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A LEAST-SQUARES-BASED WEAK GALERKIN FINITE ELEMENT
METHOD FOR SECOND ORDER ELLIPTIC EQUATIONS∗

LIN MU† , JUNPING WANG‡ , AND XIU YE§

Abstract. In this article, we introduce a least-squares-based weak Galerkin finite element
method for the second order elliptic equation. This new method is shown to provide very accurate
numerical approximations for both the primal and the flux variables. In contrast to other existing
least-squares finite element methods, this new method allows us to use discontinuous approximating
functions on finite element partitions consisting of arbitrary polygon/polyhedron shapes. We also
develop a Schur complement algorithm for the resulting discretization problem by eliminating all the
unknowns that represent the solution information in the interior of each element. Optimal order error
estimates for both the primal and the flux variables are established. An extensive set of numerical
experiments are conducted to demonstrate the robustness, reliability, flexibility, and accuracy of
the least-squares-based weak Galerkin finite element method. The numerical examples cover a wide
range of applied problems, including singularly perturbed reaction-diffusion equations and the flow
of fluid in porous media with strong anisotropy and heterogeneity.
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1. Introduction. The least-squares finite element method is a general discretiza-
tion technique in numerical partial differential equations. The method receives its
name by minimizing the residuals in a least-squares fashion. Therefore, a straight-
forward advantage of the least-squares finite element method is that the resulting lin-
ear systems are symmetric and positive definite. Least-squares finite element methods
have been developed for the second order elliptic problems in [5, 10, 13, 14, 22, 30],
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A1532 LIN MU, JUNPING WANG, AND XIU YE

for the Stokes and Navier–Stokes equations in [3, 4, 6, 11, 15, 23], and for elasticity
in [12, 28] and references therein. However, due to the consistency requirement, most
of the existing least-squares finite element methods have limitations in the selection
of approximation functions and the underlying finite element partitions.

Using discontinuous approximations in finite element procedure provides flexibil-
ity in mesh generation and the construction of finite element functions. The research
of finite element methods with discontinuous approximations has received extensive
attention in the past two decades. Thousands of papers have been published on dis-
continuous Galerkin techniques. A few representatives include the interior penalty
discontinuous Galerkin method [1], the local discontinuous Galerkin method [17], the
hybridizable discontinuous Galerkin method [16], the mimetic finite differences [2],
the mix finite element method [8], the hybrid high-order methods [32, 31]; see also
the references therein. The weak Galerkin method introduced in [36, 37] is a new
finite element procedure that makes use of discontinuous polynomials on polytopal
mesh.

Least-squares finite element methods with discontinuous approximation have been
investigated in recent years. Discontinuous Galerkin (DG) least-squares methods have
been developed in [6, 7] for solving the Stokes equations in velocity-vorticity-pressure
form. These DG least-squares methods are locally conservative to prevent nonphysical
solutions. Optimal or near-optimal convergence rates of the methods are confirmed
numerically. Some first order DG least-squares methods [26, 27] have been developed
for singularly perturbed reaction-diffusion problems. Another finite element method
closely related to the DG least-squares method is the DPG method [18, 19], since it
can be viewed as applying the least-squares method to a preconditioned system. The
DPG method has its name by using discontinuous approximation in Petrov–Galerkin
formulation with optimal testing function.

In this paper, we develop a weak Galerkin least-squares finite element method for
the second order elliptic equation and prove optimal order error estimates for both
the primal and the flux variables. Compared with the conforming first order system
least-squares method, the weak Galerkin least-squares method has the advantages of
easy construction of high-order elements and allowing general polytope meshes with
hanging nodes. Such features have been confirmed by our numerical examples. The
weak Galerkin least-squares method has advantages over standard DG methods by
guaranteeing a symmetric positive definite and parameter-independent system and
providing accurate approximations for both the primal and the flux variables. One
unique feature of the weak Galerkin least-squares method is that globally coupled un-
knowns are those defined only on element boundaries. This makes the weak Galerkin
least-squares method computationally efficient compared with DG least-squares meth-
ods.

An extensive set of numerical experiments was conducted and reported in order to
demonstrate the potential of this new method in scientific computing. In particular,
we believe that the least-squares-based weak Galerkin finite element method offers an
efficient and reliable numerical technique for singularly perturbed reaction-diffusion
equations with strong anisotropy and heterogeneity in porous media, as applied to
the computation of Darcy flows.

The model problem considered in this paper seeks an unknown function u satis-
fying

−∇ · (a∇u) + cu = f in Ω,(1.1)
u = g on ∂Ω,(1.2)
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LEAST-SQUARES WEAK GALERKIN FINITE ELEMENT METHOD A1533

where c ≥ 0 and Ω is a polytopal domain in Rd (polygonal or polyhedral domain
[35] for d = 2, 3), ∇u denotes the gradient of the function u, and a is a d × d tensor
that is uniformly bounded and symmetric positive definite in the domain. The partial
differential equation (1.1) has a wide range of applications in science and engineering,
and it is a benchmark testing problem for new discretization techniques. The problem
(1.1)–(1.2) has an equivalent formulation in mixed form: Find q = q(x) and u = u(x)
satisfying

q + a∇u = 0 in Ω,(1.3)
∇ · q + cu = f in Ω,(1.4)

u = g on ∂Ω.(1.5)

In this paper, we shall provide all the details and basic ideas of the least-squares-based
weak Galerkin finite element method for the system of linear equations (1.3)–(1.5).
This approach and the underlying basic principle can be adapted to other partial
differential equations in general.

In application to earth science problems, the system (1.3)–(1.4), with c = 0, may
be used to describe the flow of fluid in porous media where (1.3) is known as Darcy’s
law and (1.4) arises from mass conservation. The tensor a represents the permeability
of the porous media. The unknown function q is the velocity/flux variable, and u is
the hydraulic pressure. In section 6, we shall present some numerical results with
a focus on fluid flow problems where the porous media has strong anisotropy and
heterogeneity. Our numerical experiments indicate that the least-squares-based weak
Galerkin method is capable of providing very accurate numerical approximations for
both the pressure and the velocity/flux variables simultaneously. In section 7, we
consider singularly perturbed reaction-diffusion problems, namely, (1.1), in which the
coefficient a = ε2 is very small. It is well known that the development of robust and
reliable numerical schemes for such systems is challenging when ε is very small. Our
numerical experiments indicate that the least-squares-based weak Galerkin method
has great potential for singularly perturbed reaction-diffusion problems.

2. Weak Galerkin least-squares method. Let Th be a partition of the do-
main Ω consisting of polygons in two dimension or polyhedra in three dimension that
are shape-regular according to the conditions specified in [37]. Denote by Eh the set
of all edges or flat faces in Th, and let E0

h = Eh\∂Ω be the set of all interior edges or
flat faces. For every element T ∈ Th, we denote by hT its diameter and mesh size
h = maxT∈Th

hT for Th.
The weak Galerkin method takes finite element functions in the form of two

components—one in the interior and the other on the boundary:

v =

{
v0 in T,

vb on ∂T.

For simplicity, we write v as v = {v0, vb} for short.
For convenience, we introduce a set of normal directions on Eh as follows:

(2.1) Dh = {ne : ne is unit and normal to e, e ∈ Eh}.

We now introduce two finite element spaces: Vh for the pressure variable u and
Σh for the flux variable q, defined as follows:

Vh = {v = {v0, vb} : v0|T ∈ Pk+1(T ), vb|e ∈ Pk(e), e ⊂ ∂T},
Σh = {σ = {σ0,σb} : σ0|T ∈ [Pk(T )]d,σb|e = σbne, σb|e ∈ Pk(e), e ⊂ ∂T},
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A1534 LIN MU, JUNPING WANG, AND XIU YE

where k ≥ 0 is any nonnegative integer. Let V 0
h be the subspace of Vh consisting of

finite element functions with vanishing boundary value

V 0
h = {v ∈ Vh : vb = 0 on ∂Ω}.

Algorithm 2.1. The weak Galerkin least-squares method for the problem (1.3)–
(1.5) seeks uh = {u0, ub} ∈ Vh and qh = {q0,qb} ∈ Σh satisfying ub = Qbg on ∂Ω
and

(2.2) a(qh, uh;σ, v) = (f, ∇w · σ + cv0) ∀σ × v ∈ Σh × V 0
h .

The rest of this section shall provide a detailed interpretation for the finite element
scheme (2.2). First of all, for any σ = {σ0,σb} ∈ Σh, the discrete weak divergence
∇w · σ is a piecewise polynomial of degree k satisfying

(2.3) (∇w · σ, φ)T = −(σ0,∇φ)T + 〈σb · n, φ〉∂T ∀φ ∈ Pk(T ).

Second, for any v = {v0, vb} ∈ Vh, the discrete weak gradient ∇wv ∈ [Pk(T )]d is
defined by the equation

(2.4) (∇wv, τ)T = −(v0, ∇ · τ)T + 〈vb, τ · n〉∂T ∀τ ∈ [Pk(T )]d.

For any κ = κ(x) ≥ 0, denote by

(φ, ψ)T,κ =
∫
T

κ(x)φψdx

the κ-weighted L2 inner product. The corresponding weighted norm is denoted by
‖φ‖T,κ = (φ, φ)1/2

T,κ.
The bilinear form a(τ , w;σ, v) used in the numerical scheme (2.2) is given by

a(τ , w;σ, v) =
∑
T∈Th

((∇w · τ + cw0, ∇w · σ + cv0)T

+ (τ 0 + a∇ww, σ0 + a∇wv)T,a−1) + s1(w, v) + s2(τ ,σ),
(2.5)

where

s1(w, v) =
∑
T∈Th

h−1〈Qbw0 − wb, Qbv0 − vb〉∂T ,

s2(τ ,σ) =
∑
T∈Th

h〈(τ 0 − τ b) · n, (σ0 − σb) · n〉∂T ,

and Qb is the usual L2 projection from L2(e) to Pk(e) on each edge e ⊂ ∂T .

3. Solution existence and uniqueness. For simplicity, assume that the co-
efficients a and c in (1.1) are piecewise constants with respect to the finite element
partition Th. The results in this paper can be extended to variable coefficients without
any difficulty, provided that a and c are piecewise smooth.

Introduce a seminorm ||| · |||V in Vh and a seminorm ||| · |||Σ in Σh as follows:

|||v|||2V =
∑
T∈Th

‖∇wv‖2T,a + s1(v, v),

|||σ|||2Σ =
∑
T∈Th

‖∇w · σ‖2T + ‖σ0‖2a−1 + s2(σ,σ).
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LEAST-SQUARES WEAK GALERKIN FINITE ELEMENT METHOD A1535

It is not hard to see that ||| · |||V and ||| · |||Σ defines norms in V 0
h and Σh, respectively.

The following discrete Poincaré inequality has been established in [29]:

(3.1) ‖v0‖ ≤ C|||v|||V , v ∈ V 0
h .

Lemma 3.1. There exists a constant C such that for all σ× v ∈ Σh×V 0
h one has

(3.2) a(σ, v;σ, v) ≥ C(|||σ|||2Σ + |||v|||2V ).

Proof. First, note that

s1(v, v) ≤ a(σ, v;σ, v),(3.3)
s2(σ,σ) ≤ a(σ, v;σ, v).(3.4)

From (2.3), (2.4), and the definition of Qb we have

−
∑
T∈Th

(∇wv, σ0)T =
∑
T∈Th

((v0, ∇ · σ0)T − 〈vb, σ0 · n〉∂T )

=
∑
T∈Th

(−(∇v0, σ0)T + 〈v0 − vb, σ0 · n〉∂T )

=
∑
T∈Th

(−(∇v0, σ0)T + 〈σb · n, v0〉∂T

− 〈v0 − vb, σb · n〉∂T + 〈v0 − vb, σ0 · n〉∂T )

=
∑
T∈Th

((∇w · σ + cv0, v0)T − c(v0, v0)T

+ 〈v0 − vb, (σ0 − σb) · n〉∂T ).

(3.5)

Equation (3.5) gives rise to∑
T∈Th

‖∇wv‖2T,a =
∑
T∈Th

((a∇wv + σ0, ∇wv)T − (σ0, ∇wv)T )

=
∑
T∈Th

((a∇wv + σ0, ∇wv)T + (∇w · σ + cv0, v0)T − c(v0, v0)T

+ 〈Qbv0 − vb, (σ0 − σb) · n〉∂T )

≤
∑
T∈Th

((a∇wv + σ0, ∇wv)T + (∇w · σ + cv0, v0)T

+〈Qbv0 − vb, (σ0 − σb) · n〉∂T )

≤ C

(∑
T∈Th

(‖a∇wv + σ0‖T,a−1‖∇wv‖T,a + ‖∇w · σ + cv0‖T ‖v0‖T )

+ s1(v, v) + s2(σ,σ)

)
.

Thus, using (3.1), (3.3), and the equation above we obtain

(3.6) |||v|||2V ≤ Ca(σ, v;σ, v).
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A1536 LIN MU, JUNPING WANG, AND XIU YE

Next, from (3.5), (3.1), and (3.6) we have∑
T∈Th

‖σ0‖2T,a−1 =
∑
T∈Th

((σ0 + a∇wv, a−1σ0)T − (∇wv, σ0)T )

=
∑
T∈Th

((σ0 + a∇wv, σ0)T,a−1 + (∇w · σ + cv0, v0)T − c(v0, v0)T )

+
∑
T∈Th

〈Qbv0 − vb, (σ0 − σb) · n〉∂T

≤ C

(∑
T∈Th

(‖σ0 + a∇wv‖T,a−1‖σ0‖T,a−1 + ‖∇w · σ + cv0‖T ‖v0‖T )

+ s1(v, v) + s2(σ,σ)

)
.

Using the inequalities (3.1), (3.3), (3.4), and (3.6), we arrive at

‖σ0‖2a−1 ≤ Ca(σ, v;σ, v).

Similarly, we have from the Poincaré inequality (3.1) and the estimate (3.6) that

‖∇w · σ‖2 ≤ C(‖∇w · σ + cv0‖2 + ‖v0‖2) ≤ Ca(σ, v;σ, v).

Combining the two estimates above with (3.4) gives

|||σ|||2Σ ≤ Ca(σ, v;σ, v),

which, together with (3.6), completes the proof of the lemma.

Lemma 3.2. The weak Galerkin finite element scheme (2.2) has one and only one
solution.

Proof. It suffices to prove uniqueness. If q(1)
h ×u

(1)
h and q(2)

h ×u
(2)
h are two solutions

of (2.2), then τh = u
(1)
h − u

(2)
h and ηh = q(1)

h − q(2)
h would satisfy the equation

a(ηh, τh;σ, v) = 0 ∀σ × v ∈ Σh × V 0
h .

Note that τh ∈ V 0
h . Then by letting v = τh and σ = ηh in the above equation we

arrive at
|||τh|||2V + |||ηh|||

2
Σ ≤ Cas(ηh, τh;ηh, τh) = 0.

It follows that τh ≡ 0 and ηh ≡ 0 or, equivalently, u(1)
h ≡ u

(2)
h and q(1)

h ≡ q(2)
h . This

completes the proof of the lemma.

4. Error analysis. On each element T ∈ Th, denote by Πh and Πh the L2

projections from [L2(T )]d to [Pk(T )]d and from L2(T ) to Pk(T ), respectively. Denote
by Q0 and Qb the L2 projections from L2(T ) to Pk+1(T ) and from L2(e) to Pk(e),
respectively. Now define

Qhu = {Q0u,Qbu} ∈ Vh, Qhq = {Πhq, Qb(q · ne)ne} ∈ Σh.

Lemma 4.1. Let α > 1
2 . Then, on each element T ∈ Th, we have the following

operator identities:

Πh∇v = ∇w(Qhv), v ∈ H1(T ),(4.1)
Πh∇ · σ = ∇w · (Qhσ), σ ∈ [Hα(T )]d.(4.2)
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LEAST-SQUARES WEAK GALERKIN FINITE ELEMENT METHOD A1537

Proof. Using (2.4), integration by parts, and the definitions of Qh and Πh, we
have that for any τ ∈ [Pk(T )]d

(∇w(Qhv), τ)T = −(Q0v, ∇ · τ)T + 〈Qbv, τ · n〉∂T
= −(v, ∇ · τ)T + 〈v, τ · n〉∂T
= (∇v, τ)T = (Πh(∇v), τ)T ,

which implies the identity (4.1). Similarly we have that for any φ ∈ Pk(T )

(∇w · (Qhσ), φ)T = −(Πhσ, ∇φ)T + 〈Qb(σ · ne)ne · n, φ〉∂T
= −(σ, ∇φ)T + 〈Qb(σ · n), φ〉∂T
= −(σ, ∇φ)T + 〈σ · n, φ〉∂T
= (∇ · σ, φ)T = (Πh(∇ · σ), φ)T .

This completes the proof of the lemma.

Let qh × uh ∈ Σh × Vh be the weak Galerkin finite element solution arising from
(2.2), and let Qhq×Qhu ∈ Σh× Vh be the L2 projection of the exact solution q× u.
Their differences are referred to as the error functions, and they are denoted by

(4.3) εh = Qhq− qh, eh = Qhu− uh.

For any given q and u, we introduce two linear forms on Σh × Vh as follows:

`1(q, u;σ, v) =
∑
T∈Th

((Πh − I)q + a(Πh − I)∇u, σ0 + a∇wv)T,a−1 ,

`2(q, u;σ, v) =
∑
T∈Th

((Πh − I)∇ · q + c(Πh − I)u, ∇w · σ + cv0)T .

Lemma 4.2. Let q × u be the exact solution of (1.3)–(1.5), and let qh × uh ∈
Σh × Vh be the weak Galerkin finite element solution arising from (2.2). The error
function εh × eh satisfies the equations

(4.4) a(εh, eh;σ, v) = `q,u(σ, v) ∀σ × v ∈ Σh × V 0
h ,

where

(4.5) `q,u(σ, v) := `1(q, u;σ, v) + `2(q, u;σ, v) + s1(Qhu, v) + s2(Qhq,σ).

Proof. From (4.1) and the fact that q + a∇u = 0 we obtain

Πhq + a∇wQhu = Πhq− q− a(∇u−Πh∇u).

Hence, for any σ × v ∈ Σh × V 0
h we have∑

T∈Th

(Πhq + a∇wQhu, σ0 + a∇wv)T,a−1

=
∑
T∈Th

(Πhq− q− a(∇u−Πh∇u), σ0 + a∇wv)T,a−1

= `1(q, u;σ, v).

(4.6)
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A1538 LIN MU, JUNPING WANG, AND XIU YE

Next, from (4.2) and the equation ∇ · q + cu = f we have

∇w ·Qhq + cΠhu = Πh∇ · q + cΠhu

= f + (Πh − I)∇ · q + c(Πh − I)u.

Thus, testing the above against ∇w · σ + cv0 on each element gives rise to∑
T∈Th

(∇w ·Qhq + cΠhu, ∇w · σ + cv0)T

= (f, ∇w · σ + cv0) + `2(q, u;σ, v).
(4.7)

Summing (4.6) with (4.7) yields∑
T∈Th

((Πhq + a∇wQhu, σ0 + a∇wv)T,a−1 + (∇w ·Qhq + cΠhu, ∇w · σ + cv0)T )

= (f, ∇w · σ + cv0) + `1(q, u;σ, v) + `2(q, u;σ, v).

Adding s1(Qhu, v) and s2(Qhq,σ) to both sides of the above equation, we obtain

a(Qhq, Qhu;σ, v) = (f,∇w · σ + cv0) + `1(q, u;σ, v)
+ `2(q, u;σ, v) + s1(Qhu, v) + s2(Qhq,σ).(4.8)

The difference between (4.8) and (2.2) yields the error equation (4.4).

Remark 4.3. If the coefficients a and c in (1.1) are constants on each element
T ∈ Th, then the usual L2 orthogonality of the projection operator Πh and Πh implies

((Πh − I)q + a(Πh − I)∇u, σ0 + a∇wv)T,a−1 = 0,
((Πh − I)∇ · q + c(Πh − I)u, ∇w · σ + cv0)T = 0.

Thus, we have `1 ≡ 0 and `2 ≡ 0. Consequently, the linear form `q,u in (4.4) takes
the following simplified form:

(4.9) `q,u(σ, v) = s1(Qhu, v) + s2(Qhq,σ).

We now turn our attention to some technical inequalities that will be used to
estimate the linear functional `q,u in (4.4). To this end, let T be an element with e as
an edge. For any function ϕ ∈ H1(T ), the following trace inequality holds true (see
[37] for details):

(4.10) ‖ϕ‖2e ≤ C
(
h−1
T ‖ϕ‖

2
T + hT ‖∇ϕ‖2T

)
.

Using the trace inequality (4.10) we can establish the following result.

Lemma 4.4. Assume that Th is shape-regular, and the coefficient c is C1 on each
element T . Then for u ∈ Hk+2(Ω) and q ∈ [Hk+1(Ω)]d, we have

|s1(Qhu, v)| ≤ Chk+1‖u‖k+2|||v|||V ,(4.11)
|s2(Qhq,σ)| ≤ Chk+1‖q‖k+1|||σ|||Σ,(4.12)
|`1(q, u;σ, v)| ≤ Chk+1(‖q‖k+1 + ‖u‖k+2)(|||σ|||Σ + |||v|||V ),(4.13)
|`2(q, u;σ, v)| ≤ Chk+1(‖∇ · q‖k + ‖u‖k+1)(|||σ|||Σ + |||v|||V ).(4.14)
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LEAST-SQUARES WEAK GALERKIN FINITE ELEMENT METHOD A1539

Proof. Using the definition of Qb and the trace inequality (4.10), we obtain

|s1(Qhu, v)| =

∣∣∣∣∣ ∑
T∈Th

h−1〈Qb(Q0u)−Qbu, Qbv0 − vb〉∂T

∣∣∣∣∣
=

∣∣∣∣∣ ∑
T∈Th

h−1〈Q0u− u, Qbv0 − vb〉∂T

∣∣∣∣∣
≤ C

(∑
T∈Th

(h−2‖Q0u− u‖2T + ‖∇(Q0u− u)‖2T )

) 1
2

·

(∑
T∈Th

h−1‖Qbv0 − vb‖2∂T

) 1
2

≤ Chk+1‖u‖k+2|||v|||V .

Similarly, we have

|s2(Qhq,σ)| =

∣∣∣∣∣ ∑
T∈Th

h〈Πhq · n−Qb(q · ne)ne · n, (σ0 − σb) · n〉∂T

∣∣∣∣∣
=

∣∣∣∣∣ ∑
T∈Th

h〈Πhq · n−Qb(q · n), (σ0 − σb) · n〉∂T

∣∣∣∣∣
=

∣∣∣∣∣ ∑
T∈Th

h〈Πhq · n− q · n, (σ0 − σb) · n〉∂T

∣∣∣∣∣
≤ Chk+1‖q‖k+1|||σ|||Σ.

To derive (4.13), we use the standard error estimate for L2 projections to obtain

|`1(q, u;σ, v)| =

∣∣∣∣∣ ∑
T∈Th

(q−Πhq + a(∇u−Πh∇u), σ0 + a∇wv)T,a−1

∣∣∣∣∣
≤ C

∑
T∈Th

(‖q−Πhq‖T,a−1 + ‖∇u−Πh∇u‖T,a)‖σ0 + a∇wv‖T,a−1

≤ Chk+1(‖q‖k+1 + ‖u‖k+2)(|||σ|||Σ + |||v|||V ).

To derive (4.14), let c̄ be the average of c on each element T . The L2 orthogonality
of the projection operator Πh implies

((Πh − I)∇ · q + c(Πh − I)u, ∇w · σ + cv0)T
= ((Πh − I)∇ · q, (c− c̄)v0)T + (c(Πh − I)u, ∇w · σ + cv0)T .

Hence,

|((Πh − I)∇ · q + c(Πh − I)u, ∇w · σ + cv0)T |
≤ ‖(Πh − I)∇ · q‖T ‖(c− c̄)v0‖T + ‖c(Πh − I)u‖T ‖∇w · σ + cv0‖T
≤ Chk+1‖∇ · q‖k,T ‖v0‖T + Chk+1‖u‖k+1,T ‖ ‖∇w · σ + cv0‖T .
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A1540 LIN MU, JUNPING WANG, AND XIU YE

It follows that

|`2(q, u;σ, v)| =

∣∣∣∣∣ ∑
T∈Th

((Πh − I)∇ · q + c(Πh − I)u, ∇w · σ + cv0)T

∣∣∣∣∣
≤
∑
T∈Th

|((Πh − I)∇ · q + c(Πh − I)u, ∇w · σ + cv0)T |

≤ Chk+1
∑
T∈Th

(‖∇ · q‖k,T ‖v0‖T + ‖u‖k+1,T ‖ ‖∇w · σ + cv0‖T )

≤ Chk+1(‖∇ · q‖k + ‖u‖k+1)(|||σ|||Σ + |||v|||V ).

This completes the proof of the lemma.

Theorem 4.5. Let qh × uh ∈ Σh × Vh be the weak Galerkin least-squares finite
element solution of the problem (1.3)–(1.5) arising from (2.2). Assume the exact
solution u ∈ Hk+2(Ω) and q ∈ [Hk+1(Ω)]d. Under the assumptions of Lemma 4.4,
there exists a constant C such that

(4.15) |||uh −Qhu|||V + |||qh −Qhq|||Σ ≤ Ch
k+1(‖u‖k+2 + ‖q‖k+1).

Proof. By letting v = eh and σ = εh in (4.4), we have

a(εh, eh; εh, eh) = `q,u(εh, eh),(4.16)

where

`q,u(εh, eh) = `1(q, u; εh, eh) + `2(q, u; εh, eh) + s1(Qhu, eh) + s2(Qhq, εh).

It then follows from (3.2) and the estimates (4.11)–(4.14) that

|||eh|||V + |||εh|||Σ ≤ Ch
k+1(‖u‖k+2 + ‖q‖k+1),

which implies (4.15). This completes the proof.

5. A Schur complement formulation. In this section we develop a Schur
complement formulation for the weak Galerkin scheme (2.2) by eliminating all the
unknowns corresponding to q0 and u0 from the linear system arising from the scheme
(2.2).

Let qh × uh ∈ Σh × Vh be the solution of (2.2). By restricting test functions as
σ × v = {σ0, 0} × {v0, 0} we arrive at the following equation:

a(qh, uh;σ, v) = (f, ∇w · σ + cv0) ∀{σ0, 0} × {v0, 0} ∈ Σh × V 0
h .(5.1)

Next, by taking the test function σ × v as {0,σb} × {0, vb} we have

(5.2) a(qh, uh;σ, v) = (f, ∇w · σ) ∀{0,σb} × {0, vb} ∈ Σh × V 0
h .

Hence, the weak Galerkin finite element scheme (2.2) is equivalent to the following
scheme: Find qh × uh ∈ Σh × Vh satisfying (1) ub = Qbg on ∂Ω, and (2) the system
of linear equations (5.1) and (5.2).

Note that if ub, qb and f are given, then u0 and q0 are determined locally by the
system of linear equations (5.1) on each element T . We denote this dependence as

u0 = u0(ub,qb, f), q0 = q0(ub,qb, f)
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LEAST-SQUARES WEAK GALERKIN FINITE ELEMENT METHOD A1541

and further write

uh = uh(ub,qb, f) = {u0(ub,qb, f), ub} ∈ Vh,(5.3)
qh = qh(ub,qb, f) = {q0(ub,qb, f),qb} ∈ Σh.(5.4)

The principle of superposition then implies

uh(ub,qb, f) = uh(ub,qb, 0) + uh(0, 0, f),(5.5)
qh(ub,qb, f) = qh(ub,qb, 0) + qh(0, 0, f).(5.6)

By substituting (5.5) and (5.6) into (5.2), we have

(5.7) a(qh(ub,qb, 0), uh(ub,qb, 0);σ, v) = (f,∇w ·σ)−a(qh(0, 0, f), uh(0, 0, f);σ, v)

for all v = {0, vb} ∈ V 0
h and σ = {0,σb} ∈ Σh. The system of linear equations (5.7) is

the Schur complement of the weak Galerkin finite element scheme (2.2) through local
eliminations of q0 and u0.

Lemma 5.1. The matrix corresponding to the system of linear equations (5.7) is
symmetric and positive definite.

Proof. From the definition of uh(ub,qb, 0), qh(ub,qb, 0), and (5.1) we have

(5.8) a(qh(ub,qb, 0), uh(ub,qb, 0);σ, v) = 0

for all v = {v0, 0} ∈ V 0
h and σ = {σ0, 0} ∈ Σh. Combining (5.3)–(5.4) with f = 0

and (5.8) gives

a(qh(ub,qb, 0), uh(ub,qb, 0);σ, v)
= a(qh(ub,qb, 0), uh(ub,qb, 0);σ(vb,σb, 0), v(vb,σb, 0))

for all v = {0, vb} ∈ V 0
h and σ = {0,σb} ∈ Σh. It follows that the system (5.7) is

symmetric.
Next we show that vb = 0 and σb = 0 for v = {0, vb} ∈ V 0

h and σ = {0,σb} ∈ Σh
if

(5.9) a(σ(vb,σb, 0), v(vb,σb, 0);σ(vb,σb, 0), v(vb,σb, 0)) = 0.

If fact, from (5.9) and the coercivity estimate (3.2) we clearly have v(vb,σb, 0) = 0
and σ(vb,σb, 0) = 0, which implies vb = 0 and σb = 0. This completes the proof of
the lemma.

It should be pointed out that the Schur complement (5.7) is a version of the
weak Galerkin least-squares finite element scheme (2.2) that involves fewer unknowns
than the original formulation. In fact, the only unknown variables that enter into
the Schur complement are those corresponding to ub and qb defined on the boundary
of each element. Due to this significant size reduction, the Schur complement can
be regarded as an efficient implementation of the weak Galerkin least-squares finite
element scheme (2.2).

6. Numerical experiments. In this section, we shall conduct several numerical
experiments by using the weak Galerkin finite element method proposed in section 2.
The first five numerical examples will make use of the lowest order weak Galerkin
element; i.e., u0 ∈ P1(T ), ub ∈ P0(e), σ0 ∈ [P0(T )]2, σb|e = σbne with σb ∈ P0(e).
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Table 6.1
Example 1: The rates of convergence in the discrete H1- and L2-norms on triangular meshes.

c h H1-error Order L2-error Order
0 1/4 1.2784e-02 6.9336e-04

1/8 6.3731e-03 1.0043 1.8695e-04 1.8910
1/16 3.1842e-03 1.0011 4.7889e-05 1.9649
1/32 1.5918e-03 1.0003 1.2062e-05 1.9892
1/64 7.9588e-04 1.0000 3.0221e-06 1.9968
1/128 3.9794e-04 1.0000 7.5600e-07 1.9991

10 1/4 3.6631e-02 3.9172e-03
1/8 1.0761e-02 1.7673 6.2029e-04 2.6588
1/16 3.8547e-03 1.4811 1.2186e-04 2.3477
1/32 1.6820e-03 1.1964 2.8000e-05 2.1217
1/64 8.0739e-04 1.0588 6.8374e-06 2.0339
1/128 3.9938e-04 1.0155 1.6991e-06 2.0087

−10 1/4 1.8697e-02 2.7990e-03
1/8 7.3110e-03 1.3547 8.1322e-04 1.7832
1/16 3.3110e-03 1.1428 2.1422e-04 1.9246
1/32 1.6080e-03 1.0420 5.4318e-05 1.9796
1/64 7.9791e-04 1.0110 1.3629e-05 1.9948
1/128 3.9819e-04 1.0028 3.4104e-06 1.9987

Let uh = {u0, ub} and qh be the solutions to the weak Galerkin equation (2.2),
and let q×u be the exact solution of the original equation (1.3)–(1.5). The errors are
given by εh = Qhq−qh and eh = Qhu−uh, where Qh and Qh are the L2 projections
of q and u onto the corresponding weak Galerkin finite element spaces. The following
norms are used in the numerical tests:

H1-norm:
√
|||v|||2V + |||σ|||2Σ =

√
a(σ, v;σ, v),(6.1)

L2-norm: ‖u0 −Q0u‖ =

(∑
T∈Th

∫
T

|u0 −Q0u|2dx

)1/2

,(6.2)

L1-norm: ‖u0 −Q0u‖L1 =
∑
T∈Th

∫
T

|u0 −Q0u|dx,(6.3)

W 1,1-seminorm: |u0 −Q0u|1,1 =
∑
T∈Th

∫
T

|∇(u0 −Q0u)|dx.(6.4)

6.1. Example 1. Consider the second order elliptic equation (1.1) with Dirichlet
boundary condition on the uniform triangular meshes for Ω = (0, 1)× (0, 1). We use
a test problem with exact solution

u = −
(
x2

2
− x3

3

)(
y2

2
− y3

3

)
.

The coefficient a is fixed as a = 1 and various values of the coefficient c are tested in
our numerical experiments. The right-hand side function f and the boundary value
are determined from (1.1)–(1.2) and the selected values for a and c.

The numerical results for the cases c = 0 and c = 10 are reported in Table 6.1.
The theoretical error estimate asserts the first and second order of convergence in the
H1- and L2-norms, respectively. This theory is confirmed by the numerical results
in Table 6.1. We also tested the numerical algorithm (2.2) with the negative value
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Fig. 6.1. Example 2: Mesh level 1 for n = 4 (left); mesh level 2 for n = 8 (right).

Table 6.2
Example 2: The rates of convergence in the discrete H1- and L2-norms for uniform rectangular

partitions.

c h H1-error Order L2-error Order
0 1/4 4.1980e-02 4.0075e-03

1/8 1.4791e-02 1.5050 1.0424e-03 1.9428
1/16 6.1894e-03 1.2568 2.6718e-04 1.9640
1/32 2.9157e-03 1.0860 6.7327e-05 1.9886
1/64 1.4343e-03 1.0235 1.6867e-05 1.9770
1/128 7.1418e-04 1.0060 4.2190e-06 1.9992

10 1/4 5.4470e-02 1.1937e-03
1/8 1.6937e-02 1.6853 2.2250e-04 2.4236
1/16 6.5055e-03 1.3804 7.3914e-05 1.5899
1/32 2.9576e-03 1.1372 2.0209e-05 1.8708
1/64 1.4396e-03 1.0388 5.1687e-06 1.9671
1/128 7.1485e-04 1.0100 1.2996e-06 1.9917

−10 1/4 6.3193e-02 2.5404e-02
1/8 2.0838e-02 1.6005 8.6091e-03 1.5611
1/16 7.3299e-03 1.5074 2.3777e-03 1.8563
1/32 3.0823e-03 1.2498 6.1070e-04 1.9610
1/64 1.4561e-03 1.0819 1.5373e-04 1.9901
1/128 7.1694e-04 1.0222 3.8500e-05 1.9975

of c = −10. Table 6.1 shows the corresponding numerical results which illustrate an
optimal rate of convergence in the usual H1- and L2-norms.

6.2. Example 2. In this example, we shall test the performance of the weak
Galerkin least-squares algorithm on uniform rectangular partitions. The domain is
fixed as Ω = (0, 1) × (0, 1) and the function f in (1.1) is chosen so that the exact
solution is given by

u = x(1− x)y(1− y).

The rectangular partitions are constructed by partitioning the domain into n × n
uniform subrectangles so that the mesh size is given by h = 1/n. The rectangular
partitions with n = 4 and n = 8 are plotted in Figure 6.1.

The weak Galerkin algorithm (2.2) is tested for a = 1 and various values of c.
The numerical results for c = 0, c = 10, and c = −10 are illustrated in Table 6.2.
Optimal rates of convergence are observed when measured in the discrete H1- and
L2-norms, which are consistent with the convergence theory. Again, we detected the
convergence rates of O(h) and O(h2) in the discrete H1- and L2-norms for the case
c = −10.
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Fig. 6.2. Example 3: Mesh level 1 (left); mesh level 2 (right).

Table 6.3
Example 3: The rates of convergence in the discrete H1- and L2-norms on deformed meshes.

c h L2-error Order L2-error Order
0 3.2327e-01 6.1187e-02 5.4044e-03

1.6178e-01 2.1245e-02 1.5281 1.5135e-03 1.8386
8.0929e-02 8.4355e-03 1.3335 4.0547e-04 1.9015
4.0847e-02 3.8201e-03 1.1586 1.0480e-04 1.9788
2.0610e-02 1.8519e-03 1.0585 2.6515e-05 2.0091
1.0351e-02 9.1819e-04 1.0187 6.6586e-06 2.0064

10 3.2327e-01 7.5076e-02 1.7556e-03
1.6178e-01 2.3652e-02 1.6685 4.0390e-04 2.1226
8.0929e-02 8.7989e-03 1.4276 1.2261e-04 1.7211
4.0847e-02 3.8691e-03 1.2016 3.3632e-05 1.8918
2.0610e-02 1.8582e-03 1.0722 8.6862e-06 1.9790
1.0351e-02 9.1897e-04 1.0224 2.1969e-06 1.9961

−10 3.2327e-01 8.1395e-02 2.8274e-02
1.6178e-01 2.8009e-02 1.5410 1.0589e-02 1.4187
8.0929e-02 9.8771e-03 1.5048 3.1113e-03 1.7682
4.0847e-02 4.0470e-03 1.3049 8.1955e-04 1.9511
2.0610e-02 1.8825e-03 1.1189 2.0793e-04 2.0050
1.0351e-02 9.2209e-04 1.0363 5.2196e-05 2.0070

6.3. Example 3. The goal of this test case is to examine the performance of the
weak Galerkin least-square finite element method on deformed rectangular meshes.
The unit square domain is used in this numerical experiment, and the initial deformed
mesh is shown in Figure 6.2 (left). The initial partition is then refined successively
by connecting the barycenter of each element with the midpoint of each edge in the
same element, as shown in Figure 6.2 (right).

The test problem is the same as in Example 2. The difference between Exam-
ples 2 and 3 is between the finite element partitions: one is a uniform partition with
rectangles, and the other is made of deformed rectangles with hanging nodes. In the
weak Galerkin algorithm, no nodes are actually hanging, as the triangle with a “hang-
ing” node on one of its edges was treated as a deformed rectangle or a degenerate
quadrilateral. The corresponding numerical results are shown in Table 6.3, which are
consistent with the error estimates established in the previous sections.

6.4. Example 4. The test problem is given by a differential equation arising
from the modeling of fluid flow in porous media with strong anisotropic permeability.
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Ratio: 1:3000

25 degree

Fig. 6.3. Example 4: A strong anisotropic permeability.

The model problem seeks an unknown pressure function u = u(x) such that

−∇ · (a∇u) = f in Ω,
u = g on ∂Ω.

The domain is the unit square Ω = (0, 1)2, and the permeability tensor is given by

a =
(

0.246436002 0.114868364
0.114868364 0.053663998

)
.(6.5)

This test problem is chosen from [24] (see Example 2).
Note that the anisotropy for this test problem is 1 : 3000, which is the ratio of

the two positive eigenvalues of the 2× 2 permeability tensor, as shown in Figure 6.3.
The exact solution for this test problem is chosen as

u(x, y) = exp
(
− (x− xc)2 + (y − yc)2

2σ2

)
,

where (xc, yc) = (0.5, 0.5) and σ2 = 0.005. The source term f can be calculated as

f(x, y) = f∗(x, y) exp
(
− (x− xc)2 + (y − yc)2

2σ2

)
,

with

f∗(x, y) =
(

1
σ2 (a∗ + d∗)− 1

σ4 (a∗(x− xc)2 + 2b∗(x− xc)(y − yc) + d∗(y − yc)2)
)
,

where a∗ = 0.246436002, b∗ = 0.114868364, and d∗ = 0.053663998.
Our numerical results are based on the finite element scheme (2.2) with the lowest

order elements (i.e., u0 ∈ P1(T ), ub ∈ P0(e), σ0 ∈ [P0(T )]2, σb|e = σbne with σb ∈
P0(e)) on the uniform triangular meshes. Contour plots for the numerical solution
uh for mesh sizes h = 1/32, h = 1/48, h = 1/64, h = 1/96 are shown in Figure 6.4.
As σ assumes a small value, the pressure u is concentrated at the point (0.5, 0.5).
The contour plots indicate that the solution of the weak Galerkin algorithm has
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Fig. 6.4. Example 4: The weak Galerkin solutions for mesh sizes h = 1/32 (top left), h = 1/48
(top right), h = 1/64 (bottom left), and h = 1/96 (bottom right).

Fig. 6.5. Example 4: The surface plots of the weak Galerkin solutions for mesh sizes h = 1/64
(left) and h = 1/96 (right).

no oscillation. Figure 6.5 shows the surface plots for the corresponding numerical
solutions for mesh sizes h = 1/64 and h = 1/96. No oscillation can be detected
from either the surface or contour plots. Figure 6.6 illustrates the performance of the

c© 2017 United States Government

D
ow

nl
oa

de
d 

08
/2

5/
17

 to
 1

28
.2

19
.4

9.
13

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



LEAST-SQUARES WEAK GALERKIN FINITE ELEMENT METHOD A1547

10
1

10
2

10
−4

10
−3

10
−2

10
−1

1/h

E
rr

o
r

 

 

L
2
 error

Slope −1

Fig. 6.6. Example 4: The error plot in the L2-norm.

numerical method in the L2-norm, which indicates a convergence at the rate of O(h)
for this strongly anisotropic diffusion problem.

6.5. Example 5. This test problem also arises from the modeling of fluid flow in
porous media with a strong anisotropic discontinuous permeability and a combination
of point source and sinks that are viewed as Green’s functions. The domain Ω = (0, 1)2

is divided into four quadrants by the two lines x = 1/2 and y = 1/2. The permeability
tensor is given by

a = K1 =
(

2464.36002 1148.68364
1148.68364 536.63998

)
(6.6)

in the first and third quadrants, whereas it takes the form

a = K2 =
(

2464.36002 −1148.68364
−1148.68364 536.63998

)
(6.7)

in the second and fourth quadrants.
Both K1 and K2 are strongly anisotropic, as the ratios of their eigenvalues are

1 : 3000. Furthermore, the eigenvectors of K1 and K2 take different directions and
hence generate strong discontinuity in permeability across the dividing lines. The two
Gaussian sources are given by

f1(x, y) = 105 exp
(
− (x− x(1)

c )2 + (y − y(1)
c )2

2σ2

)
,

f2(x, y) = −105 exp
(
− (x− x(2)

c )2 + (y − y(2)
c )2

2σ2

)
,

where (x(1)
c , y

(1)
c ) = (0.25, 0.25), (x(2)

c , y
(2)
c ) = (0.75, 0.75), and σ2 = 0.05.

These Gaussian sources are indeed concentrated in very small regions with values
varying from near zero to the peak value of 105. We are not aware of any analytical
solutions for this problem, but our numerical solutions can be compared with those
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Fig. 6.7. Example 5: The contour plots of the numerical solutions for mesh sizes h = 1/48 (top
left) and h = 1/64 (top right); the surface plots of the numerical solutions for mesh sizes h = 1/48
(bottom left) and h = 1/64 (bottom right).

presented in [21, 24]. Figure 6.7 shows the contour plots of the numerical solutions for
mesh sizes h = 1/48 and h = 1/64 (top) and the surface plots of the same numerical
solutions (bottom). The elliptic shape of the contours reflects the anisotropy in the
permeability field. The discontinuity in permeability is also reflected in the plots. It
can be seen that when the contours enter into the 4th quadrant from the 3rd one,
deflection happens due to the change of the eigenvectors.

7. Numerical experiments for reaction-diffusion equations. The rest of
the numerical experiments will be conducted for the following perturbed reaction-
diffusion equation: Find an unknown function u = u(x, y) satisfying{

−ε2∆u+ cu = f in Ω,
u = g on ∂Ω,

(7.1)

where ε > 0 is a small parameter. The mixed formulation for (7.1) has the form{
q +∇u = 0,
ε2∇ · q + cu = f.
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As for the numerical scheme (2.2), the bilinear form a(·; ·) is given by

a(τ , w;σ, v) =
∑
T∈Th

(
(ε2∇w · τ + cw0, ε

2∇w · σ + cv0)T + ε2(τ 0 +∇ww,σ0 +∇wv)T
)

+ ρ1s1(w, v) + ρ2s2(τ ,σ),

where ρ1 = ε2 and ρ2 = ε. Our numerical experiments are based on the following
selection of the finite element spaces:

Vh = {v = {v0, vb} : v0|T ∈ P1(T ), vb|e ∈ P1(e), e ⊂ ∂T}

and

Σh = {σ = {σ0,σb} : σ0|T ∈ [P0(T )]d,σb|e = σbne, σb|e ∈ P0(e), e ⊂ ∂T}.

Note that the weak finite element functions for the boundary unknown ub are con-
structed by using linear functions on each edge, which is different from constant
functions as employed in previous test cases. It should be pointed out that the math-
ematical theory developed in the previous sections can be extended to this new com-
bination without any difficulty. In this section, we shall numerically investigate the
performance of the proposed numerical scheme.

The weak Galerkin least-squares finite element method then seeks uh × qh ∈
Vh × Σh satisfying ub = Qbg on ∂Ω and

a(qh, uh;σ, v) = (f, ε2∇w · σ + cv0) ∀σ × v ∈ Σh × V 0
h .(7.2)

In the case of ε� 1, the reaction-diffusion equation (7.1) is known to be singularly
perturbed, for which the solution has a boundary layer. The classical finite element
method for singularly perturbed reaction-diffusion equations often produces numerical
solutions with nonphysical oscillations. To overcome this difficulty, several advanced
numerical techniques such as the Petrov–Galerkin, streamline upwinding [20], and
adaptive meshing [33] have been developed in the last two decades.

The goal of this section is to numerically investigate the computational perfor-
mance of the algorithm (2.2). The following ε-dependent norm shall be employed to
measure the approximation property:

‖(eh, εh)‖21,ε = a(εh, eh; εh, eh).(7.3)

We shall numerically demonstrate that the numerical solution arising from (2.2)
has the same order of convergence with respect to the norm (7.3) as the one reported
in [26].

7.1. Example 6. Consider the reaction-diffusion problem{
−ε2u′′ + cu = f in Ω = (0, 1),
u(0) = u(1) = 0,

(7.4)

where ε is a parameter to be specified in each test case, and f is computed such that
the exact solution is given by

u(x) = x− e(x−1)/ε − e−(x+1)/ε

1− e−2/ε .
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Fig. 7.1. Example 6: The solution plots for ε = 10−2 for h = 1/32 (left) and h = 1/128 (right).
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Fig. 7.2. Example 6: The solution plots for ε = 10−5 for h = 1/32 (left) and h = 1/128 (right).

This problem was used in [26]. For simplicity, we set c(x) = 1. Observe that the
solution u has a boundary layer at x = 1.

The numerical solutions arising from the weak Galerkin least-squares finite ele-
ment scheme (7.2) are shown in Figures 7.1 and 7.2 with ε = 10−2 and ε = 10−5

for mesh sizes h = 1/32 and h = 1/128. It can be seen that our numerical solutions
do not have any oscillation, and they provide accurate approximations to the exact
solution at the places away from the boundary layers. At or near the boundary layers,
the weak Galerkin least-squares solution is accurate when the mesh size is small.

Table 7.1 illustrates the error and the order of convergence for the numerical
scheme (7.2) measured in the ε-dependent norm (7.3) for the cases of ε = 1, 10−1,
10−2, 10−3, 10−4, 10−5, respectively. It can be observed that for ε = 1 and ε = 10−1,
the rates of convergence are both of optimal order at O(h). However, when ε �
h, the problem becomes singularly perturbed and the theory developed in previous
sections is not applicable. Nevertheless, our numerical experiments indicate that the
weak Galerkin least-squares finite element scheme indeed converges, and the rate of
convergence is O(h0.5). This rate was considered as optimal in [25] for the singularly
perturbed reaction-diffusion problems.

We also computed the error in some ε-independent norms. Figure 7.3 shows the
total variation for the error function arising from the numerical scheme. It can be seen
that the numerical solutions have bounded total variations for very small values of ε.
Figure 7.4 illustrates the rate of convergence in the usual L1-norm. For very small
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LEAST-SQUARES WEAK GALERKIN FINITE ELEMENT METHOD A1551

Table 7.1
Example 6: The rates of convergence for the different values of ε.

h = 1/8 h = 1/16 h = 1/32 h = 1/64 h = 1/128
ε=1 1.2852e-02 6.1062e-03 3.0118e-03 1.5007e-03 7.4968e-04

order 1.07 1.02 1.00 1.00
ε=1e-01 1.4275e-01 4.4912e-02 1.5586e-02 6.6189e-03 3.1450e-03

order 1.67 1.53 1.24 1.07
ε=1e-02 3.5481e-01 2.4215e-01 1.4166e-01 6.3093e-02 2.0685e-02

order 0.55 0.77 1.17 1.61
ε=1e-03 3.5357e-01 2.5006e-01 1.7694e-01 1.2541e-01 8.7531e-02

order 0.50 0.50 0.50 0.52
ε=1e-4 3.5355e-01 2.5000e-01 1.7678e-01 1.2500e-01 8.8401e-02
order 0.50 0.50 0.50 0.52
ε=1e-05 3.5357e-01 2.5006e-01 1.7678e-01 1.2500e-01 8.8388e-02

order 0.50 0.50 0.50 0.52

Fig. 7.3. Example 6: The rates of convergence in the W 1,1-seminorm for ε = 1, 10−1, 10−2,
10−3, 10−4, and 10−5.

values of ε, the numerical solutions are convergent at the rate of O(h) in the L1-norm.
Figure 7.5 demonstrates the convergence in the usual L2-norm. The numerical results
indicate that the error in L2-norm exhibits a convergence property similar to that in
the ε-dependent norm, namely, a convergence at the rate of O(h0.5) for small values
of ε� h.

7.2. Example 7. Consider again the one-dimensional reaction-diffusion equa-
tion (7.4) with a discontinuous coefficient c(x) given by

c(x) =

{
1 if x < 0.5,
2− x if x > 0.5.
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Fig. 7.4. Example 6: The rates of convergence in the L1-norm for ε = 1, 10−1, 10−2, 10−3,
10−4, and 10−5.

Fig. 7.5. Example 6: The rates of convergence in the L2-norm for ε = 1, 10−1, 10−2, 10−3,
10−4, and 10−5.
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Fig. 7.6. Example 7: The solution plots for ε = 1 for h = 1/32 (left) and h = 1/128 (right).
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Fig. 7.7. Example 7: The solution plots for ε = 10−2 for h = 1/32 (left) and h = 1/128 (right).

The function f is computed so that the exact solution is

u(x) =


−1 +

e−x/ε + e(2x−1)/(2ε)

e−1/(2ε) + 1
if x < 0.5,

1− e(x−1)/ε + e(1−2x)/(2ε)

e−1/(2ε) + 1
if x > 0.5.

The interface point x = 0.5 divides the domain Ω = (0, 1) into two subdomains:
Ω1 = (0, 0.5) and Ω2 = (0.5, 1). Clearly, neither the coefficient c nor the load function
f are continuous at the interface point x = 0.5. In fact, it is easy to see that u′′ is
discontinuous at this interface point, u has boundary layers at x = 0 and x = 1, and
u has an interior layer at x = 0.5 when ε� 1.

The weak Galerkin least-squares finite element scheme (7.2) was applied to this
problem for ε = 1, ε = 10−2, and ε = 10−5, respectively. The comparison of the
interpolated exact solution and the numerical solution for the mesh size h = 1/32
for the various values of ε are plotted in Figures 7.6–7.8 (left). It can be seen that
the numerical solutions do not possess any oscillations, and they provide accurate
approximations at the places away from the interior or boundary layers. Finer meshes
are necessary if one desires good approximations at the boundary layers.

In Table 7.2, we present some data on the error and the rate of convergence for
the present test problem. For the case of ε = 1, the test problem is well behaved
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Fig. 7.8. Example 7: The solution plots for ε = 10−5 for h = 1/32 (left) and h = 1/128 (right).

Table 7.2
Example 7: The rates of convergence for the different values of ε.

h = 1/8 h = 1/16 h = 1/32 h = 1/64 h = 1/128
ε=1 2.2343e-02 1.0924e-02 5.4294e-03 2.7095e-03 1.3538e-03

order 1.03 1.01 1.00 1.00
ε=1e-01 2.7385e-01 8.5127e-02 3.1298e-02 1.3830e-02 6.5927e-03

order 1.69 1.44 1.18 1.07
ε=1e-02 7.1782e-01 4.8657e-01 2.8132e-01 1.2174e-01 3.8715e-02

order 0.56 0.79 1.21 1.65
ε=1e-03 7.2343e-01 5.1244e-01 3.6216e-01 2.5547e-01 1.7678e-01

order 0.50 0.50 0.50 0.50
ε=1e-04 7.2422e-01 5.1362e-01 3.6369e-01 2.5723e-01 1.8176e-01

order 0.50 0.50 0.50 0.50
ε=1e-05 7.2427e-01 5.1370e-01 3.6382e-01 2.5746e-01 1.8211e-01

order 0.50 0.50 0.50 0.50

so that the optimal order of convergence is expected. For ε = 10−5, the problem is
singularly perturbed, and our numerical experiments indicate that the error measured
in the norm defined in (7.3) is decreasing at the optimal rate of O(h0.5), as observed
in [27, 34] for the singularly perturbed problems.

Figure 7.9 illustrates the weak Galerkin least-squares solutions with a stabilizing
parameter of ρ2 = ε2. For this selection of ρ2, we observed some oscillation or over-
shooting of the numerical solution around the interface point x = 0.5. As the mesh
size is reduced from h = 1/32 to h = 1/128, we see a slight reduction in the oscilla-
tion, but the overshooting stays unchanged. This experiment shows that the choice of
the stabilizing parameter plays an important role in the weak Galerkin least-squares
finite element method for singularly perturbed problems. More research should be
conducted regarding the impact of the stabilizer in the algorithm design and analysis.

7.3. Example 8. Consider the reaction-diffusion problem (7.1) in two dimen-
sions with c = 1 + x2y2exy/2. The load function f and the Dirichlet boundary values
are chosen so that the exact solution is given by

u = x3(1 + y2) + sin(πx2) + cos(πy/2)
+ (x+ y)[e−2x/ε + e−2(1−x)/ε + e−3y/ε + e−3(1−y)/ε].

In the weak Galerkin scheme (7.2), the two stabilizing parameters are set as ρ1 =
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Fig. 7.9. Example 7: The solution plots for ε = 10−5, ρ1 = ε2, and ρ2 = ε2 for h = 1/32 (left)
and h = 1/128 (right).
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Fig. 7.10. Example 8: The rates of convergence in an ε-dependent norm for ε = 1, 10−1,
10−2, 10−3, 10−4, and 10−5.

ε2 and ρ2 = ε. Figure 7.10 illustrates the rates of convergence for the corresponding
numerical solutions in the ε-dependent norm (7.3) for the test cases with ε = 1,
ε = 10−1, ε = 10−2, ε = 10−3, ε = 10−4, and ε = 10−5. For the cases of ε = 1 and
ε = 10−1, the numerical solutions converge at the optimal rate of O(h). When ε is
small (say, ε = 10−5), the error converges uniformly in ε with an order O(h0.5). The
weak Galerkin least-square finite element solution and the exact solution for ε = 10−5

and h = 1/128 are plotted in Figure 7.11. The numerical solution is accurate at
the places away from the three corner points (0, 1), (1, 0), and (1, 1) where the exact
solution is singular. In fact, the singularity is so strong that the solution changes very
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Fig. 7.11. Example 8: For h = 1/128 and ε = 10−5, the weak Galerkin solution (left) and the
exact solution (right).

rapidly when moving away from the corners. For example, it can be computed that
u(1, 1) = 6, while u(1, 0.99) = 3.9858, u(1, 0.999) = 3.9986, and u(0.999, 1) = 3.9993.
We believe that very fine meshes are needed around these three corner points in order
to resolve the strong singularities.

Acknowledgment. The authors would like to offer their gratitude to Professor
Zhiqiang Cai for his helpful discussion on the least-squares finite element methods.
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