

Exceptional service in the national interest

Fatigue behavior of austenitic steels with hydrogen

P.J. Gibbs¹, K.A. Nibur², and C. San Marchi¹

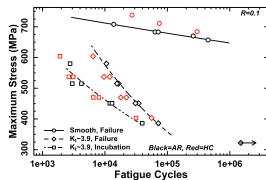
1. Sandia National Laboratories, Livermore, CA

2. Hy-Performance Materials Testing, Bend OR

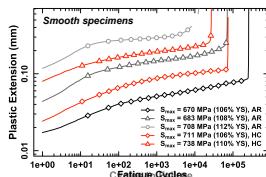
Motivation:

- Fatigue due to pressure cycling is a likely failure mode for pressure components exposed to hydrogen
- Relatively little data comparing H-degradation of various fatigue-life test methods or separating contributions to total fatigue-life
- Need to understand hydrogen and fatigue compatibility of new alloys for hydrogen storage

Goals:

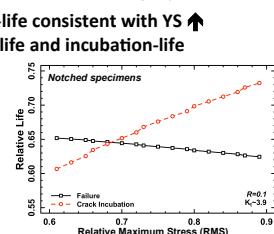
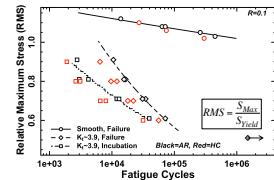

- Compare hydrogen degradation of load-controlled tension-tension fatigue-life with and without a local stress concentrator.
- How does stress-environment affect H-degradation?
- Compare the relative fatigue performance of austenitic stainless steels in the presence of H.
- Can low Ni steels perform as well as 316L?

Hydrogen and stress concentration effects on fatigue-life of 316L stainless steel (1)


- Thermally H-charged (HC) specimens tested in air
- Measured crack incubation with potential-drop in notched and plastic ratcheting in smooth specimens

Yield strength (YS) \uparrow with HC
Stress-life typically \propto to YS

Condition	YS (MPa)	UTS (MPa)	RA (pct.)
AR	635	731	74
HC	670	774	62

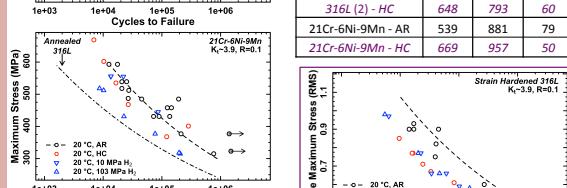
Smooth: \uparrow in HC fatigue-life consistent with YS \uparrow
Notched: \downarrow in fatigue-life and incubation-life

Increased plastic extension in HC condition at equal RMS H-enhanced plastic flow

Increase in YS not seen in external H₂, artifact of H-charging
may be due to solute drag or slip localization in deforming volume
Accounting for YS increase suggests increased plasticity due to H
consistent with increased dislocation source activity due to H
↓ fatigue-life possibly due to ↓ tolerance to strain accumulation

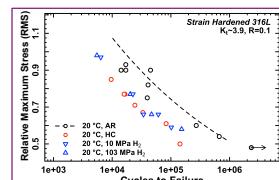
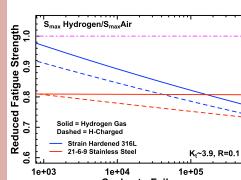
Incubation-life decreased by H
Enhanced plasticity; reduced
crack incubation and fatigue-life

Directly compare tension-tension fatigue of strain-hardened 316L (2) and 21Cr-6Ni-9Mn


- Fatigue-life tests performed in air (AR), air after hydrogen charging (HC), and in 10 MPa and 103 MPa gaseous hydrogen

Composition

Alloy ID	Cr	Ni	Mn	Mo	C	N
316L (2)	17.6	12.0	1.15	2.05	0.020	0.04
21-6-9	20.5	6.15	9.55	NR	0.033	0.265



Tensile properties

Alloy ID	S _y (MPa)	S _{ut} (MPa)	RA (pct.)
316L (2) - AR	573	731	77
316L (2) - HC	648	793	60
21-6-9 - AR	539	881	79
21Cr-6Ni-9Mn - HC	669	957	50

316L (2): Decrease in fatigue-life in presence of hydrogen
21Cr-6Ni-9Mn: Fatigue-life depends on hydrogen environment

Accounting for YS \uparrow with HC aligns 103 MPa and HC data

Both 316L (2) and 21Cr-6Ni-9Mn show \downarrow in fatigue strength in H at longest measured life
Enhanced plasticity encourages low stress fatigue damage

- Hydrogen decreases the fatigue performance of austenitic stainless steels
- Hydrogen appears to change plastic strain evolution, encouraging crack formation
- YS \uparrow in HC steels obscures load-controlled results

Acknowledgements: The authors gratefully thank J.A. Campbell and B.C. Davis for supporting the experimental testing and X. Tang at Swagelok Co. for providing experimental material. We also acknowledge funding from the US DOE Office of Energy Efficiency and Renewable Energy's Fuel Cell Technologies Office through the Hydrogen Storage program element project ST113.