyancy, or source) was assigned a probability distribution while all other
independent variables were assumed to be known exactly.

Monte Carlo Simulations

Although this is a relatively small domain size, due to the estimated number of Monte
Carlo runs that would be required to obtain a stable distribution, we did not use
Paracousti as the forward solver. Instead, we utilized a 2-D axisymmetric acoustic full
waveform solver, an acoustic version of the algorithm axiElasti (Preston, 2017) called
axiAcousti, for the Monte Carlo simulations. Given the simple homogeneous models
and geometries we are using for these scenarios, a 2-D axisymmetric solver is
appropriate. Multiple tests demonstrate that in these simple modeling cases
axiAcousti gives identical results to Paracousti and is much faster computationally.

In each case, a well-defined probably distribution was assigned to one of the medium
parameter independent variables (bulk modulus or buoyancy), while the other medium
parameter is fixed (assumed known). The mean of the distribution is equal to the
corresponding value stated in Section 4.1 for that medium parameter in the baseline
model. The standard deviation for the medium parameter was approximated to
provide a standard deviation in sound speed of about 200 m/s. For bulk modulus this
gave a standard deviation of 2e9 Pa; for buoyancy the standard deviation was set to
8e-5 m3/kg. For these cases, a gamma distribution was assumed.

For tests involving source time function distributions, bulk modulus and buoyancy
were fixed at the mean values stated in Section 4.1. The only random variable in this
case was the peak amplitude of the source time function. A gaussian random variable
with mean 1.0 (J or N) and standard deviation of 0.1 (J or N) was utilized for
explosion and force sources.

Since axiAcousti is a deterministic solver, fixed values for all the input values are
required. Thus, random samples were drawn from the probability distribution and
each sample constituted a single run of axiAcousti. By drawing many samples, we
can aggregate all the pressure trace results to obtain an estimate of the mean and
standard deviation of the pressure waveforms at the receiver points. To ensure
convergence we ran approximately 800,000 axiAcousti runs. Figure 3 shows the
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4.3.

distribution of the actual samples used in the bulk modulus distribution test. The mean
of the actual distribution is 12.498e9 Pa with a standard deviation of 1.9994e9 Pa, very
close to the designed values.

A question that arises with Monte Carlo methods is how many runs do you need to
adequately represent the output distribution. Figure 4 demonstrates the convergence
of the Monte Carlo runs for the bulk modulus and buoyancy distribution tests. The
image shows the variation in the estimated peak value of the standard deviation
waveform at the nearest receiver as a function of the cumulative number of runs. As
expected, there is more variation in the estimate for fewer runs, but it stabilizes as runs
accumulate. To achieve 0.1% accuracy (assuming the 880,000t run of bulk modulus
is closest to the actual distribution) it would require 460,000 runs in the buoyancy test
and 390,000 for bulk modulus. Less accuracy requires fewer MC runs. For example,
0.2% accuracy requires 120,000 runs for buoyancy and 210,000 runs for bulk
modulus, while 17,000 runs is needed to achieve 0.5% accuracy for bulk modulus
(buoyancy was aggregated every 10,000 runs whereas bulk modulus was aggregated
every 1,000 runs for the first 80,000 runs). The difference in convergence for bulk
modulus and buoyancy is probably due to sampling, but they do obviously converge to
the same value. The estimate of the peak of the mean is about an order of magnitude
more accurate for the same number of runs relative to the peak of the standard
deviation.

Paracousti-UQ Mean and Standard Deviation

For Monte Carlo simulations, the means and standard deviations can be computed
using well-known methods. However, for Paracousti-UQ output the computation of
mean and standard deviation cannot be performed using these well-known methods
since the solution is a weighted sum of chaos polynomial basis functions.

The general definition of statistical moment is
b

m, = [ (x —o)" f(x)dx 4.1)
a

where f(x) is a probability distribution, a and b are the limits of the support space for
that probability distribution, and ¢ and n are constants that define the type and kind of
moment we are seeking (e.g., Spanos, 1999). The mean is a moment where n = 1 and
c =0,s0

b
U= J xf(x)dx 4.2)

For stochastic PDEs, f(x) is simply the weight function (assuming it has been scaled
b

such that J f(x)dx = 1, which is true of our definitions in Table 1), and

a
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N
x = Z ¢ ®,0) (4.3)
i=0
Placing Equation 4.3 into Equation 4.2, and using the fact that @, = 1 and the
orthonormality properties of the chaos polynomials, one obtains
U =c (4.4)

The variance, or squared standard deviation, is defined by setting ¢ = g and n = 2 in
Equation 4.1:

b
2
o’ = J (x —u)” fldx 4.5)
a
After some manipulation, one finds for stochastic PDEs
N
o?=) c (4.6)

i=1
Note that the sum does not include ¢,.

The output from Paracousti-UQ are the c; up to order N for pressure and/or velocities
at each receiver as a function of time. Thus, one obtains the mean and standard
deviation at each receiver as a function of time. Higher order moments can also be
computed using the same methodology outlined in this section. For this report, we
will only be investigating the mean and standard deviation of the output signals.

Table 2: Approximate Number of Deterministic
Runs for Maximum Polynomial Orders

Max Equivalent Equivalent
Order Number of Number of Runs
Runs (Gamma) (Gaussian)
0 1 1
1 5 4
2 9 7
3 13 10
4 17 13
5 21 16
6 25 19
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4.4.

4.4.1.

Comparison Cases

We compare the accuracy of the mean and standard deviations obtained via MC
methods with those computed from Paracousti-UQ output. In all cases, Paracousti-UQ
used up to 5th order chaos polynomials for the dependent variables. This is
approximately equivalent to running the deterministic Paracousti 21 times for a
gamma distribution. Table 2 gives the approximate number of deterministic runs that
is equivalent to running Paracousti-UQ for polynomial orders up to 6 with one random
variable for gamma and gaussian distributions. This tabulation is based upon the
number of non-zero elements in the ¢;;; matrix.

Bulk Modulus Distribution with Known Explosion Source

The bulk modulus distribution case uses a gamma distribution with mean of 12.5¢9 Pa
and standard deviation of 2e9 Pa. Buoyancy is fixed at Se-4 m3/kg and an explosion
source with a known gaussian pulse source time function with 50 Hz central
frequency. The means and standard deviations for the eight pressure receivers are
compared between MC and Paracousti-UQ in Figures 5 and 6. The agreement is
excellent. Figure 7 shows the effect of maximum polynomial order on the standard
deviation at the nearest receiver. On the visual plot scale only maximum order 1
(clearly) and order 2 (in a few places) are distinguishable from the MC standard
deviation. As an aside, it should be noted that the mean signal is not exactly the same
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Figure 5: Comparison of mean pressure traces between MC and
Paracousti-UQ for bulk modulus distribution.
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Figure 7: Convergence of Paracousti-UQ based on maximum
polynomial order for standard deviation of pressure at the nearest
receiver.
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4.4.2.

as the signal that would be generated for a deterministic model run with the mean bulk
modulus and buoyancy, although they are close.

As a comparison of accuracy with the MC standard deviation, the differences in the
maximum of the standard deviation at the nearest station is 7.6% for N=1, 0.5% for
N=2, and less than 0.05% for N>2. As a speed comparison, one observes that it takes
17,000 MC runs to achieve the same accuracy as the equivalent of 9 runs using
Paracousti-UQ. At greater distances from the source, somewhat higher orders are
needed to obtain the same accuracy. At these wavelengths at the farthest receiver, N=3
is required instead of N=2 to achieve 0.5% error. These comparisons indicate the
efficiency of the stochastic PDE method is at least on the order of a factor of 1,000
greater than MC methods.

Buoyancy Distribution with Known Explosion Source

The buoyancy distribution uses a gamma distribution with a mean of 5e-4 m3/kg and
standard deviation of 8e-5 m3/kg. The bulk modulus was fixed at 12.5¢9 Pa. An
explosion source with a known gaussian source time function with 50 Hz central
frequency was utilized. Figures 8 and 9 show the mean and standard deviation of the
pressure signals at all eight receivers. Note that these are indistinguishable from the
mean and standard deviation images for a bulk modulus distribution and explosion
source. Again the match between MC and Paacousti-UQ is excellent.
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Figure 8: Comparison of mean pressure traces between MC and
Paracousti-UQ for buoyancy distribution.
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Figure 10: Mean (red dash) and one standard deviation (black) as a
function of time for pressure traces.
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Figure 10 shows the same mean signal as Figure 8, but also shows the one standard
deviation region as a function of time around the mean. Standard deviations are
smaller relative to the signal at closer distances from the source, but grow at greater
distances. The largest standard deviations lag slightly in time relative to the peaks and
troughs of the mean signals

4.4.3. Explosion Source Time Function Distribution

For the explosive source time function distribution, only the peak amplitude is
considered to be a random variable. The peak amplitude is drawn from a gaussian
distribution with a mean of 1 J and standard deviation of 0.1 J. The source time
function is a 50 Hz central frequency gaussian pulse. The bulk modulus and buoyancy
were fixed in this test at 12.5¢9 Pa and 5e-4 m3/kg, respectively. In this particular case
where only the source is taken from a probability distribution and the medium
parameters are considered known, Equations 2.20-2.23 completely decouple in term of
polynomial order. In other words, each polynomial order is like a separate solution
that does not depend on the behavior of the other orders. For this source time function
distribution, there are only two orders required: the mean and standard deviation.
Thus, all dependent variable orders greater than 1 should be zero for all times. This is
indeed the case; only N=0 and N=1 show any signal at the pressure receivers. These
are shown in Figures 11 and 12 for the mean and standard deviation. The true
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Figure 11: Comparison of the mean pressure traces between the

analytic solution and Paracousti-UQ for the explosive source time
function distribution.
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Figure 12: Comparison of the standard deviation pressure traces
between the analytic solution and Paracousti-UQ for the explosive
source time function distribution.

solutions are known analytically in this case. The mean will be the deterministic
solution using the mean source amplitude and the standard deviation will be exactly a
scaled version of this with the scale being the ratio of the input standard deviation to
its mean, in this case 0.1. The waveforms for the mean and standard deviation are thus
the same, just scaled relative to each other. The agreement is again excellent.

Bulk Modulus/Buoyancy with Known Force Source

We also evaluated the accuracy of Paracousti-UQ using a force source. Similar to the
explosion source, we performed two tests with a known force source with a 50 Hz
central frequency gaussian wavelet. The force was directed parallel to the line of
receivers. For the 2-D axisymmetric code, axiAcousti, this required a vertical force
source to be coincident with the symmetry axis, and the line of receivers was rotated
so that the line is directed in the positive z-direction. Otherwise, the relative distances
and offset from the source location is the same as previous tests.

In one test we assume that the bulk modulus is uncertain but buoyancy is known, and
in the second we assume the buoyancy is uncertain but bulk modulus is known. Both
bulk modulus and buoyancy were again assumed to conform to a gamma distribution.
The mean and standard deviation of the bulk modulus was identical to the previous
test with a mean of 12.5¢9 Pa and standard deviation of 2e9 Pa, with the buoyancy
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fixed at Se-4 m3/kg. Likewise, for the buoyancy case the mean buoyancy was set to
Se-4 m3/kg and standard deviation to 8e-5 m3/kg, with the bulk modulus fixed at
12.5€9 Pa.

The results from these two tests are identical to each other, as they were for the
explosion source. A comparison of the mean and standard deviation of the output
pressure traces as a function of time between the MC and Paracousti-UQ are displayed
in Figures 13 and 14. Additionally, we also show the mean with one standard
deviation pressure traces in Figure 15. The difference in waveforms between the
source types is expected based on theoretical differences between force and explosive
sources (Aldridge, 2000). Explosion sources will produce far-field pressure
waveforms proportional to the second time derivative of the source time function,
whereas force sources produce waveforms proportional to the first time derivative of
the source time function. The results presented here agree with theoretical
expectations, and Paracousti-UQ results again match the MC results extremely well.

The mean and standard deviation traces (Figure 15) demonstrate similar properties to
those from the explosion source (Figure 10). The standard deviation is relatively
small compared to the mean traces at the closest receiver, but the standard deviation
grows in relation to the mean as distance increases. Also, the maximum standard
deviation lags slightly behind the peak of the mean trace.
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Figure 13: Comparison of the mean pressure traces between Monte

Carlo and Paracousti-UQ simulations for a buoyancy distribution
with a force source.
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Figure 14: Comparison of the standard deviation of pressure traces
between Monte Carlo and Paracousti-UQ simulations for a
buoyancy distribution with a force source.
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4.5.

Force Source Time Function Distribution

The final test case uses fixed bulk modulus and buoyancy, but the maximum amplitude
of the source time function derives from a gaussian distribution. Similar to the
explosion case, the mean of the distribution is set to 1 N with a standard deviation of
0.1 N. In an identical manner to the explosion source, when the only uncertainty is the
source and the medium parameters are known exactly, the stochastic PDEs decouple
with respect to the polynomial order. Thus, all traces with output polynomial order
greater than 1 are identically zero, as expected. The mean of the output pressure traces
is just the solution to the deterministic acoustic PDEs using the mean amplitude of 1
N, and the standard deviation has identical waveforms to the mean but scaled by 0.1
due to the ratio between input standard deviation and mean. These predictions are
confirmed by the Paracousti-UQ output. Figure 16 shows the mean and one standard
deviation in a single figure. In this case, the peak of the standard deviation aligns with
the peak of the mean and the relative size of the standard deviation to the mean
remains unchanged as source-receiver distance increases.

Discussion

We have demonstrated with several simple examples that Paracousti-UQ gives results
in excellent agreement with Monte Carlo simulations. Additionally, we have indicated
that Paracousti-UQ is at least 1,000 times faster than Monte Carlo at achieving
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Figure 16: Mean (red dash) and one standard deviation region
(black) from pressure traces from a force source distribution.
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similarly accurate results. As mentioned in Section 4.2 we utilized a 2-D
axisymmetric algorithm in order to obtain the MC results shown with at least 800,000
MC trials. As a comparison with the 3-D case using Paracousti, a single Paracousti
run of this model requires ~50 s of compute time. If we did 10,000 MC runs (an
absolute minimum number of runs to achieve a semblance of the standard deviation
distribution of the output pressure traces) it would have required about 5.8 days of
compute time. A 4 order maximum polynomial order run of Paracousti-UQ that we
determined was adequately accurate required about 7.5 minutes of runtime. This
amounts to Paracousti-UQ being ~1,100 times faster than MC.

An additional advantage of Paracousti-UQ output as opposed to MC simulations is
that we immediately have access to estimates of higher order moments as well as the
output probability distribution itself. For the MC simulations performed here, we did
not retain output of every simulation from the MC suite as this would have required a
large amount of disk space. Instead, we only kept that information necessary to
compute the mean and standard deviation in an aggregate summary of the traces as the
MC suite was running, greatly reducing memory requirements. If we decided we
really wanted an estimate of the 3t order moment of the output, we would have to do
another suite of MC simulations. With the Paracousti-UQ output, as long as one has
run the algorithm to sufficient maximum polynomial order to obtain such a higher
order estimate, one can compute that higher order moment without having to re-run
the algorithm.
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5.

CONCLUSION AND FUTURE WORK

We have derived the coupled set of stochastic partial differential equations for linear
wave propagation in an acoustic medium. These equations are more complex than the
deterministic equations in that there are more equations and more terms in each
equation, but the same numerical principles used to solve the deterministic set of
equations can be applied to the stochastic PDEs with minor modification. We
developed Paracousti-UQ to numerically solve the SPDEs using 4t order in space and
2nd order in time finite differencing on a standard staggered grid. In the limit that all
independent medium parameters and the source are exactly known, the SPDEs reduce
to their deterministic counterparts, and we verified that Paracousti-UQ does indeed
give identical answers to Paracousti in this special case.

To test the validity of the SPDEs as implemented in Paracousti-UQ, we compared
Paracousti-UQ results to those of a large suite of Monte Carlo simulations for simple
homogeneous models with a single random variable. The bulk modulus, buoyancy,
and source time functions were individually assigned a probability distribution while
the other parameters we considered known. In all cases Paracousti-UQ output agrees
extremely well with MC simulation estimates. Additionally, Paracousti-UQ was
demonstrated to be at least 1,000 times faster at achieving the same results as MC to
high accuracy.

There are many research topics one could pursue to advance our understanding of the
acoustic stochastic PDEs. One major area for further research is determination of the
maximum polynomial order needed to accurately represent the probability distribution
of the output wavefield. We touched on this topic in these tests, but these are only
simple homogeneous test cases. What effect does realistic 3-D variations have on the
maximum required polynomial order? A related topic area involves how to adequately
represent the uncertainty in 3-D varying media. These test cases have only considered
a single random variable. As the number of random variables increases the
dimensionality of the problem grows likewise. The necessary polynomial order is
based upon the product of chaos polynomials of each of the random variables, which
rapidly increases the number of terms in this product. Monte Carlo methods also
suffer from this issue in that greater and greater numbers of simulations are required to
adequately represent the true distribution as the number of random variables increases.
So the question is, how do we adequately represent the realistic 3-D uncertainty of the
medium with as few of random variables as possible? One method that holds promise
is by recasting the problem into one based on correlation length instead of point-by-
point variations. This matches our intuition of how variability within a continuum
would behave physically. These and many other questions await to be addressed with
future research into this promising area of uncertainty quantification and propagation.
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