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= | was a graduate student of Andy Glaeser and Ron Gronsky from between 2001 and
2007

= | would occasionally pass Prof. Thomas in halls when he was around and exchange friendly head
nods
= Students could be heard whispering “G.T. is here today” or “That’s G.T.”

= Ron Gronsky was an original Prof. Thomas student

= The capabilities and expertise that Prof. Thomas built for UC Berkeley materials science
and at LBNL NCEM inspired the topic of my PhD dissertation work and continue to
influence the research portfolio that | pursue today
= Electron Microscopy
= Metallurgy
= Phase transformations
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Prof. Thomas’ 1970’s Work Nucleated My PhD Dissertation Topic E‘J Sania

= Work from the 1970’s incubated a number of my interests in materials science
capabilities and problems

= E.P. Butler and G. Thomas, Structure and properties of spinodally decomposed Cu-Ni-Fe alloys,
Acta Met 18, 1970.

= R.J. Livak and G. Thomas, Spinodally decomposed Cu-Ni-Fe alloys of asymmetrical compositions,
Acta Met 19, 1971.

= R.J. Livak and G. Thomas, Loss of Coherency in spinodally decomposed Cu-Ni-Fe alloys, Acta Met
22, 1974.

= R. Gronsky and G. Thomas, Discontinuous coarsening of spinodally decomposed Cu-Ni-Fe alloys,
Acta Met 23, 1975.

= This work inspired me to learn analytical TEM and continue to use this knowledge to
solve materials problems

What was the next step for this work? ;




Can Decomposition of Cu-Ni-Fe Be Directed and Controlled Through Dimensional Confinement?
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R.J. Livak and G. Thomas, Spinodally decomposed Cu-Ni-Fe alloys of asymmetrical
compositions, Acta Met 19, 1971.
R.J. Livak and G. Thomas, Loss of Coherency in spinodally decomposed Cu-Ni-Fe
alloys, Acta Met 22, 1974.
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When spatial dimensions are smaller than preferred modulation wavelength, can
—— \Vavelengths be frustrated such that modulation is directed in a specific direction?  —————————
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Can we direct film (0001
growth or dewetting to (1210]
form long wires with a

modulated structure? _ )
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12 h ARSI e _217 fZeikand ul /B84 1. Lattice parameter difference between
- s T Rt e s 2 Cu and Ni-Fe rich phases causes
~100 nm tall : : . XW thickness variation
. 1. spinodal dewetting”
~3OO nm W|de 2. Bischof, J., et al., Dewetting Modes of Thin
Metallic Films: Nucleation of Holes and
Spinodal Dewetting. Physical Review
Letters, 1996. 77(Copyright (C) 2010 The
American Physical Society): p. 1536.

2.  Film surface curvature on a faceted
surface leads to chemical potential-
driven flow to troughs

1. Basu, J., et al., Nanopatterning by solid-
state dewetting on reconstructed ceramic
surfaces. Applied Physics Letters, 2009.
o 94(17).
700°C 3. Grain boundaries in polycrystalline film
8 h act as nucleation sites

1. Genin, F.Y., W.W. Mullins, and P.
Woynblatt, Capillary instabilities in
polycrstalline metallic foils —
experimental obeservations of thermal
pitting in nickel. Acta Metallurgica Et
Materialia, 1994. 42(4): p. 1489-1492.
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Alloy wires dewet into single bi-phase particles. What about full confinement to prevent dewetting?
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Formation of Regular Pattern After Coarsening () i
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Formation of Regular Pattern After Coarsening () i
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« Start to see one domain of
modulated structure fill a
cavity

» Orientation relationship does
not allow for 90° patterning

« Initial stages of “directed
decomposition” are visible at
long aging times

* Probably a smaller cavity

700°C 300 min 700°C 11280 min would aid in seeing this
A ~40 nm A ~100 nm phenomena at earlier aging
times
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EFTEM Knowledge and Capability Inspired New ) i

Measurement for Li-ion Batteries

= Consider 2 Rate Limiting
Cases for Charge/Discharge

Transformation ]
= Phase boundary migration rate l .."
limits o7 11—
....‘... [ Li ] =0

.....‘.. [Li]— F
- 00049 =p, ePO
LiFePO 4
4

= Probability of new phase
nucleating (nucleation rate)

limits
0020202
095000
0e%%

t,« At — t




EFTEM Enabled Measurement of Li Without Beam
Damage Effects
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Confirm a Particle-By-Particle Transformation Reaction And Valigateu.

STXM Map of EFTEM Map of Fe EFTEM Map Of Fe

Wit h STX M Fe Oxidation state from M3A State Calculated

BF TEM image State pure components from MLLS
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= Most of the time particles are either
completely LiFePO, or FePO,

= A small fraction of particles appear mixed

= Most of the time this is because particles
overlapping in the projection view

=  Sometimes this is the result of non-linear
thickness effects
= Intensity is redistributed from the core edge
energy as a result of plural scattering

= Convolution of core-edge spectra with low-
loss or plasmon spectrum

= Rarely do we find a single particle that
exhibits both Fe2* and Fe3*
= Charging time is independent of time for

individual particle and depends on
nucleation rate for forming the new phase
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= Prof. Thomas work from the 1970’s inspired the
work that was the basis for my PhD dissertation
work
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= Prof. Thomas work from the 1970’s inspired the
work that was the basis for my PhD dissertation

S5210001£2
work - N

= Ultimately my interest in understanding
volumetric confinement in CuNiFe alloys
required me to learn EFTEM, which began my
interest and journey in analytical electron
microscopy
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= Prof. Thomas work from the 1970’s inspired the

work that was the basis for my PhD dissertation EFTEM Map of e EFTEM Map Of Fe
state from MSA State Calculated
WO rk BF TEM image pure components from MLLS

_ _ _ _ ol .Fe3+PO4
= Ultimately my interest in understanding s |

volumetric confinement in CuNiFe alloys . .

required me to learn EFTEM, which began my Oone ] lLiFe2+PO4

interest and journey in analytical electron Tum "
microscopy =

|
= | continue to use and develop the capabilities R e
and knowledge that were inspired by Prof.

Thomas to solve relevant materials problems

today (Li-ion batteries)
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= | spoke here today to share with you my personal experience of how | was inspired
by Prof. Thomas and how his career impacted me even as a second generation
student

= Prof. Thomas left a legacy that continues to impact and inspire microscopy and
materials science professionals to solve hard problems and develop new
capabilities

= | thank Prof. Thomas for the work he did at UC Berkeley and LBNL and am happy
that | had the pleasure to benefit from it
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