skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of Computational Tools for Modeling Thermal and Radiation Effects on Grain Boundary Segregation and Precipitation in Fe-Cr-Ni-based Alloys

Technical Report ·
DOI:https://doi.org/10.2172/1394351· OSTI ID:1394351
 [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

This work aims at developing computational tools for modeling thermal and radiation effects on solute segregation at grain boundaries (GBs) and precipitation. This report described two major efforts. One is the development of computational tools on integrated modeling of thermal equilibrium segregation (TES) and radiation-induced segregation (RIS), from which synergistic effects of thermal and radiation, pre-existing GB segregation have been taken into consideration. This integrated modeling was used in describing the Cr and Ni segregation in the Fe-Cr-Ni alloys. The other effort is thermodynamic modeling on the Fe-Cr-Ni-Mo system which includes the major alloying elements in the investigated alloys in the Advanced Radiation Resistant Materials (ARRM) program. Through thermodynamic calculation, we provide baseline thermodynamic stability of the hardening phase Ni2(Cr,Mo) in selected Ni-based super alloys, and contribute knowledge on mechanistic understanding on the formation of Ni2(Cr,Mo) in the irradiated materials. The major outcomes from this work are listed in the following: 1) Under the simultaneous thermal and irradiation conditions, radiation-induced segregation played a dominant role in the GB segregation. The pre-existing GB segregation only affects the subsequent radiation-induced segregation in the short time. For the same element, the segregation tendency of Cr and Ni due to TES is opposite to it from RIS. The opposite tendency can lead to the formation of W-shape profile. These findings are consistent with literature observation of the transitory W-shape profile. 2) While TES only affects the distance of one or two atomic layers from GBs, the RIS can affect a broader distance from GB. Therefore, the W-shape due to pre-existing GB segregation is much narrower than that due to composition gradient formed during the transient state. Considering the measurement resolution of Auger or STEM analysis, the segregation tendency due to RIS should play a dominant role in the measured values. However, The GB segregation due to pre-existing GB segregation may affect the chemical potential of element at GB, and subsequently the corrosion resistance. 3) Based on the newly developed thermodynamic database of Fe-Cr-Ni-Mo, we predicted the Ni2(Cr,Mo) as a thermodynamically stable phase in all investigated low Fe-content Ni-based alloys. The calculated phase amount decreases with the increasing Fe content, being consistent with that observed in the irradiated materials. 4) The formation of the Ni2(Cr,Mo) phase in irradiated materials is due to irradiation enhanced diffusion. The calculated equilibrium Ni2(Cr,Mo) amount is more than that observed in the irradiated materials, suggesting that the amount of Ni2(Cr,Mo) is likely to increase more with further irradiation.

Research Organization:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-00OR22725
OSTI ID:
1394351
Report Number(s):
ORNL/TM-2017/438; TRN: US1801150
Country of Publication:
United States
Language:
English