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Abstract
Acoustic  full  waveform  algorithms,  such  as  Paracousti,  provide  deterministic 
solutions  in  complex,  3-D  variable  environments.   In  reality,  environmental  and 
source  characteristics  are  often  only  known in  a  statistical  sense.   Thus,  to  fully 
characterize  the  expected  sound levels  within  an  environment,  this  uncertainty  in 
environmental  and  source  factors  should  be  incorporated  into  the  acoustic 
simulations.  Performing Monte Carlo (MC) simulations is one method of assessing 
this uncertainty, but it can quickly become computationally intractable for realistic 
problems.  An alternative method, using the technique of stochastic partial differential 
equations (SPDE), allows computation of the statistical properties of output signals at 
a fraction of the computational cost of MC.  Paracousti-UQ solves the SPDE system 
of 3-D acoustic wave propagation equations and provides estimates of the uncertainty 
of the output simulated wave field (e.g., amplitudes, waveforms) based on estimated 
probability  distributions of  the input  medium and source parameters.   This  report 
describes  the  derivation  of  the  stochastic  partial  differential  equations,  their 
implementation, and comparison of Paracousti-UQ results with MC simulations using 
simple models.
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1. INTRODUCTION
The standard partial differential equations (PDEs) governing wave propagation in an 
acoustic medium are deterministic.  Once the sources, boundary conditions, and 
material properties are defined, the solution is well defined and will give a single 
answer.  If you alter any of the above conditions, you will obtain a different solution.  
Uncertainties in any of the sources, boundary conditions, or material properties cannot 
be directly addressed by the solution of these equations.  One means of assessing the 
variability in solutions based on changes in any of the starting conditions is via a 
Monte Carlo (MC) scheme.  In this approach hundreds, thousands, or even more 
models are produced by drawing random samples from these starting conditions and 
producing a set of solutions.  Classical statistical methods can then be used on the 
solutions set to derive solution mean, variance, or higher order statistical moments.  
The primary issue with this approach is that for complex numerical models, running 
hundreds or more models is sometimes computationally intractable.

Another means of attacking this problem is via solution of stochastic partial 
differential equations (Ghanem, 1999; Xiu and Karniadakis, 2003).  In this approach 
the physical PDEs are altered to incorporate uncertainty into the solutions directly.  
The uncertainty is introduced by expanding the physical dependent and independent 
variables in terms of orthonormal chaos polynomials, which are purely functions of 
random variables.  A probability density function or correlation length are defined for 
the independent variables, which characterize the uncertainty in these variables 
(medium properties, boundary conditions, etc.).  The solutions of the stochastic PDEs 
are coefficients of these chaos polynomials that can be used to derive a statistical 
description of the physical solutions, just as in Monte Carlo methods.  However, the 
primary advantage of the stochastic polynomials is that they require only a fraction of 
the cost of Monte Carlo methods to achieve equivalent statistical convergence (Xiu 
and Karniadakis, 2003).

In this report, we will first derive the stochastic partial differential equations for a 3-D 
linear acoustic medium.  The following section will describe the numerical 
implementation of these equations as embodied in the Paracousti-UQ algorithm.  
Finally, we will provide validation of the method and implementation by comparing 
output from Paracousti-UQ to MC simulation result.
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2. STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS IN AN 
ACOUSTIC MEDIUM

2.1. Deterministic Acoustic Partial Differential Equations
The derivation of the system of stochastic PDEs governing linear acoustic wave 
propagation begins with the deterministic system.  The deterministic system of 
equations we choose to use is the coupled first-order system of partial differential 
equations called the velocity-pressure system

� (2.1)

� (2.2)

� (2.3)

� (2.4)

where � , � , and �  are the particle velocity components; �  is pressure; �  and �  are the 
medium density and bulk modulus, respectively.  All of the dependent variables ( � , � , 
� , and � ) are functions of 3-D space ( � ) and time ( � ), whereas we are assuming here 
that the medium parameters ( �  and � ) are functions of 3-D space only.  Sources ( � , � , 
� , and � ) are also functions of space and time and are defined by

� (2.5)

� (2.6)

� (2.7)

� (2.8)

where �  are components of the antisymmetric portion of the 3 by 3 moment tensor; 
�  are the diagonal components of the symmetric portion of the moment tensor; � , � , 
and �  are components of a body force.  �  then is simply an isotropic pressure source 
like an explosion or implosion.  Typically, all �  are zero, so that only the body force 
components will act as sources for the velocity equations.  Please see Preston (2016) 
for a more detailed description of these equations.
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2.2. Stochastic Acoustic Partial Differential Equations
The first stage in deriving the stochastic acoustic PDEs is to expand all dependent and 
independent variables as sums over orthogonal basis functions of random variables, 
which are assumed to be independent of both space and time.  For reasons that will be 
explained below, the orthogonal basis functions used are taken from a class of 
orthogonal polynomials called chaos polynomials.  The dependent and independent 
variables become

� (2.9)

� (2.10)

� (2.11)

� (2.12)

� (2.13)

� (2.14)

In these equations, �  is an index variable and stands in place of (x, y, or z); � , � , � , 
� , � , and �  are the expansion coefficients for the chaos polynomial basis function of 
order � , � , of random variable(s) � .  Note that the buoyancy (reciprocal of density) 
is expanded in Equation 2.11 instead of density itself.  This simplifies the derivation of 
the equations below.

Note that there are five different maximum orders in the sums for Equations 2.9-2.14: 
� , � , � , � , and � .  The latter four are needed for the independent variable 
expansions.  They are independent of each other and are dependent solely on the 
maximum chaos polynomial order required to adequately represent the underlying 
probability distribution for that medium parameter or source.  As will be discussed in 
more detail, one chooses which particular class of chaos polynomials to use based on 
the one that will represent the medium parameter and/or source probability distribution 
with the fewest number of expansion coefficients.  If any of these maximum orders are 
zero, then it is equivalent to assuming that parameter is known exactly.

The maximum order for the dependent variables, � , is user adjustable.  To be formally 
correct, except in certain very simple situations, �  would need to be infinite;  however, 
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for practical reasons, we must choose to truncate the expansion at some � .  How large 
�  needs to be depends on the probability density functions, the class of chaos 
polynomials chosen, the number of independent random variables, and the set of PDEs 
being solved.  This will be subject of future research.  For now, however, we will 
assume some �  has been suitably chosen.

To proceed with the derivation, we place Equations 2.9-2.14 into Equations 2.1-2.4, 
recalling that the chaos polynomial basis functions are independent of time and space

� (2.15)

� (2.16)

� (2.17)

� (2.18)

Now we determine the inner product of each equation with �  using the definition 
of inner product

� (2.19)

where �  is the weight function specific to the chosen chaos polynomial and �  and �  
confine the integration to the support space of the polynomial.

Applying Equation 2.19 with �  and assuming that we have normalized the basis 
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� (2.22)
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� (2.23)

where

� (2.24)

Equation 2.24 is known and can be tabulated for each i, j, k triple beforehand.

The system of equations defined by Equations 2.20-2.23 form the stochastic PDEs for 
an acoustic medium.  These are similar in form to Equations 2.1-2.4; indeed, if one 
assumes that all independent variables are exactly known (equating 
� ) then one recovers Equations 2.1-2.4 as one should.  
Despite their similarity, it is obvious that there are many additional terms in each 
equation and that there are �  sets of the four equations that must be solved, one set for 
each index � .  However, the number of additional terms is not as great as one might 
first think.  �  tends to be relatively sparse so many of the additional terms in the 
sums are trivially zero.

2.2.1. Choice of Chaos Polynomial
The choice of the class of chaos polynomials to use as basis functions should depend 
upon the class of probability distributions that describe the medium parameters and/or 
source.  An improper choice will lead to larger numbers of expansion coefficients 
being needed to adequately represent the probability distributions of the independent 
variables and slow convergence to the true dependent variable distributions (i.e., 
higher order will be needed for dependent variable expansion)(Xiu and Karniadakis, 
2003).

Xiu and Karniadakis (2003) provide a table that relates the optimal chaos polynomial 
for specific probability distribution functions.  We repeat the most relevant ones in 
Table 1.
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Table 1. Optimal Chaos Polynomials 

The reason these polynomials are optimally suited for their particular probability 
distribution function (PDF) can be seen in their respective weight functions.  Each 
weight function is similar, if not identical, to the generic PDF.  For example, the 
weight function for Hermite polynomials is the PDF for a gaussian with zero mean 
and unit standard deviation.  Likewise, the weight function for Laguerre polynomials 
is a scaled version of the gamma distribution.

Generally for acoustic models, the gaussian or gamma distributions would seem to be 
the PDFs that would represent the independent variables best.  The medium 
parameters density and bulk modulus must be positive numbers; thus, the gamma 
distribution is likely the best representation for these parameters given the support 
space of Laguerre chaos polynomials.  Sources, on the other hand, could have positive 
or negative values; thus, a gaussian distribution would be a proper choice.

When both sources and medium parameters must be represented with uncertainty, one 
must choose a single chaos polynomial class for the entire problem.  In this case, the 
choice will be based on which PDF best represents the problem as a whole.  For 
example, when the standard deviation for a gamma distribution is small relative to its 
mean, a gaussian distribution can adequately approximate that gamma distribution. 

2.2.2. Expansion Coefficients for Independent Variables
According to Equations 2.20-2.23, the expansion coefficients for the medium 
parameters and sources are needed to solve the system of equations.  Provided that one 
has a functional form of the PDFs for the medium parameters and source, one can find 
the coefficients in the manner typical for polynomial expansion with weight functions 
over a support space:

� (2.25)

where �  is the probability distribution function for the independent variable, �  is 
the weight function associated with the particular chaos polynomial, and integration 
limits �  and �  are the limits of the support space.
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If one chooses the correct chaos polynomial basis functions for the given PDF, one 
will minimize the required number of coefficients necessary to accurately represent 
that PDF.  For example, if a medium parameter conforms to a Gaussian distribution 
with a given mean and variance, Hermite chaos polynomials can exactly represent it 
with two coefficients.  The coefficients for this particular case are

� (2.26)

� (2.27)

where �  is the mean of the gaussian distribution and �  is its standard deviation.  All 
other coefficients are zero.

Similarly, for a medium parameter that has a gamma PDF, Laguerre chaos 
polynomials can exactly represent that distribution with only two coefficients

� (2.28)

� (2.29)

where again �  is the mean of the gamma distribution and �  is its standard deviation 
(note the minus sign).  However, gamma distributions are not typically functionally 
defined based on their mean and standard deviation.  One typical definition uses 
parameters �  and �  and defines the gamma distribution as

� (2.30)

where �  is the gamma function and �  and �  (e.g., Kurtz, 1991).  With 
this definition, the mean and variance are related to �  and �  via

� (2.31)

� (2.32)
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3. STOCHASTIC FINITE DIFFERENCE IMPLEMENTATION

3.1. Finite Difference Scheme
The first stage in implementing the system of partial differential equations listed in 
Equations 2.20-2.23 is discretization.  Like Paracousti (Preston, 2016a), we utilize a 
standard staggered grid as a basis for discretizing these equations.  In this scheme 
medium parameters (density and bulk modulus) and the pressure variables reside at 
the corners of grid cells.  Velocity variables reside on the centers of the edges of the 
cell: �  is midway in the x-direction of the cell edges; �  is midway in the y-direction; 
and �  is midway along the z-direction edges (Figure 1).  Time discretization is also 
staggered with pressures being updated at the integer time steps and velocities at the 
half-integer time steps.  Staggering of the space and time variables allows compact, 
centered finite-difference (FD) operators to be used.  The equations are discretized 
with fourth order accurate spatial operators and second order temporal accuracy using 
standard Taylor series coefficients.

3.2. Finite Difference Equations
The following equations are the finite difference equivalents to Equations 2.20-2.23 
without sources.  Sources will be addressed separately.  In these equations � , � , and �  
refer to spatial indices; �  is the temporal index; � , � , and �  refer to the polynomial 
coefficient orders of the terms.  The fourth order finite difference coefficients are

� (3.1)

vx vy
vz

i j k
l m n p

c0 =
9
8

1
h
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Figure 1:  Unit cell (top) and time axis (bottom) for the 
staggered finite-difference scheme.



� (3.2)

where �  is the grid spacing.

Note that since density is provided on the pressure nodes, it must be interpolated onto 
the velocity node points using second order interpolation.  The pressure updating 
equations do not require any interpolation of medium parameters.

3.2.1. X-Component of Velocity

� (3.3)

3.2.2. Y-Component of Velocity

� (3.4)

3.2.3. Z-Component of Velocity

� (3.5)
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n=0 emnpR(n) (xi+1/2, yj, zk) ×

[c0 [p(m) (xi+1, yj, zk, tl) − p(m) (xi, yj, zk, tl)]
+c1 [p(m) (xi+2, yj, zk, tl) − p(m) (xi−1, yj, zk, tl)]]

v( p)
y (xi, yj+1/2, zk, tl+1/2) = v( p)

y (xi, yj+1/2, zk, tl−1/2)
−dt ∑

N
m=0 ∑Nr

n=0 emnpR(n) (xi, yj+1/2, zk) ×

[c0 [p(m) (xi, yj+1, zk, tl) − p(m) (xi, yj, zk, tl)]
+c1 [p(m) (xi, yj+2, zk, tl) − p(m) (xi, yj−1, zk, tl)]]

v( p)
z (xi, yj, zk+1/2, tl+1/2) = v( p)

z (xi, yj, zk+1/2, tl−1/2)
−dt ∑

N
m=0 ∑Nr

n=0 emnpR(n) (xi, yj, zk+1/2) ×

[c0 [p(m) (xi, yj, zk+1, tl) − p(m) (xi, yj, zk, tl)]
+c1 [p(m) (xi, yj, zk+2, tl) − p(m) (xi, yj, zk−1, tl)]]
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3.2.4. Pressure

� (3.6)

3.3. Sources
Sources may be placed at any location within the domain; however, it is ill advised to 
place sources within the absorbing boundary zones.  When a source does not lie 
directly on a node, it is trilinearly extrapolated to the eight surrounding grid nodes.  
The finite difference updating formulae given in Equations 3.3-3.6 can be augmented 
with the source terms from Equations 2.20-2.23.  These assume that Equations 3.3-3.6 
have already been applied so the sources are added to the current time step index.

3.3.1. X-Component of Force

� (3.7)

3.3.2. Y-Component of Force

� (3.8)

p( p)(xi, yj, zk, tl+1) = p( p) (xi, yj, zk, tl)
−dt ∑

N
m=0 ∑Nk

n=0 emnpK (n) (xi, yj, zk) ×

[c0 [v(m)
x (xi+1/2, yj, zk, tl+1/2) − v(m)

x (xi−1/2, yj, zk, tl+1/2)]
+c1 [v(m)

x (xi+3/2, yj, zk, tl+1/2) − v(m)
x (xi−3/2, yj, zk, tl+1/2)]

+c0 [v(m)
y (xi, yj+1/2, zk, tl+1/2) − v(m)

y (xi, yj−1/2, zk, tl+1/2)]
+c1 [v(m)

x (yi, yj+3/2, zk, tl+1/2) − v(m)
y (xi, yj−3/2, zk, tl+1/2)]

+c0 [v(m)
z (xi, yj, zk+1/2, tl+1/2) − v(m)

z (xi, yj, zk−1/2, tl+1/2)]
+c1 [v(m)

x (yi, yj, zk+3/2, tl+1/2) − v(m)
y (xi, yj, zk−3/2, tl+1/2)]]

v( p)
x (xi+1/2, yj, zk, tl+1/2) = v( p)

x (xi+1/2, yj, zk, tl+1/2)
+dt ∑

Nsx
m=0 ∑Nr

n=0 emnpR(n) (xi+1/2, yj, zk) S(m)
x (xi+1/2, yj, zk, tl)

v( p)
y (xi, yj+1/2, zk, tl+1/2) = v( p)

y (xi, yj+1/2, zk, tl+1/2)
+dt ∑

Nsy
m=0 ∑Nr

n=0 emnpR(n) (xi, yj+1/2, zk) S(m)
y (xi, yj+1/2, zk, tl)
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3.3.3. Z-Component of Force

� (3.9)

3.3.4. Isotropic Source

� (3.10)

3.3.5. Source Time Functions
For deterministic sources, one can provide any arbitrary source time function for the 
source or specify a delta function source.  In the latter case, the output traces are 
Greens Functions and can be convolved with any source time function to obtain results 
just as if that source time function had been used originally.  This provides a 
computationally efficient mechanism to try a variety of source time functions with a 
single run of the algorithm.  Besides being able to provide any arbitrary source time 
function via an input text file, there are some ready-made source time functions that 
Paracousti-UQ can generate for the user.

Source uncertainty is actually uncertainty in the source time function.  The source 
location is always assumed known.  With uncertainty of the source time function, a 
separate “source coefficient time function” must be supplied for each expansion 
coefficient.  For example, if the source time function conforms to a gaussian 
distribution, the first coefficient time function would be the mean of the source 
amplitude as a function of time.  The second coefficient time function specifies the 
standard deviation of the source amplitude as a function of time.

3.4. Receivers
Receivers are implemented similarly to those in Paracousti.  The primary difference is 
that instead of recording one single component ( � , � , � , or � ), each receiver records 
all �  orders for each component.  Receivers are the primary means of ascertaining the 
uncertainty in or distribution of the output velocity or pressure at a particular point in 
space.  Interpreting the results will be discussed in the next chapter.

Receivers can be placed anywhere in the domain, but they are ill advised in the 
absorbing boundary zone or at the source point.  These restrictions are due to 
numerical issues that will cause the traces to be erroneous or hard to interpret.  For 
receivers not directly located on a node, the values are trilinearly interpolated from the 
surrounding eight nodes.

v( p)
z (xi, yj, zk+1/2, tl+1/2) = v( p)

z (xi, yj, zk+1/2, tl+1/2)
+dt ∑

Nsz
m=0 ∑Nr

n=0 emnpR(n) (xi, yj, zk+1/2) S(m)
z (xi, yj, zk+1/2, tl)

p( p)(xi, yj, zk, tl+1) = p( p) (xi, yj, zk, tl+1)
+M ( p) (xi, yj, zk, tl+1) − M ( p) (xi, yj, zk, tl)

vx vy vz p
N
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3.5. Absorbing Boundary Conditions
Due to the finite size of a computational domain, absorbing boundary conditions are 
required to mitigate unrealistic, numerical reflections from the domain boundaries.  
Just as in Paracousti, we utilize convolutional perfectly matched layers (CPML; 
Komatitsch and Martin, 2007) as absorbing boundary zones.  These can be used 
exactly as they are in Paracousti, except that there are now �  times the number of 
memory variables: a separate one for each dependent variable coefficient.  
Additionally, care must be exercised to ensure that each memory variable is updated 
only once per time step.  The sums in Equations 3.3-3.6 have to be handled carefully 
in the absorbing boundary zones to ensure this.

3.6. Grid Spacing and Time Steps
The optimal grid spacing and time step is an area that needs further research for the 
stochastic PDE solver.  However, in the tests we have done thus far, guidelines 
borrowed from deterministic solvers such as Paracousti work well.  The appropriate 
node spacing to use in deterministic models is based upon the minimum wave speed in 
the domain ( � )and the maximum frequency ( � )that one desires to be simulated,

� (3.11)

where �  is a constant that is based upon the desired accuracy.  Based on numerical 
phase and group speed curves for elastic media, which in the limit of shear modulus 
going to zero approaches an acoustic medium, the optimal �  is between 0.1 and 0.16 
(Preston, 2016b; Aldridge and Haney, 2008).  The best value depends on the time step 
and the model to a certain extent.  For models with topography, bathymetry, and other 
complications, experience shows that a value for  closer to 0.1 is optimal, whereas 
larger values can be used in simpler models.

Since this is an explicit leap-frog time-stepping algorithm, there exists a maximum 
time step for stability ( � ), called the Courant-Friedrichs-Lewy (CFL) condition.  
It is determined by the grid spacing and maximum seismic velocity ( � )via

� (3.12)

where the �  are the finite-difference coefficients given in Equations 3.1-3.2.

Although this is the maximum time step allowed for stability, it is not the optimal 
choice in deterministic solvers since smaller �  will provide superior accuracy.  Based 
on von Neumann analysis of the numerical wave speeds (Preston, 2016b) versus 
computational runtime as a function of � , the optimal �  is approximately � , 
again for deterministic solvers.

Some obvious questions arise when looking at Equations 3.11 and 3.12: what does 
� , � , or for that matter, � , mean in a stochastic solver since wave speed and 
source terms can be from probability distributions?  Are the mean values sufficient to 
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define the extrema or do the width of the probability distributions affect stability and 
accuracy.  Again, these are areas where further research is needed.

3.7. High Contrast Media
Strong contrasts, especially in density, from one grid point to the next is known to 
cause instabilities and/or inaccuracies in deterministic simulation results.  Since the 
stochastic PDEs reduce to the deterministic ones as our certainty increases, it is 
reasonable to suppose that the stochastic solvers would suffer from the same 
instability issues.  One solution that produces accurate and stable results uses the 
order-switching methodology outlined in Preston et al. (2008).  In this method, the 
earth model is scanned prior to time stepping and high contrast points are diagnosed.  
Finite-difference updating formulae only in the vicinity of these points are altered 
from fourth to second order accuracy; all other points remain at fourth order accuracy.  
By limiting the reach of the operators to second order, stability and accuracy can be 
maintained, while keeping the majority of the dependent variable updates at fourth 
order accuracy.  Currently, only the zeroth order coefficients are scanned for high 
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Figure 2:  Comparison of pressure traces from deterministic Paracousti (black) 
and Paracousti-UQ (red dashed) with all maximum chaos polynomial orders set 
to zero.



contrasts between adjacent grid points.  Further research is needed to ascertain 
whether this is sufficient for stability and accuracy, or whether higher order 
coefficients must be incorporated into the scanning procedure.

3.8. Massively Parallel Design
Paracousti-UQ is designed to use the Message Passing Framework (MPI).  This allows 
one to utilize multiple cores and physical machines to distribute the workload and 
reduce runtime.  Paracousti-UQ can run on anything from a laptop to 1,000’s or more 
cores on an institutional cluster.  This allows one to run small simple models as well as 
very large complex models with the same code.

This is especially important for Paracousti-UQ due to the nature of the stochastic 
PDEs that it solves.  As noted in Chapter 2, there are many more equations and several 
more terms in each of those equations compared to a deterministic solver such as 
Paracousti.  Distributing the load across many machines provides the necessary 
computational power as well as the RAM necessary to hold the extra data required for 
Paracousti-UQ.

3.9. Verification With Paracousti
When all maximum chaos polynomial orders are set to zero (i.e., �  and all 
medium parameters and source terms are known exactly ( � )), 
Equations 3.3-3.6 reduce to those used in Paracousti.  To verify that Paracousti and 
Paracousti-UQ give the same results in this case, we compare pressure traces between 
the two algorithms from an explosion source in a homogenous medium (Figure 2).  
The agreement between the two algorithms is excellent, demonstrating that Paracousti-
UQ does indeed reduce to Paracousti in this special limiting case.

N = 0
Nr = Nk = Nsi

= Nm = 0
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4. COMPARISON WITH MONTE CARLO SIMULATIONS

4.1. Modeling Scenario
In all of the test cases presented below homogeneous acoustic models were utilized.  
The baseline problem consisted of a homogeneous medium with sound speed of 2500 
m/s and density of 2000 kg/m3.  This translates to a bulk modulus of 12.5e9 Pa and 
buoyancy of 0.0005 m3/kg.  The model domain extended from -15 m to 100 m on the 
x-axis, -50 m to 50 m on the y-axis, and -200 m to 200 m on the z-axis, with uniform 1 
m grid node spacing.  CPML absorbing boundary conditions 10 nodes thick were 
utilized on all eight sides.  The source was placed at position (0,0,0) m with pressure 
receivers arrayed in a line from 5 m to 40 m, every 5 m, on the x-axis offset 10 m in z 
from the source.  In each case, one of the independent variables (bulk modulus, 
buoyancy, or source) was assigned a probability distribution while all other 
independent variables were assumed to be known exactly.

4.2. Monte Carlo Simulations
Although this is a relatively small domain size, due to the estimated number of Monte 
Carlo runs that would be required to obtain a stable distribution, we did not use 
Paracousti as the forward solver.  Instead, we utilized a 2-D axisymmetric acoustic full 
waveform solver, an acoustic version of the algorithm axiElasti (Preston, 2017) called 
axiAcousti, for the Monte Carlo simulations.  Given the simple homogeneous models 
and geometries we are using for these scenarios, a 2-D axisymmetric solver is 
appropriate.  Multiple tests demonstrate that in these simple modeling cases 
axiAcousti gives identical results to Paracousti and is much faster computationally.

In each case, a well-defined probably distribution was assigned to one of the medium 
parameter independent variables (bulk modulus or buoyancy), while the other medium 
parameter is fixed (assumed known).  The mean of the distribution is equal to the 
corresponding value stated in Section 4.1 for that medium parameter in the baseline 
model.  The standard deviation for the medium parameter was approximated to 
provide a standard deviation in sound speed of about 200 m/s.  For bulk modulus this 
gave a standard deviation of 2e9 Pa; for buoyancy the standard deviation was set to 
8e-5 m3/kg.  For these cases, a gamma distribution was assumed.

For tests involving source time function distributions, bulk modulus and buoyancy 
were fixed at the mean values stated in Section 4.1.  The only random variable in this 
case was the peak amplitude of the source time function.  A gaussian random variable 
with mean 1.0 (J or N) and standard deviation of 0.1 (J or N) was utilized for 
explosion and force sources.

Since axiAcousti is a deterministic solver, fixed values for all the input values are 
required.  Thus, random samples were drawn from the probability distribution and 
each sample constituted a single run of axiAcousti.  By drawing many samples, we 
can aggregate all the pressure trace results to obtain an estimate of the mean and 
standard deviation of the pressure waveforms at the receiver points.  To ensure 
convergence we ran approximately 800,000 axiAcousti runs.  Figure 3 shows the 
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Figure 4:  Estimated maximum of standard deviation in pressure at the 
nearest receiver as a function of cumulative number of Monte Carlo 
simulations for kappa and buoyancy distributions.

Figure 3:  Distribution of bulk modulus used in Monte Carlo simulations.



distribution of the actual samples used in the bulk modulus distribution test.  The mean 
of the actual distribution is 12.498e9 Pa with a standard deviation of 1.9994e9 Pa, very 
close to the designed values.

A question that arises with Monte Carlo methods is how many runs do you need to 
adequately represent the output distribution.  Figure 4 demonstrates the convergence 
of the Monte Carlo runs for the bulk modulus and buoyancy distribution tests.  The 
image shows the variation in the estimated peak value of the standard deviation 
waveform at the nearest receiver as a function of the cumulative number of runs.  As 
expected, there is more variation in the estimate for fewer runs, but it stabilizes as runs 
accumulate.  To achieve 0.1% accuracy (assuming the 880,000th run of bulk modulus 
is closest to the actual distribution) it would require 460,000 runs in the buoyancy test 
and 390,000 for bulk modulus.  Less accuracy requires fewer MC runs.  For example, 
0.2% accuracy requires 120,000 runs for buoyancy and 210,000 runs for bulk 
modulus, while 17,000 runs is needed to achieve 0.5% accuracy for bulk modulus 
(buoyancy was aggregated every 10,000 runs whereas bulk modulus was aggregated 
every 1,000 runs for the first 80,000 runs).  The difference in convergence for bulk 
modulus and buoyancy is probably due to sampling, but they do obviously converge to 
the same value.  The estimate of the peak of the mean is about an order of magnitude 
more accurate for the same number of runs relative to the peak of the standard 
deviation.

4.3. Paracousti-UQ Mean and Standard Deviation
For Monte Carlo simulations, the means and standard deviations can be computed 
using well-known methods.  However, for Paracousti-UQ output the computation of 
mean and standard deviation cannot be performed using these well-known methods 
since the solution is a weighted sum of chaos polynomial basis functions.

The general definition of statistical moment is

� (4.1)

where �  is a probability distribution, �  and �  are the limits of the support space for 
that probability distribution, and �  and �  are constants that define the type and kind of 
moment we are seeking (e.g., Spanos, 1999).  The mean is a moment where �  and 
� , so

� (4.2)

For stochastic PDEs, �  is simply the weight function (assuming it has been scaled 

such that � , which is true of our definitions in Table 1), and

mn = ∫
b

a
(x − c)n f (x)dx

f (x) a b
c n

n = 1
c = 0

μ = ∫
b

a
x f (x)dx

f (x)

∫
b

a
f (x)dx = 1
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� (4.3)

Placing Equation 4.3 into Equation 4.2, and using the fact that �  and the 
orthonormality properties of the chaos polynomials, one obtains

� (4.4)

The variance, or squared standard deviation, is defined by setting �  and �  in 
Equation 4.1:

� (4.5)

After some manipulation, one finds for stochastic PDEs

� (4.6)

Note that the sum does not include � .

The output from Paracousti-UQ are the �  up to order �  for pressure and/or velocities 
at each receiver as a function of time.  Thus, one obtains the mean and standard 
deviation at each receiver as a function of time.  Higher order moments can also be 
computed using the same methodology outlined in this section.  For this report, we 
will only be investigating the mean and standard deviation of the output signals.

x =
N

∑
i=0

ciΦi(θ )

Φ0 = 1

μ = c0

c = μ n = 2

σ2 = ∫
b

a
(x − μ)2 f (x)dx

σ2 =
N

∑
i=1

c2
i

c0

ci N
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Max 
Order

Equivalent 
Number of 

Runs (Gamma)

Equivalent 
Number of Runs 

(Gaussian)

0 1 1

1 5 4

2 9 7

3 13 10

4 17 13

5 21 16

6 25 19

Table 2: Approximate Number of Deterministic 
Runs for Maximum Polynomial Orders



4.4. Comparison Cases
We compare the accuracy of the mean and standard deviations obtained via MC 
methods with those computed from Paracousti-UQ output.  In all cases, Paracousti-UQ 
used up to 5th order chaos polynomials for the dependent variables.  This is 
approximately equivalent to running the deterministic Paracousti 21 times for a 
gamma distribution.  Table 2 gives the approximate number of deterministic runs that 
is equivalent to running Paracousti-UQ for polynomial orders up to 6 with one random 
variable for gamma and gaussian distributions.  This tabulation is based upon the 
number of non-zero elements in the �  matrix.

4.4.1. Bulk Modulus Distribution with Known Explosion Source
The bulk modulus distribution case uses a gamma distribution with mean of 12.5e9 Pa 
and standard deviation of 2e9 Pa.  Buoyancy is fixed at 5e-4 m3/kg and an explosion 
source with a known gaussian pulse source time function with 50 Hz central 
frequency.  The means and standard deviations for the eight pressure receivers are 
compared between MC and Paracousti-UQ in Figures 5 and 6.  The agreement is 
excellent.  Figure 7 shows the effect of maximum polynomial order on the standard 
deviation at the nearest receiver.  On the visual plot scale only maximum order 1 
(clearly) and order 2 (in a few places) are distinguishable from the MC standard 
deviation.  As an aside, it should be noted that the mean signal is not exactly the same 
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Figure 5:  Comparison of mean pressure traces between MC and 
Paracousti-UQ for bulk modulus distribution.
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Figure 7:  Convergence of Paracousti-UQ based on maximum 
polynomial order for standard deviation of pressure at the nearest 
receiver.

Figure 6:  Comparison of standard deviation pressure traces 
between MC and Paracousti-UQ for bulk modulus distribution.



as the signal that would be generated for a deterministic model run with the mean bulk 
modulus and buoyancy, although they are close.

As a comparison of accuracy with the MC standard deviation, the differences in the 
maximum of the standard deviation at the nearest station is 7.6% for N=1, 0.5% for 
N=2, and less than 0.05% for N>2.  As a speed comparison, one observes that it takes 
17,000 MC runs to achieve the same accuracy as the equivalent of 9 runs using 
Paracousti-UQ.  At greater distances from the source, somewhat higher orders are 
needed to obtain the same accuracy.  At these wavelengths at the farthest receiver, N=3 
is required instead of N=2 to achieve 0.5% error.  These comparisons indicate the 
efficiency of the stochastic PDE method is at least on the order of a factor of 1,000 
greater than MC methods.

4.4.2. Buoyancy Distribution with Known Explosion Source
The buoyancy distribution uses a gamma distribution with a mean of 5e-4 m3/kg and 
standard deviation of 8e-5 m3/kg.  The bulk modulus was fixed at 12.5e9 Pa.  An 
explosion source with a known gaussian source time function with 50 Hz central 
frequency was utilized.  Figures 8 and 9 show the mean and standard deviation of the 
pressure signals at all eight receivers.  Note that these are indistinguishable from the 
mean and standard deviation images for a bulk modulus distribution and explosion 
source.  Again the match between MC and Paacousti-UQ is excellent.
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Figure 8:  Comparison of mean pressure traces between MC and 
Paracousti-UQ for buoyancy distribution.
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Figure 10: Mean (red dash) and one standard deviation (black) as a 
function of time for pressure traces.

Figure 9:  Comparison of standard deviation pressure traces 
between MC and Paracousti-UQ for buoyancy distribution.



Figure 10 shows the same mean signal as Figure 8, but also shows the one standard 
deviation region as a function of time around the mean.  Standard deviations are 
smaller relative to the signal at closer distances from the source, but grow at greater 
distances.  The largest standard deviations lag slightly in time relative to the peaks and 
troughs of the mean signals

4.4.3. Explosion Source Time Function Distribution
For the explosive source time function distribution, only the peak amplitude is 
considered to be a random variable.  The peak amplitude is drawn from a gaussian 
distribution with a mean of 1 J and standard deviation of 0.1 J.  The source time 
function is a 50 Hz central frequency gaussian pulse.  The bulk modulus and buoyancy 
were fixed in this test at 12.5e9 Pa and 5e-4 m3/kg, respectively.  In this particular case 
where only the source is taken from a probability distribution and the medium 
parameters are considered known, Equations 2.20-2.23 completely decouple in term of 
polynomial order.  In other words, each polynomial order is like a separate solution 
that does not depend on the behavior of the other orders.  For this source time function 
distribution, there are only two orders required: the mean and standard deviation.  
Thus, all dependent variable orders greater than 1 should be zero for all times.  This is 
indeed the case; only N=0 and N=1 show any signal at the pressure receivers.  These 
are shown in Figures 11 and 12 for the mean and standard deviation.  The true 
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Figure 11:  Comparison of the mean pressure traces between the 
analytic solution and Paracousti-UQ for the explosive source time 
function distribution.



solutions are known analytically in this case.  The mean will be the deterministic 
solution using the mean source amplitude and the standard deviation will be exactly a 
scaled version of this with the scale being the ratio of the input standard deviation to 
its mean, in this case 0.1.  The waveforms for the mean and standard deviation are thus 
the same, just scaled relative to each other.  The agreement is again excellent.

4.4.4. Bulk Modulus/Buoyancy with Known Force Source
We also evaluated the accuracy of Paracousti-UQ using a force source.  Similar to the 
explosion source, we performed two tests with a known force source with a 50 Hz 
central frequency gaussian wavelet.  The force was directed parallel to the line of 
receivers.  For the 2-D axisymmetric code, axiAcousti, this required a vertical force 
source to be coincident with the symmetry axis, and the line of receivers was rotated 
so that the line is directed in the positive z-direction.  Otherwise, the relative distances 
and offset from the source location is the same as previous tests.

In one test we assume that the bulk modulus is uncertain but buoyancy is known, and 
in the second we assume the buoyancy is uncertain but bulk modulus is known.  Both 
bulk modulus and buoyancy were again assumed to conform to a gamma distribution.  
The mean and standard deviation of the bulk modulus was identical to the previous 
test with a mean of 12.5e9 Pa and standard deviation of 2e9 Pa, with the buoyancy 
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Figure 12:  Comparison of the standard deviation pressure traces 
between the analytic solution and Paracousti-UQ for the explosive 
source time function distribution.



fixed at 5e-4 m3/kg.  Likewise, for the buoyancy case the mean buoyancy was set to 
5e-4 m3/kg and standard deviation to 8e-5 m3/kg, with the bulk modulus fixed at 
12.5e9 Pa.

The results from these two tests are identical to each other, as they were for the 
explosion source.  A comparison of the mean and standard deviation of the output 
pressure traces as a function of time between the MC and Paracousti-UQ are displayed 
in Figures 13 and 14.  Additionally, we also show the mean with one standard 
deviation pressure traces in Figure 15.  The difference in waveforms between the 
source types is expected based on theoretical differences between force and explosive 
sources (Aldridge, 2000).  Explosion sources will produce far-field pressure 
waveforms proportional to the second time derivative of the source time function, 
whereas force sources produce waveforms proportional to the first time derivative of 
the source time function.  The results presented here agree with theoretical 
expectations, and Paracousti-UQ results again match the MC results extremely well.

The mean and standard deviation traces (Figure 15) demonstrate similar properties to 
those from the explosion source (Figure 10).  The standard deviation is relatively 
small compared to the mean traces at the closest receiver, but the standard deviation 
grows in relation to the mean as distance increases.  Also, the maximum standard 
deviation lags slightly behind the peak of the mean trace.
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Figure 13:  Comparison of the mean pressure traces between Monte 
Carlo and Paracousti-UQ simulations for a buoyancy distribution 
with a force source.
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Figure 15:  Mean (red dash) and one standard deviation region 
(black) for pressure traces from a force source.

Figure 14: Comparison of the standard deviation of pressure traces 
between Monte Carlo and Paracousti-UQ simulations for a 
buoyancy distribution with a force source.



4.4.5. Force Source Time Function Distribution
The final test case uses fixed bulk modulus and buoyancy, but the maximum amplitude 
of the source time function derives from a gaussian distribution.  Similar to the 
explosion case, the mean of the distribution is set to 1 N with a standard deviation of 
0.1 N.  In an identical manner to the explosion source, when the only uncertainty is the 
source and the medium parameters are known exactly, the stochastic PDEs decouple 
with respect to the polynomial order.  Thus, all traces with output polynomial order 
greater than 1 are identically zero, as expected.  The mean of the output pressure traces 
is just the solution to the deterministic acoustic PDEs using the mean amplitude of 1 
N, and the standard deviation has identical waveforms to the mean but scaled by 0.1 
due to the ratio between input standard deviation and mean.  These predictions are 
confirmed by the Paracousti-UQ output.  Figure 16 shows the mean and one standard 
deviation in a single figure.  In this case, the peak of the standard deviation aligns with 
the peak of the mean and the relative size of the standard deviation to the mean 
remains unchanged as source-receiver distance increases.

4.5. Discussion
We have demonstrated with several simple examples that Paracousti-UQ gives results 
in excellent agreement with Monte Carlo simulations.  Additionally, we have indicated 
that Paracousti-UQ is at least 1,000 times faster than Monte Carlo at achieving 
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Figure 16:  Mean (red dash) and one standard deviation region 
(black) from pressure traces from a force source distribution.



similarly accurate results.  As mentioned in Section 4.2 we utilized a 2-D 
axisymmetric algorithm in order to obtain the MC results shown with at least 800,000 
MC trials.  As a comparison with the 3-D case using Paracousti, a single Paracousti 
run of this model requires ~50 s of compute time.  If we did 10,000 MC runs (an 
absolute minimum number of runs to achieve a semblance of the standard deviation 
distribution of the output pressure traces) it would have required about 5.8 days of 
compute time.  A 4th order maximum polynomial order run of Paracousti-UQ that we 
determined was adequately accurate required about 7.5 minutes of runtime.  This 
amounts to Paracousti-UQ being ~1,100 times faster than MC.

An additional advantage of Paracousti-UQ output as opposed to MC simulations is 
that we immediately have access to estimates of higher order moments as well as the 
output probability distribution itself.  For the MC simulations performed here, we did 
not retain output of every simulation from the MC suite as this would have required a 
large amount of disk space.  Instead, we only kept that information necessary to 
compute the mean and standard deviation in an aggregate summary of the traces as the 
MC suite was running, greatly reducing memory requirements.  If we decided we 
really wanted an estimate of the 3rd order moment of the output, we would have to do 
another suite of MC simulations.  With the Paracousti-UQ output, as long as one has 
run the algorithm to sufficient maximum polynomial order to obtain such a higher 
order estimate, one can compute that higher order moment without having to re-run 
the algorithm.
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5. CONCLUSION AND FUTURE WORK
We have derived the coupled set of stochastic partial differential equations for linear 
wave propagation in an acoustic medium.  These equations are more complex than the 
deterministic equations in that there are more equations and more terms in each 
equation, but the same numerical principles used to solve the deterministic set of 
equations can be applied to the stochastic PDEs with minor modification.  We 
developed Paracousti-UQ to numerically solve the SPDEs using 4th order in space and 
2nd order in time finite differencing on a standard staggered grid.  In the limit that all 
independent medium parameters and the source are exactly known, the SPDEs reduce 
to their deterministic counterparts, and we verified that Paracousti-UQ does indeed 
give identical answers to Paracousti in this special case.

To test the validity of the SPDEs as implemented in Paracousti-UQ, we compared 
Paracousti-UQ results to those of a large suite of Monte Carlo simulations for simple 
homogeneous models with a single random variable.  The bulk modulus, buoyancy, 
and source time functions were individually assigned a probability distribution while 
the other parameters we considered known.  In all cases Paracousti-UQ output agrees 
extremely well with MC simulation estimates.  Additionally, Paracousti-UQ was 
demonstrated to be at least 1,000 times faster at achieving the same results as MC to 
high accuracy.

There are many research topics one could pursue to advance our understanding of the 
acoustic stochastic PDEs.  One major area for further research is determination of the 
maximum polynomial order needed to accurately represent the probability distribution 
of the output wavefield.  We touched on this topic in these tests, but these are only 
simple homogeneous test cases.  What effect does realistic 3-D variations have on the 
maximum required polynomial order?  A related topic area involves how to adequately 
represent the uncertainty in 3-D varying media.  These test cases have only considered 
a single random variable.  As the number of random variables increases the 
dimensionality of the problem grows likewise.  The necessary polynomial order is 
based upon the product of chaos polynomials of each of the random variables, which 
rapidly increases the number of terms in this product.  Monte Carlo methods also 
suffer from this issue in that greater and greater numbers of simulations are required to 
adequately represent the true distribution as the number of random variables increases.  
So the question is, how do we adequately represent the realistic 3-D uncertainty of the 
medium with as few of random variables as possible?  One method that holds promise 
is by recasting the problem into one based on correlation length instead of point-by-
point variations.  This matches our intuition of how variability within a continuum 
would behave physically.  These and many other questions await to be addressed with 
future research into this promising area of uncertainty quantification and propagation.
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