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Abstract

Stackelberg or defender-attacker games have recently become
one of the main tools used to model security decisions in ad-
versarial settings such as network security games. In these
games the adversarial nature of these interactions leads to a
great deal of uncertainty that has not been successfully cap-
tured in existing network models. To address this, we propose
a model of attack interdiction in network settings that takes
into account outcome uncertainty for the attacker and give a
double oracle formulation for solving games in this setting.
Finally, we show both theoretically and experimentally that
ignoring this uncertainty has the potential to significantly de-
grade solution quality.

Introduction
In recent years, game theoretic techniques have been used
to model adaptive intelligent adversaries in a wide range
of critical infrastructure settings, from airports (Jain et al.
2010) to ports (Fang, Jiang, and Tambe 2013). Network se-
curity games (NSG) focus on a subset of these problems,
namely those that are most naturally modeled as a graph-
ical network, such as placing check points on road net-
works (Jain, Conitzer, and Tambe 2013) or choosing patrol
routes in the waterways near our major cities (Vorobeychik,
An, and Tambe 2012). One important element of NSGs
is the asymmetry between the evader (attacker) and the in-
terdictor (defender). It is commonly assumed that evader’s
ability to choose the day of attack and observe past security
choices forces the interdictor to commit to a defense strategy.
However, introducing randomness into the decision space of
the interdictor adds uncertainty on the side of the evader, as
the evader is not certain exactly how these random choices
will be evaluated on the day of their attack. This is mod-
eled as the interdictor committing to a mixed strategy and
the evader best responding to the aggregate strategy, rather
than the individual pure strategies that make up the support.

While uncertainty has been explored in the standard
Stackelberg model (Nguyen, Jiang, and Tambe 2014), much
of the work in network security games (Letchford and
Vorobeychik 2013; Jain, Conitzer, and Tambe 2013) has
been primarily focused on settings where interdiction suc-
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cess is binary; once an edge or a target is defended, the in-
terdictor is guaranteed an interdiction if the evader chooses
a strategy that uses the defended edge or target. However, in
a real world setting, interdiction is rarely guaranteed. These
models miss an important aspect in not modeling uncertainty
in the success of the interdiction. In general, evader actions
often have some risk associated with them and defense mit-
igations rarely are 100% effective. As an example, consider
the task of deciding where to place radiological sensors to
detect and interdict the smuggling of radioactive materials
such as dirty bombs. These sensors are well known for hav-
ing both false positives and false negatives (Cochran and
McKinzie 2008), thus a binary success model here is overly
optimistic. In fact it is possible to construct a game where
this loss is unbounded. In Preliminaries we show that the
potential loss to the interdictor for making this optimistic as-
sumption is unbounded and in Computational Experiments
we further explore this expected loss experimentally on ran-
dom graphs.

In this work we relax this problematic assumption. In par-
ticular, we propose a model where an evader is interested in
traversing from one node within a set of source node to one
node within a set of target nodes, each with an associated
payoff. Each arc in the graph has a baseline evasion proba-
bility, which represents the chance of successfully traversing
the arc even if no additional resources are invested in that
arc. Moreover, we assume that the defender, subject to a
limited budget, has the ability to impose additional security
on a subset of these arcs, further reducing the probability of
evasion within this subset.

In addition to the work discussed above, there has been
extensive work in a number of related domains. One area
of research (Letchford and Vorobeychik 2012; Tsai et al.
2013) has focused on settings with probabilistic success
rates, but without a focused adversary. Instead, the ad-
versary resembles an epidemiological process, interested in
spreading across the network. A second area of research
focuses on patrolling (Basilico, Nittis, and Gatti 2016) or
hider-seeker (Halvorson, Conitzer, and Parr 2009) games,
where both the adversary and the defender are mobile. How-
ever, the uncertainty considered here generally focuses on
the alarms that an adversary might trip, such as the alarm
failing to go off or giving spatially uncertain data. Finally,
there has been other work exploring uncertainty in generic
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Stackelberg games, such as adding uncertainty over previous
actions in repeated games (Nguyen, Alpcan, and Telekom
2008) or assuming that it may not be optimal (or even pos-
sible) for the attacker to perform perfect surveillance before
attacking (An et al. 2012).

Preliminaries
We consider a Probabilistic Network Security Game (PNSG)
on a digraph D(N,A) with node set N and arc set A, where
the leader plays the role of the network interdictor and the
follower plays the role of a network evader. The interdictor’s
goal is to intercept/capture the evader, whereas the evader’s
goal, in direct contrast, is to successfully traverse the net-
work, starting at a source node and terminating at a target
node, without being captured. Each target node is associated
with a payoff and the objective of the evader is to maximize
the expected payoff. The expected payoff is the product of
the expected probability of success in navigating a path to
a target and that target node’s payoff. The interdictor’s di-
ametrically opposed objective is to minimize the evader’s
expected payoff.

In this work, we deviate from the standard assumption that
defenses are perfect (i.e., an evader traversing a defended arc
will be interdicted with certainty). We assume that each arc
(u, v) ∈ A has a baseline evasion probability puv and a de-
fended evasion probability p′uv , with 1 ≥ puv ≥ p′uv ≥ 0.
The standard binary variant (SBV) of NSG, with puv = 1
and p′uv = 0 for all (u, v) ∈ A, is thus a special case of
PNSG. We also assume that arc evasion probabilities are
independent and, therefore, the probability of successfully
traversing a path j is given by the product of the evasion
probabilities for each arc in the path. The utility to the
evader for traversing path j with target node tj is the product
of the path evasion probability times the payoff of the target
node ωtj . Conversely, the expected payoff to the interdic-
tor is the product of the path evasion probability times the
payoff (loss) of the target node −ωtj .

A simple example with two edge-disjoint paths are shown
in Figure 1. For each arc, two evasion probabilities (baseline
and defended) are shown. In Table 1, example evader pay-
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Figure 1: PNSG with two source nodes {s1, s2} and two
target nodes {t1, t2} with payoffs 10 and 15, respectively.

offs for two specific paths are shown under three cases: no
defense (none), arc (3, t1) defended, and arcs (3, t1), (1, 4)
defended. The interdictor allocates defensive resources at
cost cuv for all (u, v) ∈ A subject to budget constraint Γb.
X = {x1, · · · ,xn} is a restricted set of defense allocations
and xi ∈ {0, 1}|A| for all i = 1, · · · , n is a valid defense

Table 1: Payoffs of path 1 and path 2 under different defense
allocations

Expected Payoff
ωt· path none {(3, t1)} {(3, t1), (1, 4)}
+10 (s1, 1), (1, 4), (4, t1) 3.78 3.78 1.26
+15 (s2, 3), (3, t1), (t1, t2) 5.88 1.68 1.68

allocation, with xiuv = 1 if arc (u, v) is defended and 0 oth-
erwise. Similarly, the evader chooses a path from a source
node to a target node to maximize expected payoff, which is
a product of path evasion probability times the payoff of the
target node. Y = {y1, · · · ,ym} is a restricted set of paths
and yj ∈ {0, 1}|A| for all j = 1, · · · ,m prescribes a valid
path with yjuv = 1 if arc (u, v) is in path j and 0 otherwise.
Theorem 1 There exists PNSG where optimal solution to
the SBV version of game is arbitrarily worse than the opti-
mal solution to the PNSG.

Proof We can translate any graph with non-binary edge
probabilities to one in SBV by transforming every arc (u, v)
: puv = 1 and p′uv = 0. It is sufficient to show that
there exists a game where the optimal solution for this trans-
formed game (evaluated against the original game) is arbitar-
ily worse than the optimal solution computed for the original
game. Consider the game pictured in Figure 2. For the SBV
version of this game, the optimal defense solution under a
budget of 2 is to defend (s1, t1) and (s1, 1), as this appears to
fully defends all targets. However, this still has an expected
payoff of (1− ε) in the actual graph. For the PNSG version
of the game, the optimal solution is to defend edge (1, t3)
100% of the time and to defend edges (1, t2) and (s1, t1)
each 50% of the time (which is equivalent to the following
mixed strategy: .5 ((1, t3),(1, t2)) + .5 ((1, t3),(s1, t1))). This
fully defends target t3 and prevents attacks against each of
the other targets half of the time, leading to an expected loss
of ε2 . Thus, if we consider the ratio of expected loss between
these two methods: 1−ε
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In Table 1, example evader payoffs for two specific paths

are shown under three cases: no arcs are defended (none),

arc (3, t1) is defended, and arcs (3, t1), (1, 4) are defended.
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Figure 1: Simple PNSG with two source and target nodes

In Table 1, example evader payoffs for two specific paths
are shown under three cases: no arcs are defended (none),
arc (3, t1) is defended, and arcs (3, t1), (1, 4) are defended.
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Each player has a set of pure strategies, the interdictor de-
ploys defensive resources among the arcs, (u, v) 2 A sub-
ject to budget constraint �b, and the evader chooses a path
from a source node to a target node to maximize expected
payoff, which is a product of path evasion probability times
the payoff of the target (terminal) node.
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X Set of interd. allocs., X = {x1, · · · , xn}
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Y Set of evader paths, Y = {y1, · · · , ym}
yj jth evader path, yj 2 {0, 1}|A|

d interdictor’s mixed strategy over X , d 2 Rn
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Double Oracle Algorithm for PNSG
We employ a double oracle algorithm which is initial-
ized with arbitrary sets of interdictor allocations X and
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ate a pure strategy best response against the current evader
mixed strategy a. Analogously, the Evader’s Best Response
oracle, EBR(d), is solved to generate a pure strategy best
response against the current defender mixed strategy d. We
note that at each iteration, IBR(a) and EBR(d) implicitly
search for pure strategy best responses among all valid in-
terdictor defense allocations and evader paths, respectively.

+

+1

and defender interactions and allows for control of the con-
servativeness of the solution.

Related Work
In addition to the work discussed above, there has been ex-
tensive work in a number of related domains. One area of
research (Letchford and Vorobeychik 2012; Tsai et al. 2013)
has focused on settings with probabilistic success rates, but
without a focused adversary. Instead, the adversary re-
sembles an epidemiological process, interested in spread-
ing across the network. A second area of research focuses
on patrolling (Basilico, Nittis, and Gatti 2016) or hider-
seeker (Halvorson, Conitzer, and Parr 2009) games, where
both the adversary and the defender are mobile. However,
the uncertainty considered here generally focuses on the
alarms that an adversary might trip, such as the alarm fail-
ing to go off or giving spatially uncertain data. Finally, there
has been other work exploring uncertainty in generic Stack-
elberg games, such as adding in uncertainty over previous
actions in repeated games (Nguyen, Alpcan, and Telekom
2008) or assuming that it may not be optimal (or even pos-
sible) for the attacker to perform perfect surveillance before
attacking (An et al. 2012).

Our robust optimization framework is built upon the work
of (Soyster 1973) and (Bertsimas and Sim 2004), where we
seek an optimized mixed-strategy for the defender that per-
forms well against all uncertainty realizations in a given un-
certainty set. (Soyster 1973) proposed an LP model that en-
sures feasibility of the solution against data uncertainty in
a convex set. However, a drawback of (Soyster 1973) is
that such solutions may be too conservative; especially, in
settings where uncertainties are assumed to be independent
since the probability that all uncertain parameters take on
worst-case outcomes is highly improbable. This is certainly
the case in the context of NSGs. Subsequently, (Bertsimas
and Sim 2004) proposed an LP approach where the uncer-
tain parameters fall within intervals compose of a nominal
(mean) value and a deviation. Conservativeness of the solu-
tion is then controlled by a budget of uncertainty �u, which
constraints the number of uncertain parameters that can de-
viate from their nominal values.

Preliminaries
We consider a Probabilistic Network Security Game (PNSG)
on a digraph D(N, A) with node set N and arc set A, where
the leader plays the role of the network interdictor and the
follower plays the role of a network evader. The interdic-
tor’s objective is to intercept/capture the evader, whereas the
evader’s objective, in direct contrast, is to successfully tra-
verse the network without capture, starting at a source node
and terminating at a target node.

In this work, we deviate from the standard assumption that
defenses are perfect (i.e. an evader traversing a defended arc
will be interdicted with certainty). We assume that each arc
(u, v) 2 A has a baseline (undefended) evasion probability
puv and a defended evasion probability p0uv , with puv � p0uv .
The standard binary (i.e. deterministic) variant of NSG, with
puv = 1 and p0uv = 0 for all (u, v) 2 A, is thus a spe-

cial case of PNSG. We assume that arc evasion probabilities
are independent and, therefore, the probability of success-
ful traversing a path j is given by the product of the evasion
probabilities for each arc in the path (Aj ⇢ A). The util-
ity to the evader for traversing path j with target node tj is
the product of the path evasion probability times the payoff
of the target node !tj

. Conversely, the expected payoff to
the interdictor is the product of the path evasion probability
times the payoff (loss) of the target node �!tj

A simple example with two edge-disjoint paths are shown
in Figure 1. For each arc, two evasion probabilities (baseline
and defended) are shown.

s1

(0.9,	0.3)

(0.7,	0.2)

t2

1

s2

3

2

4

s t1

Figure 1: Simple PNSG with two source and target nodes

In Table 1, example evader payoffs for two specific paths
are shown under three cases: no arcs are defended (none),
arc (3, t1) is defended, and arcs (3, t1), (1, 4) are defended.
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Figure 2: Simple counter example

Double Oracle Algorithm for PNSG
We employ a double oracle algorithm which is initialized
with arbitrary sets of defense allocations X and paths Y .
At each iteration, we solve an LP Minimax(X,Y ), which
returns equilibrium strategies d and a for the interdictor and
the evader, respectively. The Interdictor’s Best Response or-
acle, IBR(a), is solved to generate a pure strategy best re-
sponse against evader mixed strategy a. Analogously, the
Evader’s Best Response oracle, EBR(d), is solved to gen-
erate a pure strategy best response against defender mixed



strategy d. We note that at each iteration, IBR(a) and
EBR(d) implicitly search for pure strategy best responses
amongst all valid interdictor defense allocations and evader
paths, respectively. The algorithm terminates when at a
given iteration, the two best response oracles cannot pro-
duce a solution (payoff) that is better than those prescribed
by Minimax(X,Y ). The validity of the best-response
double oracle algorithm was established by (McMahan and
G.J. Gordon 2003) and we refer the reader to convergence
proof therein.

Minimax Formulation
Given the current sets of interdictor’s defense allocationsX
and evader’s paths Y , an equilibrium for the restricted game
can be found by solving a linear program (LP) that computes
the maximin strategy for the interdictor. u∗ represents the
utility for the interdictor and d = (d1, · · · , dn) represents
the interdictor’s mixed strategy overX .

max
u∗,d≥0

u∗ (1a)

s.t. u∗ ≤ −
n∑
i=1

u(xi,yj)di ∀j = 1, · · · ,m (1b)

1>d = 1 (1c)

−u(xi,yj) is the interdictor’s payoff when playing xi

against yj , where

u(xi,yj) = ωtj
∏

(u,v)∈Aj
max

{
puv(1− xiuv), p′uv

}
(2)

In (2), ωtj is the payoff associated with the target node tj .
Since success probabilities are independent, the probability
of successfully traversing the path is the product of the inde-
pendent arc evasion probabilities. For each arc (u, v) ∈ Aj
(i.e. arcs in path j), max{puv(1 − xiuv), p′uv} provides the
success probability of traversing arc (u, v) given interdic-
tor’s defense allocation xiuv . If xiuv = 1, then max{puv(1−
xiuv), p

′
uv} = p′uv and puv otherwise. For each evader path

in Y , (1b) computes mixed strategy d’s payoff against that
path. The evader’s mixed strategy a can be easily extracted
from the solutions of (1) as they are associated with the dual
variables corresponding to constraints (1b).

Interdictor’s Best Response Oracle (IBR)
The objective of IBR is to find the best pure strategy de-
fense allocation x over arc set A, bounded by defense bud-
get Γb, which minimizes the evader’s expected payoff un-
der mixed strategy a. The IBR oracle is defined on an aug-
mented network with two auxiliary nodes, a starting node s
and a terminal node t. For fixed defense allocation x, the
evader solves a path selection problem to find the path that
maximizes expected payoff. In order to formulate this path
selection problem as an LP (i.e., maximum flow problem),
we introduce an arc from node s to every source node and
an arc from every target node to node t. For each (u, v) ∈ A,
we define two flow variables fuv and f ′uv with probabilities
puv and p′uv to represent the baseline and defended case,
respectively. In Figure (3), (a) shows a simple path from

s to t and (b) shows the same path represented in the aug-
mented network with arc (1, 4) defended. If an arc (u, v)
is defended (i.e., xuv = 1), we restrict flow on fuv to
zero. If (u, v) is undefended, flows are permitted on both
fuv and f ′uv; however, objective pressure to maximize flow
will always induce flows on fuv , which has a higher eva-
sion probability. Unlike standard network flow models in
which flow in equal flow out, in our probabilistic network,
arc inflows are adjusted by their evasion probabilities. In
Figure (3) (c), sending one unit of flow into node s1 will
result in 1× 0.6× 0.3× 0.7 = 0.126 unit of flow out of tar-
get node t1, which is exactly the evasion probability of the
path. IBR can thus be formulated as the following bilevel
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Figure 3: (a) A simple path (b) Augmented network repre-
sentation (c) Probabilistically adjusted network flow

program, in which the interdictor (upper-level) selects the
optimal pure strategy best response defense allocation and
the evader (lower-level) solves a set of maximum flow prob-
lems (weighted by a) over the augmented network.

min
x

max
f,f ′≥0

m∑
j=1

ajωtjf
j
tjt (3a)

s.t.
∑

(u,v)∈Aj
(f juv + f ′juv)−

∑
(v,u)∈Aj

(pvuf
j
vu + p′vuf

′j
vu)

= bu ∀u ∈ N \ t, ∀j (3b)

f juv ≤ 1− xuv ∀(u, v) ∈ Aj ,∀j (3c)∑
(u,v)∈A

cuvxuv ≤ Γb (3d)

The interdictor’s objective (3a) is to minimize the expected
payoff of the evader, which is a weighted sum of the evader’s
utility over mixed strategy a. Constraints (3b) are nodal bal-
anced constraints where in-flows have been adjusted to re-
flect arc evasion probabilities. bu represents the supply or
demand at node u (where bu = 1 if u = s and 0 otherwise).
(3c) restricts flows on fuv to be zero for all defended arcs.
Finally, (3d) is the constraint on the overall defense budget.

Lemma 1 For a fixed defense allocation x, the inner maxi-
mization problem of (3) correctly computes the evader’s ex-
pected utility for playing mixed strategy a over Y .

Proof It suffices to show that for a given path j pre-
scribed by arcs (u, v) ∈ Aj , we have f jtjt =∏

(u,v)∈Aj max
{
puv(1− xiuv), p′uv

}
. This equality is triv-

ially satisfied because for any arc (u, v) ∈ Aj , constraints



(3c) ensure that flows occur only on the lower probabil-
ity defended arc f ′uv if xuv = 1. On the contrary if
xuv = 0, non-zero flows are permitted on both fuv and
fuv; however, objective pressure to maximize flow will en-
sure usage of fuv , which has the higher evasion probabil-
ity puv . Finally, nodal balance constraints (3b) ensures that
flows into arcs (u, v) ∈ Aj are proportionally discounted
by the associated evasion probability, puv or p′uv . Thus, a
one unit injection into node s will result in an outflow of∏

(u,v)∈Aj max
{
puv(1− xiuv), p′uv

}
on arc f jtj ,t. �

Theorem 2 The bilevel program (3) correctly computes a
best-response for the interdictor under the probabilistic set-
ting.

Proof The upper-level problem searches over all valid de-
fense allocation x with total cost less than or equal to Γb
(3d). Thus, it suffices to show that for any fixed interdictor’s
defense allocation x, the lower-level correctly computes the
evader’s expected payoff. This follows directly from Lemma
1. �

(3) is a bilevel program that cannot be solved directly, there-
fore, we solve a mixed-integer linear programming (MILP)
reformulation of IBR instead.

Theorem 3 Bilevel program (3) has an equivalent MILP re-
formulation.

Proof The proof is by construction. Given a fixed upper-
level decision x, the lower-level problem of (3) is a feasible
and bounded LP. By strong duality, we can replace the inner
maximization problem with its equivalent dual minimization
problem to arrive at the following single-level program.

min
x,α,β≥0

m∑
j=1

bsα
j
s +

m∑
j=1

∑
(u,v)∈Aj

(1− xuv)βjuv

s.t. αju − pvuαjv + βjuv ≥ 0 ∀(u, v) ∈ Aj \ (tj , t),∀j
αjtj − α

j
t + βjtjt ≥ ajωtj ∀j (4)

αju − p′uvαjv ≥ 0 ∀(u, v) ∈ Aj ,∀j
x ∈ {0, 1}|A|

where α and β are dual variables associated with con-
straints (3b) and (3c). The objective of (4) contains bilinear
terms, which are products of non-negative β and binary x
variables. We introduce a new non-negative variable γ and
the following disjunctive constraints to linearize these bilin-
ear terms.

βjuv −Mxuv ≤ γjuv (5a)

γjuv ≤ βjuv +Mxuv (5b)

γjuv ≤M(1− xuv) (5c)

In (5), M is a coefficient chosen to be sufficiently large
to upper bound dual variables β. By substituting γjuv for
βjuvxuv terms in the objective and introducing constraints
(5) for all (u, v) ∈ A and j = 1, · · · ,m, we arrive at the
desired single-level MILP reformulation. �

Evader’s Best Response Oracle (EBR)
The objective of EBR is to find the best pure strategy path
y, starting at a source node and ending at a target node, that
maximizes the evader’s expected payoff given the defender’s
mixed strategy d overX . EBR can be formulated as a MILP
composed of a set of weighted maximum-flow problems.

max
y∈{0,1}|A|,f,f ′≥0

n∑
i=1

di

( ∑
(u,t)∈A

ωuf
i
ut

)
(6a)

s.t.
∑

(u,v)∈A
yuv −

∑
(v,u)∈A

yvu = bu ∀u ∈ N \ t (6b)

∑
(u,v)∈A

(f iuv + f ′iuv)−
∑

(v,u)∈A
(pvuf

i
vu + p′vuf

′i
vu) (6c)

= bu ∀u ∈ N \ t, ∀i
f iuv + f ′iuv ≤ yuv ∀(u, v) ∈ A,∀i (6d)

f iuv ≤ 1− xiuv ∀(u, v) ∈ A,∀i (6e)

The objective of the evader is the select a path y that maxi-
mize the evader’s utility, which is the sum of the utility of the
chosen path y weighted against the interdictor’s mixed strat-
egy d overX . Constraints (6b) are nodal balance constraints
for path selection, which prescribes y. (6c) are probabilis-
tically adjusted flow balance constraints under interdictor’s
defense allocations (i.e., for i = 1, · · · , n). Constraints (6d)
and (6e) are constraints restricting flows to arcs in the se-
lected path y and not “shut-off”, respectively. In summary,
the selection of the best pure strategy response path y re-
stricts flows to arcs in that path, but for each defense allo-
cation i, the flows on that path is specifically adjusted to
account for the defense in place.

Theorem 4 MILP (6) correctly computes a best-response
for the evader under the probabilistic setting.

Proof Constraints (6b) define a valid path prescribed by bi-
nary variables y, and constraints (6d) ensure that flows are
permitted only on arcs prescribed by y (restricting flows to
the chosen path). Then, it suffices to show that for any fixed
y, (6) correctly computes the evader’s expected payoff. This
follows directly from Lemma 1. �

Computational Experiments
We now present computational results on some randomly
generated instances to demonstrate the effectiveness of the
proposed models and algorithms. All experiments were run
with CPLEX 12.5 on a machine with 4-16 core 2.70GHz
processors and 512 GB RAM using a maximum of 16
threads and a max cutoff of 1 hour. We evaluated our formu-
lations on two different graph structures, Erdős-Rényi (ER)
random graphs with p = .25, and a directed grid-like set-
ting where we divided the nodes into a series of bins. Each
node can only have arcs to adjacent bins, and the source and
target nodes are on opposite sides of the grid. This second
structure generates graphs where all possible paths are of
equal length, avoiding generating graphs with small number
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Figure 4: Solution quality calculated against SBV as a fraction of possible utility gain

of clearly optimal paths to defend. Unless otherwise men-
tioned, the probability of the attacker successfully transition-
ing an undefended (defended) arc varies between .8 and .9
(.6 and .7), and target utilities vary between 10 and 20. All
results reported are averaged from 30 runs.

Solution Quality
First, to capture how the solutions generated against PNSG
and SBV on random graphs compare, we measured the dif-
ference in solution quality between these two models on
graphs with uncertainty (as on graphs without uncertainty
both algorithms would find identical solutions). To do this,
we define the utility guaranteed to the defender by the fol-
lowing three defense strategies as:
• U(Null): Zero defense resources evaluated against PNSG
• U(PNSG): The optimal defense allocation calculated

against PNSG and evaluated against PNSG
• U(SBV): The optimal defense allocation calculated

against SBV and evaluated against PNSG
We calculated the fraction of the possible utility gain
over the null setting that the binary setting achieved:
U(SBV )−U(Null)
U(PNSG)−U(Null) . Figure 4a shows how this values varies
with the number of defense resources for both grid-like and
ER random graphs. We found that on average, the opti-
mal defense allocation calculated against SBV only seems
to capture about half of the potential utility gain and seems
to perform worse as the size of the graph increases. Ad-
ditionally, while the efficency of the solution generated via
SBV seems to improve significantly as we increase the num-
ber of defense resources in the ER graphs, we do not see a
similar improvement in the grid-like case.

Next, we examined how the quality of the solution found
via SBV changed as we varied the baseline utility level with-
out defense (p) and with defense (p′) (with the same .1
noise levels). The above corresponds to values of (p: .8,
p′: .6). We considered p values of {.8,.6,.4} and p′ values of
{p − .1,p − .2,p − .4}. Figure 4b demonstrates how these
utilities change when we change p to .4, but hold p−p′ con-
stant. We see that while grid-like results did not significantly
change, however the solutions calculated against SBV seem
significantly worse on ER graphs with smaller number of re-
sources. This is likely caused by an increased importance in

path length in expected utility, which is not captured prop-
erly in the SBV abstraction. Figure 4c shows what happens
when we hold p constant at .8 but instead decrease p′ to .4.
Not suprisingly, since this setting is a better approximation
of the binary case, the SBV solutions peformed almost 10%
better uniformly across all data points. The remaining com-
binations of p and p′ appear in Figures 5-6.

Runtime
Figures 7 (8) shows how runtime increases as we increase
the number of nodes in the grid-like (ER) graph and the
number of defense resources. Unsurprisingly, runtime in-
creases with both number of nodes and number of defense
resources. Perhaps more interesting is how much quickly
the runtime increases in the grid-like graphs. This can intu-
itively be explained by the fact that there is higher variance
in path quality in the ER graph (as the grid-like graph forces
all paths to be of the same length). In fact, a large number
of these paths will never be a best response for the adversary
under any defense strategy. This reduces the number of iter-
ations and the number of paths that needs to be considered.

Conclusion
We have shown that it is crucial to consider uncertainties of
interactions between the evader and the interdictor in adver-
sarial settings. This work is a significant advance towards
addressing uncertainties in NSG. Specifically, we present
novel models and algorithms for NSG with probabilistic eva-
sion to account for the fact that in most cases the success of
defense mitigation against specific attacks is not a binary
outcome. Additionally, we demonstrated that solutions gen-
erated for the SBV (i.e., ignoring uncertainties) are signif-
icantly worst then solutions generated for the PNSG (i.e.,
with uncertainties). This is shown to be true both theoreti-
cally and experimentally, which highlights the significance
in modeling uncertainty for NSG. Our computational re-
sults show that while we can solve medium sized instances,
considerable room for improvement still exists. Develop-
ing heuristics or approximations to use as oracles has been
shown to work in related problems and is a promising direc-
tion for future work.
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Figure 5: Solution quality calculated against SBV as a fraction of possible utility gain
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Figure 6: Solution quality calculated against SBV as a fraction of possible utility gain
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References
[An et al. 2012] An, B.; Kempe, D.; Kiekintveld, C.; Shieh,
E.; Singh, S.; Tambe, M.; and Vorobeychik, Y. 2012. Se-
curity games with limited surveillance. In Proceedings of
the Twenty-Sixth AAAI Conference on Artificial Intelligence,
AAAI’12, 1241–1248. AAAI Press.

[Basilico, Nittis, and Gatti 2016] Basilico, N.; Nittis, G. D.;
and Gatti, N. 2016. A security game combining patrolling
and alarm-triggered responses under spatial and detection
uncertainties.

[Cochran and McKinzie 2008] Cochran, T., and McKinzie,
M. 2008. Detecting nuclear smuggling. Scientific Ameri-
can 298:98–104.

[Fang, Jiang, and Tambe 2013] Fang, F.; Jiang, A. X.; and
Tambe, M. 2013. Optimal patrol strategy for protecting
moving targets with multiple mobile resources. In Proceed-
ings of the 2013 International Conference on Autonomous
Agents and Multi-agent Systems, AAMAS ’13, 957–964.
Richland, SC: International Foundation for Autonomous
Agents and Multiagent Systems.

[Halvorson, Conitzer, and Parr 2009] Halvorson, E.;
Conitzer, V.; and Parr, R. 2009. Multi-step multi-
sensor hider-seeker games. In Proceedings of the 21st
International Jont Conference on Artifical Intelligence,
IJCAI’09, 159–166. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.

[Jain et al. 2010] Jain, M.; Tsai, J.; Pita, J.; Kiekintveld, C.;
Rathi, S.; Tambe, M.; and Ordóòez, F. 2010. Software
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